
Abstract Dialectical Frameworks
An Analysis of Their Properties and Role in
Knowledge Representation and Reasoning

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

eingereichte

Habilitationsschrift

zur Erlangung des akademischen Grades

doctor rerum naturalium habilitatus
(Dr. rer. nat. habil.)

vorgelegt

von Dr. rer. nat. Hannes Straß

geboren am 12. Februar 1984 in Karl-Marx-Stadt (heute Chemnitz)

Die Annahme der Habilitationsschrift haben empfohlen:

1. Professor Dr. Gerhard Brewka, Universität Leipzig, Deutschland

2. Professor Dr. Marc Denecker, Katholieke Universiteit Leuven, Belgien

3. Professor Dr. Paul E. Dunne, Liverpool University, Vereinigtes Königreich

Beschluss über die Verleihung des akademischen Grades vom 23. Oktober 2017.

ii

iii

Preface

Acknowledgements .v
Abstract . vii
Kurzfassung . ix
Contents . xix

iv

v

Acknowledgements
Many people have contributed in one way or another to the successful com-
pletion of this thesis. Whilst it is impossible to mention everyone by name,
I would nonetheless like to express my gratitude towards the following.

Gerhard Brewka gave me the liberty to pursue my own research agenda
and has also otherwise been tremendously supportive throughout my ca-
reer.

My colleagues in Leipzig, Ringo Baumann, Stefan Ellmauthaler, Frank
Loebe and Jörg Pührer always provided a pleasant working environment in
which my ideas could thrive.

I consider myself happier for having collaborated with many people in
the past years – often with enlightening discussions and fruitful results, so
thank you all!

Over the years, I have also benefited from the criticism and suggestions of
numerous anonymous reviewers. In addition, several people gave feedback
on drafts of various documents: Bart Bogaerts pointed out that grounded
models and F-stable models are the same; Sarah Alice Gaggl identified sev-
eral missing links in Figure 6.1; Jörg Pührer made several useful suggestions
for the improvement of Chapter 5; Johannes Peter Wallner suggested sev-
eral examples for Chapter 3; Stefan Woltran provided a useful pointer to
related work on realisability in logic programming.

My friends in Leipzig, Dresden and all over the place provided many
welcome distractions and made everything worthwhile.

Finally, my family, especially my parents and my girlfriend, offered the
constant support and encouragement that made all of this possible.

While I believe that all of those mentioned have contributed to an im-
proved final version, none is, of course, responsible for remaining short-
comings.

vi

vii

Abstract
Abstract dialectical frameworks (ADFs) are a formalism for represent-
ing knowledge about abstract arguments and various logical relationships
between them. This work studies ADFs in detail.

Firstly, we use the framework of approximation fixpoint theory to define
various semantics that are known from related knowledge representation
formalisms also for ADFs. We then analyse the computational complexity
of a variety of reasoning problems related to ADFs. Afterwards, we also
analyse the formal expressiveness in terms of realisable sets of interpreta-
tions and show how ADFs fare in comparison to other formalisms. Finally,
we show how ADFs can be put to use in instantiated argumentation, where
researchers try to assign meaning to sets of defeasible and strict rules.

The main outcomes of our work show that in particular the sublan-
guage of bipolar ADFs are a useful knowledge representation formalism
with meaningful representational capabilities and acceptable computational
properties.

viii

ix

Kurzfassung

�

Künstliche Intelligenz und
Argumentationstheorie

Forschungsgegenstand der Künstlichen Intelligenz (KI) als Teilgebiet der Informatik ist die
Automatisierung intelligenten Verhaltens. Seit seinen Anfängen in den Fünfzigerjahren des
vorigen Jahrhunderts kann das Gebiet mittlerweile beträchtliche Fortschritte vorweisen. So
wurden zum Beispiel auf dem Gebiet der Spiele die Menschen schrittweise bei immer mehr
Spielen (bewiesenermaßen) chancenlos gegen entsprechend programmierte Maschinen. Die
dahingehend womöglich erste von einer breiten Öffentlichkeit wahrgenommene solche Er-
rungenschaft war wohl 1997 der Sieg von IBMs Schachcomputer „Deep Blue“ gegen den
damaligen (menschlichen) Schachweltmeister Garri Kasparov. Seitdem hat die Entwicklung
rasant zugenommen, so dass mittlerweile auch Dame1 und Poker2 (in der Variante „Heads-
up/Limit/Hold’em“) als gelöst betrachtet werden können. Erst kürzlich konnte eine For-
schungsgruppe unter der Leitung von David Silver ein Programm namens AlphaGo vorstellen,
das das asiatische Brettspiel Go mindestens auf menschlichem Niveau beherrscht3 und später
auch deutlich gegen den amtierenden Go-Weltmeister Lee Sedol gewann, was noch vor zehn
Jahren von vielen Fachleuten als „mehrere Jahrzehnte entfernt“ eingeschätzt wurde.

Neben der immer fortschreitenden Weiterentwicklung der reinen Rechenleistung von Com-
putersystemen ist diese Entwicklung auch immer wieder auf neuartige Technologien der KI
zurückzuführen. Im Fall von AlphaGo schreiben Silver et al. den Erfolg des Programms
zu großen Teilen dem Einsatz so genannter tiefer künstlicher neuronaler Netze zu. Bei sol-
chen neuronalen Netzen handelt es sich um vereinfachte Nachbildungen in der Natur vorge-
fundener neuraler Strukturen, die mit einer großen Anzahl von Übungsbeispielen angelernt
werden und daraus eine implizite Bewertungsfunktion extrahieren, die (im Falle von Silver et
al.) beim Spielen des Spiels günstige von ungünstigen (im Sinne einer gezielten Beeinflussung
der Spielentwicklung hin zu einem eigenen Sieg) Zustände und Züge unterscheiden kann.

Auf Grund der Architektur künstlicher neuronaler Netze und der schieren Menge an von
ihnen verarbeiteter Daten ist es jedoch für Menschen grundsätzlich nicht möglich, deren Funk-
tionsweise im konkreten Einzelfall nachzuvollziehen. Während also Go-spielende Menschen er-
wartungsgemäß die Gründe für ihre Züge darlegen können, steht uns das Programm AlphaGo

1Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert Lake, Paul Lu, and
Steve Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007. doi: 10.1126/science.1144079. URL http:
//science.sciencemag.org/content/317/5844/1518.

2Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em poker is solved.
Science, 347(6218):145–149, 2015. doi: 10.1126/science.1259433. URL http://science.sciencemag.org/content/347/
6218/145.

3David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Sch-
rittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and De-
mis Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature, 529:484–489, 2016. doi:
10.1038/nature16961. URL http://dx.doi.org/10.1038/nature16961.

x

gewissermaßen als Mysterium gegenüber, dessen Entscheidungen, wie es eine Kolumne im
Fachmagazin Nature beschrieb, „hingenommen werden müssen“.4

Wir glauben jedoch, dass es für die menschliche Akzeptanz künstlich intelligenter Systeme
hilfreich ist, wenn diese Systeme ihre Entscheidungen und Handlungen schlüssig begründen
können. Darüber hinaus behaupten wir, dass es für eine produktive und vertrauensvolle
Zusammenarbeit von Menschen und Maschinen wichtig ist, dass beide Seiten ihre Entschei-
dungen nachvollziehbar darlegen und in einem rationalen Diskurs erfolgreich verteidigen
können.

Im Teilgebiet Argumentationstheorie der Künstlichen Intelligenz wird untersucht, wie sich
die Analyse und der Austausch von Argumenten und Argumentationen rechnergestützt auto-
matisieren lassen. Ein Argument wird dabei (z.B. nach Douglas Walton) definiert als eine
Menge von Aussagen, von denen eine als Schlussfolgerung und die übrigen als Prämissen
gelten, und zwischen Prämissen und Schlussfolgerung eine Ableitungsbeziehung besteht.5

Walton führt weiterhin aus, dass ein Argument von anderen Argumenten unterstützt oder
attackiert werden kann; Argumente können also nicht nur hinsichtlich ihrer intrinsischen
Eigenschaften – wie z.B. der logischen Gültigkeit ihrer Ableitungsbeziehung – ausgewer-
tet werden, sondern auch mittels ihrer sich ergebenden Interaktionen mit anderen Argu-
menten. Zur Verarbeitung von Argumenten wird natürlich zunächst eine Darstellung der-
selben benötigt; hierfür kommen zumeist Techniken der logikbasierten Wissensrepräsentation
(KR; von engl. Knowledge Representation) zum Einsatz – Formalismen, durch die Wissen mit
klarer Syntax und Semantik rechnergestützt darstellbar gemacht wird.

�
Abstrakte Argumentations-
rahmenwerke und Abstrakte
Dialektische Rahmenwerke

Einer der am weitesten verbreiteten mathematischen Formalismen der Argumentations-
theorie sind die 1995 von Phan Minh Dung vorgeschlagenen Abstrakten Argumentationsrahmen-
werke.6 Darin wird vollständig von intrinsischen Eigenschaften der analysierten Argumente
abstrahiert, und diese als nicht weiter zerlegbare Einheiten behandelt. Einzig verfügbare In-
formationen über Argumente sind deren Beziehungen zu anderen Argumenten in Form einer
Beziehung, die angibt, ob ein Argument ein anderes attackiert. Trotz – oder vielleicht gerade
wegen – ihrer Einfachheit erfreuen sich diese AFs (von engl. Argumentation Frameworks) großer
Beliebtheit in der Forschung, da sich darin viele grundlegende Fragen auf stark vereinfachte
Weise formulieren und analysieren lassen.

Allerdings steht die Argumentationstheorie den Abstrakten Argumentationsrahmenwerken
auch nicht auf einhellige Art uneingeschränkt positiv gegenüber: Verschiedene auf diesem Ge-
biet Forschende haben festgestellt, dass die mit AFs einhergehende Eingrenzung der Analyse
ausschließlich der Attacken zwischen Argumenten die damit behandelbaren – in tatsächlichen
Diskursen auftretenden – Phänomene nachhaltig einschränkt. Dieser Hauptkritikpunkt führte
zu verschiedenen Ansätzen zur Verallgemeinerung von AFs, auf deren Einzelheiten wir jedoch
nicht weiter eingehen und stattdessen auf einen einschlägigen Überblicksartikel verweisen.7

Einen der allgemeinsten Ansätze zur Verallgemeinerung von Dungs Abstrakten Argument-
ationsrahmenwerken stellen die von Brewka und Woltran 2010 vorgeschlagenen Abstrakten

4Unnamed authors. Digital intuition: A computer program that can outplay humans in the abstract game of Go
will redefine our relationship with machines. Nature, 529:437, 2016. doi: 10.1038/529437a. URL http://www.nature.
com/news/digital-intuition-1.19230. Editorial.

5Douglas Walton. Argumentation theory: A very short introduction. In Argumentation in Artificial Intelligence.
Springer Dordrecht Heidelberg London New York, 2009.

6Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artificial Intelligence, 77:321–358, 1995.

7Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of Dung frameworks and their role in
formal argumentation. IEEE Intelligent Systems, 29(1):30–38, 2014. ISSN 1541-1672. Special Issue on Representation
and Reasoning.

xi

Dialektischen Rahmenwerke (ADFs, von engl. Abstract Dialectical Frameworks) dar.8 Darin wird
ebenfalls von Argument-Interna abstrahiert; fundamentale Verallgemeinerung ist jedoch die,
dass an Stelle einer reinen Angriffsbeziehung nun die Möglichkeit zur mathematischen Spezi-
fikation beliebiger logischer Argumentbeziehungen tritt. So können beispielsweise durch (form-
alisierte Versionen von) Äußerungen wie „Argument A kann genau dann akzeptiert werden,
wenn Argument B akzeptiert wird und Argument C nicht akzeptiert wird“ ausgedrückt wer-
den, dass A von B unterstützt und von C angegriffen wird.

Die vorliegende Habilitationsschrift befasst sich umfassend mit Abstrakten Dialektischen
Rahmenwerken. Wir definieren Semantiken für ADFs, analysieren die Berechnungskomplex-
ität sich zu ihnen ergebender Entscheidungsprobleme, studieren ihre formale Ausdrucksstärke
und Repräsentationseffizienz und präsentieren zuletzt noch eine beispielhafte Anwendung im
Gebiet der anfechtbaren Regelsysteme. Nachfolgend stellen wir in deutscher Sprache kurz den
Ausgangspunkt dieser Arbeit dar und geben ihre Hauptergebnisse wieder. Wir beginnen mit
der Exposition einer Theorie über Operatoren in geordneten Strukturen, welche die Definition
neuer Semantiken für Abstrakte Dialektische Rahmenwerke maßgeblich beeinflusst hat.

�

Approximations-
fixpunkttheorie

Ausgehend von einem fundamentalen Resultat von Knaster und Tarski über Fixpunkte
von Operatoren in vollständigen Verbänden9 entwickelten Denecker, Marek und Truszczyński
einen algebraischen Ansatz zur Analyse formaler Semantiken mit Hilfe von Operatoren in
geordneten Strukturen.10 Der grundlegende Gedanke fußt dabei auf dem Konzept der Ap-
proximation eines Operators.

Aufgabe einer Semantik ist es, Elementen der Syntax (einer formalen Sprache) eine Menge
zulässiger Interpretationen (ihre Modelle) zuzuordnen. Ein Ansatz zur Definition von Se-
mantiken ist es, syntaktischen Elementen einen Operator auf Interpretationen so zuzuweisen,
dass der Operator eingegebene Interpretationen im Sinne seines assoziierten syntaktischen Ele-
ments modifiziert. In dieser Leseweise stellt dann der kleinste Fixpunkt des Operators – jene
kleinste Interpretation, die bei Eingabe in den Operator gleichermaßen als Ausgabe zurück-
geliefert wird – das intendierte Modell des zum Operator gehörigen syntaktischen Elements
dar, da intuitiv gesehen keine Modifikationen mehr notwendig bzw. möglich sind. Solche
Ansätze zur Definition von Semantiken wurden bereits in den Siebzigerjahren des vorigen
Jahrhunderts im Gebiet der Logikprogrammierung erfolgreich eingesetzt.

Für bestimmte Sprachen kann es jedoch der Fall sein, dass die für syntaktische Elemente
definierten Operatoren nicht notwendigerweise die Eigenschaft der Monotonie erfüllen, welche
gemäß dem Resultat von Knaster und Tarski hinreichend für die Existenz eines kleinsten Fix-
punkts ist. Somit kann in solchen Fällen auch die Semantik solcher Sprachen nicht unmit-
telbar auf der Grundlage kleinster Fixpunkte definiert werden, da die Existenz solcher nicht
garantiert werden kann. Denecker, Marek und Truszczyński begegnen diesem Problem mit
Hilfe ihres Konzepts der Approximation von Operatoren. Arbeitet ein gegebener Operator auf
einer Grundmenge von zweiwertigen Interpretationen, so gilt als Approximation dieses Oper-
ators jeder solche auf einer Grundmenge dreiwertiger Interpretationen arbeitende, der im Bezug
auf zweiwertige Interpretationen ebenso abbildet wie der dadurch approximierte Operator,
und zudem noch monoton bezüglich einer Ordnung der Informationserhaltung auf Interpret-
ationen ist. Dreiwertige Interpretationen fügen dabei den klassischen Wahrheitswerten „wahr“

8Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proceedings of the Twelfth International
Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 102–111, 2010.

9Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific Journal of Mathematics, 5(2):
285–309, 1955.

10Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, Stable Operators, Well-Founded
Fixpoints and Applications in Nonmonotonic Reasoning. In Logic-Based Artificial Intelligence, pages 127–144. Kluwer
Academic Publishers, 2000.

xii

und „falsch“ noch einen dritten, nicht-designierten Wert „undefiniert“ (oder „unentschieden“,
„unbekannt“) hinzu. Zwei dreiwertige Interpretationen stehen nun miteinander in Beziehung
der Informationsordnung auf solchen, falls jedes Argument, dem in der einen Interpretation
ein klassischer Wert zugewiesen wird, auch in der anderen Interpretation genau diesen Wert
aufweist. Es lässt sich zeigen, dass der (informations-)kleinste Fixpunkt eines approximier-
enden Operators (welcher auf Grund der Monotonie existiert) die Fixpunkte des dadurch
approximierten Operators in dem Sinne „approximiert“, dass letztere in einem Informationsin-
tervall liegen, das von ersterem aufgespannt wird.

Mit Hilfe dieser und weiterer, darauf aufbauender Konzepte gelang es Denecker, Marek
und Truszczyński in Folgearbeiten schließlich, wichtige Fragestellungen der logikbasierten
Wissensrepräsentation umfassend zu beantworten.11 Wir nutzen Approximationsfixpunktthe-
orie in dieser Arbeit, um die Semantik Abstrakter Dialektischer Rahmenwerke methodisch
fundiert auszuarbeiten sowie sie mit Semantiken vergleichbarer Wissensrepräsentationsform-
alismen, wie Abstrakter Argumentationsrahmenwerke oder Logikprogramme, zu vergleichen.

�

Semantiken für Abstrakte
Dialektische Rahmenwerke

In dem Konferenzbeitrag, welcher Abstrakte Dialektische Rahmenwerke erstmals gegenüber
der wissenschaftlichen Öffentlichkeit einführte, schlugen die Autoren Brewka und Woltran
bereits einige Semantiken für ADFs vor. Unter anderem definierten sie eine Semantik der
zweiwertigen Modelle, welche, wie hierin gezeigt, auch mit Hilfe eines Operators auf zweiwer-
tigen Interpretationen definiert werden kann. Diesen Operator zugrundelegend verwenden
wir anschließend Approximationsfixpunkttheorie, um weitere operator-basierte Semantiken
für Abstrakte Dialektische Rahmenwerke zu definieren. Als Grundlage dafür dienen wie-
derum verschiedene mögliche Approximationen des ursprünglichen, zweiwertigen Operators.
Je nach gewähltem Approximationsoperator führen existierende und hierin neu entwickelte
Operatorsemantiken zu verschiedenen Familien von neuartigen Definitionen existierender Se-
mantiken oder neuartigen Semantiken. Wir studieren hier (in Kapitel 3) im Detail die beiden
Familien der approximativen Semantiken und der ultimativen Semantiken.

Der approximative Approximationsoperator ergibt sich aus der Übersetzung normaler
Logikprogramme in ADFs (eine Übersetzung, welche von Brewka und Woltran vorgeschla-
gen wurde) und einer entsprechenden Verallgemeinerung eines dreiwertigen Operators, der
zunächst bei Fitting12 und später auch bei Denecker, Marek und Truszczyński zur Analyse
und Rekonstruktion der Semantik der stabilen Modelle von Gelfond und Lifschitz13 verwendet
wurde. Der ultimative Approximationsoperator für Abstrakte Dialektische Rahmenwerke res-
ultiert aus einer allgemeinen Definition von Denecker, Marek und Truszczyński, welche jedem
zweiwertigen Operator denjenigen Approximator („ultimativer Approximator“ genannt) zu-
weist, welcher unter allen möglichen Approximatoren denjenigen mit dem für alle Eingaben
höchsten Informationsgehalt auswählt.14

Legen wir nun einen bestimmten Approximationsoperator fest, so lässt sich die Menge der
vollständigen Interpretationen (im Sinne der Approximationsfixpunkttheorie dreiwertige Fix-
punkte) genau als die Menge der Fixpunkte dieses Operators definieren; darauf aufbauend
folgt somit die grundierte Semantik als der kleinste Fixpunkt, die Menge der zulässigen Inter-
pretationen als die Menge aller Postfixpunkte, die Menge der bevorzugten Interpretationen als

11Marc Denecker, V. Wiktor Marek, and Mirosław Truszczyński. Uniform Semantic Treatment of Default and Au-
toepistemic Logics. Artificial Intelligence, 143(1):79–122, 2003.

12Melvin Fitting. Fixpoint Semantics for Logic Programming: A Survey. Theoretical Computer Science, 278(1–2):25–51,
2002.

13Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In Proceedings of the
International Conference on Logic Programming (ICLP), pages 1070–1080. The MIT Press, 1988.

14Marc Denecker, Victor W. Marek, and Mirosław Truszczyński. Ultimate approximation and its application in
nonmonotonic knowledge representation systems. Information and Computation, 192(1):84–121, 2004.

xiii

die Menge der informationsmaximalen Postfixpunkte und schließlich die Menge der semista-
bilen Interpretationen als die Menge der reichweitenmaximalen zulässigen Interpretationen.
(Die Reichweite einer dreiwertigen Interpretation meint hierbei genau diejenige Menge an
Argumenten, welche von der Interpretation als akzeptiert/wahr oder abgelehnt/falsch festge-
setzt wird, also genau solche, die nicht als unentschieden einem klassischen Akezptanzwert
vorenthalten werden.) Für all diese Semantiken legen wir mit Hilfe eines geeigneten Oper-
ators für AFs dar, wie sie sich innerhalb der Approximationsfixpunkttheorie auf natürliche
Weise aus den vorher bekannten (und gleichermaßen benannten) Semantiken der Abstrakten
Argumentationsrahmenwerke ergeben.

Darüber hinaus zeigen wir, dass sich der ebenfalls von AFs bekannte – dort fundamentale –
Begriff der Konfliktfreiheit auf verschiedene Weisen auf dreiwertige Interpretationen von ADFs
verallgemeinern lässt. Wir bieten zwei mögliche operator-basierte Definitionen an: eine asym-
metrische und eine symmetrische Variante der konfliktfreien Interpretationen. Für die sym-
mterische Variante legen wir fest, dass ein Argument in einer dreiwertigen Interpretation als
akzeptiert gelten kann, falls der gegebene Approximationsoperator in einem Revisionsschritt
nicht festlegt, dass das Argument abzulehnen sei. Symmetrisch dazu (und daher der Name)
legen wir fest, dass ein Argument in einer dreiwertigen Interpretation als abgelehnt gelten
kann, falls der Operator in einem Revisionsschritt nicht festlegt, dass das Argument zu akzep-
tieren sei. Dies manifestiert eine weitere Absenkung der Akzeptanzstandards gegenüber der
zulässigen Semantik: In einer zulässigen Interpretation ist es der Fall, dass akzeptierte Ar-
gumente vom Operator in einem Revisionsschritt auch tatsächlich als „zu akzeptieren“ bzw.
abgelehnte Argumente auch tatsächlich als „abzulehnen“ klassifiziert werden. Für die asym-
metrische Variante der dreiwertigen konfliktfreien Interpretationen stehen demnach sowohl
symmetrisch konfliktfreie als auch zulässige Interpretationen Pate: Ein Argument kann hier
schon als akzeptiert konstatiert werden, so nicht der Operator revidiert, dass es abzulehnen
sei; andererseits kann ein Argument nur als abgelehnt konstatiert werden, falls der Operator
revidiert, dass es tatsächlich abzulehnen sei. Aufbauend auf dem Begriff einer dreiwertigen
Konfliktfreiheit (mit ihren verschiedenen Ausprägungen) lassen sich nun auch maximierungs-
basierte Kriterien (wie von der bevorzugten Semantik bekannt) auf dieses Konzept anwenden.
Dieses führt zur Semantik der naiven Interpretationen, nämlich der Menge aller konfliktreien
Interpretationen, die im Bezug auf ihre Konfliktfreiheit informationsmaximal sind, und zur Se-
mantik der stufigen Interpretationen, der Menge der reichweitenmaximalen konfliktfreien In-
terpretationen. Die Wahl eines Operators (approximativ/ultimativ) und die Wahl einer Konf-
liktfreiheit sind dabei orthogonal zueinander, so dass jeweils mindestens vier naive und stufige
Semantiken existieren, zum Beispiel die approximativen symmetrisch konfliktfreien naiven In-
terpretationen oder die ultimativen asymmetrisch konfliktfreien stufigen Interpretationen.

Da sich die von uns quasi in Form von Korollaren definierten Semantiken problemlos auf
abstrakt gehaltene Ansätze von beliebigen Approximationsoperatoren in vollständigen partiel-
len Ordnungen verallgemeinern lassen, bieten wir für solche Ansätze noch zwei Resultate an,
die die Existenz bevorzugter und naiver Interpretationen (bzw. Verallgemeinerungen davon)
in nur sehr schwach eingeschränkten Verhältnissen garantieren.

Zuätzlich zur Herausarbeitung der Verbindungen der ADF-Semantiken zu denen der Ab-
strakten Argumentationsrahmenwerke erzielen wir auch vielerlei Ergebnisse um beide genan-
nten Formalismen zu den normalen aussagenlogischen Logikprogrammen ihrerseits in Bez-
iehung zu setzen. So betrachten wir zwei in der einschlägigen Literatur vorgefundene Über-
setzungen von AFs in Logikprogramme und die dafür geltenden Koinzidenz- bzw. Äquival-
enzbeziehungen zwischen jenen Semantiken, die sowohl für AFs als auch für normale aus-
sagenlogische Logikprogramme definiert sind. Gleichermaßen analysieren wir ebensolche
Beziehungen zwischen normalen Logikprogrammen und Abstrakten Dialektischen Rahmen-

xiv

werken.
�

Bipolare Abstrakte Dialekt-
ische Rahmenwerke

Bereits in ihrer Arbeit von 2010, die gewissermaßen die Grundsteinlegung aller weiterer
Forschung an Abstrakten Dialektischen Rahmenwerken darstellte, beobachteten Brewka und
Woltran, dass bei der Verwendung von ADFs nicht in jedem Falle die gesamte Ausdrucksstärke
der Akzeptanzbedingungen von Nöten ist. Ihre Erkenntnis gossen Brewka und Woltran in
eine fundamentale Definition, die mittlerweile auf ein breit gefächertes Spektrum an von
ihr beeinflussten Begriffen blicken kann. Demnach heißt ein Abstraktes Dialektisches Rah-
menwerk bipolar, falls alle Abhängigkeitsbeziehungen zwischen Argumenten gemäß deren
Akzeptanzbedingungen zweifelsfrei in mindestens eine von zwei Kategorien eingeordnet wer-
den können, nämlich unterstützende und angreifende Abhängigkeitsbeziehungen. Eine Bez-
iehung von einem Argument A zu einem Argument B heißt nach jener Fassung unterstützend,
falls es keine Interpretation der Elternargumente von B (also derjenigen Argumente, von deren
Akzeptanz oder Nicht-Akzeptanz die Akzeptanz von B letztendlich abhängt) so gibt, dass B
gemäß seiner Akzeptanzbedingung und der vorherrschenden Konfiguration akzeptiert wird,
jedoch die Änderung der Position im Bezug auf A gemäß der Akzeptanzbedingung von B die
Auswirkung hätte, dass B nicht mehr akzeptiert wird – gewissermaßen die Änderung in der
Akzeptanz von A alleinig als die Ursache der späteren Nicht-Akzeptanz von B gesehen werden
muss. Dazu spiegelgleich heißt die Beziehung von A nach B angreifend, falls es keine Interpret-
ation so gibt, dass B zunächst nicht akzeptiert wird, aber nach ausschließlicher Modifikation
der Akzeptanz von A (von „abgelehnt“ zu „akzeptiert“) und ansonsten gleichbleibender Ges-
amtkonfiguration auch B akzeptiert wird.

Die sich dadurch ergebende Klasse von Abstrakten Dialektischen Rahmenwerken stellt
eine echte Einschränkung der allgemeinen ADFs dar, da in solchen auch gewissermaßen kon-
textabhängig unterstützend oder angreifend agierende Beziehungen zwischen Argumenten
möglich sind, wie zum Beispiel in der Akzeptanzbedingung „das Argument wird genau dann
akzeptiert, wenn entweder beide Eltern akzeptiert sind oder beide Eltern abgelehnt sind“.
Nichtsdestotrotz genügten die verbleibenden Ausdrucksmittel der bipolaren ADFs an an-
derer Stelle Brewka und Gordon, die noch im selben Jahr (2010) aufzeigten, wie das System
„Carneades“, das zur Modellierung konkreter argumentativer Strukturen dient, mit Hilfe von
Abstrakten Dialektischen Rahmenwerken so rekonstruiert werden konnte, dass die Semantik
nun auch in der Lage war, mit zyklischen Abhängigkeiten zwischen Aussagen umzugehen,
was im ursprünglichen Carneades wegen technischer Einschränkungen nicht möglich war.15

Wollen wir auch nicht spätere Entwicklungen vorweg nehmen, so gebietet es doch die Voll-
ständigkeit, darauf hinzuweisen, dass unsere eigene Arbeit (hierin als Kapitel 6 einbezogen)
zur Anwendung von Abstrakten Dialektischen Rahmenwerken auf dem Gebiet der anfecht-
baren Regelsysteme ebenso deutlich die Einsatzfähigkeit bipolarer ADFs vor Augen führt.
Umso deutlicher wird dies mit der erfolgten Analyse der Berechnungskomplexität mit Ab-
strakten Dialektischen Rahmenwerken assoziierter Entscheidungs- und Funktionsprobleme.

�

Berechnungskomplexität Die Theorie der Berechenbarkeit mathematisch gefasster Funktionen liefert uns ein allge-
mein anerkanntes, probates Mittel zur Analyse der fundamentalen Fragestellung, ob ein ge-
gebenes Problem mit Hilfe von rechnenden Maschinen gelöst werden kann. Darauf aufbauend
untersucht die Komplexitätstheorie, welche zur Berechnung nötigen Ressourcen in welchem
qualitativen Umfang zur umfassenden Lösung einer rechnerlösbaren Fragestellung vorge-
halten werden müssen. In der Literatur haben sich dabei als fundamentale Ressourcen die
Zeit im Sinne einer Dauer der Berechnung, gemessen in einzelnen Rechenschritten, und der

15Gerhard Brewka and Thomas F. Gordon. Carneades and abstract dialectical frameworks: A reconstruction. In
Proceedings of the Third International Conference on Computational Models of Argument (COMMA), volume 216 of FAIA,
pages 3–12. IOS Press, September 2010.

xv

Platz im Sinne des Speicherverbrauchs einer Berechnung, gemessen in einzelnen Speicherzel-
len zur Ablage jeweils eines Zeichens eines vorher vereinbarten Alphabets, herauskristallisiert.
Grundlegendes Alleinstellungsmerkmal der Komplexitätstheorie ist nun jedoch nicht die fein-
gliedrige Analyse der Schritte einzelner Berechnungen, sondern vielmehr das Vermögen, sich
von konkreten Lösungsansätzen für gegebene Probleme entbinden und an Stelle dessen die
inhärente Komplexität des Problems selbst untersuchen zu können.16

Solche Untersuchungen geschehen häufig mit Hilfe so genannter Komplexitätsklassen – Men-
gen von Problemen, welche allesamt den gleichen Ressourcenverbrauch aufweisen. „Prob-
leme“ bezieht sich hier meist auf Entscheidungsprobleme, bei denen die Aufgabe darin besteht,
eine gegebene (ein Objekt aus dem Anschauungsbereich des Problems kodierende) Zeichen-
kette als ein Wort (positive Instanz) oder Nicht-Wort (negative Instanz) einer bestimmten – somit
das Problem charakterisierenden – formalen Sprache (über einem vereinbarten Alphabet) zu
klassifizieren. In dieser Form könnte zum Beispiel das Problem der Erkennung von Primzah-
len solchermaßen gefasst werden, dass die charakterisierende formale Sprache über einem
Alphabet, das die Zeichen 0 und 1 umfasst, genau diejenigen Zeichenketten enthält, deren
Interpretation als binär kodierte natürliche Zahlen eine Primzahl ergeben. Mittlerweile ist
bekannt, dass sich dieses Problem in der Komplexitätsklasse P befindet, demzufolge sich die
maximale Anzahl der Rechenschritte in Abhängigkeit der Länge der eingegebenen Zeichen-
kette durch ein konkretes Polynom „von oben“ abschätzen lässt.17

Eine weitere, in unserer hierin (speziell in Kapitel 4) vorgestellten Untersuchung der Berech-
nungskomplexität der Abstrakten Dialektischen Rahmenwerke häufig vorkommende Kom-
plexitätsklasse ist NP, deren Zugehörige genau diejenigen Probleme sind, für die sich positive
Instanzen in P als solche verifizieren lassen. Auf Grundlage dieser beider Klassen lässt sich
noch eine Vielzahl weiterer solcher Zusammenfassungen von Problemstellungen definieren:
Die Klasse coNP enthält danach genau die Komplementärprobleme der Mitglieder von NP;
die Klasse ΣP

2 enthält genau diejenigen Probleme, deren positive Instanzen sich in P mit Hilfe
eines „NP-Orakels“ verifizieren lassen, die Klasse ΠP

2 genau die, deren negative Instanzen
sich in P mit Hilfe eines NP-Orakels verifizieren lassen. Ein NP-Orakel ist dabei ein gedank-
liches Konstrukt, das intuitiv als eine Subroutine gesehen werden kann, die jede beliebige
Fragestellung aus NP in einem einzigen Rechenschritt entscheiden kann. Die Definitionen
der Begriffe ΣP

2 und ΠP
2 lassen sich von 2 auf beliebige natürliche Zahlen erweitern, wodurch

die so genannte Polynomielle Hierarchie zustande kommt, eine unendliche Abfolge ineinander
enthaltener Komplexitätsklassen, deren „obere Schranke“, wenn man so will, nur festlegt,
dass alle darin enthaltenen Problemstellungen mit höchstens polynomiellem Platzverbrauch
entscheidbar sind.

�
Berechnungskomplexität
Abstrakter Dialektischer
Rahmenwerke

Bei unserer Analyse der Berechnungskomplexität der Abstrakten Dialektischen Rahmen-
werke können wir herausarbeiten, dass die Kapazitäten zur Problemmodellierung ebendieser
teilweise merklich über die der Abstrakten Argumentationsrahmenwerke hinausgeht. Konkret
untersuchen wir vier verschiedene Problemtypen, welche sich aus dem Umgang mit ADFs
ergeben: 1. Gegeben ein ADF, eine Semantik und eine Interpretation, erfüllt die Interpretation
die Maßgaben der Semantik? 2. Gegeben ein ADF und eine Semantik, besitzt das ADF eine
nicht-triviale Interpretation unter dieser Semantik? (Eine Interpretation gilt als nicht-trivial,
wenn in ihr zumindest ein Argument akzeptiert oder abgelehnt ist.) 3./4. Gegeben ein ADF,
eine Semantik und ein Argument, wird dieses Argument in einer/jeder Interpretation der
Semantik akzeptiert? Letztere beiden Probleme sind auch unter den Namen leichtgläubiges

16Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
17Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781–793, 2004.

doi: 10.4007/annals.2004.160.781.

xvi

und skeptisches Schließen bekannt, da jeweils nach logischen Konsequenzen des gegebenen
Abstrakten Dialektischen Rahmenwerks gefragt wird. Ohne zu sehr ins Detail zu gehen, lässt
sich sagen, dass die Berechnungskomplexität der meisten dieser Probleme für die untersuchten
Semantiken im Falle von Abstrakten Dialektischen Rahmenwerken in der Polynomiellen Hier-
archie üblicherweise eine Ebene über der jeweiligen Komplexität desselben Problems für Ab-
strakte Argumentationsrahmenwerke liegt.

Als abschließendes Hauptergebnis der hier (in Kapitel 4) vorgestellten Darlegung lässt
sich zweifellos konstatieren, dass sich für die Teilklasse der bipolaren Abstrakten Dialekt-
ischen Rahmenwerke die Berechnungskomplexität der oben genannten Entscheidungsprob-
leme in den allermeisten Fällen im Vergleich zu Abstrakten Argumentationsrahmenwerken
nicht ändert. Anders ausgedrückt bieten bipolare ADFs im Gegensatz zu AFs die zusätzlichen
Ausdrucksmittel der unterstützenden Beziehungen zwischen Argumenten, ohne dass diese
Ausdrucksmittel, salopp formuliert, in Form von erhöhtem Ressourcenaufwand „bezahlt“ wer-
den müssen.

�

Aussdrucksstärke und Re-
präsentationseffizienz Während die erhöhte „Ausdrucksstärke“ von ADFs durch die Verfügbarkeit von unter-

stützenden Argumentbeziehungen intuitiv klar zu sein scheint, so ist doch eine genauere
Fassung des Begriffs und eine damit einhergehende umfassendere Darlegung seiner Aus-
prägungen im Falle konkreter Argumentationsformalismen erhellend. In einem mittlerweile
klassischen Beitrag zur logikbasierten Wissensrepräsentation schlugen Gogic, Kautz, Papadi-
mitriou und Selman im Jahr 1995 Begriffe vor, mit deren Hilfe sich die intuitiven Konzepte
Ausdrucksstärke und Repräsentationseffizienz auf präzise Weise mathematisch fassen lassen.18

Nach dieser Konzeption werden logikbasierte Wissensrepräsentationsformalismen als altern-
ative Möglichkeiten zur Darstellung formaler Sprachen (wie in der Berechnungs- und Kom-
plexitätstheorie zum Beispiel durch Automatenmodelle üblich) betrachtet, und ein Formal-
ismus F2 gilt als mindestens so ausdrucksstark wie ein Formalismus F1, wenn sich alle Inter-
pretationsmengen, die sich in F1 ausdrücken lassen (mittels einer Semantik und den in F1
verfügbaren Mitteln) auch innerhalb von F2 ausdrücken lassen. Dieses Konzept der relativen
Ausdrucksstärke interessiert sich zunächst also nur für die bloße Fähigkeit, eine Modellmenge
(Sprache) ausdrücken zu können, was jedoch seinerseits die Grundlage dafür legt, in späteren
Weiterentwicklungen auch die Repräsentationseffizienz von Formalismen mit formalen Meth-
oden zu fassen. Ebenfalls nach einem Begriffsvorschlag von Gogic et al. gilt ein Formalismus
F2 als mindestens so repräsentationeffizient (auch: mindestens so sukzinkt) wie ein Formalismus
F1, wenn für jeden Ausdruck von F1, dessen Interpretationsmenge sich sowohl in F1 als
auch F2 ausdrücken lässt, ein Ausdruck von F2 existiert, dessen Größe polynomiell durch die
Größe des Ausdrucks von F1 beschränkt ist; „polynomiell“ erfordert dabei die Existenz eines
festen Polynoms, das als obere Schranke für sämtliche zu betrachtenden Ausdrücke dient. An-
ders ausgedrückt ist F2 exponentiell repräsentationseffizienter (sukzinkter) als F1, falls F2 mit
höchstens polynomieller Aufblähung alles ausdrücken kann, was F1 ausdrücken kann, es aber
einen Ausdruck in F2 gibt, dessen kleinstmöglicher äquivalenter Ausdruck in F1 exponentiell
größer ist.

�
Aussdrucksstärke und
Repräsentationseffizienz
Abstrakter Dialektischer
Rahmenwerke

Unter Verwendung der oben definierten Begriffe zur Fassung relativer Ausdrucksstärke
und Repräsentationseffizienz studieren wir (in Kapitel 5) die entsprechenden Beziehungen
zwischen Abstrakten Argumentationsrahmenwerken, Abstrakten Dialektischen Rahmenwerken,
der klassischen Aussagenlogik und verschiedenen Ausprägungen aussagenlogischer Logikpro-
gramme. Dabei können wir herausstellen, dass die genannten Formalismen üblicherweise eine

18Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman. The comparative linguistics of knowledge
representation. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 862–
869. Morgan Kaufmann, 1995.

xvii

strenge Hierarchie bezüglich ihrer Ausdrucksstärke bilden, wobei die Abstrakten Argument-
ationsrahmenwerke jeweils die am wenigsten ausdrucksstarken Glieder darstellen, von den
echt ausdrucksstärkeren bipolaren Abstrakten Dialektischen Rahmenwerken gefolgt werden,
und beide ihrerseits durch die (unter der Semantik der zweiwertigen Modelle) universell aus-
drucksstarken uneingeschränkten ADFs und die Aussagenlogik dominiert werden. Aussagen-
logische Logikprogramme liegen dabei je nach gewählter Semantik (unterstützte oder stabile
Modelle) und gewählter Teilklasse solcher (normale oder kanonische Logikprogramme) en-
tweder zwischen bipolaren ADFs und AFs oder obenauf mit Aussagenlogik und allgemeinen
ADFs. Im Hinblick auf die Korrespondenz der Berechnungskomplexitäten zwischen Abstrak-
ten Argumentationsrahmenwerken und bipolaren Abstrakten Dialektischen Rahmenwerken
kann die formell nachgewiesene höhere Ausdrucksstärke der bipolaren ADFs also uneinges-
chränkt als eines der wichtigsten Ergebnisse dieser Untersuchung gelten.

Hinsichtlich der Repräsentationseffizienz der betrachteten Formalismen ergibt sich im We-
sentlichen, dass bipolare Abstrakte Dialektische Rahmenwerke unter der Semantik der zwei-
wertigen Modelle exponentiell sukzinkter sind als normale Logikprogramme unter der Se-
mantik der unterstützten Modelle; im Übrigen sind allgemeine (uneingeschränkte) Abstrakte
Dialektische Rahmenwerke unter der Semantik der zweiwertigen Modelle im Vergleich zur
klassischen Aussagenlogik (unter ihrer Standardsemantik) in ihrer Repräsentationseffizienz
als gleichwertig zu betrachten.

�
Anwendung Abstrakter
Dialektischer Rahmen-
werke auf anfechtbare
Regelsysteme

Im Forschungsgebiet der abstrakten formalen Argumentation gibt es ein Teilgebiet, das
sich mit der Nutzung von Techniken der abstrakten Argumentation zur Definition von Se-
mantiken für anfechtbare Regelsysteme befasst. Anfechtbare Regelsysteme sind ein einfacher,
logik-inspirierter Wissensrepräsentationsformalismus, bei dem über einem endlichen Vokab-
ular aus aussagenlogischen Literalen, also Atomen und Negationen solcher, direktionale Re-
geln zweierlei Art formuliert werden können, nämlich einerseits strikte Regeln und anderer-
seits anfechtbare Regeln. Jedwede Regeln bestehen aus einem Kopf – einem Literal –, welcher
die Konklusion eines durch die Regeln explizierten logischen Schlusses darstellt, und einem
Körper – einer Folge von Literalen –, der wiederum die Prämissen ebendieses Schlusses de-
notiert. Bei jeder Ansammlung von strikten und anfechtbaren Regeln spricht man von einem
anfechtbaren Regelsystem. Die dem zugrundeliegende Eingebung legt fest, dass strikte Regeln
eine universell geltende Schlussbeziehung zwischen Körper und Kopf konstatieren, während
ebendiese Schlussbeziehung im Falle anfechtbare Regeln gerade anfechtbar ist, also von einer
etwaigen Bedeutungslehre im Falle widersprüchlicher Informationen oder aus anderen über-
geordneten Gründen außer Kraft gesetzt werden kann. Demzufolge stellen die anfechtbaren
Regelsysteme eine Form des Ermangelungsschließens dar, da die mit Hilfe anfechtbarer Regeln
getroffenen Schlussfolgerungen ihrem Wesen nach „in Ermangelung vollständiger Informa-
tionen“ stattfanden und ihre Rücknahme jederzeit durch die Hinzunahme anderslautender
Aussagen erforderlich gemacht werden kann.

Zur argumentationsbasierten Analyse der Bedeutung solcher anfechtbaren Regelsysteme
hat die Fachliteratur im Großen und Ganzen zwei verschiedene Ansätze zu bieten. Einen er-
sten Vorschlag unterbreiteten Caminada und Amgoud, die angaben, wie aus Regeln induktiv
„Argumente“ konstruiert und nach welcher Maßgabe zwischen den so konstruierten Objekten
Angriffsbeziehungen konstituiert werden können.19 Demnach haben „Argumente“ eine inein-
ander verschachtelte Struktur, die grundsätzlich ganze Argumentationsfolgen von Fakten und
Annahmen ausgehend hin zu Schlussfolgerungen abbildet. Diese Autoren stellten in derselben
Arbeit jedoch schlussendlich fest, dass eine solche Herangehensweise nur mit zusätzlichen

19Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms. Artificial Intelligence, 171
(5–6):286–310, 2007.

xviii

Einschränkungen zu befriedigenden Ergebnissen führt: So müssen verwendete Semantik und
Definition der Angriffsbeziehungen sauber aufeinander abgestimmt werden, um das Auftreten
aus menschlich-alltäglicher Sicht unerwarteter Schlüsse ausschließen zu können.

In einer publizistischen Replik dazu schlugen Wyner und Kollegen einen anders gear-
teten Ansatz vor, bei dem die im entstehenden Argumentationsrahmenwerk definierten „Ar-
gumente“ keine innere Struktur besitzen, sondern sich gemeinhin auf der Ebene der Literale
und Regeln der Ausgangssprache bewegen, und argumentative Konstrukte vielmehr aus den
Angriffsbeziehungen zwischen verschiedenen Argumentknoten im abstrakten Rahmenwerk
gewissermaßen auf einer übergeordneten Ebene hervorgehen.20 Wyner und Kollegen begrün-
deten diese andersartige Ausrichtung ihres Ansatzes mit philosophischen Betrachtungen über
den Argumentbegriff an sich, auf die wir hier nicht näher eingehen wollen. Jedoch ist der An-
satz von Wyner et al. in technischer Hinsicht vorteilhaft gegenüber dem von Caminada und
Amgoud, da bei letzterem die Anzahl der entstehenden „Argumente“ gemeinhin nicht bes-
chränkt ist, also selbst aus einem gegebenen endlichen anfechtbaren Regelsystem ein unend-
lich großes Abstraktes Argumentationsrahmenwerk entstehen kann, wohingegen bei Wyner et
al. die Größe des sich ergebenden AFs mittels der Größe des eingegebenen anfechtbaren Regel-
systems abgeschätzt werden kann. Jedoch lässt aus unserer Sicht der in seiner Grundkonzep-
tion bereits fortgeschrittene Ansatz von Wyner und Kollegen immer noch Wünsche offen,
zum Beispiel die vollständig nachgewiesene Abwesenheit kontraintuitiver oder irrationaler
Schlussweisen, so dass wir (in Kapitel 6) einen Ansatz präsentieren, der anfechtbare Regel-
systeme in Abstrakte Dialektische Rahmenwerke übersetzt und ersteren dadurch vermöge
der ADF-Semantiken eine Bedeutung zuweist. Wir können dazu unter anderem zeigen, dass
diese Übersetzung nicht nur effizient konstruierbar ist, sondern auch irrationale Folgerungen
(gemäß einer Begriffsfassung von Caminada und Amgoud) zuverlässig ausschließt.

�

Zusammenfassung, weitere
Arbeiten und Ausblick

Die hier vorliegende Monographie stellt im Bezug auf den Umfang der darin detailliert
behandelten Fragestellungen einen wichtigen Beitrag zur wissenschaftlichen Arbeit an Ab-
strakten Dialektischen Rahmenwerken dar. Beginnend mit den semantischen Grundlagen und
Zusammenhängen zu anderen Formalismen analysieren wir auch Berechnungskomplexität
und Ausdrucksstärke sowie Repräsentationseffizienz, um schließlich mit einer beispielhaften
Anwendung von ADFs zu schließen.

Es liegt jedoch auch in der Natur dieses Dokumentes als Qualifikationsarbeit, dass wir
auf mehrere Arbeiten über Abstrakte Dialektische Rahmenwerke nicht im gleichen Detailgrad
eingehen, da sie in Zusammenarbeit mit oder ausschließlich von anderen Forschenden erzielt
wurden. Auf eine genauere Auflistung möchten wir hier verzichten und verweisen auf die
englischsprachige Variante einer solchen in Kapitel 7.

Können wir auch mit den hierin vorgestellten Ergebnissen maßgeblich zu einem verbesser-
ten Verständnis der Abstrakten Dialektischen Rahmenwerke beitragen, so verbleiben trotz al-
lem naturgemäß eine Reihe von Fragestellungen, die wir schlichtweg zukünftigen Arbeiten
zurechnen müssen. Es sei zum Beispiel erwähnt, dass für AFs weitere Semantiken existieren,
die unseres Wissens nach noch nicht auf ADFs verallgemeinert wurden, etwa die Semantik der
sehnlichen Interpretationen, welche für AFs strukturähnlich zur Semantik der idealen Interpret-
ationen definiert werden kann. Viele andere Aspekte, die für Abstrakte Argumentationsrah-
menwerke bereits gut erforscht sind, stellen für die Abstrakten Dialektischen Rahmenwerke
noch Neuland dar, so zum Beispiel das Verhalten der Semantiken unter Einbezug dynamis-
cher Aspekte, welche sich am ohnehin inhärent dynamischen realweltlichen Argumentieren
orientieren und darauf potenziell wieder zurückwirken könnten.

20Adam Wyner, Trevor Bench-Capon, and Paul Dunne. Instantiating knowledge bases in abstract argumentation
frameworks. In Proceedings of the AAAI Fall Symposium – The Uses of Computational Argumentation, 2009.

xix

Contents

1 Introduction 1
1.1 Publications . 3

2 Background 7
2.1 Mathematical Notation . 7
2.2 Logic in Knowledge Representation and Reasoning 7
2.3 Lattice Theory . 9
2.4 Approximation Fixpoint Theory . 10

2.4.1 Logic Programming . 12
2.5 Abstract Argumentation . 13

2.5.1 Abstract Argumentation Frameworks . 13
2.5.2 Abstract Dialectical Frameworks . 14

2.6 Complexity Theory . 17

3 Defining Semantics via Approximation Fixpoint Theory 19
3.1 Approximate Semantics of ADFs . 24

3.1.1 The Characteristic Approximate Operator of an ADF 24
3.2 Relationship to Normal Logic Programs . 33

3.2.1 From ADFs to Logic Programs . 33
3.2.2 From Logic Programs to ADFs . 35

3.3 Ultimate Semantics of Abstract Dialectical Frameworks 37
3.4 AF Semantics as Special Cases . 40

3.4.1 Fixpoint Semantics for Abstract Argumentation Frameworks 41
3.4.2 From Argumentation Frameworks to Logic Programs 44
3.4.3 From Logic Programs to Argumentation Frameworks 48

3.5 General Semantics for Approximating Operators 48
3.5.1 Admissible . 48
3.5.2 Semi-stable . 49
3.5.3 Conflict-free (Asymmetric) . 49
3.5.4 Conflict-free (Symmetric) . 51
3.5.5 Naive . 52
3.5.6 Stage . 52

3.6 Existence Results for General Operators . 53
3.7 Overview of Results . 55
3.8 Concluding Remarks . 56

xx

4 Computational Complexity 59
4.1 Preparatory Considerations . 61

4.1.1 Notation and Decision Problems . 61
4.1.2 Relationship Between the Operators . 63
4.1.3 Reductions and Encoding Techniques . 65
4.1.4 Operator Complexities . 68
4.1.5 Generic Upper Bounds . 70

4.2 General ADFs . 72
4.2.1 Symmetric Conflict-free Semantics . 72
4.2.2 Admissibility-based Semantics . 78
4.2.3 Two-valued Semantics . 86
4.2.4 Overview . 90

4.3 Bipolar ADFs . 92
4.3.1 Symmetric Conflict-free Semantics . 94
4.3.2 Two-valued Semantics . 95
4.3.3 Overview . 96

4.4 Conclusion . 98

5 Relative Expressiveness and Succinctness 99
5.1 Background on Relative Expressiveness . 103

5.1.1 Translations Between Considered Formalisms 104
5.1.2 Representing Bipolar Boolean Functions 106

5.2 Relative Expressiveness . 108
5.2.1 Supported Semantics . 108
5.2.2 Stable Semantics . 121
5.2.3 Supported vs. Stable Semantics . 122

5.3 Allowing Vocabulary Expansion . 123
5.4 Discussion . 127

6 An Application to Theory Bases 129
6.1 Background on Defeasible Theories . 130
6.2 Instantiations to Abstract Argumentation Frameworks 131

6.2.1 The Approach of Caminada and Amgoud (2007) 131
6.2.2 The Approach of Wyner, Bench-Capon, and Dunne (2013) 133

6.3 Instantiations to Abstract Dialectical Frameworks 135
6.3.1 From Theory Bases to ADFs . 135
6.3.2 Support Cycles in Theory Bases . 138
6.3.3 Inconsistent Theory Bases . 140
6.3.4 Properties of the Translation . 140

6.4 A Direct Semantics for Defeasible Theory Bases 142
6.4.1 Relationship to Autoepistemic Logic . 147
6.4.2 Defining Further Semantics . 148

6.5 Conclusion . 149

7 Discussion 151
7.1 Related and Possible Future Work . 151

Bibliography 152

Index 163

1

Chapter 1

Introduction

The goal of artificial intelligence (AI) is to create intelligent machines. These artificial entities,
be they purely software or physically embedded, should be able to think and act rationally
in order to fulfil goals. The possession of knowledge is one of the most important aspects of
intelligence, as it seems to be a culture of acquiring and passing on knowledge that has enabled
human primates to develop from bands of hunters and gatherers to technological nations.

Knowledge representation (KR) is a sub-field of AI that investigates formal methods for
representing knowledge and reasoning with such representations. One motivation for doing
so is that to exhibit intelligence, it is not enough to store and recall facts, but moreover facts
should be linked together to infer new facts, and the knowledge altogether should be accessible
such that it enables purposeful action. In KR, typical representations of knowledge are explicit
and symbolic, which means that formal symbols are used to refer to domain entities (things
the representation talks about), and are manipulated to emulate reasoning. To ensure that this
reasoning is sound and complete, KR often makes use of techniques from the field of formal
logic.

On the other hand, alternative approaches to artificial intelligence have made some im-
pressive advances in the past years. For example, in the domain of playing games, computers
are ever more adept at games that were previously thought to be “too hard for machines”, such
as Checkers (Schaeffer, Burch, Björnsson, Kishimoto, Müller, Lake, Lu, and Sutphen, 2007),
Poker (Bowling, Burch, Johanson, and Tammelin, 2015) and most recently Go (Silver, Huang,
Maddison, Guez, Sifre, van den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanc-
tot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel,
and Hassabis, 2016). Especially for the last work, the authors attribute their success in part to
the use of deep artificial neural networks, a biology-inspired approach where “knowledge” (if at
all) exists only implicitly and on a sub-symbolic level. A Nature editorial on the work of Silver
et al. (2016) comments that “AlphaGo cannot explain how it chooses its moves [. . .] As shown
by its results, the moves that AlphaGo selects are invariably correct. But the interplay of its
neural networks means that a human can hardly check its working, or verify its decisions be-
fore they are followed through.” The commentary concludes with the somewhat bleak vision
that, should similar software be applied in other domains, “[t]he machine becomes an oracle;
its pronouncements have to be believed.” (Nature 529, 2016, p. 437)

This shows that while the techniques employed by Silver et al. (2016) lead to a fundamental
breakthrough in choosing the right moves, they are at a loss when it comes to explaining and jus-
tifying the chosen moves. Informally speaking, the AlphaGo software is really good at playing
Go, but it “cannot tell us” why (and perhaps “does not know” why). On the other hand, if

2 Chapter 1. Introduction

a human Go player was asked why they chose a particular move, they could most probably
think of a reason and verbalise it in a way that is accessible (or can be made accessible through
further explanation) to their fellow humans. Moreover, if natural and artificial intelligences
(i.e., humans and computers) are ever to cooperate on complex problem-solving tasks on a
basis of mutual trust, then it would bear enormous potential for beneficial collaboration if the
machines could explain and justify their actions in a rational discourse.

The formal study of rational discourse is the topic of argumentation theory. Argumentation
is concerned with the exchange of and interplay between “arguments”, where it seems that the
notion of what an “argument” is still lacks unanimity. We give the definition of Walton (2009):

“There are differences in the literature in argumentation theory on how to define
an argument. Some definitions are more minimal while others are more inclusive.
We start here with a minimal definition, however, that will fit the introduction to
the elements of argumentation presented below. An argument is a set of statements
(propositions), made up of three parts, a conclusion, a set of premises, and an inference from
the premises to the conclusion. An argument can be supported by other arguments, or
it can be attacked by other arguments, and by raising critical questions about it.”

So according to this definition (emphasis mine), an argument has an internal structure that
links premises and a conclusion via an inference. Equally importantly, to Walton, an argument
virtually never stands alone. It is only the interaction with other arguments (and so-called
“critical questions”) that ultimately determines the evaluation of a particular proposition at
issue. More concretely, Walton (2009) distinguishes between argumentation and logic thus:

“The general approach or methodology of argumentation can be described as dis-
tinctively different from the traditional approach based on deductive logic. The
traditional approach concentrated on a single inference, where the premises and
conclusion are designated in advance, and applied formal models like propositional
calculus and quantification theory determine whether the conclusion conclusively
follows from the premises. This approach is often called monological.

“In contrast, the argumentation approach is called dialogical (or dialectical) in that
it looks at two sides of an argument, the pro and the contra. According to this
approach, the method of evaluation is to examine how the strongest arguments
for and against a particular proposition at issue interact with each other, and in
particular how each argument is subject to probing critical questioning that reveals
doubts about it. By this dialog process of pitting the one argument against the
other, the weaknesses in each argument are revealed, and it is shown which of the
two arguments is the stronger.”

So while the job of logic is the inference within the argument, the job of argumentation also
encompasses the interaction between different arguments.

Some approaches in argumentation theory even go as far as removing the internals of ar-
guments completely from the agenda: In the last decade, abstract argumentation frameworks
(AFs; Dung, 1995) have become increasingly popular in the argumentation community (Bench-
Capon and Dunne, 2007). An AF can be seen as a directed graph where the nodes are “ar-
guments” whose internal structure is not further analysed, and where an edge from a to b
expresses that argument a “attacks” argument b. While the conceptual simplicity of AFs (re-
quiring only first-year computer science undergraduate knowledge to understand them) might
account for a large part of their popularity, an often employed justification for justifying re-
search into them is that more concrete argumentation languages can be translated into AFs and

1.1. Publications 3

thereby evaluated. Several languages have indeed been translated to AFs: the Carneades (Gor-
don, Prakken, and Walton, 2007) formalism for structured argumentation (Van Gijzel and
Prakken, 2011); Caminada and Amgoud (2007) and Wyner, Bench-Capon, and Dunne (2013)
translate rule-based defeasible theories into AFs.

Notwithstanding the literary success of AFs, their expressive capabilities are somewhat
limited, as has been recognised many times in the literature: often it is inadequate to model
argumentation scenarios having as only means of expression arguments attacking each other.
There have been several proposals towards generalising AFs (Brewka, Polberg, and Woltran,
2014). To cite only a few examples: Prakken and Sartor (1999) add priorities amongst argu-
ments that are constructed from prioritised logic programming rules; Nielsen and Parsons
(2006) introduced attacks from sets of arguments; Cayrol and Lagasquie-Schiex (2009) presen-
ted bipolar argumentation frameworks, in which arguments can also support each other; and
Modgil (2009) proposed attacks on attacks with the aim of reasoning about preferences on the
object level.

As a general way to overcome the restrictions of Dung’s AFs, Brewka and Woltran (2010)
introduced abstract dialectical frameworks (ADFs). ADFs are – in a sense – even more abstract
than AFs: while in AFs arguments are abstract and the relation between arguments is fixed
to attack, in ADFs also the relations are abstract (and called links). The relationship between
different arguments (called statements in ADFs) is specified by acceptance conditions. These are
Boolean functions indicating the conditions under which a statement s can be accepted when
given the acceptance status of all statements with a direct link to s (its parents). These parents
are the statements which have a say on whether the statement in question can or must (not)
be accepted. In this way, AFs are recovered in the language of ADFs by specifying for each
statement the acceptance condition “accept if and only if none of the attackers is accepted.”

This thesis is largely concerned with ADFs. We study their semantics, their computational
complexity, their representational capabilities and finally show how they can be used (like
AFs) as target languages for translations from more concrete formalisms. We also place ADFs
in the bigger picture of knowledge representation formalisms by comparing them to “close
relatives” such as abstract argumentation frameworks, logic programs, and propositional logic.
As part of the ADF success story, we just mention a reconstruction of the Carneades model
of argument (Brewka and Gordon, 2010), an instantiation of simple defeasible theories into
ADFs (see Chapter 6), and recent applications of ADFs for legal reasoning and reasoning with
cases by Al-Abdulkarim, Atkinson, and Bench-Capon (2014, 2015).

The present document collects and unifies several refereed papers that recently appeared in
international journals (see also the next section). Owing to this, each of the chapters contains
its own motivational section, and some chapters also contain concluding remarks. The main
theme of this thesis is – put succinctly – the development and analysis of abstract dialectical
frameworks as a formalism for representing knowledge about the interrelationship between
arguments.

1.1 Publications

The results of this thesis have appeared in (or as parts of) the following publications:

• Hannes Strass. Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence, 205:39–70, December 2013. (All results appear in Chapter 3.)

• Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner, and Stefan
Woltran. Abstract dialectical frameworks revisited. In Proceedings of the Twenty-Third

4 Chapter 1. Introduction

International Joint Conference on Artificial Intelligence (IJCAI), pages 803–809. IJCAI/AAAI,
August 2013. (Some results appear in Chapter 3.)

• Hannes Strass and Johannes Peter Wallner. Analyzing the computational complexity of
abstract dialectical frameworks via approximation fixpoint theory. Artificial Intelligence,
226:34–74, 2015. (Most results appear in Chapter 4, some results in Chapter 3. The
complexity results for ultimate admissible, preferred and grounded semantics in that
paper have been obtained by Johannes Wallner and are not part of this thesis. Several
of the remaining results have been independently obtained by Johannes Wallner and
myself, namely the ultimate-semantics parts of Lemma 4.26, Corollaries 4.27 and 4.32,
and Proposition 4.30; see also the overview in Table 4.1 in Section 4.2.4.)

• Hannes Strass. Instantiating rule-based defeasible theories in abstract dialectical frame-
works and beyond. Journal of Logic and Computation, February 2015c. Advance Access
published 11 February 2015, http://dx.doi.org/10.1093/logcom/exv004. (All results
appear in Chapter 6.)

• Hannes Strass. Expressiveness of two-valued semantics for abstract dialectical frame-
works. Journal of Artificial Intelligence Research, 54:193–231, 2015a. (All results appear in
Chapter 5.)

• Hannes Strass. The relative expressiveness of abstract argumentation and logic program-
ming. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI),
pages 1625–1631, Austin, TX, USA, January 2015b. (The earlier conference version of and
therefore fully subsumed by the previous item.)

The research reported on herein also contributed to or influenced the following works:

• Stefan Ellmauthaler and Hannes Strass. The DIAMOND System for Computing with
Abstract Dialectical Frameworks. In Simon Parsons, Nir Oren, and Chris Reed, edit-
ors, Proceedings of the Fifth International Conference on Computational Models of Argument
(COMMA), volume 266 of FAIA, pages 233–240, The Scottish Highlands, Scotland, United
Kingdom, September 2014. IOS Press. (Provides an implementation of ADF reasoning
and makes use of complexity results provided herein.)

• Sarah A. Gaggl and Hannes Strass. Decomposing Abstract Dialectical Frameworks. In
Simon Parsons, Nir Oren, and Chris Reed, editors, Proceedings of the Fifth International
Conference on Computational Models of Argument (COMMA), volume 266 of FAIA, pages
281–292. IOS Press, September 2014. (Defines additional semantics for ADFs using the
ones defined herein.)

• Sarah Alice Gaggl, Sebastian Rudolph, and Hannes Strass. On the computational com-
plexity of naive-based semantics for abstract dialectical frameworks. In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 2985–2991, Buenos Aires, Argentina, July 2015.
IJCAI/AAAI. (Analyses the computational complexity of the asymmetric family of ulti-
mate conflict-free semantics.)

• Marc Denecker, Gerhard Brewka, and Hannes Strass. A formal theory of justifications. In
Francesco Calimeri, Giovambattista Ianni, and Mirosław Truszczyński, editors, Proceed-
ings of the Thirteenth International Conference on Logic Programming and Non-monotonic Reas-
oning (LPNMR), pages 250–264, Lexington, KY, USA, September 2015. Springer-Verlag
Berlin Heidelberg. (Uses the embedding of AFs into approximation fixpoint theory.)

1.1. Publications 5

• Mario Alviano, Wolfgang Faber, and Hannes Strass. Boolean functions with ordered
domains in answer set programming. In Dale Schuurmans and Michael Wellman, editors,
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI), pages 879–885,
Phoenix, AZ, USA, February 2016. (Applies bipolar Boolean functions to logic programs
with aggregates.)

• Ringo Baumann and Hannes Strass. On the number of bipolar Boolean functions. Journal
of Logic and Computation, 2017. doi: 10.1093/logcom/exx025. Advance Access Online 07
August 2017. (Analyses the number of bipolar Boolean functions in n arguments.)

6 Chapter 1. Introduction

7

Chapter 2

Background

This chapter introduces the notation and the fundamental technical concepts we will use
throughout the thesis. All defined notions of this thesis are typeset in italics, and an index-like
list of page references to the definitions can be found at the end of the document. (There, we
also list how continued examples relate to each other.)

2.1 Mathematical Notation

• ∅ is the empty set;

• {x | P(x)} is the set of all x for which P(x) holds;

• ∈,∪,∩ denote set membership, union and intersection; ∪̇ denotes disjoint union;

• ⊆,⊇ denote sub- and superset relations (allowing set equality);

• (,) denote proper sub- and superset relations (disallowing set equality)

• |S| denotes the cardinality of the set S;

• A× B is the Cartesian product of sets A and B – the set of pairs {(a, b) | a ∈ A, b ∈ B};

• for a set S, the powerset of S (the set of all of its subsets) is denoted by 2S;

• f : D1 × · · · × Dn → R denotes an n-ary function f with domains D1, . . . , Dn and range
R;

• N denotes the set of natural numbers including zero.

2.2 Logic in Knowledge Representation and Reasoning

Propositional logic For a set A of atomic propositions (atoms, propositional variables), the
set of propositional formulas ϕ over A is defined inductively:

ϕ ::= > | ⊥ | a ∈ A | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

8 Chapter 2. Background

Additional syntactical connectives can be introduced as abbreviations:

φ→ ψ = ¬φ ∨ ψ (implication)
φ↔ ψ = (φ→ ψ) ∧ (ψ→ φ) (equivalence)
φ ∨̇ ψ = ¬(φ↔ ψ) (exclusive disjunction)
φ ↓ ψ = ¬(φ ∨ ψ) (joint denial)

The semantics of propositional logic is model-theoretic. A two-valued interpretation is a function
v : A→ {t, f}. The homomorphic extension ṽ on formulas over A is defined by induction on
the structure of formulas:

ṽ(>) = t
ṽ(⊥) = f
ṽ(a) = v(a) for a ∈ A

ṽ(¬φ) =

{
t if ṽ(φ) = f
f otherwise

ṽ(φ ∧ ψ) =

{
t if f /∈ {ṽ(φ), ṽ(ψ)}
f otherwise

ṽ(φ ∨ ψ) =

{
t if t ∈ {ṽ(φ), ṽ(ψ)}
f otherwise

In a slight abuse of notation, we usually write v(φ) instead of ṽ(φ).
We conveniently represent two-valued interpretations by sets M ⊆ A with the understand-

ing that M defines the interpretation

vM : A→ {t, f} with a 7→
{

t if a ∈ M
f otherwise

We then write M |= ϕ if and only if vM(ϕ) = t.
We sometimes modify propositional formulas by replacing some of their atoms by truth

constants. For a formula ϕ over a vocabulary A and an interpretation v : A→ {t, f}, we denote
by ϕ[a/⊥ : v(a) = f] the formula obtained from ϕ by replacing all occurrences of atoms a ∈ A
that are false in v by the formula ⊥. We use a similar notation for > and combinations of the
two.

Logic programming For propositional logic programming, we use a nonempty set A, the sig-
nature, or set of atoms. For such an A, we define not A = {not a | a ∈ A}, and the set of negation-
as-failure literals over A as A± = A ∪ not A. Likewise, we define not not A = {not not a | a ∈ A}
as the set of doubly-negated logic program literals and consequently A±− = A± ∪ not not A.

A canonical logic program rule over A is then of the form a← M where a ∈ A and M ⊆ A±−.
A normal logic program rule over A is a canonical logic program rule where M ⊆ A±. A normal
logic program rule can be read as logical consequence, “a is true if all literals in M are true.” We
denote by M+ = M ∩ A and M− = {a ∈ A | not a ∈ M} the positive and negative body atoms,
respectively. A rule is definite iff M ⊆ A. For singleton M = {m} we denote the rule just by
a← m. A logic program (LP) P over A is a set of logic program rules over A, and it is normal
(definite) if all rules in it are normal (definite). By default, we will mean normal logic programs
when just saying “logic program”, and will use the addendum “canonical” explicitly.

2.3. Lattice Theory 9

Nonmonotonic reasoning There are further knowledge representation formalisms that are
relevant for this thesis, but will not feature as prominently as the ones defined above, for
example the default logic of Reiter (1980) and the autoepistemic logic of Moore (1985). We will
introduce them in more detail later in this work.

2.3 Lattice Theory

Let us now recall some basic concepts from lattice theory.

Partially ordered set A partially ordered set (poset) is a pair (L,v) where v is a binary relation
on L that is reflexive, transitive, and antisymmetric.

Monotone operator An operator O : L→ L is monotone if for all x v y we find O(x) v O(y);
it is antimonotone if for all x v y we find O(y) v O(x).

Fixpoint An x ∈ L is a fixpoint of O iff O(x) = x; an x ∈ L is a prefixpoint of O iff O(x) v x
and a postfixpoint of O iff x v O(x).

Complete lattice A complete lattice is a partially ordered set (poset) (L,v) where every subset
S of L has a least upper bound

⊔
S ∈ L and a greatest lower bound ⊔S ∈ L. In particular,

a complete lattice has a least (⊥) and a greatest (>) element. When dealing with different
structures at the same time, we sometimes index

⊔
, ⊔,⊥,> to indicate to which structure they

belong. For example, ⊥L refers to the v-least element of the lattice (L,v).1
Due to a fundamental result by Tarski and Knaster (Tarski, 1955), for any monotone oper-

ator O on a complete lattice, the set of its fixpoints forms a complete lattice itself (Davey and
Priestley, 2002, Theorem 2.35). In particular, its least fixpoint lfp(O) exists; additionally, the
least prefixpoint of O is also its least fixpoint.

In this thesis, we will also be concerned with further, more general algebraic structures.

Complete meet-semilattice A complete meet-semilattice is a partially ordered set (L,v)
where every non-empty subset ∅ 6= S ⊆ L has a greatest lower bound (meet) ⊔S ∈ L and
every directed subset D ⊆ C has a least upper bound

⊔
D ∈ C. A set is directed iff it is

nonempty and each pair of elements has an upper bound in the set. Every complete lattice is
a complete meet-semilattice, but not vice versa. (A complete meet semi-lattice need not have a
greatest element.)

Complete partially ordered sets (CPOs) A CPO is a partially ordered set (C,≤) with a ≤-
least element where each directed subset D ⊆ C has a least upper bound

⊔
D ∈ C. Clearly

every complete meet-semilattice is a complete partially ordered set, but not necessarily vice
versa. (A complete partial order need not have greatest lower bounds.) Fortunately, complete
partially ordered sets still guarantee the existence of (least) fixpoints for monotone operators.

Theorem 2.1 (Davey and Priestley, 2002, Theorem 8.22). In a complete partially ordered set (C,≤),
any ≤-monotone operator O : C → C has a least fixpoint.

1Although some notational confusion of least and greatest lattice elements, respectively, and the syntactic truth and
falsity symbols from propositional logic could arise, we hope that it will be clear from the context which is meant.

10 Chapter 2. Background

2.4 Approximation Fixpoint Theory

Building upon Knaster and Tarski’s fundamental result, Denecker, Marek, and Truszczyński
(2000) introduce the important concept of an approximation of an operator. In the study of
semantics of knowledge representation formalisms, elements of lattices represent objects of
interest. Operators on lattices transform such objects into others according to the contents of
some knowledge base. Consequently, fixpoints of such operators are then objects that cannot
be updated any more – informally speaking, the knowledge base can neither add information
to a fixpoint nor remove information from it.

To study fixpoints of operators O, DMT study fixpoints of their approximating operators O.2

When O operates on a set L, its approximation O operates on pairs (x, y) ∈ L2 where L2 de-
notes L× L. Such a pair can be seen as representing a set of lattice elements by providing a
lower bound x and an upper bound y. Consequently, the pair (x, y) approximates all z ∈ L
such that x v z v y. Of special interest are consistent pairs – those where x v y, that is, the set
of approximated elements is nonempty. A pair (x, y) with x = y is called exact – it “approxim-
ates” a single element of the original lattice.3

There are two natural orderings on approximating pairs: first, the information ordering ≤i,
that intuitively orders pairs according to their information content.4 Formally, for four ele-
ments x1, x2, y1, y2 ∈ L we define

(x1, y1) ≤i (x2, y2) iff x1 v x2 and y2 v y1.

This ordering leads to a complete lattice (L2,≤i), the product of L with itself, its bilattice. For
example, the pair (⊥,>) consisting ofv-least⊥ andv-greatest lattice element> approximates
all lattice elements and thus contains no information – it is the least element of the bilattice
(L2,≤i); exact pairs (x, x) are those that are maximally informative while still being consistent.
The second natural ordering is the truth ordering ≤t, which orders elements of the bilattice
according to their degree of truth. Formally, for x1, x2, y1, y2 ∈ L it is defined by

(x1, y1) ≤t (x2, y2) iff x1 v x2 and y1 v y2.

The pair (⊥,⊥) is the least element of ≤t – in a truth-based setting, it assigns the truth value
false to all elements of L; the pair (>,>) consequently is the ≤t-greatest element – here, all
elements of L are assigned value true.

To define an approximation operator O : L2 → L2, one essentially has to define two func-
tions: a function O′ : L2 → L that yields a new lower bound (first component) for a given pair;
and a function O′′ : L2 → L that yields a new upper bound (second component) for a given
pair. Accordingly, the overall approximation is then given by O(x, y) = (O′(x, y),O′′(x, y))
for (x, y) ∈ L2. Conversely, in case O is considered given, the notations O′(x, y) and O′′(x, y)
are read as the projection of O(x, y) to the first and second component, respectively.

Denecker et al. (2000) identify an important subclass of operators on bilattices, namely those
that are symmetric, that is, for whichO′(x, y) = O′′(y, x). For these,O(x, y) = (O′(x, y),O′(y, x)),
and to define O it suffices to specify O′. An operator now is approximating if it is symmetric
and ≤i-monotone. For an antimonotone operator O, its canonical approximating operator O is
given by O′(x, y) = (O(y), O(x)).

The main contribution of Denecker et al. (2000) was the association of the stable operator SO
to an approximating operator O. Below, the expression O′(·, y) : L→ L denotes the operator
given by x 7→ O′(x, y) for x ∈ L.

2The approximation of an operator O is typographically indicated by a calligraphic O.
3Denecker et al. (2000) call such pairs “complete,” we however use that term for argumentation in a different

meaning and want to avoid confusion.
4The ordering is also called knowledge ordering or precision ordering (Denecker et al., 2000; Fitting, 2002).

2.4. Approximation Fixpoint Theory 11

Definition 2.1. For a complete lattice (L,v) and an approximating operator O : L2 → L2,
define the

• complete stable operator for O as cO : L→ L by cO(y) = lfp(O′(·, y));

• stable operator for O as SO : L2 → L2 by SO(x, y) = (cO(y), cO(x)). 3

This general, lattice-theoretic definition by DMT yields a uniform treatment of the standard
semantics of the major nonmonotonic knowledge representation formalisms – logic program-
ming, default logic and autoepistemic logic (Denecker, Marek, and Truszczyński, 2003).

Definition 2.2. Let (L,v) be a complete lattice and O : L2 → L2 be an approximating operator.
Furthermore, let x, y ∈ L with x v y. Define the following semantical notions for O:

Kripke-Kleene semantics lfp(O)
three-valued supported model (x, y) O(x, y) = (x, y)
two-valued supported model (x, x) O(x, x) = (x, x)
well-founded semantics lfp(SO)
three-valued stable model (x, y) SO(x, y) = (x, y)
two-valued stable model (x, x) SO(x, x) = (x, x)

3

It is clear that each two-valued supported/stable model is a three-valued supported/stable
model; furthermore the Kripke-Kleene semantics of an operator is a three-valued supported
model and the well-founded semantics is a three-valued stable model. Also, each three-
valued/two-valued stable model is a three-valued/two-valued supported model, which is
easily seen: if (x, y) is a three-valued stable model, we have (x, y) = SO(x, y). Now (x, y) =
SO(x, y) = (cO(y), cO(x)) = (lfp(O′(·, y)), lfp(O′(·, x))) implies x = O′(x, y) and y = O′(y, x),
whence (x, y) = (O′(x, y),O′(y, x)) = O(x, y) and (x, y) is a three-valued supported model.
This holds in particular if x = y, and each two-valued stable model is a two-valued supported
model.

Ultimate approximations In subsequent work, Denecker, Marek, and Truszczyński (2004)
presented a general, abstract way to define the most precise approximation of a given operator
O in a lattice (L,v). Most precise here refers to a generalisation of ≤i to operators, where for
O1,O2 : L2 → L2, they define

O1 ≤i O2 iff for all x, y ∈ L with x v y it holds that O1(x, y) ≤i O2(x, y).

For consistent pairs (x, y) of the bilattice (L2,≤i), they show that the most precise – called the
ultimate – approximation of O is given by UO(x, y) =

(
U ′O(x, y),U ′′O (x, y)

)
with

U ′O(x, y) = ⊔{O(z) | x v z v y}

U ′′O (x, y) =
⊔
{O(z) | x v z v y}

Note that the ultimate approximation works only for consistent pairs and is not symmetric.
However, this is not of harm for two-valued stable models: a pair (x, x) is an ultimate two-
valued stable model of O iff x = lfp(U ′O(·, x)); here it suffices that the ultimate approximation
is defined for consistent pairs only, as we have

⊥ v U ′O(⊥, x) v U ′O(U ′O(⊥, x)) v . . . v U ′O(x, x) v x.

The definition of the ultimate approximation operator is quite remarkable since previously,
approximating operators O for lattice operators O had to be devised by hand rather than
automatically derived. We next illustrate the workings of the operator-based framework for
the case of logic programming.

12 Chapter 2. Background

2.4.1 Logic Programming

To show how approximation fixpoint theory applies to normal logic programs, we use defini-
tions along the lines of Fitting (2002), whose fixpoint-theoretic approach to logic programming
was extended by Denecker et al. (2000). The perhaps most prominent example for an operator
is the one-step consequence operator TP associated with a definite logic program P (Fitting,
2002). For a signature A, it operates on subsets of A and assigns to a set of atoms S those
atoms which are implied by S according to the rules in P. The underlying lattice is therefore
(2A,⊆) consisting of the set of A’s subsets ordered by ⊆.

This operator was later generalised to four-valued Belnap logic (Fitting, 2002) and can be
recast in a bilattice-based setting as follows. A pair (X, Y) ∈ 2A × 2A can be read as a four-
valued assignment by evaluating all atoms in X ∩ Y as true, those in A \ (X ∪ Y) as false, the
ones in Y \ X as undefined and the atoms in X \Y as inconsistent.

Definition 2.3. For a normal logic program P over A, define an (approximating) operator
TP : 2A × 2A → 2A × 2A as follows: for X, Y ⊆ A,

TP(X, Y) = (T ′P (X, Y), T ′P (Y, X))

T ′P (X, Y) =
{

a ∈ A
∣∣ a← M ∈ P, M+ ⊆ X, M− ∩Y = ∅

}
3

Roughly, to construct a new lower bound, the operator T ′P returns all those atoms for which
a rule exists whose positive body is implied by the current lower bound and whose negative
body does not share an atom with the current upper bound. This first of all means that the
operator allows to infer an atom via a program rule if – according to the input estimate – the
positive body is true and the negative body is false. The fixpoints of TP are the four-valued
supported models of P; its consistent fixpoints are the three-valued supported models of P. The
two-valued supported models of P are computed by the abovementioned operator TP, that –
in this setting – is defined by TP(M) = T ′P (M, M) (Denecker et al., 2000).

The abstract principles of Denecker et al. (2000) outlined above also yield the corresponding
stable operator STP. This operator in turn immediately yields the Gelfond-Lifschitz operator
GLP(M) = ST ′P (M, M) for computing two-valued stable models of P. The stable operator STP
also gives rise to the well-founded model of P, which is the least fixpoint of STP. Additionally,
three-valued stable models are the consistent fixpoints of STP. These are further refined into
two additional semantics: M-stable models are three-valued stable models (X, Y) where X is
⊆-maximal – M-stable is for “maximal stable” (Saccà and Zaniolo, 1997); L-stable models are
three-valued stable models (X, Y) where Y \X is ⊆-minimal – L-stable is for “least undefined”
(Saccà and Zaniolo, 1997). It is clear that these same maximisation/minimisation criteria can
be applied to consistent fixpoints of TP – the three-valued supported models. This leads to
M-supported models and L-supported models. In a table much like the one from Definition 2.2,
this looks thus:

M-supported model (X, Y) TP(X, Y) = (X, Y) and (X, Y) is ≤i-maximal
L-supported model (X, Y) TP(X, Y) = (X, Y) and Y \ X is ⊆-minimal
M-stable model (X, Y) STP(X, Y) = (X, Y) and (X, Y) is ≤i-maximal
L-stable model (X, Y) STP(X, Y) = (X, Y) and Y \ X is ⊆-minimal

It follows that each two-valued supported/stable model is an L-supported/L-stable model is
an M-supported/M-stable model is a three-valued supported/stable model.

As an example, consider the logic program P1 = {a← ∅, b← a}. It is a definite LP, thus
we can iterate its two-valued one-step consequence operator TP1 on the empty set, the least
element of the relevant lattice: we have TP1(∅) = {a} and TP1({a}) = {a, b} = TP1({a, b}) as a

2.5. Abstract Argumentation 13

fixpoint and thus the least (two-valued supported) model of program P1. Now we add another
rule to this program and set P2 = P1 ∪ {c← {b, not d}}, a logic program over A = {a, b, c, d}
that is not definite. To compute its well-founded model, we iterate the associated stable four-
valued one-step consequence operator STP2 on the least element (∅, A) of the relevant bilattice.
We see that STP2(∅, A) = ({a} , {a, b, c}): intuitively, a is added to the lower bound since its
body is satisfied, d is removed from the upper bound because there is no program rule to
derive d. Applying STP2 again leads to the pair ({a, b, c} , {a, b, c}) which is an exact fixpoint
and thus the only two-valued stable model of P2.

2.5 Abstract Argumentation

2.5.1 Abstract Argumentation Frameworks

Dung (1995) introduced a way to study the “fundamental mechanisms that humans use in
argumentation”. His argumentation frameworks (AFs) F are pairs (A, R) where A is a set
and R ⊆ A× A; to access the components of an AF F = (B, S), we use the notations AF = B
and RF = S. The intended reading of an AF F is that the elements of A are arguments whose
internal structure is abstracted away. The only information about the arguments is given by the
relation R encoding a notion of attack: for a, b ∈ A a pair (a, b) ∈ R expresses that argument
a attacks argument b in some sense. This seemingly lightweight formalism allows for a rich
semantical theory, whose most important notions we subsequently recall.

The purpose of semantics for argumentation frameworks is to determine sets of arguments
which are acceptable according to various standards. As an intuitive example, a set of argu-
ments could be accepted if it is internally consistent and can defend itself against attacks from
the outside. More formally, a set S ⊆ A of arguments is conflict-free iff there are no a, b ∈ S with
(a, b) ∈ R. For an argument a ∈ A, the set of its attackers is R−1

F (a) = {b ∈ A | (b, a) ∈ RF}.
An AF is finitary iff R−1

F (a) is finite for all a ∈ A. For S ⊆ A, the set of arguments it attacks is
RF(S) =

⋃
a∈S RF(a) = {b ∈ A | (a, b) ∈ RF for some a ∈ S}. Finally, for S ⊆ A and a ∈ A, the

set S defends a iff R−1
F (a) ⊆ RF(S), that is, all attackers of a are attacked by S.

The major semantics for argumentation frameworks can be formulated using two operators
that Dung (1995) already studied. The first is the characteristic function of an AF F: for S ⊆ A,
define DF(S) = {a ∈ A | S defends a}. This operator DF is ⊆-monotone and therefore has
a least fixpoint in the lattice (2A,⊆). This least fixpoint of DF is defined as the grounded
extension of F. The second relevant operator UF takes as input a set S of arguments, and
returns the arguments that are not attacked by any argument in S (U is for “unattacked”) –
formally UF(S) = A \ RF(S). It is an antimonotone operator, and its fixpoints are the stable
extensions of F. Additionally, UF can characterise conflict-freeness: a set S ⊆ A is conflict-free
iff S ⊆ UF(S). Further semantics are defined as follows. A set E ⊆ A is a complete extension iff
it is a conflict-free fixpoint of DF. More generally, a set S ⊆ A is admissible iff S is conflict-free
and S ⊆ DF(S). Finally, preferred extensions are ⊆-maximal complete extensions; and semi-
stable extensions are those complete extensions E where the set E ∪ RF(E) (the range of the
extension E) is ⊆-maximal. The same maximisation criteria that lead from admissible sets to
preferred and semi-stable extensions can also be applied to conflict-free sets: a naive extension
of an AF is a ⊆-maximal conflict-free set; a stage extension of an AF is a conflict-free set with
⊆-maximal range. For two argumentation frameworks F1 = (A1, R1) and F2 = (A2, R2), their
union is defined as F1 ∪ F2 = (A1 ∪ A2, R1 ∪ R2).

Example 2.1. Let the argumentation framework F = (A, R) be given by A = {a, b, c, d} and
R = {(a, b), (c, d), (d, c)}. It is depicted by the following directed graph:

14 Chapter 2. Background

a b c d

Its grounded extension is the set G = {a}; it possesses two stable extensions, E1 = {a, c} and
E2 = {a, d}. The three sets G, E1, E2 form the only complete extensions of F. 3

2.5.2 Abstract Dialectical Frameworks

Brewka and Woltran (2010) introduced abstract dialectical frameworks as a powerful gener-
alisation of abstract argumentation frameworks that are able to capture not only attack and
support, but also more general notions such as joint attack and joint support.

Definition 2.4. An abstract dialectical framework (ADF) is a triple D = (S, L, C) where

• S is a set of statements,

• L ⊆ S× S is a set of links, where par(s) = {r ∈ S | (r, s) ∈ L}

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}. 3

Intuitively, the function Cs for a statement s determines the acceptance status of s,
which naturally depends on the status of its parent nodes par(s). Alternatively, any such
function Cs can be represented by the set of all parent subsets leading to acceptance,
Ct

s = {M ⊆ par(s) | Cs(M) = t}. We will use both representations in this thesis and indicate
the alternative one by writing an ADF as (S, L, Ct).

Many more specific representations of acceptance conditions are possible. Brewka and
Woltran (2010) even introduce two of these additional representations: For one, an acceptance
condition Ca can be described via a propositional formula ϕa over the vocabulary par(a), which
is straightforward to use whenever each statement has only finitely many relevant parents. The
understanding there is that Ct

a is given by the two-valued models of ϕa, where an interpretation
is identified with the set of atoms that are evaluated to true. For another, Brewka and Woltran
(2010) also demonstrated how assigning weights to links and combining these weights with
proof standards can give rise to acceptance conditions.

Example 2.2. The following is a simple ADF: D = (S, L, Ct) with statements S = {a, b, c, d},
links L = {(a, c), (b, b), (b, c), (b, d)} and acceptance functions given by Ct

a = {∅}, Ct
b = {{b}},

Ct
c = {{a, b}} and Ct

d = {∅}. These acceptance functions can intuitively be interpreted as
follows:

• Statement a has no parents, par(a) = ∅, thus 2par(a) = {∅}. The acceptance function
specifies that ∅ 7→ t, whence a is always t.

• Statement b is its own parent. According to its acceptance function, it is t only if it is t.
Statement b is thus (cyclically) self-supporting.

• Statement c has parents par(c) = {a, b}. They jointly support c, as is witnessed by
Ct

c = {par(c)}. Note that joint support here indeed means that the support only becomes
effective if both parents are t.

• Statement d is attacked by its only parent b. 3

Brewka and Woltran (2010) introduced several semantical notions for ADFs.

2.5. Abstract Argumentation 15

Definition 2.5. For an ADF D = (S, L, Ct), a set M ⊆ S is conflict-free iff for all s ∈ M we have
M ∩ par(s) ∈ Ct

s. A set M ⊆ S is a two-valued model for an ADF (or briefly model for an ADF) D
iff for each s ∈ S we have s ∈ M iff M ∩ par(s) ∈ Ct

s. 3

We illustrate the semantics with our running example.

Example 2.3 (Continued from Example 2.2). A conflict in a set of statements intuitively means
that there is either an attack within the set or a lack of support for some statement. The running
example ADF D has the following conflict-free sets:

∅, {a} , {b} , {d} , {a, b} , {a, d} , {a, b, c}

This is easy to understand: from all subsets of S = {a, b, c, d}, we have to remove those that
(1) contain both b and d, since b attacks d; or (2) contain c without containing both a and b,
because c depends on joint support of a and b. The remaining ones above are conflict-free.

The two models of D are M1 = {a, b, c} and M2 = {a, d}. Intuitively, a is always t and thus
contained in both models. For the self-supporting b, the model semantics has a choice whether
or not to accept it, and this choice determines the two models. In M1, statement b is accepted
along with a, their joint support of c becomes relevant and c is also accepted. (Statement d
is not accepted by M1 since b is accepted and attacks d.) In M2, statement b is not accepted
whence c is not accepted due to a lack of support; statement d behaves like an AF argument
and thus is accepted because its only attacker b is not accepted. 3

Some semantics were only defined for a subclass of ADFs called bipolar. Intuitively, in
bipolar abstract dialectical frameworks (BADFs) each link is supporting or attacking (or both);
that is, there are no links that sometimes support and sometimes attack (depending on the
values of other parents). The formal definition follows.

Definition 2.6. Let D = (S, L, C) be an ADF.

• A link (r, s) ∈ L is supporting in D iff for all M ⊆ par(s), we have that M ∈ Ct
s implies

M ∪ {r} ∈ Ct
s;

• symmetrically, a link (r, s) ∈ L is attacking in D iff for all M ⊆ par(s), we have that
M ∪ {r} ∈ Ct

s implies M ∈ Ct
s.

• An ADF D = (S, L, C) is bipolar iff all links in L are supporting or attacking; we use L+

to denote all supporting and L− to denote all attacking links of L in a bipolar ADF. 3

Brewka and Woltran (2010) defined a version of the stable model semantics for bipolar
ADFs: A model M of a bipolar ADF D is a BW-stable model of D iff it is the least model of the
reduced ADF DM defined as DM = (SM, LM, CM) with

• SM = S ∩M (nodes are restricted to those in the model),

• LM =
{
(r, s)

∣∣ r, s ∈ SM, (r, s) ∈ L+
}

(links are restricted to supporting links among
nodes in the model) and

• for each s ∈ SM and B ⊆ SM, we set CM
s (B) = t iff Cs(B) = t (likewise the acceptance

functions are restricted to the remaining parent nodes).

Stable models then serve to define further notions; but first let us define how to remove a set
R of statements from an ADF D = (S, L, Ct) as follows: D− R = (Ŝ, L̂, Ĉ), where

16 Chapter 2. Background

• Ŝ = S \ R (the nodes in R are removed),

• L̂ = L ∩ (Ŝ× Ŝ) (links are restricted to the remaining nodes) and

• Ĉ =
{{

B ∩ Ŝ
∣∣ B ∈ Ct

s
}}

s∈Ŝ (likewise, acceptance conditions are restricted to the
remaining parents).

For a bipolar ADF D = (S, L, C), a set M ⊆ S is BW-admissible in D iff there is some R ⊆ S
with

• L− ∩ (R×M) = ∅ (there are no attacks from R to M) and

• M is a stable model of D− R.

A set M ⊆ S is a BW-preferred model of D iff it is ⊆-maximal among the sets that are
BW-admissible in D. Finally, Brewka and Woltran (2010) also generalise the grounded
semantics: for D = (S, L, C) they define a monotone operator ΓD : 2S × 2S → 2S × 2S by
(X, Y) 7→ (Γ′D(X, Y), Γ′′D(X, Y)), where5

Γ′D(X, Y) =
{

s ∈ S
∣∣ for all X ⊆ Z ⊆ Y, we have Z ∩ par(s) ∈ Ct

s
}

Γ′′D(X, Y) =
{

s ∈ S
∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Ct

s
}

The ≤i-least fixpoint of ΓD gives rise to the BW-well-founded model of D.

Example 2.4 (Continued from Example 2.3). The ≤i-least fixpoint of ΓD is the pair
({a} , {a, b, c, d}), therefore the BW-well-founded model of D is the set {a}. Intuitively, state-
ment a is in there because it is always t. Statement b is not contained in the BW-well-founded
model since it is only self-supporting. Statement c is not contained because it needs joint sup-
port by a and b, of which b is missing. For d, it cannot be guaranteed that its attacker b is
necessarily f, since it is still contained in the upper bound of ΓD’s least fixpoint. 3

It is clear that ADFs are a generalisation of AFs: for an argumentation framework
F = (A, R), its associated abstract dialectical framework is D(F) = (A, R, Ct), where Ct

a = {∅} for
each a ∈ A. But this is not just syntactical; Brewka and Woltran (2010) showed that their
semantical notions for ADFs are generalisations of Dung’s respective AF notions:

Proposition 2.2. Let F = (A, R) be an argumentation framework and D(F) = (A, R, Ct) its associ-
ated abstract dialectical framework. The following are in one-to-one correspondence:

1. the grounded extension of F and the BW-well-founded model of D(F);

2. conflict-free sets of F and conflict-free sets of D(F);

3. stable extensions of F and models of D(F);

4. stable extensions of F and BW-stable models of D(F);

5. preferred extensions of F and BW-preferred models of D(F).

Proof. Propositions 3, 1, 7 and 12 of (Brewka and Woltran, 2010). 2

5The representation of the operator and the lattice it operates on given by Brewka and Woltran (2010) is slightly
different: both representations use pairs of sets of statements to describe the current acceptance status of statements.
Their pairs explicitly represent the statements that are t in the first component and the ones that are f in the second
component. Since our second component explicitly represents the statements that are not f, we adjusted the definition
of the operator Γ′′D for computing the second component.

2.6. Complexity Theory 17

It is especially notable that models and stable models coincide for AF-based ADFs, a fact
that we will illuminate further and for which we will provide an intuitive explanation.

Example 2.5 (Adapted from Brewka and Woltran, 2010, Example 6). Consider a scenario
where we want to decide whether we go for a swim. We do so if there is no rain, or it is
hot. It is warm, but not hot, and there are clouds indicating that it might rain. However the
reliable weather forecast predicts wind that will blow away the clouds. Using the vocabulary
S = {clouds, wind, rain, hot, swim}, we devise the bipolar ADF Dswim = (S, L+ ∪ L−, C) shown
below to model this deliberation process. Here, statements are depicted as nodes, edges
represent links and acceptance conditions are written as propositional formulas next to the
statements.

cloudsϕclouds = > wind ϕwind = >

rainϕrain = clouds∧ ¬wind hot ϕhot = ⊥

swimϕswim = ¬rain∨ hot

+ −

− +

Supporting and attacking links are designated using the labels + and −; this is however
only for illustration as the polarity of the links can be read off the acceptance formulas. The
statement rain, for example, is supported by the statement clouds and attacked by the statement
wind. According to ϕrain, the attack from wind is stronger than the support from clouds. That is,
as soon as we accept wind, we must reject rain. On the other hand, swim is attacked by rain and
supported by hot. Here, by ϕswim, the support from hot is stronger than the attack from rain;
or put another way, the missing attack from rain is stronger than the missing support from hot.
This effectively means that rejecting rain leads to accepting swim. 3

2.6 Complexity Theory

We give only a very short overview on basic concepts of complexity theory here. We refer to
the textbooks by Papadimitriou (2003) and Arora and Barak (2009) for a detailed exposition.

Assume some fixed finite vocabulary Σ with |Σ| > 1. A language L ⊆ Σ∗ is in P iff it
can be recognised by a deterministic Turing machine in polynomial time. Complexity class
NP contains all problems L ⊆ Σ∗ that have a polytime-computable witness relation; that is,
L ∈ NP iff there are WL ∈ P and k ∈N such that: x ∈ L iff there is a y such that (x, y) ∈WL

and |y| ≤ |x|k. For any class C of languages, its complement class is coC =
{

L
∣∣ L ∈ C

}
. For

example, the class coNP contains all languages L whose complement L = Σ∗ \ L is in NP.
These two classes give rise to the polynomial hierarchy, that can be defined (using oracle
Turing machines) as follows: ∆P

0 = ΣP
0 = ΠP

0 = P, and for i ≥ 0, ∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i ,

ΠP
i+1 = coNPΣP

i . Intuitively, for any complexity class C, a Turing machine with access to a
C-oracle can be understood as having a constant-time decision subroutine for problems in C.

18 Chapter 2. Background

For complete problems of the polynomial hierarchy we use satisfiability of quantified
Boolean formulas (QBFs). The problem QBFi,Q-TRUTH denotes the problem of deciding satis-
fiability of a given closed QBF in prenex form, starting with quantifier Q ∈ {∃, ∀} and i quan-
tifier alternations. For i ≥ 0 it holds that QBFi,∃-TRUTH is ΣP

i -complete and QBFi,∀-TRUTH is
ΠP

i -complete.
As a somewhat non-standard polynomial hierarchy complexity class, we use DP

i , a gen-
eralisation of the complexity class DP to the polynomial hierarchy. A language is in DP iff
it is the intersection of a language in NP and a language in coNP. Generally, a language
is in DP

i iff it is the intersection of a language in ΣP
i and a language in ΠP

i . The canonical
problem of DP = DP

1 is SAT-UNSAT, the problem to decide for a given pair (ψ1, ψ2) of pro-
positional formulas whether ψ1 is satisfiable and ψ2 is unsatisfiable. Obviously, by definition
ΣP

i , ΠP
i ⊆ DP

i ⊆ ∆P
i+1 for all i ≥ 0.

19

Chapter 3

Defining Semantics via
Approximation Fixpoint Theory

The abstract nature of Dung’s AFs makes them attractive as a target language for transla-
tions from more expressive formalisms. To be more precise, it is common to use express-
ive languages to model more concrete (argumentation) scenarios, and to provide these ori-
ginal expressive languages with semantics by translating them into Dung AFs (Caminada
and Amgoud, 2007; Wyner, Bench-Capon, and Dunne, 2009; Prakken, 2010; Van Gijzel and
Prakken, 2011). However, Caminada and Amgoud (2007) observed that it is not always imme-
diately clear how such translations into AFs should be defined, even for a fairly simple source
formalism. A major problem that they encountered were unintended conclusions that indir-
ectly led to inconsistency. In the same paper, Caminada and Amgoud also proposed solutions
to these problems, where during translation additional precautions have to be taken to avoid
undesired anomalies. Let us explain in more detail what this means in general for abstractions
among knowledge representation (KR) languages.

First of all, by an abstraction we mean a translation between languages that may disregard
some information. Instantiating an abstract language is then the process of translating a more
concrete, more expressive language into the abstract, less expressive language. This entails
that there is no dichotomy “knowledge representation language vs. abstraction formalism” –
any KR language abstracts to a greater or lesser extent, and can thus be used for abstraction
purposes. Whether any specific language is to be used for direct, concrete representation or
for abstraction of another language depends entirely on the application domain at hand.

Naturally, we are interested in those abstractions that preserve the meaning of translated
language elements in some sense. As an example, consider the language {yes, no}. It is very
simple and can abstract from any decision problem whatsoever. Furthermore it is trivial to
devise an intuitively correct semantics for it. But to faithfully instantiate this language to a
particular decision problem – say, the satisfiability problem of propositional logic –, the prob-
lem must be solved during translation, for otherwise the abstraction would not be meaningful
at all. At the other end of the spectrum, for any language L, an “abstraction” is provided by
L itself. In contrast to the two-element target language {yes, no}, using L as target language
makes it trivial to translate L into the abstraction, but the target language does in fact not
abstract at all and devising a semantics for the abstraction is as hard as devising a semantics
for the original language.

Thus abstraction proper should indeed disregard some information, but not too much of

20 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

it. In the example above, the fact that the language {yes, no} can abstract away from any de-
cision problem is no acceptable argument for its usefulness as an abstraction formalism, since
its expressive power is clearly too poor to model real problems (meaning problems that are
syntactically different from their solutions). Consequently the expressiveness of a language is
important when using it as a target language for abstraction. More specifically, a suitable tar-
get language for abstraction must be expressive enough to model important problem aspects,
while being sufficiently abstract to ignore irrelevant details.

So to be able to use a formalism for abstraction, we obviously need a clear picture of its cap-
abilities as a KR language, especially its expressive power in comparison to other languages,
and about the properties of its semantics. It is one of the main objectives of this chapter to
provide this information for abstract dialectical frameworks. For this purpose, we technically
view ADFs as KR languages – but of course our work has ramifications for ADFs as abstrac-
tion formalisms. In the same way as there is no single intended semantics for argumentation
frameworks, there is also no single perfect formalism for abstraction. But to be able to make
an informed choice, it is of great importance to understand the inherent relationships between
different available options. Our results will facilitate this choice and be an aid to anyone wish-
ing to abstract from concrete argumentation languages; especially, our results will help them
decide if they want to translate into AFs or into ADFs.

But why, after all, should there be a choice to be made between AFs and ADFs? Here,
the additional expressiveness of ADFs in comparison to AFs comes into play. As we will
see throughout this chapter, the well-known distinction between supported and stable models
from logic programming is present in ADFs but is missing in AFs. In a different disguise, this
same distinction also materialises as Moore expansions vs. Reiter extensions in nonmonotonic
logics (Denecker et al., 2003). To summarise it in a nutshell, there are basically two ways in
which the major nonmonotonic KR formalisms deal with cyclic positive dependencies between
pieces of knowledge. To explain what such cyclic support dependencies are and why they can
be problematic, let us look at a study from the literature where researchers applied several
logic-based knowledge representation techniques in a medium-sized practical application.

Nogueira, Balduccini, Gelfond, Watson, and Barry (2001) describe a declarative rule-based
system that controls some of the functions of a space shuttle. More specifically, the system
operates the space shuttle’s reaction control system, whose primary responsibility is to man-
oeuvre the shuttle through space. Part of the rule-based specification represents the plumbing
system of this reaction control system. The plumbing system consists of a collection of tanks,
jets and pipe junctions, which are connected through pipes. The flow of fluids through pipes
is controlled by valves. The purpose of the plumbing system is to deliver fuel and oxidiser
from tanks to the jets needed to perform a manoeuvre. The structure of the plumbing system
is described by a directed graph whose nodes are tanks, jets and pipe junctions, and whose
edges are labelled by valves. The description of the plumbing system should predict how the
positions of valves affect the pressure of tanks, jets and junctions. For tanks themselves, the
pressure resulting from pressurising certain (other) tanks is easy to specify. For all other nodes
in the graph the definition is recursive: roughly, any non-tank node is pressurised by a tank if
the node is connected by an open valve to a node which is pressurised by the tank. Nogueira
et al. (2001) explicitly recognise that modelling this is non-trivial because the connection graph
of the plumbing system can contain cycles. That is, there may be nodes in the graph that are
mutually connected to each other, and accurately modelling this is not straightforward:

Example 3.1 (Under Pressure). Consider the following easy setup where two nodes n1, n2
with associated tanks are connected to each other. The connection between a node ni and
its tank is controlled by the valve vi in between.

Chapter 3. Defining Semantics via Approximation Fixpoint Theory 21

n1 n2

v1 v2

For the purpose of this example, we assume that the tanks are pressurised. Then obviously,
opening v1 pressurises n1; likewise, opening v2 pressurises n2. But due to the connection in
between, it is also the case that pressurising n1 indirectly pressurises n2, and pressurising n2
indirectly pressurises n1. The easiest way to express all of this in logic programming is via the
four rules

n1 ← v1 n2 ← v2

n1 ← n2 n2 ← n1

where the atoms n1, n2 express that the respective node is pressurised, and v1, v2 express that
the respective valve is open. This way of representing the domain is very elegant in that it is
modular: specifying additional parts of the system can be easily achieved by adding new rules
– previous rules need not be modified. This is especially important since the real system is
going to be considerably more complex.

Now the Clark completion (Clark, 1978) of this program is given by the four propositional
formulas n1 ↔ (v1 ∨ n2), n2 ↔ (v2 ∨ n1), v1 ↔ ⊥ and v2 ↔ ⊥. So the valves are considered
not open because there are no rules with head v1 or v2. The common models of the formulas in
the Clark completion lead to the supported model semantics of this program, which considers
two states to be possible: ∅ (where neither of the nodes is pressurised) and {n1, n2} (where
both nodes are pressurised).

But of course, causality dictates that the two nodes cannot simply pressurise each other
without an external cause (that is, through an open valve). A reasoner that predicts “both
nodes are pressurised” as possible successor state of the state “both nodes are not pressurised”
when no relevant valve has been opened in between is obviously not of great assistance – only
more so if it offers the cyclic explanation “one node is pressurised because the other is.” So
the knowledge engineers that specify and use the system should be aware that the supported
model semantics does not accurately reflect causality in this domain.

On the other hand, the set ∅ is the only stable model of the logic program, showing that
the stable model semantics correctly deals with the issue at hand. And indeed, Nogueira et al.
(2001) explicitly remarked that the ability of answer set programming to express and to reason
with recursion allowed them to use a concise definition of pressure. 3

Such issues with cyclic support dependencies not only occur in logic programs, but also in
default logic and autoepistemic logic:

• Cyclic support is allowed by supported semantics for logic programs (which is equivalent
to the Clark completion; Clark, 1978) and in expansions of autoepistemic logic (Moore,
1985).

• Cyclic support is disallowed by stable semantics for logic programs (Gelfond and Lif-
schitz, 1988) and in extensions of default logic (Reiter, 1980).1

The fact that this distinction is not present in AFs means that anyone translating their model-
ling language into AFs has to take care of the issue of cyclic support themselves and thus has
to solve part of the problem by hard-wiring it into the translation. (Just like a decision problem

1But this is not inherent to these formalisms – both strong expansions for autoepistemic logic that reject cyclic
support, and weak extensions for default logic that accept cyclic support can be defined (Denecker et al., 2003).

22 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

has to be solved when it is “translated” into the language {yes, no}.) When ADFs are used as a
target language, ADF semantics will simply take care of cyclic supports, thereby considerably
simplifying the translation.

Generally speaking, it is at the heart of an abstraction to remove information; it is at the
heart of a good abstraction to remove irrelevant information. If some removed information
afterwards turns out to have been relevant, it either has to be (however costly) recomputed
or is simply lost. And if the target language cannot natively express some concept, then
information about this concept is bound to get lost. An example, again, is the support relation
between atoms in a logic program, which is hardly translated into an AF and easily translated
into an ADF as this chapter will show.

More concrete empirical evidence for the usefulness of abstract dialectical frameworks has
already been provided in the literature. For one, Brewka and Gordon (2010) translated argu-
ment evaluation structures of the Carneades framework (Gordon et al., 2007) into ADFs.2 It is
especially remarkable that their work allowed cyclic dependencies among arguments, which
was previously not possible in Carneades. Meanwhile, Van Gijzel and Prakken (2011) also
translated Carneades into AFs via ASPIC+ (Prakken, 2010). They can deal with cycles, but
even with cycles there is only one unique stable, preferred, complete, grounded extension.
Thus the semantic richness of abstract argumentation is not used, and more importantly the
user cannot choose whether they want to accept or reject positive cyclic dependencies between
arguments. In contrast, in the ADF approach of Brewka and Gordon (2010), the user can
choose whether support cycles should be accepted or rejected, by choosing models or stable
models as intended ADF semantics. For another, we show in Chapter 6 how ADFs can be
used to provide an argumentation-based semantics for the defeasible theories of Caminada
and Amgoud (2007).

To summarise, our main arguments for using abstract dialectical frameworks as abstraction
language are the following conclusions of this chapter:

• ADFs are at least as expressive as AFs, and thus can represent all important problem
aspects that AFs can represent. On top of that, ADFs offer a built-in treatment of pos-
itive cyclic dependencies which is derived from decades of research into nonmonotonic
knowledge representation languages.

• ADFs are at most as expressive as normal logic programs, and therefore still sufficiently
simple to be suited as an abstraction formalism.

• ADFs provide all of Dung’s standard semantics for AFs, so there is no loss in semantical
richness. On the contrary, each of the standard AF semantics (stable, preferred, complete,
grounded) has at least two ADF generalisations.

To go about our main task of analysing the expressiveness of abstract dialectical frame-
works, we do not have to start from scratch. Brewka and Woltran (2010) already showed
that ADFs are at least as general as AFs and also provided a (non-modular) translation from
normal logic programs to ADFs that preserves stable models. However, the exact location of
ADFs in the realm of knowledge representation formalisms remained unclear. Later, Brewka,
Dunne, and Woltran (2011) were able to give a polynomial translation from ADFs into AFs,
suggesting on complexity-theoretical grounds that ADFs are not substantially more expressive
than AFs. However, their translation depends on the particular ADF semantics that is used:
one does not simply translate ADFs into AFs with a fixed translation and then gets nice corres-
pondences between the ADF and AF semantics (which is exactly how it works the other way

2Note that in their approach, an ADF statement corresponds to an argument evaluation structure of Carneades and
is hence on the same abstraction level.

Chapter 3. Defining Semantics via Approximation Fixpoint Theory 23

around). Rather, to faithfully map ADFs into AFs one has to decide for a semantics before-
hand and then apply a semantics-specific translation. Furthermore, the translation introduced
by Brewka et al. (2011) for the stable semantics is again not modular, so when something is
added to the input ADF, one cannot simply add the translation of the addendum, but has to
re-translate the whole updated ADF. In contrast, as we will show, there are translations from
AFs and ADFs into normal logic programs (LPs) which are modular, polynomial and faithful
with respect to a whole range of semantics.

These and similar results provide us with a more fine-grained view on the location of AFs
and ADFs in the bigger picture of existing knowledge representation languages. Technically,
we achieve this by a principled and uniform reconstruction of the semantics of abstract dialect-
ical frameworks by embedding them into the approximation operator framework of Denecker,
Marek and Truszczyński (henceforth DMT; Denecker et al., 2000, 2003). In seminal work, DMT
developed a powerful algebraic framework in which the semantics of logic programs, default
logic and autoepistemic logic can be treated in an entirely uniform and purely algebraic way.
The approach works by defining operators, and then their fixpoints according to an abstract
and principled method. In this chapter, we extend their work by adding abstract dialectical
frameworks (and by corollary abstract argumentation frameworks) to their approach.

We do this by defining the so-called characteristic operator of an ADF and then deriving new
operators following abstract principles (Denecker et al., 2000). For the special case of a Dung
argumentation framework, for instance, the characteristic ADF operator fully captures Dung’s
characteristic function of the AF. Our investigation generalises the most important semantics
known from abstract argumentation to the case of ADFs and relates them to the respective
logic programming semantics. It will turn out that when generalising AF semantics, there are
typically two different possibilities for generalisations: a “supported” and a “stable” version
of the respective semantics. Brewka and Woltran (2010) already recognised this in the case of
stable extensions for argumentation frameworks: stable AF extensions can be generalised to
ADFs in two ways, namely to models and stable models for ADFs.

In addition to our usage of operators to clarify the relation of different semantics for single
formalisms, we will employ another technique to illuminate the relationship between different
formalisms. This role will be played by investigating polynomial, faithful, modular (PFM)
translations between languages as has been done by Gottlob (1995) and Janhunen (1999) for
the relationship between nonmonotonic logics. In our case, we even need a stronger kind of
translation: “faithful” usually refers to a translation mapping models of one specific semantics
of the source formalism to models of another specific semantics for the target formalism. In
our case, faithful refers to the translation providing a perfect alignment with respect to any
fixpoint semantics or at least a range of fixpoint semantics. Of course, this requires all of the
involved semantics to be defined for both source and target formalism, which is however the
case for our operator-based approach.

The picture that emerges from our work sheds new light on the underlying connections
between several classic and novel knowledge representation formalisms, since we study AFs,
ADFs and logic programs all in a unified semantical framework. In particular, it conclus-
ively shows that Dung’s abstract argumentation frameworks can be seen as special cases of
propositional normal logic programs. Now all normal logic programs are default theories,
which are in turn theories of autoepistemic logic (Denecker et al., 2003). Thus as a byproduct,
our work yields generalisations of argumentation semantics for a general lattice-based setting,
from which the existing semantics for logic programming and argumentation can be derived
as special cases. Among the semantics generalised are conflict-free and admissible sets, and
naive, stage, preferred and semi-stable semantics. As a corollary and another new contribu-
tion, this also defines these semantics for default logic and autoepistemic logic (Denecker et al.,

24 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

2003). This is a considerable improvement upon a result by Dung (1995), who already argued
for a preferred semantics for default logic, but only defined it through a translation to infin-
ite argumentation frameworks. We show that our generalisations of argumentation semantics
are well-defined by showing that well-known relationships between the semantics generalise
accordingly: for example, any preferred ADF model is also complete.

In the last part of the chapter, we instantiate the general ADF-based operator to the special
case of AFs and present new semantical correspondence results between argumentation frame-
works and their translated logic programs: preferred and semi-stable extensions correspond
one-to-one to M-stable and L-stable models (Saccà and Zaniolo, 1997), respectively. Addi-
tionally, we show that our lattice-theoretical account of argumentation yields easier proofs for
existing results in this area. As our final result, we prove equivalence (in four-valued Belnap
logic) of two different translations from AFs to logic programs: a folklore translation from
the literature (we call it the standard translation) that encodes attack by negation as failure,
and the original translation of Dung (1995), where attack and defeat of arguments is explicitly
recorded.

3.1 Approximate Semantics of ADFs

Abstract dialectical frameworks are knowledge representation formalisms. As such, they allow
to express knowledge and provide formal semantics for such expressions. One approach to
define semantics for knowledge bases is the one championed by Maarten van Emden, Bob
Kowalski and others: there, a revision operator is associated with a knowledge base (Fitting,
2002). The operator revises interpretations for the knowledge base K in the sense that the
revision of an interpretation is somehow “more in accord” with the knowledge contained in
K. Extending the metaphor, fixpoints of the revision operator then correspond to models
since they exactly “hit the spot” in that they represent stationary interpretations that cannot
be revised further. In this section, we will apply this operator-based approach to semantics to
abstract dialectical frameworks.

From the definition of a model of an ADF by Brewka and Woltran (2010), it is straight-
forward to devise a two-valued one-step consequence operator for a given ADF: given a two-
valued interpretation, we evaluate the acceptance condition of each statement; the resulting
evaluation determines the revised interpretation. To generalise this to an approximating oper-
ator, we generalise the evaluation from the two-valued {t, f} to four-valued Belnap logic.

3.1.1 The Characteristic Approximate Operator of an ADF

For an abstract dialectical framework D = (S, L, Ct), four-valued interpretations can be repres-
ented by pairs (X, Y) with X, Y ⊆ S. Such pairs can equivalently be interpreted as approxima-
tions to two-valued interpretations where X represents a lower bound and Y an upper bound
of the approximation. Given such an approximating pair (X, Y) and an ADF D, to revise the
pair we do the following for each statement s ∈ S: we check if there is some subset B of
the parents of s (which are exactly the statements that determine the acceptance status of s)
such that (1) all statements in B being t causes s to be t; (2) all statements in B are indeed t
according to the conservative estimate X; (3) the remaining parents of s are indeed f, that is,
not contained in the liberal estimate Y. The definition below, the most important definition of
this chapter, makes this formally precise.

3.1. Approximate Semantics of ADFs 25

Definition 3.1. Let D = (S, L, Ct) be an abstract dialectical framework. Define an operator
GD : 2S × 2S → 2S × 2S (called the approximate operator of D) by

GD(X, Y) = (G ′D(X, Y),G ′D(Y, X))

G ′D(X, Y) =
{

s ∈ S
∣∣ B ∈ Ct

s, B ⊆ X, (par(s) \ B) ∩Y = ∅
}

3

The last condition (par(s) \ B) ∩Y = ∅ can be equivalently reformulated as par(s) \ B ⊆ S \Y.
By B ⊆ X this means that all parents of s which are not t must be f – there must not be
undecided parents of s.

A two-valued immediate consequence operator for ADFs (the equivalent of logic programs’
two-valued van Emden-Kowalski operator TP) is now given by GD(X) = G ′D(X, X). The next
lemma about this two-valued operator relates to ADF models and will prove useful on various
occasions.

Lemma 3.1. For any abstract dialectical framework D = (S, L, C), statement s ∈ S and statement set
X ⊆ S we have s ∈ GD(X) iff X ∩ par(s) ∈ Ct

s.

Proof.

s ∈ GD(X) iff s ∈ G ′D(X, X)

iff X′ ∈ Ct
s, X′ ⊆ X, (par(s) \ X′) ∩ X = ∅, X ∩ par(s) = X′

iff X ∩ par(s) ∈ Ct
s 2

Our definition of the approximating operator of an ADF immediately defines quite a num-
ber of semantics for ADFs, among them all the semantics of Definition 2.2. In the following,
we will show how some of the standard operator-based semantics coincide with existing ADF
semantics. Operator-based semantics without a corresponding ADF semantics accordingly
define new semantical notions for abstract dialectical frameworks, for example three-valued
stable models. Similarly, there are ADF semantics that have no operator-based counterpart
– BW-stable, BW-admissible and BW-preferred –, we will provide alternative, operator-based
definitions for these semantics.

But first, we do the obviously necessary and show that GD is indeed an approximating
operator. From Definition 3.1 it is immediate that GD is symmetric. It is easy to prove that the
operator is also ≤i-monotone.

Proposition 3.2. For any ADF D = (S, L, C), the operator GD is ≤i-monotone.

Proof. Let (X1, Y1) ≤i (X2, Y2), that is, X1 ⊆ X2 and Y2 ⊆ Y1. We have to show that
GD(X1, Y1) ≤i GD(X2, Y2), that is, (1) G ′D(X1, Y1) ⊆ G ′D(X2, Y2) and (2) G ′D(Y2, X2) ⊆ G ′D(Y1, X1).

1. Let s ∈ G ′D(X1, Y1). Then there is an M ∈ Ct
s with M ⊆ X1 and (par(s) \M) ∩Y1 = ∅. Now

M ⊆ X1 ⊆ X2; furthermore Y2 ⊆ Y1 implies (par(s) \M) ∩Y2 = ∅, whence s ∈ G ′D(X2, Y2).

2. Analogous. 2

Hence the fixpoints of this operator form a complete sub-lattice of (2S × 2S,≤i). From GD
being approximating it follows that it maps consistent pairs to consistent pairs (Denecker et al.,
2000, Proposition 14); in particular its least fixpoint is consistent. Finally, we can construct its
associated stable operator SGD as defined by Denecker et al. (2000). We will now use our
newly defined approximating ADF operator to systematically reconstruct semantical notions
for abstract dialectical frameworks.

26 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Conflict-free sets

First of all, we find a nice characterisation of conflict-freeness: a set M is conflict-free for an
ADF D iff application of the two-valued immediate consequence operator GD does not remove
elements from M, that is, M is a postfixpoint of GD. Intuitively speaking, for each statement
that is contained in a conflict-free set M, there is no reason not to be contained in M.

Proposition 3.3. For any abstract dialectical framework D = (S, L, C), a set M ⊆ S is conflict-free
for D iff M ⊆ GD(M).

Proof.

M is conflict-free

iff for all s ∈ M we have M ∩ par(s) ∈ Ct
s

iff M ⊆
{

s ∈ S
∣∣ M ∩ par(s) ∈ Ct

s
}

iff M ⊆ GD(M) (by Lemma 3.1) 2

Notice that this characterisation only uses conflict-free sets and is thus inherently two-
valued. We will later generalise “conflict-free” to three-valued interpretations represented by
consistent pairs.

Model semantics

Much in accordance with logic programming, a model of an ADF is simply a two-valued
fixpoint of its associated consequence operator:

Proposition 3.4. For any abstract dialectical framework D = (S, L, C), a set M ⊆ S is a model of D
iff GD(M, M) = (M, M).

Proof.

M is a model for D

iff for each s ∈ S we have s ∈ M iff M ∩ par(s) ∈ Ct
s

iff M =
{

s ∈ S
∣∣ M ∩ par(s) ∈ Ct

s
}

iff M = G ′D(M, M)

iff GD(M, M) = (M, M) 2

Since the correspondence with logic programming is striking, we will use the more specific
term “two-valued supported model” from now on.

Stable model semantics

Motivated by the same notion of logic programming, Brewka and Woltran (2010) defined stable
models for bipolar ADFs. When we compare their definition to the general operator-based
notion of two-valued stable models, we have to acknowledge a slight mismatch.

Example 3.2. Consider the following (bipolar) ADF ξ = (S, L, C) with components S = {a, b},
L = {(a, a), (a, b), (b, b)} and Ct

a = {{a}} and Ct
b = {∅, {a} , {b}}. In words, a supports itself

while a and b jointly attack b; in formula notation, ϕa = a and ϕb = ¬(a ∧ b).

3.1. Approximate Semantics of ADFs 27

The set M = {b} is a model and also a BW-stable model of ξ: The reduct ξM is given by the
triple ({b} , ∅, {Ĉt

b}) with Ĉt
b = {∅}, an ADF where b is always t. (The link (b, b) is not in the

reduct because it is attacking in ξ.) However, the operator Gξ does not have a two-valued stable
model: when trying to reconstruct the upper bound {b}, we get G ′ξ (∅, {b}) = ∅ since b attacks
itself and thus its containment in the upper bound prevents its inclusion in the new lower
bound, as witnessed by par(b) ∩ {b} = {b} 6= ∅. (Interestingly, this example also shows that
M-stable models are not necessarily M-supported: ξ has the single M-stable model (∅, {b})
and the two M-supported models ({a} , {a, b}) and ({b} , {b}).) 3

So while there are ADFs with BW-stable models which are not two-valued stable models
of the ADF’s approximating operator, we can establish an inclusion relation for the converse
direction: any operator-based two-valued stable model of an ADF is also a BW-stable model
of the ADF. To show this, we first need a lemma that relates the operators G ′D(·, M) and GDM

whenever M is a model of D.

Lemma 3.5. Let D = (S, L, C) be a bipolar ADF and (M, M) be a two-valued supported model for D.
For any X ⊆ M we find G ′D(X, M) ⊆ GDM (X).

Proof. Recall that the reduct of D with M is defined by DM = (M, LM, CM) with reduced links
LM = {(r, s) | r, s ∈ M, (r, s) ∈ L+} and for each s ∈ M and B ⊆ M, we have CM

s (B) = t iff
Cs(B) = t. Now for each s ∈ S denote by Ps the parent nodes of s with respect to L and for s ∈ M by
PM

s the parent nodes of s with respect to LM. It follows that PM
s = (M ∩ Ps) \ {r ∈ Ps | (r, s) /∈ L+}.

Let s ∈ G ′D(X, M). (Observe that X ⊆ M means G ′D(X, M) ⊆ G ′D(M, M) = M and thus s ∈ M.)
Then there is a B ⊆ Ps with Cs(B) = t, B ⊆ X and (Ps \ B) ∩M = ∅. Now PM

s ⊆ Ps and X ⊆ M
yield (PM

s \ B) ∩ X = ∅, whence X ∩ PM
s ⊆ B. Define B′ = B \ {r ∈ Ps | (r, s) /∈ L+}. By definition

B′ ⊆ PM
s , whence by B′ ⊆ B ⊆ X we get B′ ⊆ X ∩ PM

s . Since all the removed parents r were attackers
(D is bipolar), we still have Cs(B′) = t. Now all links from PM

s to s are supporting and thus still
Cs(X ∩ PM

s) = t. Hence Cs(X ∩ PM
s) = CM

s (X ∩ PM
s) = t and s ∈ GDM (X). 2

This shows that GDM – the two-valued operator associated to the reduced ADF DM – is
in some sense “complete” with respect to the result of G ′D(·, M) – the operator for checking
whether M is a two-valued stable model of D. The next lemma will show that this “complete-
ness” carries over to the least fixpoints of these operators.

Lemma 3.6. Let D = (S, L, C) be a bipolar ADF and (M, M) be a two-valued supported model for D.
If M is the least fixpoint of G ′D(·, M), then it is the least fixpoint of GDM .

Proof. We use the notation from the proof of Lemma 3.5. Let s ∈ M and observe that we
have Cs(M ∩ Ps) = t since M is a model of D. By the definition of the reduct, we get
PM

s = (M ∩ Ps) \ {r ∈ Ps | (r, s) /∈ L+}. Since D is bipolar, any link from (M ∩ Ps) \ PM
s is attacking

and thus Cs(PM
s) = t.

28 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

• M is a fixpoint of GDM :

GDM (M)

=
{

s ∈ M
∣∣∣ CM

s (M ∩ PM
s) = t

}
(by definition of GDM)

=
{

s ∈ M
∣∣∣ CM

s (PM
s) = t

}
(PM

s ⊆ M)

=
{

s ∈ M
∣∣∣ Cs(PM

s) = t
}

(by definition of CM
s)

= {s ∈ M | Cs(M ∩ Ps) = t} (see above)
= {s ∈ S | Cs(M ∩ Ps) = t} (s ∈ S \M iff Cs(M ∩ Ps) = f)
= GD(M) (By definition of GD)
= M (M is a model of D)

• M is the least fixpoint of GDM : Let X ⊆ M be a fixpoint of GDM . By Lemma 3.5,
G ′D(X, M) ⊆ GDM (X) = X and X is a prefixpoint of G ′D(·, M). Since M is the least fixpoint
and thus also the least prefixpoint of G ′D(·, M), we get M ⊆ X. 2

Using the lemma, it is easy to show that the set of BW-stable models contains all operator-
based two-valued stable models.

Proposition 3.7. Let D = (S, L, C) bipolar abstract dialectical framework and M ⊆ S. If (M, M) is a
two-valued stable model of D, then M is a BW-stable model of D.

Proof. Let SGD(M, M) = (M, M). By definition M = cGD(M) = lfp(G ′D(·, M)), that is, M is the
least fixpoint of G ′D(·, M). By Lemma 3.6, M is the least fixpoint of GDM . Therefore, M is the least
model of DM (and a model of D), thus it is a BW-stable model of D. 2

The mismatch noticed in Example 3.2 does not depend on our definition of the four-valued
approximating operator: the ADF presented there also does not allow for ultimate two-valued
stable models, although the model notion of Brewka and Woltran (2010) is perfectly captured
by the two-valued one-step ADF consequence operator, which also gives rise to ADF’s ultimate
family of semantics. Put another way, if we take the model notion from Brewka and Woltran
(2010) and apply to it the transformations of Denecker et al. (2004), we arrive at an ultimate
stable model semantics which is demonstrably different from BW-stable models.3

Thus at the current point, we have two different stable model semantics at our disposal
– operator-based two-valued stable models and BW-stable models. The following example
shows that the BW-stable semantics admits too many models, since there are ADFs which
admit for BW-stable models where one is a proper subset of another.

Example 3.3. Consider the following (bipolar) ADF ξ = (S, L, C) with components S = {a, b},
L = {(a, b), (b, b)} and Ct

a = {∅} and Ct
b = {∅, {b} , {a, b}}. In words, a is always t and attacks

b, which however can support itself. The ADF ξ has two BW-stable models, M1 = {a} and
M2 = {a, b}: The reduct of ξ with M1 is given by ξM1 = ({a} , ∅, CM1) with CM1

a = {∅}, thus
its least model is {a} = M1. For the second BW-stable model M2 = {a, b}, the reduct of ξ

with M2 is given by ξM2 = (S, {(b, b)} , CM2) with CM2
a = {∅} and CM2

b = {∅, {b}}. (Note
that the link (b, b) is both supporting and attacking, thus in fact irrelevant.) It is easy to see
that {a, b} = M2 is the least model of this ADF. In contrast, the approximating operator Gξ

associated with ξ admits only the single two-valued stable model ({a} , {a}). 3

3We will later do so, see Section 3.3.

3.1. Approximate Semantics of ADFs 29

The problem with this example is that the ADF ξ allows for the BW-stable model M2 in
which statement b cyclically supports itself. This violates the intuitive requirement of stable
semantics that whatever it takes to be true must have a non-cyclic justification. Furthermore,
in logic programming, two distinct stable models of normal logic programs cannot be in a
subset-relationship; likewise in Reiter’s default logic, two distinct extensions of a default the-
ory cannot be in a subset-relationship. With our operator-based definition of two-valued stable
models for ADFs, this property comes for free:

Proposition 3.8. Let (L,v) be a complete lattice and O an approximating operator on the bilattice
(L2,≤i). For any x, y ∈ L with SO(x, x) = (x, x) and SO(y, y) = (y, y), we have that x v y implies
x = y.

Proof. Let x, y ∈ L with SO(x, x) = (x, x), SO(y, y) = (y, y) and x v y. Since O is antimonotone
in the second component, we have O(x, y) v O(x, x) = x and x is a prefixpoint of O(·, y). Now y is
the least prefixpoint of O(·, y) and thus y v x. 2

Together with Example 3.3, this result means that there is no approximating operator for
which Definition 2.1 can reconstruct BW-stable models. However, our operator-based defini-
tion of two-valued stable models easily gives rise to an equivalent reduct-based definition of
the same concept: in operator terms, M is a two-valued stable model of GD iff M is the least
fixpoint of the operator G ′D(·, M). To define a reduct, we have to find the ADF associated to
this consequence operator defined for X ⊆ S by

G ′D(X, M) =
{

s ∈ S
∣∣ B ∈ Ct

s, B ⊆ X, (par(s) \ B) ∩M = ∅
}

Our new operator-inspired reduct now just has to mimic the way the operator enforces the
upper bound M. This is achieved by the definition below, which notably works for all ADFs,
bipolar or not.

Definition 3.2. Let D = (S, L, Ct) be an abstract dialectical framework. A set M ⊆ S is an (ap-
proximate) stable model of D iff it is the unique least model of the reduced ADF DM = (S, L, Ct

M)
with

B ∈ Ct
M,s iff B ∈ Ct

s, (par(s) \ B) ∩M = ∅ 3

Intuitively, the reduct only changes the acceptance functions of statements such that accept-
ing parent configurations that rely on some statement from M being f are discarded (since the
statements in M are by virtue t). If the reduced ADF has a unique least model, and this least
model coincides with M, then M is a stable model of the original ADF. It is easy to show that
this new reduct-based definition of a stable model coincides with our operator-based definition
of two-valued stable models.

Proposition 3.9. Let D = (S, L, Ct) be an abstract dialectical framework and M ⊆ S. The pair
(M, M) is a two-valued stable model of GD iff M is a stable model of D.

Proof. First observe that we find the two-valued consequence operator of the reduct DM given for any
X ⊆ S by

GDM (X) = {s ∈ S | B ∈ Ct
s, (par(s) \ B) ∩M = ∅,

B ⊆ X, (par(s) \ B) ∩ X = ∅}

30 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Hence X ⊆ M implies GDM (X) = G ′D(X, M) and the two operators GDM and G ′D(·, M) coincide on all
subsets of M. In particular, M is the least fixpoint of G ′D(·, M) iff M is the least fixpoint of GDM . (The
least fixpoint of G ′D(·, M) always exists since the operator is monotone in (2S,⊆).) Now

(M, M) is a two-valued stable model of GD

iff M is the least fixpoint of G ′D(·, M)

iff M is the least fixpoint of GDM

iff M is the least model of DM

iff M is a stable model of D 2

Example 3.4. Let us reconsider the problematic ADF from Example 3.3, that is, D = (S, L, C)
with components S = {a, b}, L = {(a, b), (b, b)} and Ct

a = {∅} and Ct
b = {∅, {b} , {a, b}}.

The (new) reduct of D with M2 = {a, b} is given by DM2 = (S, L, CM2) with Ct
M2,a = {∅}

and Ct
M2,b = {{a, b}}. It is easy to see that {a} 6= M2 is the least model of this ADF and M2 is

not a stable model of D.
The (new) reduct of D with M1 = {a} is given by DM1 = (S, L, Ct

M1
) with Ct

M1,a = {∅} and
Ct

M1,b = {{a, b}}. Its least model is {a} = M1 and M1 is thus a stable model of D, just as
expected. 3

Admissible sets

For the generalisation of admissibility provided by Brewka and Woltran (2010), the picture is
not quite as clear. Firstly, for the special case of Dung argumentation frameworks, any stable
extension of an AF is admissible. So we should naturally expect that all ADF generalisations
of stable AF extensions are also (the ADF generalisation of) admissible; more specifically, since
for AF-based ADFs we have that stable extensions coincide with two-valued supported models
of the ADF, for an ADF generalisation of admissibility we should expect that all two-valued
supported models of the ADF are also admissible. But this is not the case for the generalisation
of admissibility of Brewka and Woltran (2010). Recall that a set M is BW-admissible iff there
exists an R ⊆ S such that M is a stable model of D− R.

Example 3.5. Consider the simplest abstract dialectical framework with a self-supporting cycle
between two arguments, D = (S, L, C) with S = {a, b}, L = {(a, b), (b, a)} and Ct

a = {{b}},
Ct

b = {{a}}. In other words, the links between a and b are both supporting. Hence the set
{a, b} is a (two-valued supported) model of D, but it is not BW-admissible: {a, b} is not a
stable model of D or any subframework of D. 3

It might seem that BW-admissibility is just too restrictive and could be fixed by weakening
the definition. One possibility may be to replace “stable” in the definition of BW-admissibility
by “supported.” But, as the following example shows, already the current, stable-based defin-
ition of BW-admissibility considers too many sets to be admissible.

Example 3.6. Consider the (bipolar) ADF D = (S, L, C) with statements S = {a, b, c, d}, links
L = {(b, a), (c, a), (d, c)} and acceptance conditions Ct

a = {∅, {b} , {c}}, Ct
b = {∅}, Ct

c = {{d}}
and Ct

d = {∅}. In words, there is a joint attack of b and c on a – a is f if both b and c are t,
and a is t otherwise. Statements b and d are always t, and c is t if d is. This ADF D has the
BW-admissible set M = {a, b}: Taking R = {d}, we see that there are no attacks from R to M.
Furthermore, the ADF D− R = D̂ = (Ŝ, L̂, Ĉ) is given by Ŝ = {a, b, c}, L̂ = {(b, a), (c, a)} and

3.1. Approximate Semantics of ADFs 31

Ĉa = {∅, {b} , {c}}, Ĉb = {∅} and Ĉc = {}. This ADF D̂ has the stable model {a, b}, which is
easily verified when looking at the reduct D̂M = ({a, b} , ∅, ĈM) where ĈM

a = ĈM
b = {∅}. So

in a sense, the set {a, b} being admissible depends on the removal of {d}, in which case the
only support of c is removed and the joint attack on a cannot happen. But d is by definition
of its acceptance condition always t, so no reasonable semantics could ever label it f, and
consequently the condition upon which BW-admissibility of {a, b} hinges can never become
true.4 3

There is an alternative characterisation of admissibility which satisfies all of our abovemen-
tioned criteria. That is, all two-valued supported models of an ADF are admissible in our new
sense; and for the ADF from Example 3.6, the undesired BW-admissible set from above is not
admissible according to this new definition. As a much more important property, it is defined
for all ADFs and not only bipolar ones. It is also a generalisation of AF admissibility, as will
be shown in Section 3.4.

Intuitively, we require that an admissible pair is first of all consistent and satisfies a further
criterion: for any statement that is labelled with either t or f, the pair must provide sufficient
justification for this choice. For a pair (M, N), this means that any statement that is labelled
t (contained in M) must indeed be accepted by this pair; conversely, any statement that is
labelled f (not contained in N) must indeed be rejected by the pair. Acceptance and rejection is
expressed using the approximating operator, so for (M, N) we require M ⊆ G ′D(M, N) (justified
lower bound) and G ′′D(M, N) ⊆ N (justified upper bound). This combination is easily expressed
using the information ordering.

Definition 3.3. For any ADF D = (S, L, C), a consistent pair (M, N) is admissible in D iff
(M, N) ≤i GD(M, N). 3

It is clear that the lower bound of an admissible pair (M, N) is a conflict-free set since
M ⊆ G ′D(M, N) ⊆ G ′D(M, M) = GD(M). Since for any two-valued supported model M we have
(M, M) = GD(M, M) it is also immediate that all two-valued supported models of an ADF are
(three-valued supported models and in turn) admissible pairs. Interestingly, ≤i-postfixpoints
of operators O were also important for Denecker et al. (2004) – they called them O-reliable
pairs.

Preferred semantics

In principle, there could be different ways to define the preferred semantics for ADFs: (1)
the argumentation way of taking all model candidates that are maximally admissible; (2) the
logic-programming way of maximising over three-valued supported models. It is clear that
any preferred pair derived according to (2) is also preferred in the sense of (1) since any three-
valued supported model is admissible. But – as we will show next – the converse also holds, so
it is inessential which of these two definitions we pick. This even holds for any approximating
operator on a complete lattice, as is shown by the theorem below; in AF-speak, it expresses the
operator generalisation of “all preferred extensions are complete.”

Theorem 3.10. Let (L,v) be a complete lattice and O be an approximating operator on (L2,≤i). Any
≤i-maximal admissible pair for O is a three-valued supported model for O.

4Incidentally, {a, b} is also a BW-preferred model that does not contain the BW-well-founded model {b, c, d}. Since
the grounded AF extension is always contained in any preferred AF extension, Example 3.6 also hints at another
unexpected (non-)relation between the generalised ADF semantics of Brewka and Woltran (2010).

32 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Proof. Let (x, y) be an ≤i-maximal admissible pair, that is, (x, y) ≤i O(x, y) and there is no admissible
pair (x̂, ŷ) with (x, y) <i (x̂, ŷ). We have to show O(x, y) = (x, y), so assume to the contrary that
O(x, y) 6≤i (x, y), that is, (x, y) <i O(x, y). SinceO is approximating, it is in particular≤i-monotone
and from (x, y) ≤i O(x, y) we can infer O(x, y) ≤i O(O(x, y)). Thus O(x, y) is itself admissible and
(x, y) <i O(x, y), in contradiction to (x, y) being ≤i-maximal admissible. 2

As an immediate consequence, we have the result that all maximal admissible ADF models
are three-valued supported (as we will see, “complete”) models.

Corollary 3.11. Let D be an abstract dialectical framework. Any ≤i-maximal admissible pair is a
three-valued supported model.

This leads to the generalisation of AF preferred semantics for abstract dialectical frame-
works (including non-bipolar ones): they are simply M-supported models of GD, that is, ≤i-
maximal fixpoints of GD. Since supported and stable semantics coincide for argumentation
frameworks, another suitable candidate for generalising preferred semantics is the M-stable
semantics for ADFs, that is, ≤i-maximal fixpoints of SGD.

Well-founded semantics In order to generalise the grounded semantics from AFs to ADFs,
Brewka and Woltran (2010) introduced – for an ADF D = (S, L, C) – the operator ΓD on the bi-
lattice (2S × 2S,≤i). Motivated by naming conventions from logic programming, they decided
to call (the lower bound of) the least fixpoint of ΓD the “well-founded model” of an ADF. As
our next result shows, their intuition of defining the operator was on the spot – they defined
the most precise approximation of the two-valued ADF consequence operator GD.5

Lemma 3.12. For any abstract dialectical framework D, the operator ΓD is the ultimate approximation
of GD.

Proof. Recall that for D = (S, L, C) the operator ΓD : 2S × 2S → 2S × 2S is given by (X, Y) 7→
(Γ′D(X, Y), Γ′′D(X, Y)), where

Γ′D(X, Y) =
{

s ∈ S
∣∣ for all X ⊆ Z ⊆ Y, we have Z ∩ par(s) ∈ Ct

s
}

Γ′′D(X, Y) =
{

s ∈ S
∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Ct

s
}

Now by (Denecker et al., 2004, Theorem 5.6), for X ⊆ Y ⊆ S, the ultimate approximation UD of the
operator GD is characterised by UD(X, Y) = (U ′D(X, Y),U ′′D (X, Y)) with

U ′D(X, Y) =
⋂
{GD(Z) | X ⊆ Z ⊆ Y}

U ′′D (X, Y) =
⋃
{GD(Z) | X ⊆ Z ⊆ Y}

By Lemma 3.1, we know that for any s ∈ S and Z ⊆ S we find Z ∩ par(s) ∈ Ct
s iff s ∈ GD(Z), which

leads to the equalities

U ′D(X, Y) =
⋂
{GD(Z) | X ⊆ Z ⊆ Y}

= {s ∈ S | for all X ⊆ Z ⊆ Y, we have s ∈ GD(Z)}
=
{

s ∈ S
∣∣ for all X ⊆ Z ⊆ Y, we have Z ∩ par(s) ∈ Ct

s
}

= Γ′D(X, Y)

5According to personal communication this was conjectured by Mirosław Truszczyński.

3.2. Relationship to Normal Logic Programs 33

and, likewise for the upper bound,

U ′′D (X, Y) =
⋃
{GD(Z) | X ⊆ Z ⊆ Y}

= {s ∈ S | there exists X ⊆ Z ⊆ Y with s ∈ GD(Z)}
=
{

s ∈ S
∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Ct

s
}

= Γ′′D(X, Y)

which proves the claim. 2

This lemma immediately entails that what Brewka and Woltran (2010) called “well-
founded” is what DMT call the ultimate Kripke-Kleene semantics.

Corollary 3.13. For any ADF D, its BW-well-founded semantics coincides with its ultimate Kripke-
Kleene semantics.

The well-founded semantics of D in the usual sense (the least fixpoint of the stable operator
SGD) hence may differ from the BW-well-founded semantics.

Example 3.7 (Continued from Example 2.4). Recall that the ultimate Kripke-Kleene semantics
of D is given by the pair ({a} , {a, b, c, d}) (the least model of the operator UD = ΓD). The well-
founded semantics of D in the logic-programming sense is given by the pair ({a, d} , {a, d}).
Since this pair is exact, it also represents the unique two-valued stable model of D. (Recall that
M2 = {a, d} is the supported model of D where the self-support of b was rejected.) 3

We have seen how the characteristic operator of an ADF can be used to redefine several
existing ADF semantics. The remaining operator-based semantics that we did not yet talk
about therefore present new semantics for ADFs. Among them, we generalised complete AF
extensions to ADFs (three-valued supported/stable models) which will be explored in more
detail in the AF section.

3.2 Relationship to Normal Logic Programs

3.2.1 From ADFs to Logic Programs

We now use the four-valued one-step ADF consequence operator to determine the relationship
between ADFs and logic programs. As it turns out, there is a straightforward polynomial and
modular translation from ADFs to logic programs which is additionally faithful with respect to
all operator-based semantics. The translation creates logic program rules for each statement of
a given ADF D. The body of a rule for statement s is satisfied whenever for some M ⊆ par(s),
the statements in M are t and the remaining parents are f.

Definition 3.4. Let D = (S, L, Ct) be an ADF. Define its standard logic program as follows.

P(D) =
{

s← (M ∪ not (par(s) \M))
∣∣ s ∈ S, M ∈ Ct

s
}

3

Example 3.8 (Continued from Example 3.7). The standard logic program P(D) of our run-
ning example ADF D is given by

a← ∅ b← b c← {a, b} d← not b 3

34 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

As another illustrative example, we look at the ADF where we observed a mismatch
between BW-stable models and operator-based two-valued stable models.

Example 3.9. The ADF D from Example 3.2 is translated into the logic program consisting of
the following rules:

a← a b← {not a, not b} b← {a, not b} b← {b, not a}

This somewhat obviates why there is no two-valued stable model for D: the only candidate for
deriving b in some reduct program is the last rule, which however circularly requires b itself.3

The next lemma shows that the term “standard logic program” is well-chosen, since the
translation is faithful with respect to all operator-based semantics: the associated approxim-
ating operators of an ADF and its standard logic program are identical. The term B below
denotes the complement of B with respect to the parents of s, that is, B = par(s) \ B.

Lemma 3.14. For any ADF D = (S, L, Ct), we find that GD = TP(D).

Proof. Let X, Y ⊆ S. We show G ′D(X, Y) = T ′P(D)(X, Y).

G ′D(X, Y) =
{

s ∈ S
∣∣ B ∈ Ct

s, B ⊆ X, B ∩Y = ∅
}

=
{

s ∈ S
∣∣ s← (B ∪ not B) ∈ P(D), B ⊆ X, B ∩Y = ∅

}
=
{

s ∈ S
∣∣ s← M ∈ P(D), B = M+ ⊆ X, B = M−, M− ∩Y = ∅

}
= T ′P(D)(X, Y) 2

This result yields immediate correspondence of all operator-based semantics of an ADF D
with the respective semantics of its standard logic program P(D).

Theorem 3.15. Let D = (S, L, Ct) be an abstract dialectical framework and P(D) its standard logic
program. Then D and P(D) coincide on all semantics based on their approximation operators.

In particular, GD = TP(D) and an ADF and its standard logic program also agree on all se-
mantics derived from the ultimate approximation of their two-valued operators. These results
obviate that propositional normal logic programs are at least as expressive as abstract dialect-
ical frameworks in a very strong sense: there exists a single translation that preserves models
in a whole type of semantics. Furthermore, the translation can be computed in polynomial
time and is modular with respect to statements.

More precisely, let D1 = (S1, L1, Ct
1) and D2 = (S2, L2, Ct

2) be ADFs such that S1 ∩ S2 = ∅.
Then the union of the two ADFs is defined as D1 ∪ D2 = (S1 ∪ S2, L1 ∪ L2, Ct

1 ∪ Ct
2). For such

pairs of ADFs we indeed observe that the translation is modular: P(D1∪D2) = P(D1)∪ P(D2).
But it is not straightforward to define the union of two ADFs when they share statements:

Example 3.10. Consider the ADFs D1 = (S1, L1, Ct
1) with S1 = {a, b}, L1 = {(b, a)}, Ct

1,a =

{{b}} and Ct
1,b = {∅} (in words, b is always t and supports a); and D2 = (S2, L2, Ct

2) with
S2 = {a, c}, L2 = {(c, a)}, Ct

2,a = {{c}} and Ct
2,c = {∅} (in words, c is always t and supports

a). In both frameworks, the common statement a is supported by a statement which is always
t. Consequently, a is always t for every model of every semantics in both ADFs. However, the
union of the acceptance functions’ characteristic sets is Ct

1,a ∪Ct
2,a = {{b} , {c}}, and thus in the

union ADF, statement a is always f since both parents are always t. The undesired result in this
case is that a is always accepted in the two constituent ADFs but not accepted in their union,

3.2. Relationship to Normal Logic Programs 35

although this union should be expected to exhibit some kind of disjunctive acceptance with
respect to its constituents. (For comparison, note that P(D1) = {a← b, b← ∅} and P(D2) =
{a← c, c← ∅}, whence a is contained in the single (two-valued) stable model {a, b, c} of
P(D1) ∪ P(D2).) 3

Of course, the example above would work if we represented acceptance conditions by for-
mulas ϕ1,a = b and ϕ2,a = c: then in the union of the two ADFs the acceptance formula is given
by the disjunction ϕ1,a ∨ ϕ2,a = b ∨ c which has the desired set of models {{b} , {c} , {b, c}}.
However, this is dependent on the specific chosen representation of acceptance conditions,
namely propositional formulas. For the general case of overlapping sets of statements and an
abstract stance with regard to the representation of acceptance conditions, it seems that a more
sophisticated procedure for ADF merging is required. This makes it hard to assess a more
general type of modularity concerning translations from ADF into logic programs.

3.2.2 From Logic Programs to ADFs

To translate ADFs into logic programs, we essentially had to take the acceptance formulas,
transform them into disjunctive normal form and write an LP rule for each disjunct. To trans-
late logic programs into ADFs, this process is reversed: to devise an acceptance function for
statement s, we take the disjunction of all bodies (read as conjunctions of literals) of rules with
head s.

Definition 3.5 (Brewka and Woltran, 2010). Let P be a normal logic program over a set A of
atoms. Define an ADF D(P) = (A, L, Ct) as follows.

• L = {(b, a) | a← M ∈ P, b ∈ M+ ∪M−}

• For a ∈ A, set Ct
a = {B ⊆ par(a) | a← M ∈ P, M+ ⊆ B, M− ∩ B = ∅}. 3

Alternatively, we could define the acceptance condition of each a ∈ A by

ϕa =
∨

a←M∈P

(∧
m∈M+

m ∧
∧

m∈M−
¬m

)

Although straightforward, the translation is obviously not modular, since all logic program
rules with head a are needed to devise the acceptance condition for statement a. Furthermore,
the translation is not faithful with respect to three-valued semantics defined by the approxim-
ating operator GD.

Example 3.11 (Lost in Translation). Consider the following two logic programs over the sig-
nature A = {a, b, c} that have a common subprogram P = {c← ∅, b← not b}:

1. P1 = P ∪ {a← b, a← c}

2. P2 = P ∪ {a← {b, not c}, a← {c, not b}, a← {b, c}}

The ADF translations of the two programs are identical: we have D(P1) = D(P2) = (A, L, Ct)
with the obvious links from body atoms to head atoms, L = {(b, b), (b, a), (c, a)}, statement b
being self-attacking, Ct

b = {∅}, statement c being always t, Ct
c = {∅} and statement a being t

if b is t, c is t, or both, Ct
a = {{b} , {c} , {b, c}}. However, the original logic programs P1 and

P2 do not have the same three-valued models: While the only (three-valued supported) model
of P1 is ({a, c} , {a, b, c}), the only (three-valued supported) model of P2 is ({c} , {a, b, c}). That

36 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

is, when we force the truth values of c to be true and b to be undefined (in the common
subprogram P), the result is that a is true in P1 (the disjunction b ∨ c evaluates to true) but
undefined in P2 (all the conjuncts b ∧ ¬c, c ∧ ¬b and b ∧ c evaluate to undefined). 3

However, the translation is faithful for two-valued supported semantics, as we will show
next. Technically, this is proved by establishing a correspondence between the two-valued one-
step consequence operators TP for a logic program P and GD(P) for the logic program’s ADF
D(P) in the following lemma.

Lemma 3.16. For any normal logic program P, we have TP = GD(P).

Proof. Abbreviate D(P) = D, let A be the signature of P and let X, Y ⊆ A. We show something
slightly more general than GD(X) = G ′D(X, X) = T ′P (X, X) = TP(X).

1. G ′D(X, Y) ⊆ T ′P (X, Y): Let a ∈ G ′D(X, Y). Then there is a B ∈ Ct
a with B ⊆ X and B ∩ Y = ∅.

By definition of D(P), there is a B ⊆ par(a) and a rule a ← M ∈ P with M+ ⊆ B and
M− ∩ B = ∅. We have to show that M+ ⊆ X (this is immediate) and M− ∩ Y = ∅. Assume
to the contrary that there is a b ∈ M− ∩ Y. Then M− ∩ B = ∅ implies b /∈ B. Similarly,
B ∩ Y = ∅ implies that b /∈ B. Thus b /∈ B ∪ B = par(a), which is a contradiction to b ∈ M−,
a← M ∈ P and the definition of D(P).

2. T ′P (X, X) ⊆ G ′D(X, X): Let a ∈ T ′P (X, X). Then there is a rule a ← M ∈ P with M+ ⊆ X
and M− ∩ X = ∅. Define B = par(a) ∩ X. We have to show that B ∈ Ct

a, B ⊆ X (obvious)
and B ∩ X = ∅. For the last item, we have that B = par(a) \ B = par(a) \ (par(a) ∩ X) =
par(a) \ X, whence B ∩ X = ∅. Finally, a ← M ∈ P means M+ ⊆ par(a) and together with
M+ ⊆ X we get M+ ⊆ B = par(a) ∩ X. Since B ⊆ X, we have M− ∩ B = ∅. By definition
B ⊆ par(a) and thus B ∈ Ct

a. 2

From the proof we can read off that P can derive anything that D(P) can derive, for any
three-valued pair; in the converse direction, this only works for two-valued pairs. As an
immediate consequence, we get correspondence of two-valued supported models.

Corollary 3.17. Let P be a normal logic program over a set A of atoms and D = D(P) be its associated
abstract dialectical framework. For any set X ⊆ A, GD(X, X) = (X, X) iff TP(X, X) = (X, X).

As another consequence of the proof of Lemma 3.16, we can also show that LP-based ADFs
are sound with respect to two-valued stable models of the LP, that is, any stable model of D(P)
is a stable model of P.

Lemma 3.18. Let P be a normal logic program over a set A of atoms and D = D(P) be its associated
abstract dialectical framework. For any set X ⊆ A, SGD(X, X) = (X, X) implies STP(X, X) = (X, X).

Proof. Let SGD(X, X) = (X, X). Then X is the least fixpoint of G ′D(·, X) and in particular
G ′D(X, X) = X. Now by Lemma 3.16 above, we get T ′P (X, X) = X and X is a fixpoint of T ′P (·, X).
It remains to show that X is the least fixpoint of T ′P (·, X). Let Y be a prefixpoint of T ′P (·, X), that
is, T ′P (Y, X) ⊆ Y. By Item 1 in the proof of Lemma 3.16 we have G ′D(Y, X) ⊆ T ′P (Y, X), whence
G ′D(Y, X) ⊆ Y and Y is a prefixpoint of G ′D(·, X). Since X is the least fixpoint of G ′D(·, X) and thus also
its least prefixpoint, we get X ⊆ Y and thus X is the least (pre)fixpoint of T ′P (·, X). 2

The converse of the lemma does not hold:

3.3. Ultimate Semantics of Abstract Dialectical Frameworks 37

Example 3.12. Let P = {a← ∅, a← a}. This program has the two-valued stable model {a}.
Its resulting ADF is D = D(P) = ({a} , {(a, a)} ,

{
Ct

a
}
) with Ct

a = {∅, {a}}. Interestingly, the
link (a, a) is both supporting and attacking – that is, it contains no information. When trying to
reconstruct the (LP) stable model {a}, we observe that G ′D(∅, {a}) = ∅ and {a} is not a (ADF)
stable model for D. 3

As much more interesting consequence of Lemma 3.16, it follows that the ultimate approx-
imations of TP and GD(P) are identical, thus P and D(P) also coincide on all ultimate semantics,
including ultimate stable models. This will be the topic of the next section.

By corollary, the above correspondence entails that whatever “goes missing” in the transla-
tion from P to D(P) can be recovered by the construction of the ultimate approximation. This
should however be taken with a grain of salt, since the ultimate family of semantics are ac-
companied by higher computational costs (see Chapter 4). So while information thrown away
through translation can be recovered, it seems much more economic to keep the information
during translation instead of “paying” for a subsequent reconstruction.

3.3 Ultimate Semantics of Abstract Dialectical Frameworks

Now that we have seen how a whole range of argumentation semantics can be defined using
a single three-valued operator (the approximate operator of an ADF), we can ask the question
why that one operator has to be “the one”. It does not. Further families of operator-based ADF
semantics are conceivable; one of those is the ultimate family. As the name suggests, it applies
three-valued operator-based definitions to the ultimate approximation of the two-valued ADF
consequence operator. These semantics are the current de-facto standard in the ADF literature.

Definition 3.6. Let D = (S, L, C) be an ADF and (X, Y) be a consistent pair. The interpretation
given by (X, Y) is

• admissible iff (X, Y) ≤i UD(X, Y);

• complete iff UD(X, Y) = (X, Y);

• preferred iff (X, Y) is ≤i-maximal with respect to being admissible;

• grounded iff (X, Y) is the ≤i-least fixpoint of UD (its Kripke-Kleene semantics). 3

As is the case for AFs, also for the ultimate family of semantics for ADFs we have that all
preferred models are complete. Moreover, the set of all complete models forms a complete
meet-semilattice with the information ordering ≤i and we can prove the following result,
which is a generalisation of Theorem 25 by Dung (1995). The proof makes use of three-valued
interpretations v : S→ {t, f, u}, a notational variant of consistent pairs.6

Theorem 3.19. Let D be an ADF.

1. Each preferred model is a complete model, but not vice versa.

2. The grounded interpretation is the ≤i-least complete model.

3. The complete models of D form a complete meet-semilattice with respect to ≤i.
6For a three-valued interpretation v : S→ {t, f, u}, the associated pair is ({s ∈ S | v(s) = t} , {s ∈ S | v(s) 6= f});

conversely, for a consistent pair (X, Y) the associated interpretation maps X 7→ t, Y \ X 7→ u, and S \Y 7→ f.

38 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Proof. 1. If v is preferred, then v ≤i UD(v). We have to show that UD(v) = v. Assume
to the contrary that UD(v) 6≤i v, then v <i UD(v). Since UD is ≤i-monotone, we get
UD(v) ≤i UD(UD(v)), and UD(v) is admissible in contradiction to v being ≤i-maximal admiss-
ible. Thus UD(v) ≤i v and v is complete.

As a counterexample in the opposite direction, consider the ADF in Example 3.14. It has two
complete models – its grounded model and the single two-valued model. Only the latter is ≤i-
maximal.

2. The grounded interpretation is the ≤i-least fixpoint of UD and thus the ≤i-least complete model.

3. Let S be the set of statements in D and define F as the set of all fixpoints of UD. It is clear that the
grounded interpretation of D is the least element of F. Now let E ⊆ F be finite and non-empty.
We have to show that E has a greatest lower bound in F. Let e be the greatest lower bound of
E in S. The set {v : S→ {t, f, u} | v ≤i e} forms a complete lattice in which UD possesses a
greatest fixpoint which is the greatest lower bound of E in F. Now let E additionally be directed.
We have to show that it has a least upper bound in F. Let e′ be the least upper bound of E in
S. The set {v : S→ {t, f, u} | e′ ≤i v} forms a complete meet-semilattice where UD possesses a
least fixpoint which is the least upper bound of E in F. 2

For the ultimate family of ADF semantics, there also exists a version of the stable model
semantics (Brewka, Ellmauthaler, Strass, Wallner, and Woltran, 2013, Definition 6).

Definition 3.7. Let D = (S, L, C) be an ADF with C = {ϕs}s∈S and v : S→ {t, f} be a two-
valued model of D. Define the reduced ADF Dv with Dv = (Sv, Lv, Cv), where

• Sv = {s ∈ S | v(s) = t}

• Lv = L ∩ (Sv × Sv)

• Cv = {ϕv
s }s∈Sv where for each s ∈ Sv, we set ϕv

s = ϕs[b/⊥ : v(b) = f].

Now the two-valued model v of D is a stable model of D if and only if Dv’s unique grounded
interpretation grd(Dv) satisfies grd(Dv)(Sv) = {t}. 3

In the reduct, in each acceptance formula we replace statements b ∈ S that v maps to false by
their truth value. The rest of the definition straightforwardly expresses the intuition underlying
stable models: if all statements the model v takes to be false are indeed false, we must find a
constructive proof for all statements the model takes to be true.

Example 3.13. Consider the ADF D = ({a, b, c} , L, C) given by

ϕa = >, ϕb = ¬a ∨ c, ϕc = b

In words, a is always accepted, a attacks b, and the links between b and c are support links.
According to the original definition of Brewka and Woltran (2010), {a, b, c} is the single stable
model, violating the basic intuition that all elements of a stable model should have a non-cyclic
justification: here b is accepted because c is and vice versa.

It is easy to see that according to our new definition, M1 = {a, b, c} is not stable. The
reduced ADF is identical to the original one, and its grounded semantics leaves b and c un-
defined. On the other hand, M2 = {a} is stable, as intended: the reduced ADF consists of
ϕa = > only, and its grounded semantics evaluates a to true. 3

3.3. Ultimate Semantics of Abstract Dialectical Frameworks 39

Example 3.14. Consider the ADF D = (S, L, C) given by

ϕa = c, ϕb = c, ϕc = a↔ b

The only two-valued model is v : S→ {t}. Since c is true because a and b are and vice versa,
the model contains unintended cyclic support and thus should not be stable. Indeed, for
the reduct we get Dv = D. Let us compute the grounded semantics of D. We start with
interpretation w : S→ {u}. Since none of the acceptance formulas is a tautology, w is already
a fixpoint and thus the grounded interpretation of D. Hence v is not a stable model and D has
no stable models, just as intended. Since v is a minimal model of D, the example illustrates
that in Definition 3.7 we actually need the grounded semantics; requiring Sv to agree with
some ≤t-minimal model of the reduct is insufficient. 3

The attentive reader may wonder why there is a tailor-made definition of stable semantics
although Definition 2.2 defines two-valued stable models also for the ultimate operator, and
if the two definitions are different. The main reason for the definition being as it is was
pragmatic: Definition 3.7 was prepared for a specific paper (Brewka et al., 2013), in which
we did not have the space to introduce approximation fixpoint theory, and so “extracted” the
stable model definition.

However, it is not hard to prove that the definition of two-valued stable models given in
that paper (Brewka et al., 2013) coincides with Denecker et al.’s ultimate two-valued stable
models. We start with an easy observation.

Lemma 3.20. Let ϕ be a propositional formula over vocabulary S, and let A, B, C, D be sets with
A ⊆ B ⊆ S and C ⊆ D ⊆ S. (

ϕ(A,B)
)(C,D)

= ϕ(A∪C,B∩D)

For the actual result (in particular for its proof), it is helpful to recall that the stable models
of Brewka et al. (2013) are models by definition.

Proposition 3.21. The stable model semantics as defined in Definition 3.7 coincides with the ultimate
two-valued stable model semantics of Definition 2.2 (Denecker et al., 2004).

Proof. Let D = (S, L, C) be an ADF and M ⊆ S be a model of D. We show that (M, M) is a Brewka
et al.-stable-model of D if and only if (M, M) is an ultimate two-valued stable model of D. First,
it is easy to see that M is the lower bound of the ultimate grounded semantics of the reduced ADF
DM = (M, L ∩ (M × M), CM) if and only if (M, M) is the ultimate grounded semantics of DM.
Furthermore, M is a model of D, whence it is a model of DM. Thus all acceptance formulas in DM

are satisfiable and for any X ⊆ M we get U ′′DM (X, M) = M. That is, during computation of the least
fixpoint of UDM , the upper bound remains constant at M. Now for any X ⊆ M and s ∈ S, we have

s ∈ U ′D(X, M) iff ϕ
(X,M)
s is a tautology (by Definition of U ′D)

iff
(

ϕ
(∅,M)
s

)(X,M)
is a tautology (by Lemma 3.20)

iff s ∈ U ′DM (X, M) (by Definition 3.7)

So in the complete lattice (2M,⊆), the operators U ′D(·, M) and U ′DM (·, M) coincide. Therefore, their
least fixpoints coincide. 2

We can also show that these stable models are a proper generalisation of Dung’s stable
extensions.

40 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Theorem 3.22. Let F = (A, R) be an AF and DF its associated ADF. For any interpretation v for A,
the following are equivalent:

(A) the set {a ∈ A | v(a) = t} is a stable extension of F,

(B) v is a stable model of DF,

(C) v is a two-valued model of DF.

Proof. Let v be a two-valued interpretation for DF = (A, R, C) and recall that in DF, the acceptance
formula for each s ∈ A is ϕs =

∧
(r,s)∈R ¬r.

“(A) =⇒ (B)”: Let the set E = {a ∈ A | v(a) = t} be a stable extension of F. Then
E = UF(E) = {a ∈ A | b ∈ E =⇒ (b, a) /∈ R} and v(a) = t iff for all b ∈ E the acceptance condi-
tion ϕa does not mention b. Additionally, by the definition of the reduct, we have ϕv

a = ϕa[b/⊥ : b /∈ E].
Hence ϕv

a = ¬⊥ ∧ . . . ∧ ¬⊥ ≡ > for all a ∈ E and in the reduced ADF (E, Lv, Cv) we have that all
statements are true in the grounded interpretation. Thus v is stable for DF, in particular it is a model
for DF and (B) =⇒ (C).

“(C) =⇒ (A)”: Let v be a model for DF. Then a ∈ A means v(a) = v(ϕa) = v
(∧

(b,a)∈R ¬b
)

. In
particular, in the reduct (Av, Lv, Cv) we have for any a ∈ Av that v(a) = t. Thus for all attackers b of
a we find v(b) = f and thus b /∈ Av. Conversely, a /∈ Av means v(a) = f and for some attacker b of a
we have v(b) = t and thus b ∈ Av. In combination, Av is a stable extension of F. 2

Note that for AF-based ADFs, there is no distinction between models and stable models.
The intuitive explanation for this is that stable semantics breaks cyclic supports, which cannot
arise in AFs because they cannot express support.

3.4 AF Semantics as Special Cases

In this section we look at the subset of ADFs which corresponds to AFs. Recall that for AFs,
the original lattice of interest (2A,⊆) considers sets of arguments and the subset relation. The
corresponding bilattice (2A× 2A,≤i) is concerned with pairs of sets of arguments and ordered
by the information ordering. The elements of this bilattice generalise three-valued approaches
to argument evaluation (Verheij, 1996; Caminada, 2006) to the four-valued case: for a pair
(S, P), the arguments in S ∩ P are in, those in S ∪ P are out, those in P \ S are undecided and
those in S \ P get the new label inconsistent. Consistent pairs (those (S, P) with S ⊆ P) can be
regarded as three-valued labellings, where exactly all arguments in S are in.

As our first observation, we note that the approximating operator that Definition 3.1 assigns
to the ADF of an AF F is also a special case of an operator: it is the canonical approximation
of UF, the operator assigning to a set S of arguments all the arguments from A that are not
attacked by S.

Proposition 3.23. For any argumentation framework F = (A, R) and sets X, Y ⊆ A, we have
GD(F)(X, Y) = (UF(Y), UF(X)).

Proof. We have to show G ′D(F)(X, Y) = UF(Y). Recall that D(F) = (A, R, Ct), where Ct
a = {∅} for

3.4. AF Semantics as Special Cases 41

each a ∈ A. Thus for any argument a ∈ A, we find that par(a) = R−1
F (a). Now

a ∈ G ′D(F)(X, Y) iff B ∈ Ct
a, B ⊆ X, (par(a) \ B) ∩Y = ∅

iff B = ∅, B ⊆ X, (par(a) \ B) ∩Y = ∅
iff par(a) ∩Y = ∅

iff R−1
F (a) ∩Y = ∅

iff a ∈ UF(Y) 2

In the remainder, we will denote the four-valued approximation operator of an argument-
ation framework F by FF; we formally define F ′F = G ′D(F). It follows by definition that the
characteristic operator FF of an AF is its own stable operator:

Lemma 3.24. For any argumentation framework F, we have SFF = FF.

Proof. Let F = (A, R) and X, Y ⊆ A. We have to show SF ′F(X, Y) = F ′F(X, Y). This is easily obtained
by considering SF ′F(X, Y) = lfp(F ′F(·, Y)) = lfp(UF(Y)) = UF(Y) = F ′F(X, Y). 2

This means informally that (in a sense) there are fewer semantics for Dung frameworks
than there are for ADFs, logic programming, default logic and autoepistemic logic. Translated
into logic programming language, we have that in Dung-style argumentation, supported and
stable models coincide, and well-founded semantics equals Kripke-Kleene semantics. Put in
different terms of default and autoepistemic logics: for argumentation frameworks, Moore
expansions and Reiter extensions coincide!

In principle, this collapsing picture could be due to a mistake in our definition of the
characteristic operator. In the following section, it will become clear that this is not the case
and the characteristic operator of an argumentation framework is well-designed: we show next
how the major semantics of argumentation frameworks can be redefined in terms of fixpoints
of the characteristic operator.

3.4.1 Fixpoint Semantics for Abstract Argumentation Frameworks

As a first illustration of universality of the characteristic operator of an AF, we recapitulate a
result that is well-known in the argumentation community: the operator UF (which is at the
heart of FF) can emulate the characteristic function DF of an argumentation framework: DF is
the same as twofold application of UF.

Lemma 3.25 (Dung, 1995, Lemma 45). For any AF F, we have DF = U2
F.

For our operator FF, this means that for any X, Y ⊆ A we have

F 2
F (X, Y) = FF(UF(Y), UF(X)) = (U2

F(X), U2
F(Y)) = (DF(X), DF(Y))

There are several works in the literature that redefine argumentation semantics in terms of
(pre-/post-)fixpoints of the two operators DF and UF (Besnard and Doutre, 2004; Grossi, 2012).
Since the two operators are closely related and the characteristic approximating operator FF
can express them both, we can reconstruct argumentation semantics based entirely on this
single operator.

We begin with the simplest (in terms of operator characterisation) semantics: recall that
for F = (A, R) a set E of arguments is a stable extension iff E = UF(E), so the following is
immediate.

42 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Proposition 3.26. Let F = (A, R) be an argumentation framework and E ⊆ A. Then E is a stable
extension of F iff FF(E, E) = (E, E).

It is almost as easy to characterise the class of complete extensions:

Proposition 3.27. Let F = (A, R) be an argumentation framework and E ⊆ A. Then E is a complete
extension of F iff for some E′ ⊆ A the pair (E, E′) is a consistent fixpoint of FF.

Proof.

There is an E′ ⊆ A with E ⊆ E′ and FF(E, E′) = (E, E′)

iff E ⊆ E′ and E′ = UF(E) and E = UF(E′)

iff E ⊆ UF(E) and E = U2
F(E)

iff E is conflict-free and E = DF(E)
iff E is a complete extension. 2

As an easy corollary, we get the grounded semantics as the ≤i-least fixpoint of the charac-
teristic operator. This fixpoint exists since FF is ≤i-monotone.

Corollary 3.28. Let F = (A, R) be an argumentation framework and E ⊆ A. Then E is the grounded
extension of F iff for some E′ ⊆ A the pair (E, E′) is the ≤i-least fixpoint of FF.

In the sequel, we use the term “complete extension” for the set E and the pair (E, E′)
interchangeably. It follows by definition that preferred extensions are exactly those consistent
fixpoints where E is ⊆-maximal – the M-supported models of FF.

Proposition 3.29. Let F = (A, R) be an argumentation framework and E ⊆ A. Then E is a preferred
extension of F iff for some E′ ⊆ A the pair (E, E′) is a consistent fixpoint of FF where E is ⊆-maximal.

Alternatively, we can say that for a consistent pair (E, E′) the lower bound E is a preferred
extension if and only if the pair is M-supported/M-stable for FF. This immediately yields a
“preferred” semantics for default logic, which is an improvement upon a result by Dung (1995,
Theorem 43), who defined preferred semantics for default logic only through a translation to
infinite AFs.

Semi-stable extensions are those complete ones where the set of arguments in the upper but
not in the lower bound (the undecided arguments) is minimal – L-supported/L-stable models.

Proposition 3.30. Let F = (A, R) be an argumentation framework and E ⊆ A. Then E is a semi-
stable extension of F iff for some E′ ⊆ A the pair (E, E′) is a consistent fixpoint of FF where E′ \ E is
⊆-minimal.

Proof.

E ∪ RF(E) is ⊆-maximal

iff E ∪UF(E) is ⊆-maximal

iff E ∪ E′ is ⊆-maximal

iff E ∪ E′ is ⊆-minimal

iff E ∩ E′ is ⊆-minimal

iff E′ \ E is ⊆-minimal 2

3.4. AF Semantics as Special Cases 43

Finally, we show that the ADF version of “admissible” (Definition 3.3) is a proper gen-
eralisation of the respective AF notion. This is easily shown using the respective associated
approximating operators.

Proposition 3.31. Let F = (A, R) be an argumentation framework and X ⊆ A. Then X is an admiss-
ible set for F iff (X, UF(X)) is an admissible pair for FF.

Proof. Abbreviate Y = UF(X). We have the following equivalences:

X is an admissible set for F
iff X is conflict-free and X ⊆ DF(X)

iff X ⊆ UF(X) and X ⊆ U2
F(X)

iff X ⊆ Y and X ⊆ UF(Y) and UF(X) ⊆ Y
iff X ⊆ Y and (X, Y) ≤i (UF(Y), UF(X))

iff (X, Y) is consistent and (X, Y) ≤i FF(X, Y)
iff (X, Y) is an admissible pair for FF 2

Jakobovits and Vermeir (1999) introduced four-valued labellings for argumentation frame-
works. Using indicators for acceptance (+) and rejection (−), they define the labels t = {+},
f = {−}, u = {+,−} and irrelevant = ∅. It is possible to adapt our intuition behind pairs
(X, Y) of sets of arguments in the sense that those in X \Y are irrelevant (instead of inconsist-
ent); in this case, their labels can be seen as indicating which of the two possible statuses +
and − are still considered possible for the argument in question. Under this assumption, it is
straightforward to adapt the definitions of (Jakobovits and Vermeir, 1999) to our setting. To
this end, we first recall their original definition of four-valued labellings.

Definition 3.8 (Jakobovits and Vermeir, 1999, Definition 3.1). Let F = (A, R) be an AF. A JV-
labelling is a function l : A→ 2{+,−} such that for all a ∈ A:

1. If − ∈ l(a), then there is a b ∈ A with (b, a) ∈ R and + ∈ l(b).

2. If + ∈ l(a), then (b, a) ∈ R implies − ∈ l(b).

3. If + ∈ l(a), then (a, c) ∈ R implies − ∈ l(c).

A JV-labelling is total iff l(a) 6= ∅ for all a ∈ A.7 3

It is easy to establish a correspondence between pairs (X, Y) and functions l : A→ 2{+,−}.
It only remains to reformulate the three conditions in terms of AF operators, which results in
the proposition below.

Proposition 3.32. Let F = (A, R) be an AF and X, Y ⊆ A.

(A) The pair (X, Y) corresponds to a JV-labelling iff X = F ′F(X, Y) and Y ⊆ F ′′F (X, Y).

(B) The pair (X, Y) is consistent iff its corresponding JV-labelling is total.

Proof. (A) Define l : A→ 2{+,−} such that it maps as follows: X ∩Y 7→ {+}, A \ (X ∪Y) 7→ {−},
Y \ X 7→ {+,−} and X \Y 7→ ∅. We first observe that for any argument a ∈ A, we have
− ∈ l(a) iff a /∈ X, and + ∈ l(a) iff a ∈ Y. The conditions of Definition 3.8 are now readily
formulated thus:

7Jakobovits and Vermeir (1999) call such labellings complete, which we however use with a different meaning.

44 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

1. If a /∈ X, then a is attacked by Y; that is, UF(Y) ⊆ X.

2. If a ∈ Y, then (b, a) ∈ R implies b /∈ X; that is, Y ⊆ UF(X).

3. If a ∈ Y, then (a, c) ∈ R implies c /∈ X; that is, X ⊆ UF(Y).

Proposition 3.23 now yields the claim.

(B) (X, Y) is consistent iff X ⊆ Y iff X \Y = ∅ iff {a ∈ A | l(a) = ∅} = ∅ iff l is total. 2

Using the truth and information orderings, pairs (X, Y) that correspond to JV-labellings
could be characterised by (X, Y) ≤t FF(X, Y) and FF(X, Y) ≤i (X, Y). While this may suggest
a possible intuitive reading of such pairs, we have to be cautious as the intuitions underlying
these orderings are slightly different.

We have seen how all of the semantical notions for AFs considered in this chapter can
be recast in terms of the approximating operator of an AF, as fixpoints or pre-/postfixpoints
with respect to the information ordering ≤i and truth ordering ≤t. This tells us that operators
associated with an argumentation framework are useful tools to study the semantics of the
AF. This technique of associating operators with a knowledge base and then studying the
operators to study the knowledge base is successfully and widely used in logic programming.
In the next section, we will see that this enables us to elegantly build a bridge from abstract
argumentation to logic programming via the approximation operators associated with the
respective objects of study.

3.4.2 From Argumentation Frameworks to Logic Programs

There are different translations from AFs into LPs in the literature: the one we call the standard
translation, and the one devised by Dung (1995) to demonstrate how logic programs could be
used to implement abstract argumentation. We consider each of the translations in turn and
lastly show that they produce equivalent logic programs.

Standard Translation

The translation we refine below seems to have first appeared in a paper by Osorio, Zepeda,
Nieves, and Cortés (2005), but is also referred to as “well-known” by Gabbay and d’Avila
Garcez (2009, Example 1.2). Those authors do not provide a definition or motivation for the
translation, but our subsequent results will show that the intuition behind it is sound and the
name “standard translation” is justified.

The standard logic program resulting from an AF uses the set of arguments as its underly-
ing signature. A rule is created for each argument a, and the rule basically says “a is accepted
if none of its attackers is accepted.”

Since AFs are in particular ADFs, the standard logic program of an AF F is given by
P(D(F)), that is, translating the AF F into an ADF D(F) and that further into the standard LP
of the ADF. For AFs F = (A, R), the definition of its standard logic program can be simplified
to the following:

P(F) = {a← {not b | (b, a) ∈ R} | a ∈ A}

Note that the positive body is empty in general since there is no notion of support in classical
Dung-style AFs. Also, the negative bodies of the rules are finite if and only if the framework
is finitary.

3.4. AF Semantics as Special Cases 45

It should be noted that the standard translation from AFs to LPs is not modular, since the
LP rule for an atom a depends on all attackers of a. This might seem paradoxical at first,
since the standard translation from ADFs to LPs is modular with respect to statements. But
recall that the union of two ADFs is defined whenever the two have disjoint statements, so for
AFs with disjoint sets of arguments the standard translation is again modular with respect to
arguments.

It is immediate from Lemma 3.14 that the associated operators of AFs F and their translated
logic program P(F) are the same.

Corollary 3.33. For any argumentation framework F, we have FF = TP(F).

Now we know from Lemma 3.24 that the approximation operator of any AF F is its own
stable operator – in symbols FF = SFF. Combining these two results about FF leads to the
following lemma, which nicely pictures the special role of argumentation frameworks in the
realm of nonmonotonic reasoning formalisms.

Lemma 3.34. For any AF F, we have TP(F) = FF = SFF = STP(F).

Since the consequence operator of a logic program yields its Kripke-Kleene and well-
founded models as well as its two-valued and three-valued supported and stable models,
this lemma immediately gives rise to several important coincidence results, accumulated in
the first main result of this section below. Its first and last items are obvious. The second item
contains the conclusion of Wu, Caminada, and Gabbay (2009, Theorem 17) (they did not look
at supported semantics), while the third and fourth items imply new results that solve open
problems posed there.

Theorem 3.35. Let F be an AF. The following are identical:

1. the grounded extension of F, the Kripke-Kleene model of P(F) and the well-founded model of
P(F);

2. complete extensions of F, three-valued supported models of P(F) and three-valued stable models
of P(F);

3. preferred extensions of F, M-supported models of P(F) and M-stable models of P(F);

4. semi-stable extensions of F, L-supported models of P(F) and L-stable models of P(F);

5. stable extensions of F, two-valued supported models of P(F) and two-valued stable models of
P(F).

Proof. The first item is obvious, since they are the least fixpoint of the same operator; the rest follows
from Lemma 3.34 and Propositions 3.26, 3.27, 3.29 and 3.30. 2

As witnessed by Lemma 3.14, for the standard translation the correspondence between AFs
and LPs is immediate. We will next consider a different translation where this correspondence
is less obvious, albeit still present. Most importantly, that translation will be modular for all
argumentation frameworks.

Dung’s Translation

Dung duplicates the arguments, thereby explicitly keeping track of their being in or out: for
a ∈ A, a new propositional variable -a expresses defeat of a by some counterargument. Note

46 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

that this translation is modular with respect to both arguments and attacks, and furthermore
rule bodies are always finite.8

Definition 3.9. Let F = (A, R) be an argumentation framework. Define -A = {-a | a ∈ A},
A± = A ∪ -A and a logic program over A± as follows.

PD(F) = {a← not -a | a ∈ A} ∪ {-a← b | (b, a) ∈ R} 3

Intuitively, an argument a is accepted (signified by atom a) unless it is defeated (signified
by atom -a). An argument is defeated if it is attacked by an accepted argument.

We show next that the four-valued one-step consequence operator for the logic program
resulting from Dung’s translation essentially does the same as the characteristic operator of the
original argumentation framework. It only needs twice as many steps due to the syntactical
duplication of arguments.

To show this result, we need the technical notion of coherence: in words, a pair is coherent
if it respects the intuition of -a for a ∈ A, in the sense that a is true iff -a is false and vice versa.
A pair (S, P) of sets of arguments can be extended to matching pairs (S∗, P∗) of logic program
atoms over A± in a straightforward way.

Definition 3.10. Let A be a set of arguments and S∗, P∗ ⊆ A±. The pair (S∗, P∗) is coherent
iff for all a ∈ A, we find a ∈ S∗ iff -a /∈ P∗ and a ∈ P∗ iff -a /∈ S∗. For S, P ⊆ A, define
co(S, P) = (S ∪ -P, P ∪ -S).9 3

Observe that -X = {-a | a /∈ X}, so it is clear that the pair co(S, P) is coherent. What the
function does, intuitively, is simple: if a is not in the upper bound P, that is, cannot become
true any more, then it can be considered false, which is expressed by adding -a to the lower
bound; likewise, if a is not in the lower bound S, that is, is not yet considered true, then its
falsity must be considered an option, which leads to -a being added to the upper bound. These
manipulations are entirely syntactic and do not mention attacks.

We are now ready to show that for an AF F = (A, R), its standard translation P(F) and
Dung translation PD(F) have the same four-valued supported models with respect to the
original signature A. Technically, we show that the fixpoints of their four-valued one-step
consequence operators coincide.

Theorem 3.36. Let F = (A, R) be an argumentation framework with standard translation P and Dung
translation PD and let S, P ⊆ A.

TP(S, P) = (S, P) iff TPD (co(S, P)) = co(S, P)

Proof. We first observe that for any X, Y ⊆ A and a ∈ A, by definition of PD we have a ∈ T ′PD
(X, Y)

iff -a /∈ Y and -a ∈ T ′PD
(X, Y) iff a /∈ UF(X), whence T ′PD

(X, Y) = {a | -a /∈ Y} ∪ -UF(X) and

8Dung’s original translation is slightly different; he uses a first-order signature and logic program atoms with vari-
ables (Dung, 1995). Definition 3.9 above is merely a syntactical variant that already incorporates ground instantiation.

9The notation is entirely unambiguous since for any S ⊆ A we have -S = -S.

3.4. AF Semantics as Special Cases 47

T ′PD
(X, -Y) = Y ∪ -UF(X). Now

TP(S, P) = (S, P)
iff FF(S, P) = (S, P)
iff (UF(P), UF(S)) = (S, P)
iff S = UF(P) and P = UF(S)

iff S = UF(P) and P = UF(S) and -UF(P) = -S and -UF(S) = -P

iff S ∪ -UF(S) = S ∪ -P and P ∪ -UF(P) = P ∪ -S

iff (S ∪ -UF(S), P ∪ -UF(P)) = (S ∪ -P, P ∪ -S)

iff (T ′PD
(S, -S), T ′PD

(P, -P)) = (S ∪ -P, P ∪ -S)

iff (T ′PD
(S ∪ -P, P ∪ -S), T ′PD

(P ∪ -S, S ∪ -P)) = (S ∪ -P, P ∪ -S)

iff TPD (S ∪ -P, P ∪ -S) = (S ∪ -P, P ∪ -S)
iff TPD (co(S, P)) = co(S, P) 2

Furthermore, coherent pairs are also the only fixpoints of TPD .

Proposition 3.37. Let F = (A, R) be an AF, PD be its Dung translation over A± and let S∗, P∗ ⊆ A±.
If TPD (S

∗, P∗) = (S∗, P∗), then (S∗, P∗) is coherent.

Proof. Let TPD (S
∗, P∗) = (S∗, P∗). Thus by the proof of Theorem 3.36 above, it is the case that both

S∗ = {a | -a /∈ P∗} ∪ -UF(S∗) and P∗ = {a | -a /∈ S∗} ∪ -UF(P∗). For a ∈ A, it immediately follows
that a ∈ S∗ iff -a /∈ P∗ and a ∈ P∗ iff -a /∈ S∗, thus (S∗, P∗) is coherent. 2

Hence for any semantics derived from the operator TPD which is only “interested” in atoms
from A, the choice between standard translation and Dung translation is semantically inessen-
tial. We remark that Dung’s translation has the advantage of producing a logic program where
each rule has a finite body.

Theorem 3.36 and Proposition 3.37 immediately yield the same nice correspondence pic-
ture from the standard translation (Theorem 3.35) for Dung’s translation. The first and last
items below are again obvious for our setting, parts of them were also proved by Dung (1995,
Theorem 62). Correspondence results 2, 3 and 4 are completely new.

Theorem 3.38. Let F = (A, R) be an argumentation framework. The following are in one-to-one
correspondence:

1. the grounded extension of F, the Kripke-Kleene model of PD(F) and the well-founded model of
PD(F);

2. complete extensions of F, three-valued supported models of PD(F) and three-valued stable models
of PD(F);

3. preferred extensions of F, M-supported models of PD(F) and M-stable models of PD(F);

4. semi-stable extensions of F, L-supported models of PD(F) and L-stable models of PD(F);

5. stable extensions of F, two-valued supported models of PD(F) and two-valued stable models of
PD(F).

Proof. Follows from Theorem 3.36, Proposition 3.37 and Propositions 3.26, 3.27, 3.29 and 3.30. 2

This theorem conclusively shows that Dung’s modular translation from AFs to LPs is faith-
ful with respect to all operator-based semantics. We infer that propositional normal logic
programs are at least as expressive as abstract argumentation frameworks.

48 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

3.4.3 From Logic Programs to Argumentation Frameworks

For ADFs, we have seen how the standard translation into logic programs could straightfor-
wardly be reversed into a translation from normal logic programs to ADFs that was sound
with respect to both two-valued supported and stable model semantics. In the case of AFs,
however, things are different.

Dung (1995) defined two semantics-independent translations from normal logic programs
into argumentation frameworks. When restricted to propositional programs, his first transla-
tion (Section 4.3.2) is polynomial and faithful with respect to two-valued supported models
and the Kripke-Kleene semantics, but not modular. Furthermore it is not faithful with respect
to two-valued stable models: the logic program {a← a} has the only two-valued stable model
∅, but its associated argumentation framework10 ({a,¬a} , {(a,¬a), (¬a, a)}) has two stable
extensions (corresponding to the logic program’s two-valued supported models). For Dung’s
second translation (Section 4.3.1), the size of the resulting argumentation framework may – in
the worst case – be at least exponential in the number of atoms in the vocabulary of the logic
program.

Although it is certainly possible to devise polynomial, semantics-dependent translations
from logic programs into argumentation frameworks (as a start, consider translating a logic
program into an ADF to which in turn the translation from Brewka et al. (2011) is applied), we
consider it unlikely that any such translation is polynomial, faithful and modular. In particular,
it is highly unlikely that a polynomial and modular translation is faithful with respect to both
supported and stable semantics, as these two semantics are not equal in general but coincide
for abstract argumentation frameworks.

3.5 General Semantics for Approximating Operators

We have seen how the characteristic operator of an ADF can be used to redefine the existing
ADF semantics. In addition, this introduced the admissible, preferred and stable semantics
for all ADFs – they were previously only defined for bipolar ADFs. We have also seen that an
ADF D and its standard logic program P(D) correspond on all semantics which are defined
for both ADFs and LPs. Finally, we have seen how the characteristic operator of Dung-style
argumentation frameworks (given by AF-based ADFs) allows to redefine AF semantics for op-
erators. This allows us to easily transfer definitions of semantics from abstract argumentation
to abstract dialectical frameworks, logic programming and beyond – to the general case of
approximating operators.

3.5.1 Admissible

In Dung argumentation frameworks, a set of arguments is admissible if it is conflict-free and
defends itself against all attacks. For abstract dialectical frameworks, we have seen in Defini-
tion 3.3 and Proposition 3.31 that a suitable ADF generalisation of AF admissibility is given by
consistent pairs that are postfixpoints with respect to the information ordering ≤i. These pairs
have the property that applying the revision operator increases (or preserves) their information
content. For the sake of completeness we have included the following formal definition.

10Actually, applying the translation yields an argumentation framework that looks slightly more complicated:
({({a} , a), ({¬a} ,¬a)} , {(({a} , a), ({¬a} ,¬a)), (({¬a} ,¬a), ({a} , a))}). We chose to simplify notation for the sake
of readability.

3.5. General Semantics for Approximating Operators 49

Definition 3.11. Let (L,v) be a complete lattice and O an approximating operator on the
bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is admissible for O iff (x, y) ≤i O(x, y). 3

Denecker et al. (2004) already took special note of admissible pairs and called them O-
reliable. They point out that O-reliable pairs – consistent pairs whose O-revisions are at least
as accurate – are especially useful for studying fixpoints of O, the original operator that O
approximates. In particular, the ≤i-least element (⊥,>) is O-reliable; iterating O on it leads
to the Kripke-Kleene semantics, which provides a more precise approximation to all fixpoints
of the approximated operator O.

3.5.2 Semi-stable

Theorem 3.35 and Proposition 3.30 immediately yield a definition of L-stable/semi-stable se-
mantics for default and autoepistemic logics. Complete semantics for the two are given by
consistent fixpoints (those (x, y) with x v y) of an approximating operator. To generalise semi-
stable to operators we simply have to generalise the minimality criterion of L-stable models
for logic programming. Since this involves algebraic operations on lattice elements, we have
to make some more restricting assumptions on the underlying lattice.

In the following definition, for a complete lattice (L,v) with join t and meet u, we assume
the existence of a function ·−1 : L→ L such that for any x, y ∈ L,

• (x−1)
−1

= x (·−1 is involutive)

• (x t y)−1 = x−1 u y−1 and (x u y)−1 = x−1 t y−1 (de Morgan’s laws)

In the special cases we have seen so far, the role of this “negation” is played by set complement
with respect to the underlying vocabulary.

Definition 3.12. Let (L,v) be a complete lattice and O an approximating operator on its cor-
responding bilattice (L2,≤i). A consistent pair (x, y) is L-supported iff it is a fixpoint of O and
y u x−1 is v-minimal. A consistent pair (x, y) is L-stable iff it is a fixpoint of SO and y u x−1 is
v-minimal. 3

For the special case of argumentation, these general definitions of L-supported and L-stable
reduce to a consistent fixpoint (S, P) of FF = SFF such that P ∩ S = P \ S (the set of undecided
arguments) is ⊆-minimal – a semi-stable extension.

3.5.3 Conflict-free (Asymmetric)

In classical abstract argumentation, a set of arguments is conflict-free if there are no attacks
amongst its members. For abstract dialectical frameworks, a set of statements is conflict-free if
each statement – informally speaking – has no reason not to be in the set. Such a reason could
be the presence of an attackers as well as the absence of supporters in case the statement’s
acceptance conditions so requires.

To generalise this notion to three-valued pairs (X, Y), we require two things:

• any t statement (in X) must have a reason not to be f, and

• any f statement (not in Y) must have a reason to be f.

Notice the asymmetry, which resurfaces in the following operator-based definition. For
a consistent pair to be conflict-free, we stipulate that applying the approximating operator
improves the upper bound of the pair.

50 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Definition 3.13. Let (L,v) be a complete lattice and O an approximating operator on the bilat-
tice (L2,≤i). A consistent pair (x, y) ∈ L2 is asymmetric conflict-free for O iff x v O′′(x, y) v y.3

Let us illustrate this notion on a standard example AF. It shows that asymmetric conflict-
free pairs allow to set arguments to u that attack t arguments.

Example 3.15 (Odd Cycle). Consider an attack cycle between three arguments, the AF
F = ({a, b, c} , {(a, b), (b, c), (c, a)}). Its asymmetric conflict-free pairs are given by

(∅, {a, b, c}) ({a} , {a, b, c}) ({b} , {a, b, c}) ({c} , {a, b, c})
({a} , {c, a}) ({b} , {a, b}) ({c} , {b, c})

Notice that the admissible pair (∅, {a, b, c}) is among the asymmetric conflict-free pairs. 3

It is not hard to show that any admissible pair is asymmetric conflict-free.

Proposition 3.39. Let (L,v) be a complete lattice and O an approximating operator on the bilattice
(L2,≤i). Any consistent pair (x, y) ∈ L2 that is admissible for O is also asymmetric conflict-free for
O.

Proof. The pair (x, y) is admissible if and only if x v O′(x, y) and O′(y, x) = O′′(x, y) v y. Since
O′(·, y) is v-monotone and O′(x, ·) is v-antimonotone, we obtain the following picture:

v O′(x, x) v
x v O′(x, y) O′(y, x) v y

v O′(y, y) v

In particular, x v O′′(x, y) = O′(y, x) v y and (x, y) is asymmetric conflict-free. 2

Let us again take note of the asymmetry in the definition of asymmetric conflict-free pairs.
If admissible pairs ensure that during revision, both lower and upper bounds are improved,
why should asymmetric conflict-free pairs be defined such that only the upper bound must im-
prove? Why not improve the lower bound? Another possibility to define asymmetric conflict-
free pairs would have been to say a pair (x, y) is asymmetric conflict-free for an operator O iff
x v O′(x, y) v y. In AF terms, this alternative notion allows to set arguments to u that are
attacked by t arguments.

Example 3.16 (Continued from Example 3.15). In the odd attack cycle between three argu-
ments, the alternative asymmetric conflict-free pairs (improving the lower bound) are

(∅, {a, b, c}) (∅, {a, b}) (∅, {a, c}) (∅, {b, c})
({a} , {a, b}) ({b} , {b, c}) ({c} , {c, a}) 3

Unfortunately, this possible alternative version of asymmetric conflict-freeness is not a suit-
able generalisation of the set-based AF notion, since there are argumentation frameworks with
asymmetric conflict-free sets that are not the lower bound of any such pair.

Example 3.17. Consider the argumentation framework F = ({a, b} , {(a, b)}) where a attacks
b. The set X = {b} is conflict-free. Assume to the contrary that there is a Y ⊆ A such
that X ⊆ UF(Y) ⊆ Y. It follows that b ∈ UF(Y), that is, Y does not attack b. Thus Y does
not contain a and Y ⊆ {b} = X. From X ⊆ Y we conclude X = Y = {b}. But we find that
UF(Y) = {a, b} 6⊆ Y. Contradiction. 3

3.5. General Semantics for Approximating Operators 51

We want to stress that these two different generalisations of conflict-free sets are not an
artefact of using approximating operators. Rather, they occur in the step from two-valued to
three-valued semantics. As opposed to the alternative, the version requiring improvement of
the upper bound generalises conflict-free sets.

Proposition 3.40. Let F = (A, R) be an AF and X ⊆ A. X is conflict-free iff (X, UF(X)) is a asym-
metric conflict-free pair.

Proof.

X is conflict-free
iff X ⊆ UF(X)

iff (X, UF(X)) is consistent and X ⊆ F ′′F (X, Y) ⊆ UF(X)

iff (X, UF(X)) is a asymmetric conflict-free pair 2

Indeed, this notion of asymmetric conflict-free pairs for AFs coincides with Caminada’s
definition of conflict-free labellings (Caminada, 2010).

Proposition 3.41. For any AF F = (A, R) and X ⊆ Y ⊆ A, the pair (X, Y) is asymmetric conflict-
free iff the labelling l : A→ {t, f, u} with X 7→ t, Y \ X 7→ u, A \Y 7→ f is conflict-free in the sense
of (Caminada, 2010, Definition 3).

3.5.4 Conflict-free (Symmetric)

While the generalisation of conflict-free semantics presented above is a faithful generalisation
of conflict-free AF labellings, in this work (especially in the next chapter) we will mainly
be interested in a simpler and more intuitive symmetric version of three-valued conflict-free
semantics.

Definition 3.14. Let (L,v) be a complete lattice and O an approximating operator on the
bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is symmetric conflict-free for O iff x v O′′(x, y)
and O′(x, y) v y. 3

This version of conflict-freeness is still a generalisation of the set-based AF notion.

Proposition 3.42. Let F = (A, R) be an AF, D be its associated ADF and O ∈ {GD,UD}.
1. For each conflict-free set X ⊆ A, there exists Y ⊆ A such that (X, Y) is a symmetric conflict-free

pair of O.

2. For each symmetric conflict-free pair (X, Y), its lower bound X is a conflict-free set.

Proof. We make use of the fact that for any P, Q ⊆ A, we have O(P, Q) = (UF(Q), UF(P)), which
follows from Proposition 3.23.

1. Let X ⊆ A be conflict-free. Define Y = UF(X). Since X is conflict-free,

X ⊆ Y = UF(X) = O′′(X, Y)

Furthermore UF is ⊆-antimonotone, whence X ⊆ UF(X) implies

O′(X, Y) = UF(Y) = UF(UF(X)) ⊆ UF(X) = Y

2. Let (X, Y) be a symmetric conflict-free pair. Then X ⊆ O′′(X, Y) = UF(X), whence X is a
conflict-free set. 2

52 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

3.5.5 Naive

It is clear that both types of conflict-free pairs are amenable to the usual maximisation cri-
teria that lead from admissible to preferred and semi-stable semantics. We begin with naive
semantics, which for AFs are just ⊆-maximal conflict-free sets.

Definition 3.15. Let (L,v) be a complete lattice and O an approximating operator on its cor-
responding bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is an M-conflict-free pair for O iff it is
≤i-maximal among the (symmetric or asymmetric) conflict-free pairs for O. 3

We keep our uniform naming conventions for recording maximisation criteria. Further-
more, (a)symmetry carries over to naive semantics from the used version of conflict-free se-
mantics. It is straightforward that this definition generalises naive semantics.

Proposition 3.43. Let F = (A, R) be an AF. A set X ⊆ A is a naive extension of F iff the pair
(X, UF(X)) is an M-conflict-free pair of F.

Proof. First note that for any X ⊆ A, the set UF(X) is fixed. Furthermore UF is a ⊆-antimonotone
operator and thus X ⊆ Y iff (X, UF(X)) ≤i (Y, UF(Y)). Consequently for maximisation there is no
difference whether we ⊆-maximise the set X or we ≤i-maximise the pair (X, UF(X)). It follows that

X is a naive extension for F
iff X is conflict-free and X is ⊆ -maximal
iff X ⊆ UF(X) and X is ⊆ -maximal
iff X ⊆ UF(X) and UF(UF(X)) ⊆ UF(X) and X is ⊆ -maximal

iff X ⊆ UF(X) = F ′′F (X, UF(X)) and UF(UF(X)) ⊆ UF(X) and (X, UF(X)) is ≤i -maximal
iff (X, UF(X)) is an M-conflict-free pair of FF 2

3.5.6 Stage

Verheij (1996) defined the notion argumentation stage for an argumentation framework, in turn
based on three-valued status assignments. Such an assignment represents not only the argu-
ments that are accepted (as extensions do), but also those which are not accepted. (Hence each
assignment gives rise to a unique extension, but not necessarily vice versa.) An argumentation
stage is a three-valued status assignment to arguments with the restriction that the arguments
that are not accepted must be exactly the ones that have an attacker that is accepted. It follows
that the set of arguments which are accepted in an argumentation stage (its associated exten-
sion) is conflict-free. It is easy to find out how (argumentation) stages can be captured in our
setting:

Proposition 3.44. Let F = (A, R) be an argumentation framework. A consistent pair (X, Y) is an
argumentation stage iff Y = UF(X).

Proof. (X, Y) is a stage iff A \Y = RF(X) iff Y = UF(X). 2

While an argumentation stage is always a (symmetric and asymmetric) conflict-free pair,
and any conflict-free set gives rise to an argumentation stage (and thus to a conflict-free pair),
there are asymmetric conflict-free pairs that are not argumentation stages. (Consider Ex-
ample 3.17 and the pair ({a} , {a, b}).) Still, we can apply the range maximisation criterion
to both types of conflict-free pairs in order to generalise stage extension semantics.

3.6. Existence Results for General Operators 53

Definition 3.16. Let (L,v) be a complete lattice and O an approximating operator on its cor-
responding bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is an L-conflict-free pair for O iff
y u x−1 is v-minimal among the conflict-free pairs for O. 3

For AFs, asymmetric L-conflict-free pairs coincide with stage extensions.

Proposition 3.45. Let F = (A, R) be an AF. A set X ⊆ A is a stage extension of F iff the pair
(X, UF(X)) is an L-stage pair of FF.

Proof.

X is a stage extension for F
iff X is conflict-free and X ∪ RF(X) is ⊆ -maximal

iff X is conflict-free and X ∪UF(X) is ⊆ -maximal

iff X ⊆ UF(X) and X ∩UF(X) is ⊆ -minimal

iff X ⊆ UF(X) = F ′′F (X, UF(X)) and X ∩UF(X) is ⊆ -minimal
iff (X, UF(X)) is an L-stage pair of FF 2

3.6 Existence Results for General Operators

We next present two general theorems that guarantee the existence of certain pairs for ap-
proximating operators on CPOs. By CPOs here we do in fact refer to arbitrary CPOs (Lc,≤i)
containing consistent pairs of elements of a complete lattice (L,v). Both results make use of
the axiom of choice – the second one directly, and the first one in the form of Zorn’s lemma.
The first result says that for each admissible pair there is a preferred pair containing at least
as much information. This significantly generalises a result by Dung (1995, Theorem 11) to
general operators.

Theorem 3.46. Let (L,v) be a complete lattice andO an approximating operator on the CPO (Lc,≤i).
For each admissible pair ā ∈ Lc, there exists a preferred pair p̄ ∈ Lc with ā ≤i p̄.

Proof. Let ā ∈ Lc with ā ≤i O(ā). Define the set of all O-admissible pairs that contain at least as much
information as ā,

C = {c̄ | ā ≤i c̄ and c̄ ≤i O(c̄)}

We show that (C,≤i) is a CPO. Clearly ā ∈ C is the least element of the poset (C,≤i). Now let
D ⊆ C be directed and ē =

⊔
Lc D be its least upper bound in Lc. We show ē ∈ C, that is, ā ≤i ē and

ē ≤i O(ē). Since D is directed, it is non-empty, so there is some z̄ ∈ D, whence ā ≤i z̄ ≤i ē. Now
for each z̄ ∈ D, we have z̄ ≤i ē since ē is an upper bound of D. Since O is ≤i-monotone, we have
O(z̄) ≤i O(ē). Since z̄ ∈ D ⊆ C, by definition z̄ ≤i O(z̄). In combination, z̄ ≤i O(z̄) ≤i O(ē).
Thus O(ē) is an upper bound of D. Since ē is the least upper bound of D, we have ē ≤i O(ē).

Thus (C,≤i) is a CPO and therefore each ascending chain has an upper bound in C. By Zorn’s
lemma, C has a ≤i-maximal element p̄ ∈ C, which by ā ≤i p̄ is the desired preferred pair. 2

For semantics based on symmetric conflict-freeness, an existence result similar to the above
Theorem 3.46 holds. The proof follows the proof of Theorem 1 by Bourbaki (1949/50) (see
also Theorem 8.23 of Davey and Priestley, 2002, in particular for the concept of “roofs”), and
sufficiently complicated. The major part of the proof is concerned with showing that there is
a chain of symmetric conflict-free elements that starts with the given symmetric conflict-free
element, and that this chain is itself a CPO. Again, the result is not restricted to subset-CPOs.

54 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Theorem 3.47. Let (L,v) be a complete lattice andO an approximating operator on the CPO (Lc,≤i).
For each symmetric conflict-free pair c̄ ∈ Lc, there exists a (symmetric) naive pair n̄ ∈ Lc with c̄ ≤i n̄.

Proof. Let c̄ ∈ Lc be conflict-free. Define the set

D = {ā ∈ Lc | c̄ ≤i ā}

Clearly (D,≤i) is a CPO with least element c̄. (Its least upper bound is given by tD = tLc .) For any
conflict-free pair ā ∈ D that is not naive, by definition there exists a conflict-free pair ā′ ∈ D such that
ā <i ā′. Thus by the axiom of choice, there exists a function f : D → D with

ā 7→
{

ā′ if ā is conflict-free, but not naive
ā otherwise

Clearly f is increasing, that is, for all ā ∈ D we have ā ≤i f (ā). Furthermore, f (ā) is conflict-free iff ā
is conflict-free. Thus a conflict-free pair ā is a fixpoint of f iff ā is naive. We proceed to show that such
a fixpoint exists.

We look at the smallest f -closed sub-CPO of (D,≤i), that is, the ⊆-least set F ⊆ D such that
f (F) ⊆ F and (F,≤i) is a CPO. Clearly its least element is ⊥F = c̄, the least element of D.

We call an element ū ∈ F a roof iff for all v̄ ∈ F with v̄ <i ū we have f (v̄) ≤i ū. For each pair
ū ∈ F, we show that if ū is a roof, then the set

Zū = {v̄ ∈ F | v̄ ≤i ū or f (ū) ≤i v̄}

is an f -closed sub-CPO of (F,≤i). So let ū ∈ F be a roof and consider Zū. We have to show that
f (Zū) ⊆ Zū and (Zū,≤i) is a CPO.

f (Zū) ⊆ Zū: Let v̄ ∈ Zū. Then v̄ ≤i ū or f (ū) ≤i v̄. We have to show f (v̄) ∈ Zū, that is, f (v̄) ≤i ū
or f (ū) ≤i f (v̄). If f (ū) ≤i v̄, then since f is increasing we get f (ū) ≤i v̄ ≤i f (v̄). If v̄ <i ū,
then since ū is a roof we get f (v̄) ≤i ū. If v̄ = ū then f (ū) ≤i f (v̄) is clear.

(Zū,≤i) is a CPO: ⊥F ∈ Zū is the least element of the poset (Zū,≤i). Let E ⊆ Zū be directed and
ē =

⊔
F E be its least upper bound in (F,≤i). We have to show ē ∈ Zū, that is, ē ≤i ū or

f (ū) ≤i ē. By assumption,

Zū = Zl
ū ∪ Zr

ū with Zl
ū = {v̄ ∈ F | v̄ ≤i ū} and Zr

ū = {v̄ ∈ F | f (ū) ≤i v̄}

Define El = E ∩ Zl
ū and Er = E ∩ Zr

ū. Clearly ū is an upper bound of El and f (ū) is a lower
bound of Er; moreover ē is an upper bound of Er. Thus if Er 6= ∅ then f (ū) ≤i ē and we are
done. Otherwise Er = ∅, then E = El and ū is an upper bound of E. Since ē is the least upper
bound of E, we get ē ≤i ū.

Thus if ū ∈ F is a roof then (Zū,≤i) with Zū ⊆ F is an f -closed sub-CPO of (D,≤i). Since (F,≤i) is
the least f -closed sub-CPO of (D,≤i), we get F ⊆ Zū and thus Zū = F for each roof ū ∈ F. Now we
show that each pair ū ∈ F is a roof. Define the set U = {ū ∈ F | ū is a roof}. We show that (U,≤i) is
an f -closed sub-CPO of (F,≤i).

f (U) ⊆ U: Let ū ∈ U. Then for all v̄ ∈ F with v̄ <i ū we have f (v̄) ≤i ū. We have to show f (ū) ∈ U,
that is, for all v̄ ∈ F with v̄ <i f (ū) we have f (v̄) ≤i f (ū).

Let v̄ ∈ F with v̄ <i f (ū). Since v̄ ∈ F = Zū, we find that v̄ ≤i ū or f (ū) ≤i v̄. Note that
f (ū) ≤i v̄ is impossible by presumption. If v̄ <i ū then we have f (v̄) ≤i ū ≤i f (ū) by presump-
tion. If v̄ = ū then f (v̄) ≤i f (ū) is clear.

3.7. Overview of Results 55

(U,≤i) is a CPO: ⊥F is trivially a roof, whence ⊥F ∈ U. Now let W ⊆ U be directed and let
w̄ =

⊔
F W be the least upper bound of W in F. We show w̄ ∈ U, that is, for all v̄ ∈ F with

v̄ <i w̄ we have f (v̄) ≤i w̄.

Let v̄ ∈ F with v̄ <i w̄. If for all z̄ ∈W we had z̄ ≤i v̄, then v̄ would be an upper bound of W,
whence w̄ ≤i v̄ contrary to assumption. Thus there is a z̄ ∈W with z̄ 6≤i v̄. Now z̄ ∈W ⊆ U is
a roof, and we have v̄ ∈ F = Zz̄, that is, v̄ ≤i z̄ or f (z̄) ≤i v̄. Due to z̄ ≤i f (z̄) and z̄ 6≤i v̄ we
get v̄ ≤i z̄; additionally, z̄ ≤i w̄ since w̄ is an upper bound of W. Now if v̄ = z̄ then v̄ is a roof
and w̄ ≤i v̄ or f (v̄) ≤i w̄, where the first is impossible by presumption. Finally, if v̄ <i z̄ then z̄
being a roof implies that f (v̄) ≤i z̄ ≤i w̄.

Thus (U,≤i) with U ⊆ F is an f -closed sub-CPO of (D,≤i). Since (F,≤i) is the least f -closed
sub-CPO of (D,≤i), we have F ⊆ U, that is, F = U.

Now we show that F is a chain, that is, for all ū, v̄ ∈ F we find ū ≤i v̄ or v̄ ≤i ū: since ū is a roof,
v̄ ∈ F = Zū whence v̄ ≤i ū or ū ≤i f (ū) ≤i v̄. Now F is a CPO and a chain, it therefore has a least
upper bound in F, that is, a greatest element >F =

⊔
F F. Since f is increasing, we have >F ≤i f (>F);

since F is f -closed, f (>F) ∈ F; since >F is the greatest element of F, we find f (>F) ≤i >F. Thus >F
is a fixpoint of f . It remains to show that >F is conflict-free. In fact, all elements of F are conflict-free:
assume there were a v̄ ∈ F that was not conflict-free, then f−1(v̄) = {v̄} by definition of f and the pair
(F \ {v̄} ,≤i) would be an f -closed proper sub-CPO of F, contradiction. Consequently, n̄ = >F with
c̄ = ⊥F ≤i >F = n̄ is our desired naive pair. 2

From the last part of the proof it might seem that the desired naive pair is uniquely determ-
ined. This is however not the case – the application of the axiom of choice in the beginning
gives us an arbitrary chain of conflict-free pairs, there might be many more in (Lc,≤i).

We finally prove a useful technical result that gives some insight into the structure of sets
of symmetric conflict-free interpretations, namely, that such sets are downward-closed with
respect to the CPO ordering. Notably, again, this result holds for arbitrary approximating
operators.

Lemma 3.48. Let (L,v) be a complete lattice and O an approximating operator on the CPO (Lc,≤i).
If (x, y) ∈ Lc is symmetric conflict-free for O, then so is any (u, v) ≤i (x, y).

Proof. Let (x, y) ∈ Lc be symmetric conflict-free for O and (u, v) ≤i (x, y). First observe that this
means x v O′′(x, y), O′(x, y) v y and u v x v y v v. Now since O is approximating, it is in par-
ticular ≤i-monotone and thus O(u, v) ≤i O(x, y), that is,

O′(u, v) v O′(x, y) and O′′(x, y) v O′′(u, v)

Combining all of the above, it follows that

u v x v O′′(x, y) v O′′(u, v)

O′(u, v) v O′(x, y) v y v v

whence (u, v) is symmetric conflict-free for O. 2

3.7 Overview of Results

In this chapter, we embedded abstract dialectical frameworks into Denecker et al.’s lattice-
theoretical formalism for the abstract study of logical languages. This provides useful insights

56 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

into the relationship of abstract argumentation frameworks and abstract dialectical frameworks
with other logic-based knowledge representation formalisms.

In this last section, we will provide a concise overview over the results of our investigation.
First, for reference and as a completion of the table in Definition 2.2, we review the definitions
of operator-based semantics in Table 3.1.

symmetric conflict-free pair (x, y) x v O′′(x, y) and O′(x, y) v y
M-symmetric conflict-free pair (x, y) x v O′′(x, y) and O′(x, y) v y and (x, y) is ≤i-maximal
L-symmetric conflict-free pair (x, y) x v O′′(x, y) and O′(x, y) v y and y u x−1 is v-minimal
asymmetric conflict-free pair (x, y) x v O′′(x, y) v y
M-asymmetric conflict-free pair (x, y) x v O′′(x, y) v y and (x, y) is ≤i-maximal
L-asymmetric conflict-free pair (x, y) x v O′′(x, y) v y and y u x−1 is v-minimal
admissible/reliable pair (x, y) (x, y) ≤i O(x, y)
Kripke-Kleene semantics lfp(O)
three-valued supported model (x, y) O(x, y) = (x, y)
M-supported model (x, y) O(x, y) = (x, y) and (x, y) is ≤i-maximal
L-supported model (x, y) O(x, y) = (x, y) and y u x−1 is v-minimal
two-valued supported model (x, x) O(x, x) = (x, x)
well-founded semantics lfp(SO)
three-valued stable model (x, y) SO(x, y) = (x, y)
M-stable model (x, y) SO(x, y) = (x, y) and (x, y) is ≤i-maximal
L-stable model (x, y) SO(x, y) = (x, y) and y u x−1 is v-minimal
two-valued stable model (x, x) SO(x, x) = (x, x)

Table 3.1: Operator-based semantical notions. All of them are defined for x, y ∈ L with x v y for
complete lattices (L,v) and approximating operators O on their corresponding bilattice, in some cases
(L-supported, L-stable) with additional restrictions on join, meet and involution operations on the lattice.

Figure 3.1 then depicts the relationship between the different semantical notions explored
in this chapter. If a semantics σ is seen as a function assigning to a knowledge base κ a set of
models, then a partial order on semantics is given by σ1 ≤ σ2 iff σ1(κ) ⊆ σ2(κ) for all κ. In the
figure, an arrow from σ1 to σ2 expresses σ1 ≤ σ2 – in words, all σ1-models are also σ2-models.

Next, Table 3.2 shows the correspondences between different argumentation semantics and
operator-based semantics. The operator-based semantics lead to new semantics for default
logic and autoepistemic logics via their respective consequence operators (Denecker et al.,
2003).

3.8 Concluding Remarks

The several new correspondence results for AFs and logic programs we proved extended res-
ults of Wu et al. (2009), who showed correspondence of complete extensions and three-valued
stable models. While the results of Wu et al. (2009) use the translation of Gabbay and d’Avila
Garcez (2009), they do not motivate the use of this – we call it standard – translation nor
provide a comparison to the much older Dung translation. In this work we showed that using
the standard translation is justified; what is more, we even proved that the standard translation
and Dung’s translation produce equivalent programs.

Concerning translations from AFs into LPs, related work has also been done by a num-
ber of authors, albeit with different goals: Both Wakaki and Nitta (2008) and Egly, Gaggl,
and Woltran (2010) want to efficiently implement different argumentation semantics using the
stable model semantics for logic programming. Furthermore they employ meta-programming
and answer set programming with variables to allow for modular translations. Toni and Sergot

3.8. Concluding Remarks 57

two-valued stable
(stable)

L-stable
(semi-stable)

M-stable
(preferred)

three-valued stable
(complete)

well-founded
(grounded)

two-valued supported
(stable)

L-supported
(semi-stable)

M-supported
(preferred)

three-valued supported
(complete)

Kripke-Kleene
(grounded) admissible

symmetric conflict-free

M-symmetric conflict-free
(naive)

L-symmetric conflict-free
(stage)

asymmetric conflict-free

M-asymmetric conflict-free
(naive)

L-asymmetric conflict-free
(stage)

Figure 3.1: Inclusion relations between operator-based semantics. Nodes depict semantical notions for
elements of a bilattice, where the names in parentheses are argumentation versions of these notions.
Directed edges indicate subset relationships between the sets of all bilattice elements which satisfy the
respective semantical notion. For example, the arrow from two-valued stable to two-valued supported in
the upper left corner means that all two-valued stable models are also two-valued supported models.

(2011) survey these and other uses of (forms of) answer set programming to implement ab-
stract argumentation semantics. Nieves, Osorio, and Zepeda (2011) define new argumentation
semantics that possess certain desired properties. They do this by first providing a general
recursive schema for obtaining new logic programming semantics and then defining the ar-
gumentation semantics via the AFs’ translated logic programs. The translation from AFs into
LPs they use is very similar to the one of Dung (1995).

Besnard and Doutre (2004) redefined argumentation semantics in terms of fixpoints, but
they do not look at grounded or semi-stable semantics and do not use their insights to embed
argumentation frameworks into the larger picture. Grossi (2012) investigated fixpoint-based
definitions of argumentation semantics to study the connection between argumentation and
dynamic epistemic logic.

In general, we are not aware of any works that address the relationship of abstract dia-
lectical frameworks with other nonmonotonic knowledge representation formalisms, attempt
a principled reconstruction of ADF semantics or generalise argumentation semantics to an
abstract operator-based setting.

As we observed in Example 3.10, it is not entirely clear how to define the union of two
ADFs that share statements. Although for specific representations of acceptance conditions
such a union should be straightforward to define, we want to devote some future work into
abstracting from specific representations and develop a general method for combining ADFs.

Corollary 3.13 has shown that Brewka and Woltran (2010) defined not only the notion of
an ADF model, but also the ultimate three-valued approximation of this notion. Furthermore,
Denecker et al. (2004) study several other ultimate semantics. It is an important aspect of
future work to investigate these ultimate semantics in detail and to compare them with the
ones investigated here and by Brewka et al. (2013).

We remarked on several occasions throughout Chapter 3 that we defined new semantics for

58 Chapter 3. Defining Semantics via Approximation Fixpoint Theory

Operator AF ADF
symmetric conflict-free pair conflict-free set symmetric conflict-free pair
M-symmetric conflict-free pair naive extension M-symmetric conflict-free pair
L-symmetric conflict-free pair stage extension L-symmetric conflict-free pair
asymmetric conflict-free pair conflict-free set/labelling asymmetric conflict-free pair
M-asymmetric conflict-free pair naive extension M-asymmetric conflict-free pair
L-asymmetric conflict-free pair stage extension L-asymmetric conflict-free pair
reliable pair admissible set admissible pair
Kripke-Kleene semantics grounded extension Kripke-Kleene semantics
three-valued supported model complete extension three-valued supported model
M-supported model preferred extension M-supported model
L-supported model semi-stable extension L-supported model
two-valued supported model stable extension (two-valued supported) model
well-founded semantics grounded extension well-founded semantics
three-valued stable model complete extension three-valued stable model
M-stable model preferred extension M-stable model
L-stable model semi-stable extension L-stable model
two-valued stable model stable extension two-valued stable model

Table 3.2: Overview over semantics for approximating operators, argumentation frameworks and ab-
stract dialectical frameworks. Semantics newly defined in this thesis are written in bold font. Most
extension semantics for AFs have at least two generalisations, a supported and a stable one. While
most argumentation semantics already had a corresponding operator semantics, we found that (symmet-
ric/asymmetric) conflict-free pairs and maximisation versions of these lead to new semantical notions
for approximating operators. The operator-based versions of argumentation semantics then directly
lead to the ADF generalisations of these semantics, most of which are newly defined in this work. M/L-
stable/supported models for operators are straightforwardly generalised notions from logic programming.
Operator-based semantics then immediately lead to semantics for default logic and autoepistemic logic
(not included in this presentation).

default and autoepistemic logics (admissible, preferred, semi-stable, stage). These semantics
could be studied in greater detail, especially their strengths and weaknesses in comparison to
the standard semantics of these two nonmonotonic KR formalisms. Additionally, in the same
way we defined several semantics for normal logic programs (conflict-free, admissible, naive,
stage). In order to determine whether these semantics are new, it might be a good starting
point to compare them to the semantics discussed by Eiter, Fink, and Moura (2010).

59

Chapter 4

Computational Complexity

For future successful applications of ADFs, it is indispensable to figure out which semantics is
suitable for which type of application. There is a great number of semantics for AFs already,
and many of them have been generalised to ADFs. Thus it might not be clear to potential ADF
users which semantics are adequate for a particular application domain. In general, abstract
argumentation is still a young field and has not yet found conclusive reasons to definitely
prefer some semantics over others. In this regard, knowing the computational complexity of
semantics can be a valuable guide. However, previously existing complexity results for ADFs
were scattered over different papers, missed several semantics and some of them presented
upper bounds only. In this chapter, we provide a comprehensive complexity analysis for ADFs.
In line with the literature, we represent acceptance conditions by propositional formulas as
they provide a compact and elegant way to represent Boolean functions.

Technically, we base our complexity analysis on the approximation fixpoint theory (AFT)
by Denecker, Marek and Truszczyński (Denecker et al., 2000, 2003, 2004). AFT embodies the
intuitions of decades of KR research; we believe that this is very valuable also for relatively
recent languages (such as ADFs), because we get the enormously influential formalisations
of intuitions of Reiter and others for free. (As a liberal variation on Newton, we could say
that approximation fixpoint theory allows us to take the elevator up to the shoulders of giants
instead of walking up the stairs.) In fact, approximation fixpoint theory can be and partially
has already been used to define some of the semantics of ADFs, namely in Chapter 3 of this
thesis. There, we generalised various AF and logic programming semantics to ADFs using
AFT, which has provided us with two families of semantics, approximate and ultimate versions
of semantics, respectively. Intuitively speaking, both families approximate the original two-
valued model semantics of ADFs, where the ultimate family is more precise in a formally
defined sense. The present chapter employs approximating operators for complexity analysis
and thus shows that AFT is also well-suited for studying the computational complexity of
formalisms.

Along with providing a comparison of the approximate and ultimate families of semantics,
our main results can be summarised as follows. We show that: (1) the computational com-
plexity of ADF decision problems is one level up in the polynomial hierarchy from their AF
counterparts (Dunne and Wooldridge, 2009); (2) the ultimate semantics are almost always as
complex as the approximate semantics, with the notable exceptions of two-valued stable mod-
els, and (symmetric) conflict-free and naive semantics; (3) there is a certain subclass of ADFs,
called bipolar ADFs (BADFs), which is of the same complexity as AFs (with the single excep-
tion of sceptical reasoning for naive semantics). Intuitively, in bipolar ADFs all links between

60 Chapter 4. Computational Complexity

statements are supporting or attacking. To formalise these notions, Brewka and Woltran (2010)
gave a precise semantical definition of support and attack. In our work, we assume that the
link types are specified by the user along with the ADF. We consider this a harmless assump-
tion since the existing applications of ADFs produce bipolar ADFs where the link types are
known (Brewka and Gordon, 2010; Strass, 2015c). This attractiveness of bipolar ADFs from a
KR point of view is the most significant result of this chapter: it shows that BADFs offer – in
addition to AF-like and more general notions of attack – also syntactical notions of support
without any increase in computational cost.

In BADFs, support for a statement s can be anything among “set support” (all statements
in a certain set must be accepted for the support to become active) or “individual support” (at
least one statement supporting s must be accepted for the support to become active). In the
same vein, BADFs offer “set attack” (all statements in a certain set must be accepted for the
attack to become active) and the traditional “individual attack” known from AFs (at least one
statement attacking s must be accepted for the attack to become active). Naturally, in BADFs
all these different notions of support and attack can be freely combined.

Previously, Brewka et al. (2011) translated BADFs into AFs for two-valued semantics and
suggested indirectly that the complexities align.1 Here we go a direct route, which has more
practical relevance since it immediately affects algorithm design. Our work was also inspired
by the complexity analysis of assumption-based argumentation by Dimopoulos, Nebel, and
Toni (2002) – they derived generic results in a way similar to ours.

Our complexity results aligning AFs and BADFs are especially remarkable with regard
to expressiveness in the model-theoretic sense. While it remains elusive what kinds of sets of
two-valued interpretations the class of AFs can express exactly (Baumann, Dvořák, Linsbichler,
Strass, and Woltran, 2014; Baumann, Dvořák, Linsbichler, Spanring, Strass, and Woltran,
2016), we know that even bipolar ADFs can express strictly more than that (at least all ⊆-
antichains), and general (non-bipolar) ADFs can express any set of two-valued interpretations
with the two-valued model semantics (Chapter 5). This shows that AFs (under stable exten-
sion/labelling semantics) – while being of equal computational complexity – are strictly less
expressive than (B)ADFs (under model semantics, one of the ADF counterparts of AF stable
semantics).

In this chapter, we will not consider the asymmetric version of conflict-free semantics at all.
Complexity results for that family of semantics are indeed substantially different and can be
found in the work of Gaggl, Rudolph, and Strass (2015). So in this chapter, whenever we write
conflict-free, naive, and stage we implicitly mean symmetric conflict-free, naive, and stage.

One important proof technique of this chapter is to employ ADFs’ acceptance conditions’
representation via propositional formulas and to partially evaluate them. For a propositional
formula ϕ over vocabulary P and X ⊆ Y ⊆ P we define the partial valuation of ϕ by (X, Y) as

ϕ(X,Y) = ϕ[p/> : p ∈ X][p/⊥ : p ∈ P \Y]

Intuitively, the pair (X, Y) represents a partial interpretation of P where all elements of X are
true and all elements of P \ Y are false.2 The partial evaluation of ϕ with (X, Y) takes the
two-valued part of (X, Y) and replaces the evaluated variables by their truth values. Naturally,
ϕ(X,Y) is a formula over the vocabulary Y \ X, that is, only contains variables that have no
classical truth value (true or false) in the pair (X, Y). In particular, for any total interpretation
(X, X), the partial evaluation ϕ(X,X) is a Boolean expression consisting only of truth constants
and connectives and thus has a fixed truth value (either true or false).

1Additionally, in contrast to Brewka et al. (2011), we use a revised version of the stable model semantics.
2Equivalently, the pair (X, Y) represents a three-valued interpretation where all elements of Y \ X are undefined.

4.1. Preparatory Considerations 61

We will show that approximate and ultimate ADF operators (and thus all of the operator-
based ADF semantics) can be defined in terms of partial evaluations of acceptance formulas.
For example, in the new three-valued conflict-free semantics that we introduce, a statement
s can only be set to true in an interpretation (X, Y) if the partial evaluation of its acceptance
formula with the interpretation – the formula ϕ

(X,Y)
s – is satisfiable. Symmetrically, s can only

be set to false in (X, Y) if ϕ
(X,Y)
s is refutable. For the three-valued admissible semantics, the

justification standards are higher. There, setting s to true is only justified if ϕ
(X,Y)
s is irrefutable

(a tautology), setting s to false is only justified if ϕ
(X,Y)
s is unsatisfiable. This logical view of

(argumentation) semantics thus provides a novel perspective on notions of acceptability.
This chapter proceeds as follows. In the next section, we define the relevant decision prob-

lems, use examples to illustrate how operators revise ADF interpretations and show generic
upper complexity bounds along with some other useful preparatory technical results. In the
main section on complexity results for general ADFs, we back up the upper bounds with
matching lower bounds; the section afterwards does the same for bipolar ADFs. We end this
chapter with a brief discussion of related and future work.

4.1 Preparatory Considerations

This section sets the stage and provides several technical preparations that will simplify our
complexity analysis that follows afterwards. We first introduce some notation to make formally
precise what decision problems we will analyse (Section 4.1.1). Next, in Section 4.1.2 we study
the relationship between the approximate and ultimate operator, where it will turn out that
the operators are quite similar, yet subtly different.

Since several of our hardness results use similar reduction techniques, we introduce some
of them in Section 4.1.3 and prove properties that we will later use in hardness proofs. In
Section 4.1.4 we analyse the complexity of computing the two operators we consider in this
chapter. Since the semantics that we study are defined within the framework of approxima-
tion fixpoint theory, knowing the complexity of operator computation is a valuable guide for
investigating the operator-based semantics. Finally, in Section 4.1.5 we give generic results
on upper bounds for operator-based semantics that only make use of upper bounds for the
respective operators.

4.1.1 Notation and Decision Problems

For a set S, we denote by

• (Ac,≤i) the consistent CPO of S-subset pairs,

• O an approximating operator on (Ac,≤i).

In the following we tacitly assume that from a given approximation operator O one can infer
the context CPO and the underlying set S, unless noted otherwise.

LetA be the set of all approximation operators, such that each is defined on some consistent
CPO of S-subset pairs for some set S. We define decision problems with two parameters. The
first is a set of approximation operators I ⊆ A. In addition to A we are interested in this
chapter in the following sets of operators.

• G = {GD | D is an ADF},

62 Chapter 4. Computational Complexity

• U = {UD | D is an ADF}

That is, the sets contain approximate, respectively ultimate operators for each possible ADF.
When restricted to bipolar ADFs we denote the corresponding sets with

• BG = {GD | D is a BADF},

• BU = {UD | D is a BADF}.

Clearly we have G,U ⊆ A and thus also BG,BU ⊆ A. The semantics is the second parameter
of our decision problems. Let σ ∈ {scf , nai, adm, com, grd, pre, mod, stm} be a semantics among
symmetric conflict-free (Definition 3.14), naive, admissible, complete, grounded, preferred,
two-valued supported and two-valued stable semantics, respectively.

We first consider the verification problem, which asks if for a given operator a given pair is
a σ-pair, respectively a σ-model.

Problem: VerIσ
Instance: An approximation operator O ∈ I and a pair (X, Y) ∈ Ac.
Question: Is (X, Y) a σ-model/pair of O?

For instance VerGadm asks whether for a given approximate operator GD and (X, Y) ∈ Ac, does it
hold that (X, Y) ≤i GD(X, Y)? The next decision problem asks whether there exists a non-trivial
σ-pair/model, that is, one that is different from (∅, S).

Problem: ExistsIσ
Instance: An approximation operator O ∈ I .
Question: Does there exist a σ-model/pair (X, Y) of O such that (X, Y) 6= (∅, S)?

The remaining two decision problems define query-based reasoning. The credulous acceptance
problem asks whether an element s ∈ S is in X of at least one σ-pair/model (X, Y) of a given
operator, while sceptical acceptance asks if this is the case for all σ-pairs/models.

Problem: CredIσ
Instance: An approximation operator O ∈ I and s ∈ S.
Question: Does there exist a σ-model/pair (X, Y) of O such that s ∈ X?

Problem: ScepIσ
Instance: An approximation operator O ∈ I and s ∈ S.
Question: Does it hold that for all σ-models/pairs (X, Y) of O we have s ∈ X?

We now introduce auxiliary decision problems, which aid us in showing the computational
complexity of revising the lower and upper bounds for a given approximation operator and
pair. The first one asks whether an element is in the revised lower bound (respectively upper
bound) for a given pair.

Problem: ElemI
′

(resp. ElemI
′′
)

Instance: An approximation operator O ∈ I , a pair (X, Y) ∈ Ac and s ∈ S.
Question: Does it hold that s ∈ O′(X, Y) (resp. s ∈ O′′(X, Y))?

Let ◦ ∈ {⊆,⊇}. The next decision problem considers all combinations of asking whether
for a given pair and approximation operator the given set is a subset/superset of the revised
lower/upper bound.

4.1. Preparatory Considerations 63

Problem: RevBoundI
′
◦

Instance: An approximation operator O ∈ I , a pair (X, Y) ∈ Ac and a set B ⊆ S.
Question: if ◦ = ⊆: Is B ⊆ O′(X, Y)?

if ◦ = ⊇: Is O′(X, Y) ⊆ B?

Similarly, RevBoundI
′′
◦ denotes the variant for the revision of the upper bound (O′′). For in-

stance RevBoundI
′′
⊇ denotes the problem of checking whether for an approximation operator

O ∈ I , B ⊆ S and a given pair (X, Y) ∈ Ac we have O′′(X, Y) ⊆ B, that is, if the set is a super-
set of the revised upper bound (indicated by ·′′).

4.1.2 Relationship Between the Operators

Since UD is the ultimate approximation of GD for an ADF D it is clear that for any X ⊆ Y ⊆ S
we have GD(X, Y) ≤i UD(X, Y). In other words, the ultimate revision operator produces
new bounds that are at least as tight as those of the approximate operator. More expli-
citly, the ultimate new lower bound always contains the approximate new lower bound:
G ′D(X, Y) ⊆ U ′D(X, Y); conversely, the ultimate new upper bound is contained in the approx-
imate new upper bound: U ′′D (X, Y) ⊆ G ′′D(X, Y). Somewhat surprisingly, it turns out that the
revision operators for the upper bound coincide.

Lemma 4.1. Let D = (S, L, C) be an ADF and X ⊆ Y ⊆ S.

G ′′D(X, Y) = U ′′D (X, Y)

Proof. Let s ∈ S. We will use that for all B, X, P ⊆ S, we find (P \ B) ∩ X = ∅ iff P ∩ X ⊆ B. Now

s ∈ G ′′D(X, Y) iff ∃B : B ⊆ par(s) ∩Y and Cs(B) = t and (par(s) \ B) ∩ X = ∅
iff ∃B : par(s) ∩ X ⊆ B ⊆ par(s) ∩Y and Cs(B) = t
iff ∃Z : X ⊆ Z ⊆ Y and Cs(Z ∩ par(s)) = t

iff s ∈ U ′′D (X, Y) 2

The operators for computing a new lower bound are demonstrably different, since we can
find D and (X, Y) with U ′D(X, Y) 6⊆ G ′D(X, Y), as the following ADF shows.

Example 4.1. Consider the ADF D = ({a} , {(a, a)} , {ϕa}) with one self-dependent statement
a that has acceptance formula ϕa = a ∨ ¬a. In Figure 4.1, we show the relevant CPO and
the behaviour of approximate and ultimate operators: we see that GD(∅, {a}) <i UD(∅, {a}),
which shows that in some cases the ultimate operator is strictly more precise. 3

So in a sense the approximate operator cannot see beyond the case distinction a ∨ ¬a. As
we will see shortly, this difference really amounts to the capability of tautology checking.

Example 4.2. ADF E = ({a, b} , {(b, a), (b, b)} , {ϕa, ϕb}) has acceptance formulas ϕa = b ∨ ¬b
and ϕb = ¬b. So b is self-attacking and the link from b to a is redundant. In Figure 4.1, we
show the relevant CPO and the behaviour of the operators UE and GE on this CPO. 3

The examples show that the approximate and ultimate families of semantics really are
different, save for one straightforward inclusion relation in case of admissible.

64 Chapter 4. Computational Complexity

operator visualisation:
approximate

ultimate
both

(∅, {a})

(∅, ∅) ({a} , {a})

(∅, {a, b})

(∅, {b})(∅, {a}) ({a} , {a, b}) ({b} , {a, b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a, b} , {a, b})

Figure 4.1: Hasse diagrams of consistent CPOs for the ADFs from Example 4.1 (left) and Example 4.2
(right). Solid lines represent the information ordering ≤i. Directed arrows express how revision oper-
ators map pairs to other pairs. For pairs where the revisions coincide, the arrows are densely dashed
and violet. When the operators revise a pair differently, we use a dotted red arrow for the ultimate and
a loosely dashed blue arrow for the approximate operator. Exact (two-valued) pairs are the ≤i-maximal
elements. For those pairs, (and any ADF D) it is clear that the operators UD and GD coincide since they
approximate the same two-valued operator GD. In Example 4.1 on the left, we can see that the ultimate
operator maps all pairs to its only fixpoint ({a} , {a}) where a is true. The approximate operator has
an additional fixpoint, (∅, {a}), where a is unknown. In Example 4.2 on the right, the major difference
between the operators is whether statement a can be derived given that b has truth value unknown. This
is the case for the ultimate, but not for the approximate operator. Since there is no fixpoint in the upper
row (showing the two-valued operator GE), the ADF E does not have a two-valued model. Each of the
revision operators has however exactly one three-valued fixpoint, which thus constitutes the respective
grounded, preferred and complete semantics.

Corollary 4.2. For any ADF D it holds that an admissible pair of GD is an admissible pair of UD. Let
σ ∈ {com, grd, pre}. There exist ADFs D1, D2, D3 such that:

1. there is an admissible pair of UD1 that is not an admissible pair of GD1 ;

2. there is a σ-pair of UD2 that is not a σ-pair of GD2 ; and

3. there is a σ-pair of GD3 that is not a σ-pair of UD3

Proof. To show that an approximate admissible pair is always an ultimate admissible pair it suffices
to consider the fact that GD ≤i UD. For the remaining claims, we use D1 = D2 = D3 = E from Ex-
ample 4.2 as a witness:

1. In Example 4.2, ({a} , {a, b}) is ultimate admissible but not approximate admissible.

2 & 3. In Example 4.2, we have: (1) approximate grounded, preferred and complete semantics coincide;
(2) ultimate grounded, preferred and complete semantics coincide; (3) approximate grounded and
ultimate grounded semantics are different with no subset relation either way. 2

4.1. Preparatory Considerations 65

4.1.3 Reductions and Encoding Techniques

We now define reductions used in multiple proofs as well as showing some properties of in-
terest. The reductions are defined as functions taking sets of (propositional) variables and a
formula and mapping them to an ADF. We generally use the sets P, Q, R for propositional vari-
ables and use x, y, z as “gadget” statements in the constructed ADF. Without loss of generality
we assume that {x, y, z} ∩ (P ∪Q ∪ R) = ∅. As usual, links of the ADFs are defined implicitly.

Reduction 4.1. Let ψ be a propositional formula over the vocabulary P. Define the ADF
RED1(P, ψ) = (P ∪ {z} , L, C) with ϕp = ¬p for p ∈ P; and ϕz = ψ.

It is quite immediate that all p ∈ P are always undefined for all semantics based on sym-
metric conflict-freeness.

Lemma 4.3. Let D = RED1(P, ψ) be an ADF obtained from Reduction 4.1 and consider a consistent
pair (M, N) that is symmetric conflict-free for D. For each p ∈ P, we find that

1. p /∈ M,

2. p ∈ N.

Proof. Let p ∈ P and O ∈ {GD,UD}. Since (M, N) is symmetric conflict-free, we have
M ⊆ O′′(M, N) and O′(M, N) ⊆ N.

1. Assume that p ∈ M. Then ϕ
(M,N)
p = ¬> ≡ ⊥ and p /∈ O′′(M, N). Contradiction.

2. Assume that p /∈ N. Then ϕ
(M,N)
p = ¬⊥ ≡ > and p ∈ O′(M, N). Contradiction. 2

The simple ADF of Reduction 4.1 can be used to decide satisfiability and refutability of ψ
using one of the relevant operators.

Lemma 4.4. Let ψ be a propositional formula over the vocabulary P and D = RED1(P, ψ). Further
let O ∈ {GD,UD}. We find that

1. for every symmetric conflict-free pair (X, Y) of O it holds that P ⊆ (Y \ X),

2. z ∈ U ′D(∅, P ∪ {z}) iff ψ is a tautology,

3. z ∈ O′′(∅, P ∪ {z}) iff ψ is satisfiable,

4. z /∈ O′′(∅, P) iff ψ is unsatisfiable,

5. ({z} , P ∪ {z}) is symmetric conflict-free for O iff ψ is satisfiable,

6. O(∅, P ∪ {z}) = O(∅, P).

Proof. Note that U ′′D = G ′′D by Lemma 4.1.

1. Follows immediately from Lemma 4.3.

2. By definition we have z ∈ U ′D(∅, P ∪ {z}) iff for all Z with ∅ ⊆ Z ⊆ P ∪ {z} we have
Z |= ϕz = ψ. Clearly if z ∈ U ′D(∅, P ∪ {z}), then all two-valued interpretations over P are
then satisfying assignments of ψ and ψ is a tautology.

For the converse direction assume that ψ is a tautology. Then for all Z with ∅ ⊆ Z ⊆ P we find
Z |= ψ. Since z does not occur in ϕz = ψ we know that for all Z with ∅ ⊆ Z ⊆ P ∪ {z} it holds
that Z |= ψ and thus z ∈ U ′D(∅, P ∪ {z}).

66 Chapter 4. Computational Complexity

3. If z ∈ O′′(∅, P ∪ {z}), then by definition we can infer that there exists a Z such that
∅ ⊆ Z ⊆ P ∪ {z} and Z |= ψ. Then Z \ {z} is a satisfying assignment of ψ, therefore ψ is
satisfiable.

For the other direction assume that ψ is satisfiable. Then there exists a Z with ∅ j Z ⊆ P and
Z |= ψ. Clearly we have Z ⊆ P ∪ {z} and thus it holds that z ∈ O′′(∅, P ∪ {z}).

4. Follows analogously as the previous item. Note that z is not in the vocabulary of ψ, and
if z /∈ O′′(∅, P), then by definition we know that for all Z with ∅ ⊆ Z ⊆ P it holds that
Z 6|= ϕz = ψ.

For the other direction, if ψ is unsatisfiable, then for all Z with ∅ ⊆ Z ⊆ P it holds that Z 6|= ψ,
and thus z /∈ O′′(∅, P).

5. The pair ({z} , P ∪ {z}) is symmetric conflict-free for O iff {z} ⊆ O′′({z} , P ∪ {z}) and
O′({z} , P ∪ {z}) ⊆ P ∪ {z}. The latter is trivially true. The former holds iff ψ is satisfiable
as shown in the third item proven above.

6. Lastly, O(∅, P ∪ {z}) = O(∅, P) holds since z does not occur in any acceptance condition. 2

Note that the lemma even implies that ({z} , P ∪ {z}) is naive for O iff ψ is satisfiable, since
the elements of P are undecided in any symmetric conflict-free pair.

While the previously introduced reductions are mostly used to show hardness results, we
also use reductions for membership results. One general core construction is below.

Reduction 4.2. Let D be an ADF. Assume that S = {s1, . . . , sn} and set
P =

{
ti, ui, bi,j

∣∣ 1 ≤ i, j ≤ n
}

. For each statement si, the propositional variable ti indicates that
si is true, while ui indicates that si is not false. Thus the truth values of the ti and ui determine a
four-valued interpretation (T, U). The bi,j are used to guess parents that are needed to derive the
acceptance of statement si in one operator application step; more precisely, bi,j indicates that sj is a
parent of si that is “needed” to infer ui. By ϕi we denote the acceptance formula of si; by ϕt

i we denote
ϕi where each sj has been replaced by tj; by ϕb

i we denote ϕi where each sj has been replaced by bi,j.
Now define the formulas (with underlying intuitions on the right)

φT⊆U =
∧

si∈S
(ti → ui) (T, U) is a consistent pair

φ2v
i =

∧
rj∈par(si)

(uj → tj) si has no undecided parents

φ?
i =

∧
rj∈par(si)

((tj → bi,j) ∧ (bi,j → uj)) guesses for si are consistent with (T, U)

φfpl =
∧

si∈S
(ti ↔ (ϕt

i ∧ φ2v
i)) G ′D(T, U) = T

φfpu =
∧

si∈S
(ui ↔ (ϕb

i ∧ φ?
i)) G ′′D(T, U) = U

φcfp = φfpl ∧ φfpu ∧ φT⊆U GD(T, U) = (T, U) and T ⊆ U

Finally, set RED3(D) = φcfp.

4.1. Preparatory Considerations 67

The main property of this encoding is that it correctly captures consistent fixpoints of the
approximate operator.

Lemma 4.5. Let D be an ADF over statements S and φcfp = RED3(D).

1. From each model of φcfp, we can read off a consistent fixpoint of GD;

2. conversely, for each consistent fixpoint of GD, there is a model of φcfp.

Proof. 1. Let I ⊆ P be such that I |= φcfp. Define a three-valued pair (T, U) (the associated pair of
I) and a sequence B1, . . . , Bn by setting

• si ∈ T iff ti ∈ I and si ∈ U iff ui ∈ I, and

• sj ∈ Bi iff bi,j ∈ I.

We have to show T ⊆ U and GD(T, U) = (T, U).

For the first part, let si ∈ T. Then ti ∈ I by definition. Since I |= φcfp, in particular I |= φT⊆U ,
that is, I |= ∧

si∈S(ti → ui). Thus I |= ui and by definition si ∈ U.

For the second part, we have

si ∈ G ′D(T, U) iff T |= ϕi and par(si) ∩U ⊆ par(si) ∩ T

iff I |= ϕt
i and I |= φ2v

i

iff I |= ϕt
i ∧ φ2v

i

iff I |= ti (since I |= φfpl)

iff si ∈ T

Hence G ′D(T, U) = T. Similarly, for the upper bound we have

si ∈ G ′D(U, T) iff Bi |= ϕi and par(si) \ Bi ⊆ S \ T and Bi ⊆ U

iff I |= ϕb
i and I |=

∧
sj∈S

((¬bi,j → ¬tj) ∧ (bi,j → uj))

iff I |= ϕb
i and I |=

∧
sj∈S

((tj → bi,j) ∧ (bi,j → uj))

iff I |= ϕb
i and I |= φ?

i

iff I |= (ϕb
i ∧ φ?

i) (since I |= φfpu)

iff I |= ui

iff si ∈ U

Hence U = G ′D(U, T) and in combination GD(T, U) = (T, U).

2. Let GD(T, U) = (T, U) with T ⊆ U. Define an interpretation I ⊆ P as follows:

• Set ti ∈ I iff si ∈ T and ui ∈ I iff si ∈ U.

• Since G ′D(U, T) = U, we have for each 1 ≤ i ≤ n that si ∈ U iff there is a Bi ⊆ par(si)
with Bi |= ϕi, par(si) \ Bi ⊆ S \ T and Bi ⊆ U. Now pick such a Bi for each si ∈ S and set
bi,j ∈ I iff sj ∈ Bi.

68 Chapter 4. Computational Complexity

We have to show I |= φcfp. Since T ⊆ U, it is clear that I |= φT⊆U since for all i, si ∈ T implies
si ∈ U. For the operator applications, we get, for any si ∈ S,

I |= ti iff si ∈ T

iff si ∈ G ′D(T, U)

iff T |= ϕi and par(si) ∩U ⊆ par(si) ∩ T

iff I |= ϕt
i and I |= φ2v

i

iff I |= ϕt
i ∧ φ2v

i

Thus I |= φfpl. For the upper bound, for any si ∈ S,

I |= ui iff si ∈ U

iff si ∈ G ′D(U, T)
iff Bi |= ϕi and par(si) \ Bi ⊆ S \ T and Bi ⊆ U

iff I |= ϕb
i and I |=

∧
sj∈S

((¬bi,j → ¬tj) ∧ (bi,j → uj))

iff I |= ϕb
i and I |=

∧
sj∈S

((tj → bi,j) ∧ (bi,j → uj))

iff I |= ϕb
i and I |= φ?

i

Hence I |= φfpu and in total I |= φfpl ∧ φfpu ∧ φT⊆U . 2

4.1.4 Operator Complexities

We next analyse the computational complexity of deciding whether a single statement is con-
tained in the lower or upper bound of the revision of a given pair. This then leads to the
complexity of checking whether current lower/upper bounds are pre- or postfixpoints of the
revision operators for computing new lower/upper bounds, that is, whether the revisions rep-
resent improvements in terms of the information ordering. Intuitively, these results describe
how hard it is to “use” the operators and lay the foundation for the rest of the complexity
results. Formally we express these notions via the decision problems ElemI

′
and RevBoundI

′
◦

with ◦ ∈ {⊆,⊇}, respectively with I ′′ in the superscript. Recall that ElemI
′

(ElemI
′′
) denotes

the decision problem of verifying if a given element (statement) is contained in the revision of
the lower (upper) bound of a given operator and pair. The problem RevBoundI

′
◦ asks whether

for a given pair (X, Y) we can compare a given set B ⊆ S via ◦ with the revised lower bound
of this pair. For instance RevBoundG

′
⊇ denotes the problem of verifying that for a given (X, Y),

B ⊆ S and GD ∈ G we have G ′D(X, Y) ⊆ B.

Proposition 4.6. Let I ∈ {G,U}. It holds that

1. ElemG
′

is in P,

2. ElemU
′

is coNP-complete,

3. ElemI
′′

is NP-complete.

4.1. Preparatory Considerations 69

Proof. Let D be an ADF, s ∈ S and X ⊆ Y ⊆ S.

1. ElemG
′

is in P: Since X ⊆ Y, we have that whenever there exists a B ⊆ X ∩ par(s) with
Cs(B) = t and par(s) \ B ⊆ S \ Y, we know that B = X ∩ par(s): Assume there is an r ∈
(X ∩ par(s)) \ B. Then r ∈ par(s) and r /∈ B, whence r ∈ par(s) \ B ⊆ S \ Y. By r ∈ X ⊆ Y
we get r /∈ S \Y, contradiction. Thus B = X ∩ par(s). Now

s ∈ G ′D(X, Y) iff there exists B ⊆ X ∩ par(s) with Cs(B) = t and par(s) \ B ⊆ S \Y
iff Cs(X ∩ par(s)) = t and par(s) \ X ⊆ S \Y
iff Cs(X ∩ par(s)) = t and (Y \ X) ∩ par(s) = ∅

For acceptance functions represented by propositional formulas, Cs(X ∩ par(s)) = t can be de-
cided in polynomial time, since we only have to check whether X |= ϕs. It can be decided in
quadratic time whether there is an undecided parent r ∈ par(s) with r ∈ Y \ X.

2. ElemU
′

is coNP-complete:

in coNP: To decide that s /∈ U ′D(X, Y), we guess a Z with X ⊆ Z ⊆ Y and verify that Z 6|= ϕs.

coNP-hard: We provide a reduction from the problem of determining if a given propositional
formula ψ is a tautology. Let ψ be an arbitrary formula over vocabulary P. Construct Dψ =
RED1(P, ψ) as defined in Reduction 4.1. By Lemma 4.4 it follows that z ∈ U ′Dψ

(∅, P∪{z})
iff ψ is a tautology.

3. ElemI
′′

is NP-complete: Due to Lemma 4.1 we know that G ′′D(X, Y) = U ′′D (X, Y).

in NP: To decide that s ∈ U ′′D (X, Y), we guess a Z with X ⊆ Z ⊆ Y and verify that Z |= ϕs.

NP-hard: For hardness, we provide a reduction from SAT. Let ψ be a propositional formula over
vocabulary P. Construct Dψ = RED1(P, ψ) as defined in Reduction 4.1. By Lemma 4.4 it
follows that z ∈ U ′′Dψ

(∅, P ∪ {z}) iff ψ is satisfiable. 2

These results can also be formulated in terms of partial evaluations of acceptance formulas:

• We have s ∈ G ′D(X, Y) iff the partial evaluation ϕ
(X,Y)
s is a formula without variables that

evaluates to t.

• Similarly, we have s ∈ G ′′D(X, Y) = U ′′D (X, Y) iff the partial evaluation ϕ
(X,Y)
s is satisfiable.

Under standard complexity assumptions, computing a new lower bound with the ultimate op-
erator is harder than with the approximate operator. This is because, intuitively, s ∈ U ′D(X, Y)

iff the partial evaluation ϕ
(X,Y)
s is a tautology. The results for Elem straightforwardly lead to the

complexity of revising lower/upper bounds for both operators. Note that the results depend
crucially on restricting revision to consistent pairs (X, Y) (those with X ⊆ Y) – for otherwise
we could apply G ′′D(X, Y) = G ′D(Y, X) and use the polynomial-time computable approximate
lower bound operator G ′D on an inconsistent pair (Y, X) to compute G ′D(Y, X) = G ′′D(X, Y).

Lemma 4.7. Let I ∈ {G,U} and B ∈ {L, U}. It holds that

1. RevBoundG
′
⊇ and RevBoundG

′
⊆ are in P,

2. RevBoundU
′
⊇ is in NP,

70 Chapter 4. Computational Complexity

3. RevBoundU
′
⊆ is in coNP,

4. RevBoundI
′′
⊆ is in NP,

5. RevBoundI
′′
⊇ is in coNP.

Proof. All results build upon Proposition 4.6. Since the revised lower bound w.r.t. GD can be computed
in polynomial time for any ADF D we can immediately infer the complexity of the corresponding
problems RevBoundG

′
⊇ and RevBoundG

′
⊆ .

Let D = (S, L, C) be an ADF, O ∈ {GD,UD}, B ⊆ S and X ⊆ Y ⊆ S. Deciding whether B ⊆
U ′D(X, Y) can be decided via |B| independent checks for each b ∈ B whether b ∈ U ′D(X, Y). Each of
these are checks in coNP and combining them yields again a check in coNP. Therefore RevBoundU

′
⊆ is

in coNP. Likewise deciding whether B ⊆ O′′(X, Y) can be decided via |B| independent checks b ∈ B,
each of them in NP, yielding again a combined problem in NP. Thus RevBoundI

′′
⊆ is in NP.

For U ′D(X, Y) ⊆ B we can decide for each s ∈ (S \ B) whether s /∈ U ′D(X, Y). If this is the case
for all s, then it holds that U ′D(X, Y) ⊆ B. Deciding whether s /∈ U ′D(X, Y) holds is a complementary
problem to one in coNP, thus combining several of them yields a problem in NP. This directly shows
that RevBoundU

′
⊇ is in NP. The proof that RevBoundI

′′
⊇ is in coNP proceeds analogously. 2

4.1.5 Generic Upper Bounds

We now show generic upper bounds for the computational complexity of the considered prob-
lems. This kind of analysis is in the spirit of the results by Dimopoulos et al. (2002, Section 4).
The first item is furthermore a straightforward generalisation of Theorem 6.13 by Denecker
et al. (2004).

Theorem 4.8. Let I ⊆ A be a set of approximation operators, each defined on a CPO on S-subset pairs
for some finite set S. Further let ElemI

′
be in ΠP

i and ElemI
′′

be in ΣP
i .

1. The least fixpoint of an O ∈ I can be computed in polynomial time with a polynomial number of
calls to a ΣP

i -oracle.

2. VerIcfi is in ΣP
i ; CredIcfi is in ΣP

i ;

3. VerInai is in DP
i ; CredInai is in ΣP

i ;

4. VerIadm is in ΠP
i ; CredIadm is in ΣP

i+1;

5. VerIcom is in DP
i ; CredIcom is in ΣP

i+1;

6. VerIpre is in ΠP
i+1; CredIpre is in ΣP

i+1; ScepIpre is in ΠP
i+2.

Proof. Let A = 2S and O be an approximating operator on (Ac,≤i), the consistent CPO of S-subset
pairs. Further let (X, Y) ∈ Ac and s ∈ S.

Using the same line of reasoning as in the proof of Lemma 4.7 we can immediately infer that under
the assumptions of the current theorem that RevBoundI

′
⊇ is in ΣP

i , RevBoundI
′
⊆ is in ΠP

i , RevBoundI
′′
⊆

is in ΣP
i , RevBoundI

′′
⊇ is in ΠP

i .

4.1. Preparatory Considerations 71

1. For any (V, W) ∈ Ac we can use the oracle to compute an application of O′ by simply asking
whether z ∈ O′(V, W) for each z ∈ S. This means we can compute with a linear number of
oracle calls the sets O′(V, W) and O′′(V, W), thus the pair O(V, W). Hence we can compute
the sequence (∅, S) ≤i O(∅, S) ≤i O(O(∅, S)) ≤i . . . which converges to the least fixpoint of
O after a linear number of operator applications (and thus a polynomial number of oracle calls).

2. VerIcfi is in ΣP
i , since we can verify if a given pair is symmetric conflict-free for a given operator

if the lower bound is a positive instance of RevBoundI
′′
⊆ and the upper bound a positive instance

RevBoundI
′
⊇ together with the pair and operator as input. These are two independent checks in

ΣP
i . For CredIcfi it suffices to verify that the pair ({s} , S) is symmetric conflict-free. (If ({s} , S)

is not symmetric conflict-free, by Lemma 3.48 there is no symmetric conflict-free pair (X, Y) with
({s} , S) ≤i (X, Y).)

3. For VerInai we first have to decide VerIcfi, which can be done in ΣP
i . To verify that (X, Y) is naive,

that is, ≤i-maximal, we do the following: Assume that Y \ X = {s1, . . . , sm} and construct the
pairs p̄i = (X ∪ {si} , Y) and q̄i = (X, Y \ {si}) for 1 ≤ i ≤ m. It follows from Lemma 3.48 that
the pair (X, Y) is naive iff none of the 2m pairs p̄1, . . . , p̄m, q̄1, . . . , q̄m is symmetric conflict-free.
Since VerIcfi is in ΣP

i and the pairs can be verified independently of each other, we need to solve at
most 2m ≤ 2 · |S| independent ΣP

i problems to show that (X, Y) is not naive. Thus showing that
(X, Y) is ≤i-maximal is in ΠP

i , and together with showing symmetric conflict-freeness of (X, Y)
in ΣP

i the containment in DP
i follows. CredInai coincides with CredIcfi by Lemma 4.13.

4. VerIadm is in ΠP
i , since we can verify if a given pair is admissible for a given operator if the lower

bound is a positive instance of RevBoundI
′
⊆ and the upper bound a positive instance RevBoundI

′′
⊇

together with the pair and operator as input. These are two independent checks in ΠP
i . For

CredIadm, we guess a pair (X1, Y1) with s ∈ X1 and check if it is admissible.

5. VerIcom is in DP
i , since we can verify if a given pair is admissible for a given operator in ΠP

i .
By determining if the lower bound is a positive instance of RevBoundI

′
⊇ and the upper bound a

positive instance of RevBoundI
′′
⊆ together with the pair and operator as input we can infer that the

given pair is a fix point of the operator. These are two independent checks in ΣP
i , thus combined

yields a check in DP
i . CredIcom = CredIadm by Lemma 4.26.

6. For VerIpre, we show that the co-problem is in ΣP
i+1. To show that (X, Y) is not a preferred pair,

we can show that (1) (X, Y) is not a complete pair, which can be decided in DP
i ; or (2) that there

is a complete pair (X1, Y1) with (X, Y) <i (X1, Y1), which can be done by guessing (X1, Y1) and
showing in DP

i that (X1, Y1) is complete.

CredIpre: coincides with credulous reasoning w.r.t. admissibility, see Lemma 4.26.

ScepIpre: Consider the co-problem, i.e. deciding whether there exists a preferred pair (X1, Y1) with
X1 ∩ {a} = ∅. We guess such a pair (X1, Y1) and check if it is preferred. 2

Naturally, the capability of solving the functional problem of computing the grounded se-
mantics allows us to solve the associated decision problems.

Corollary 4.9. Under the assumptions of Theorem 4.8, the problems VerIgrd and ExistsIgrd are in ∆P
i+1.

72 Chapter 4. Computational Complexity

4.2 General ADFs

Proposition 4.10. Deciding whether D = (S, L, C) has a two-valued model is NP-complete.

Proof. For membership, we can guess an interpretation v : S→ {t, f} and in polynomial time check
whether v(s) = v(ϕs) for each s ∈ S.

For hardness, let ψ be a propositional formula over a vocabulary P. We construct an ADF Dψ that
has a model iff ψ is satisfiable. Set S = P ∪ {s}, L = S× S and for the acceptance formulas set ϕp = p
for each p ∈ P and ϕs = ¬s ∧ ¬ψ. We have to show that Dψ has a model iff ψ is satisfiable. If ψ is
satisfiable, there exists a satisfying valuation v for P. Then v(¬ψ) = f and v(s) = f = v(ϕs) and v is a
model for Dψ. Now let ψ be unsatisfiable and assume to the contrary that Dψ has a model v. Obviously
v(¬ψ) = t and thus v(s) = v(ϕs) = v(¬s ∧ ¬ψ) = v(¬s), contradiction. 2

4.2.1 Symmetric Conflict-free Semantics

For an ADF D and an operator O ∈ {GD,UD}, a pair (X, Y) is symmetric conflict-free by defin-
ition if and only if X ⊆ O′′(X, Y) and O′(X, Y) ⊆ Y. For the ultimate operator UD, this intuit-
ively means the following:

• For every statement s ∈ X that is set to true, its partially evaluated acceptance formula
ϕ
(X,Y)
s must be satisfiable.

• For every statement s ∈ S \Y that is set to false, its partially evaluated acceptance for-
mula ϕ

(X,Y)
s must be refutable.

So roughly, symmetric conflict-freeness dictates that the pair must not make truth value as-
signments that are completely absurd in that a statement is set to true in the pair although its
acceptance formula is unsatisfiable with respect to the pair (or symmetrically set to false while
the formula is a tautology).

For the approximate operator GD, the requirement for setting statements to false is weaker
than for the ultimate operator. (The requirement for setting statements to true is the same since
G ′′D = U ′′D .) For the approximate operator, a statement s ∈ S can be set to false in a pair (X, Y)

as long as it is not the case that the formula ϕ
(X,Y)
s is a Boolean expression consisting of truth

values and connectives that evaluates to true. Conversely, the statement can be set to false if
either (1) the formula ϕ

(X,Y)
s is a Boolean expression consisting of truth values and connectives

that evaluates to false, or (2) the formula ϕ
(X,Y)
s contains variables.

Example 4.3. Consider the ADF D = (S, L, C) with S = {a, b} and L and C given by ϕa = ¬a
and ϕb = a ∨ ¬a. For any pair (X, Y) with a ∈ X, that is, any pair that sets a to true, we have
that ϕ

(X,Y)
a = ¬> ≡ ⊥ is unsatisfiable. Thus such a pair is not ultimate symmetric conflict-free.

Symmetrically, for any pair (X, Y) with a /∈ Y, we find that ϕ
(X,Y)
a = ¬⊥ ≡ > is irrefutable, and

the pair is also not ultimate symmetric conflict-free. So our only chance is to set a to undecided,
that is, a ∈ Y and a /∈ X. For statement b, we see that ϕ

({b},{a,b})
b = a ∨ ¬a is satisfiable, whence

({b} , {a, b}) is ultimate symmetric conflict-free. For the pair (∅, {a}) where b is false, we see
that ϕ

(∅,{a})
b = a ∨ ¬a is a tautology, whence the pair is not an ultimate symmetric conflict-free

pair. However, ϕ
(∅,{a})
b = a ∨ ¬a is an expression containing variables, whence (∅, {a}) is an

approximate symmetric conflict-free pair. 3

4.2. General ADFs 73

This intuition based on satisfiability and refutability will help us in obtaining complexity
results for semantics based on the property of being symmetric conflict-free. To begin with, to
verify that a pair is symmetric conflict-free, we obviously have to solve a combined satisfiabil-
ity/refutability problem.

Proposition 4.11. Consider any I ∈ {G,U}. VerIscf is NP-complete.

Proof. Membership follows from Theorem 4.8. For hardness, we provide a reduction from SAT by Re-
duction 4.1. Let ψ be a formula over vocabulary P. Let D = RED1(P, ψ) and O ∈ {GD,UD}. Due
to Lemma 4.4 we have that the pair ({z} , P ∪ {z}) is symmetric conflict-free for O iff ψ is satisfiable.2

For deciding whether there exists a non-trivial ultimate symmetric conflict-free pair, we can
reduce the propositional satisfiability problem back and forth.

Proposition 4.12. ExistsUscf is NP-complete.

Proof. in NP: We can guess a non-trivial pair (X, Y) and the witnesses that verify conflict-freeness of
(X, Y) in one sequence of independent guesses. More formally, we reduce ExistsUscf to SAT. Let
D = (S, L, C) be an ADF. We define a formula ϕD such that UD has a non-trivial conflict-free
pair iff ϕD is satisfiable.

Assume S = {s1, . . . , sn} and define the vocabulary of ϕD as

P =
{

st
i , sf

i , pi,j

∣∣∣ 1 ≤ i, j ≤ n
}

For 1 ≤ i, j ≤ n, denote by ϕi the acceptance formula ϕsi where each occurrence of sj has been
replaced by pj,i. Intuitively, atom pj,i is used to guess a truth value for sj in the acceptance
formula of si. Now define

ϕt,i
scf = st

i →

ϕi ∧
∧

1≤j≤n
pi,j


ϕf,i

scf = sf
i →

¬ϕi ∧
∧

1≤j≤n
¬pi,j


ϕscf =

∧
1≤i≤n

(
ϕt,i

scf ∧ ϕf,i
scf

)
ϕnt =

∨
1≤i≤n

(
st

i ∨ sf
i

)
ϕD = ϕscf ∧ ϕnt

We have to show that UD has a non-trivial conflict-free pair iff ϕD is satisfiable.

if: Let I ⊆ P be a model for ϕD. Define the pair (X, Y) by

X =
{

si
∣∣ st

i ∈ I, 1 ≤ i ≤ n
}

Y =
{

si

∣∣∣ sf
i /∈ I, 1 ≤ i ≤ n

}
Since in particular I is a model for ϕnt, there is an i ∈ {1, . . . , n} such that si ∈ X or
si /∈ Y, that is, (X, Y) is non-trivial. It remains to show that (X, Y) is conflict-free.

74 Chapter 4. Computational Complexity

X ⊆ U ′′D (X, Y): Let si ∈ X. By definition st
i ∈ I and thus I is a model for ϕi. Define

J =
{

sj
∣∣ pj,i ∈ I

}
. For each 1 ≤ k ≤ n, we have that sk ∈ X implies st

k ∈ I and
thus pk,i ∈ I, whence sk ∈ J; likewise sk /∈ Y implies sf

k ∈ I and thus pk,i /∈ I whence

sk /∈ J. Now I is a model for ϕi, thus J is a model for ϕ
(X,Y)
si .

U ′D(X, Y) ⊆ Y: Let si ∈ S \ Y. By definition sf
i ∈ I and I falsifies ϕi. As above, we can

define J and show that it is compatible with (X, Y). Consequently, J falsifies ϕ
(X,Y)
si .

only if: Let (X, Y) be a non-trivial conflict-free pair. Define an interpretation I of P as follows.
For each si ∈ X set st

i to true, sf
i to false, and pi,j to true for all 1 ≤ j ≤ n; for each

si ∈ S \ Y set sf
i to true, st

i to false, and pi,j to false for all 1 ≤ j ≤ n. (There exists at least
one such si since (X, Y) is non-trivial.) Now let sk ∈ S.

• If sk ∈ X, we have sk ∈ U ′′D (X, Y), whence ϕ
(X,Y)
sk is satisfiable. Let Ik be a model for

ϕ
(X,Y)
sk and note that Ik ⊆ Y \ X. Now for each sj ∈ Y \ X, set pj,k ∈ I iff sj ∈ Ik.

Clearly I satisfies ϕk by construction. Since we already defined pk,j to be true for all
1 ≤ j ≤ n, we find that I is a model for ϕt,k

scf . Since sf
k is false, I is also a model for ϕf,k

scf .

• If sk ∈ S \ Y, we have sk /∈ U ′D(X, Y), whence ϕ
(X,Y)
sk is refutable. As above, let Ik be

a falsification of ϕ
(X,Y)
sk and for sj ∈ Y \ X set pj,k ∈ I iff sj ∈ Ik. Then I falsifies ϕk.

Again, I is a model for ϕf,k
scf and ϕt,k

scf .

• If sk ∈ Y \ X, we set st
k and sf

k to false in I and for sj ∈ Y \ X the pj,k arbitrary in I.
Clearly I is a model for ϕt,k

scf and ϕf,k
scf .

Hence I is a model for ϕscf ; since (X, Y) is non-trivial, I is also a model of ϕnt. Thus I is a
model for ϕD.

NP-hard: We provide a reduction from SAT. Let ψ be a propositional formula over vocabulary P 6= ∅.
Define an ADF Dψ = (S, L, C) with S = P ∪ {z} (where z /∈ P), ϕp = ¬p for p ∈ P and
ϕz = ¬z ∧ ¬ψ. We have to show that UDψ

has a non-trivial conflict-free pair iff ψ is satisfiable.

if: If ψ is satisfiable, then ¬ψ is refutable and ϕ
(∅,P)
z = ¬⊥ ∧ ¬ψ is refutable. Thus z /∈

U ′Dψ
(∅, P), whence ∅ ⊆ U ′′Dψ

(∅, P) and U ′Dψ
(∅, P) ⊆ P and (∅, P) is non-trivial (z /∈ P)

and conflict-free.

only if: Let (X, Y) be conflict-free and non-trivial. Then X 6= ∅ or Y (S. Clearly conflict-
freeness implies that P ∩ X = ∅ and P ⊆ Y. So z ∈ X or z /∈ Y. If z ∈ X then
(X, Y) = ({z} , S) and by conflict-freeness z ∈ U ′′Dψ

({z} , S). Then ϕ
({z},S)
z = ¬>∧¬ψ is

satisfiable, contradiction. Thus X = ∅ and z /∈ Y, that is, (X, Y) = (∅, P). Since (∅, P) is
conflict-free, z /∈ U ′Dψ

(∅, P). Thus ϕ
(∅,P)
z = ¬⊥ ∧ ¬ψ is refutable, that is, ¬ψ is refutable

whence ψ is satisfiable. 2

Now one of the general existence results of Section 3.6 becomes useful: as an easy con-
sequence of Theorem 3.47, the existence of non-trivial (symmetric) naive pairs is then equival-
ent to the existence of non-trivial symmetric conflict-free pairs.

Lemma 4.13. Let (L,v) be a complete lattice and O an approximating operator on (Lc,≤i). The
following are equivalent:

4.2. General ADFs 75

1. O has a non-trivial conflict-free pair.

2. O has a non-trivial naive pair.

Proof. “(1) =⇒ (2)”: Let (x, y) be non-trivial and conflict-free, that is, in particular let
(⊥L,>L) <i (x, y). By Theorem 3.47, there exists a naive pair (p, q) ∈ Lc with
(⊥L,>L) <i (x, y) ≤i (p, q).

“(2) =⇒ (1)”: Any naive pair is conflict-free (Definition 3.15). 2

This directly shows the equivalence of the respective decision problems, that is, it holds
that ExistsAcfi = ExistsAnai.

Corollary 4.14. ExistsUnai is NP-complete.

Fortunately, credulous reasoning over conflict-free pairs is not harder than just guessing a
pair where the desired statement is true.

Proposition 4.15. Consider any I ∈ {G,U}. CredIscf is NP-complete.

Proof. in NP: Let D = (S, L, C) be an ADF with S = {s1, . . . , sn} and 1 ≤ k ≤ n. Intuitively, we
can guess a pair (X, Y) with sk ∈ X along with the witnesses showing that (X, Y) is conflict-
free. More formally, we reduce the problem to SAT. For the ultimate operator, we can adapt the
construction of Proposition 4.12. We use the formula ϕscf as above and define ϕD = ϕscf ∧ st

k.
As above, we can show that there is a conflict-free pair (X, Y) with sk ∈ X if and only if ϕD is
satisfiable.

NP-hard: We provide a reduction from SAT. Let ψ be a propositional formula over vocabulary P.
Define an ADF D = RED1(P, ψ) as in Reduction 4.1. Due to Lemma 4.4 we know that there is
a conflict-free pair (X, Y) with z ∈ X if and only if ψ is satisfiable. 2

Again, Lemma 4.13 yields the same complexity for the naive semantics.

Corollary 4.16. Consider any I ∈ {G,U}. CredInai is NP-complete.

To verify that a given pair is naive, we have some more work to do. Recalling that a pair is
naive iff it is conflict-free and ≤i-maximal with respect to being conflict-free, we can see that
to verify naivety we have to verify conflict-freeness (in NP) and verify that there is no properly
≤i-greater conflict-free pair (in coNP).

Proposition 4.17. Let O ∈ {G,U}. VerOnai is DP-complete.

Proof. Containment follows from Theorem 4.8, so it suffices to show DP-hardness. We use a reduc-
tion from SAT-UNSAT. Let (φ, ψ) be a tuple of propositional formulas over vocabularies P1 and P2,
respectively, with P1 ∩ P2 = ∅. Construct an ADF D as follows:

S = P1 ∪ P2 ∪ {x, y, z}
ϕp = ¬p for p ∈ P1 ∪ P2

ϕx = φ ∧ ¬z
ϕy = ψ ∨ z

ϕz = z

Furthermore, define the pair n̄ = ({x, y} , S). We now show that n̄ is naive for O iff φ is satisfiable and
ψ is unsatisfiable. (Notice that the proof only uses O′′ and thus works for O = G and O = U .)

76 Chapter 4. Computational Complexity

if: Let φ be satisfiable and ψ be unsatisfiable. We show that n̄ is naive for O. We first show that n̄ is
conflict-free for O:

• ϕn̄
x = φ ∧ ¬z is satisfiable by presumption whence s ∈ O′′(n̄);

• ϕn̄
y = ψ ∨ z is satisfiable whence s ∈ O′′(n̄).

It remains to show that all ō with n̄ <i ō are not conflict-free. Clearly, setting a p ∈ P1 ∪ P2 to
true or false in n̄ violates conflict-freeness. Furthermore, x and y are already set, so the only two
choices are setting z to true or false. If we set z to true, that is, consider the pair ({x, y, z} , S), then
we observe that the formula ϕ

({x,y,z},S)
x = φ ∧ ¬> is unsatisfiable whence x /∈ O′′({x, y, z} , S)

and the pair is not conflict-free. So the only remaining candidate is setting z to false, that is, the
pair ō = ({x, y} , S \ {z}). Since ψ is unsatisfiable and does not mention x, y, z, also ϕō

y = ψ∨⊥
is unsatisfiable. Thus y /∈ O′′(ō) and ō is not conflict-free. It follows that n̄ is naive for O.

only if: Let n̄ be naive for O. Assume to the contrary that φ is unsatisfiable or ψ is satisfiable.

1. φ is unsatisfiable. Then ϕn̄
x = φ ∧ ¬z is unsatisfiable and x /∈ O′′(n̄). Thus n̄ is not

conflict-free, in contradiction to it being naive.
2. ψ is satisfiable. Define the pair ō = ({x, y} , S \ {z}). Since ψ does not mention x, y, z, also

the formula ϕō
y = ψ ∨⊥ is satisfiable. Then ō is conflict-free with n̄ <i ō, contradiction.

Thus φ is satisfiable and ψ is unsatisfiable. 2

For sceptical reasoning, we can do no better than verifying the absence of a naive pair
where the statement in question is not true. The hardness proof proceeds by “laying a trap”
for the conflict-free semantics: setting a statement s to true (for example) in a pair (X, Y)
can be justified locally by the partially evaluated acceptance formula ϕ

(X,Y)
s being satisfiable.

However, the satisfying assignment for statements from Y \ X need not pay respect to what
might be dictated by other parts of the framework. The proof makes use of this and employs
two new statements y and z with acceptance formulas ϕy = z→ ψ for a given QBF matrix ψ
and ϕz = >. Now setting y to true can be locally justified since ϕy is satisfiable by setting z to
false. However, in the case where ψ is unsatisfiable, we cannot set both y and z to true, since the
respective partial evaluation of ϕy would be unsatisfiable, thereby violating conflict-freeness.
Consequentially, this case leads to different kinds of naive pairs (those with y 7→ t and z 7→ u,
and those with y 7→ u and z 7→ t). This reasoning is used in the proof below.

Proposition 4.18. Let O ∈ {G,U}. ScepOnai is ΠP
2 -complete.

Proof. in ΠP
2 : Let D = (S, L, C) be an ADF and s ∈ S. We can guess a pair (X, Y) with s /∈ X and

verify in DP that it is naive.

ΠP
2 -hard: We provide a reduction from the ΠP

2 -complete problem of deciding whether a QBF2,∀-formula
is valid. Let ∀P∃Qψ be an instance of QBF2,∀-TRUTH where P, Q 6= ∅ and (w.l.o.g.) ψ men-
tions at least one p ∈ P and at least one q ∈ Q. We construct an ADF Dψ with a special statement
z that is true in each naive pair of Dψ if and only if ∀P∃Qψ is true. Define Dψ = (S, L, C) with

S = P ∪Q ∪ {y, z} with y, z /∈ P ∪Q
ϕp = p for p ∈ P

ϕq = ¬q for q ∈ Q

ϕy = z→ ψ

ϕz = >

4.2. General ADFs 77

if: Let ∀P∃Qψ be true; then for each M ⊆ P, the formula ψ(M,M∪Q) is satisfiable. In particular,
for all M ⊆ N ⊆ P, the formula ψ(M,N∪Q) is satisfiable. We show that for each pair (X, Y)
that is conflict-free for Dψ, we can set z to true without violating conflict-freeness. Since z
cannot be set to false by definition, it follows that z is true in every naive pair of Dψ.
Let (X, Y) be conflict-free for Dψ. By definition of ϕz we have z ∈ O′(X, Y) ⊆ Y. Fur-
thermore, all q ∈ Q are undefined in (X, Y), that is, Q ⊆ Y \ X. We have to show that
(X ∪ {z} , Y) is conflict-free for Dψ. Since z ∈ Y, the pair is consistent.

• Let t ∈ X. By the assumption that (X, Y) is conflict-free, ϕ
(X,Y)
t is satisfiable. If t ∈ P,

then ϕ
(X∪{z},Y)
t = ϕ

(X,Y)
t is satisfiable. The case t ∈ Q is impossible. If t = y, then

ϕ
(X∪{z},Y)
t = ϕ

(X∪{z},Y)
y = > → ψ(X,Y) ≡ ψ(X,Y) is satisfiable by assumption. The

case t = z is trivial.
• Let f ∈ S \Y. If f ∈ P, then ϕ

(X∪{z},Y)
f = ϕ

(X,Y)
f and f /∈ O′(X ∪ {z} , Y) since

f /∈ O′(X, Y). The cases f ∈ Q and f = z are impossible. If f = y, then
y /∈ O′(X, Y).

1. For O = UDψ
, this means that ϕ

(X,Y)
y = (z→ ψ)(X,Y) is refutable. Then the for-

mula ψ(X,Y) = ψ(X∪{z},Y) ≡ > → ψ(X∪{z},Y) = ϕ
(X∪{z},Y)
y is refutable and thus

y /∈ U ′Dψ
(X ∪ {z} , Y).

2. For O = GDψ
, the formula ϕ

(X∪{z},Y)
y = (z→ ψ)(X∪{z},Y) contains vari-

ables (ψ contains at least one q ∈ Q ⊆ Y \ X by presumption) whence
y /∈ G ′Dψ

(X ∪ {z} , Y).

only if: Let M ⊆ P be such that the formula ψ(M,M∪Q) is unsatisfiable. We show that the pair
(M ∪ {y} , M ∪Q ∪ {y, z}) with z /∈ M is naive. Clearly, the pair is conflict-free for state-
ments among P ∪Q ∪ {z}. The formula ϕ

(M∪{y},M∪Q∪{y,z})
y = z→ ψ(M,M∪Q) is satis-

fiable (set z to false) whence y ∈ O′′(M ∪ {y} , M ∪Q ∪ {y, z}). The p ∈ P are all set to
true or false, and none of the q ∈ Q can be set to true or false; our only possibility is to set
z to true or false. Setting z to false is obviously not conflict-free by definition. For the pair
(M ∪ {y, z} , M ∪Q ∪ {y, z}), we have that

ϕ
(M∪{y,z},M∪Q∪{y,z})
y = > → ψ(M∪{y,z},M∪Q∪{y,z}) ≡ ψ(M,M∪Q)

is unsatisfiable whence z /∈ O′′(M ∪ {y, z} , M ∪Q ∪ {y, z}) and the pair is not conflict-
free. Therefore, (M ∪ {y} , M ∪Q ∪ {y, z}) is a naive pair where z is not true. 2

Recalling that deciding existence of non-trivial ultimate conflict-free pairs is NP-hard, we
can show that deciding existence of non-trivial approximate conflict-free pairs is (potentially)
easier. The reason lies in the smaller precision of the approximate operator, as witnessed in
Example 4.3.

Proposition 4.19. ExistsGscf is in P.

Proof. Let D = (S, L, C) be an ADF. If S = ∅ then there is no non-trivial pair at all, so assume S 6= ∅.

1. There is an s ∈ S such that the formula ϕ
(∅,S\{s})
s contains variables. Then by definition of GD,

we have s /∈ G ′D(∅, S \ {s}) and thus (∅, S \ {s}) is conflict-free and non-trivial.

78 Chapter 4. Computational Complexity

2. For all s ∈ S, the formula ϕ
(∅,S\{s})
s is an expression consisting only of connectives and truth

values. Then for each s ∈ S the expression ϕ
(∅,S\{s})
s has a fixed truth value, which can be

computed in polynomial time.

(a) There is an s ∈ S such that ϕ
(∅,S\{s})
s ≡ ⊥. Then by definition of GD, we have

s /∈ G ′D(∅, S \ {s}) and thus (∅, S \ {s}) is conflict-free and non-trivial.

(b) For all s ∈ S, we find ϕ
(∅,S\{s})
s ≡ >. Then we consider the truth value of ϕ

({s},S)
s for all

s ∈ S, which is computable in polynomial time.

i. There is an s ∈ S for which we find ϕ
({s},S)
s ≡ >. In particular, ϕ

({s},S)
s is satisfiable,

whence s ∈ G ′′D({s} , S). Thus the pair ({s} , S) is conflict-free and non-trivial.

ii. For all s ∈ S, we find ϕ
({s},S)
s ≡ ⊥. Then for each s ∈ S, we have ϕs ≡ ¬s and (∅, S)

is the only conflict-free pair. 2

As usual, Lemma 4.13 yields the same bounds for the existence of non-trivial approximate
naive pairs.

Corollary 4.20. ExistsGnai is in P.

However, these two results are the only ones where the complexities of the approximate
and ultimate operators differ for semantics based on conflict-freeness.

4.2.2 Admissibility-based Semantics

We begin our complexity analysis of admissibility-based semantics by introducing and recall-
ing some basic concepts of these semantics and the corresponding operators. By definition, a
pair (X, Y) with X ⊆ Y is admissible for operator O iff (X, Y) ≤i O(X, Y). Since the operators
under consideration are ≤i-monotone, we can directly infer that if (X, Y) is admissible then
it holds that O(X, Y) ≤i O(O(X, Y)). This means that (i) applying operator O to an admiss-
ible pair yields again an admissible pair, and (ii) iterative applications of O to an admissible
pair (X, Y) always yield pairs (X′, Y′) such that (X, Y) ≤i (X′, Y′). In more detail, (ii) implies
that a statement assigned to true or false in (X, Y) will keep this assignment if the operator is
applied, while undecided statements may change their assignment. If (X, Y) is a fixpoint of
O (i.e. a complete pair of O), then the application of O also does not change the undecided
statements.

Most complexity results in the following mainly rely on the operator for the upper bound
U ′′ = G ′′, which is the same for both approximate and ultimate operators (Lemma 4.1). We
also make use of the reductions from Section 4.1.3.

The first problem we analyse is the verification problem for admissible semantics. As before
for most problems we need only show hardness since Theorem 4.8 shows membership.

Proposition 4.21. Consider any I ∈ {G,U}. VerIadm is coNP-complete.

Proof. We provide a reduction from the problem of deciding whether a given formula ψ over vocabulary
P is unsatisfiable. Let ADF D = RED1(P, ψ) as defined in Reduction 4.1 and O ∈ {GD,UD}. The pair
(∅, P) is admissible for O iff z /∈ U ′′D (∅, P) iff ψ is unsatisfiable due to Lemma 4.4. 2

The result for VerUadm was also independently obtained by Wallner (2014, Proposition 4.1.9); we
include it here because the reduction works for both operators.

4.2. General ADFs 79

For verifying if a given pair is complete the complexity increases to DP compared to just
checking admissibility. Briefly put, the coNP part decides whether the given pair is a postfix-
point and the additional NP check is used to decide whether the pair is a prefixpoint. Together
they decide whether the pair is a fixpoint, that is, constitutes a complete interpretation.

Proposition 4.22. Consider any I ∈ {G,U}. VerIcom is DP-complete.

Proof. For I = U this result also appears in the work of Brewka et al. (2013, Corollary 7). However,
the following reduction works for both operators.

We provide a reduction from the DP-complete problem of determining whether a given formula
φ is satisfiable and a given formula ψ is unsatisfiable. Let φ and ψ be arbitrary formulas over
the disjoint vocabularies P1 and P2 respectively. Let P = P1 ∪ P2. Construct the following ADF
D = (P ∪ {y, z}, L, C):

ϕp = p for p ∈ P

ϕy = ¬y ∧ φ

ϕz = ψ

Let O ∈ {GD,UD}. We now prove that (∅, P ∪ {y}) = O(∅, P ∪ {y}) if and only if φ is satisfiable
and ψ is unsatisfiable.

if: Independent of φ and ψ we know due to Lemma 4.3 that for each p ∈ P, we have p /∈ O′(∅, P ∪ {y})
and p ∈ O′′(∅, P ∪ {y}). Now since φ is satisfiable, we get that the formula ϕ

(∅,P∪{y})
y is

satisfiable and thus y ∈ O′′(∅, P ∪ {y}). Furthermore, since ψ = ϕz is unsatisfiable it follows
immediately that z /∈ O′′(∅, P ∪ {y}). Therefore (∅, P ∪ {y}) is complete for O.

only if: For the other direction assume that φ is unsatisfiable or ψ is satisfiable. For the first case
suppose φ is unsatisfiable. Then y /∈ U ′′D (∅, P ∪ {y}) and (∅, P ∪ {y}) is not complete. For the
second case suppose ψ is satisfiable. Then z ∈ U ′′D (∅, P ∪ {y}) and likewise (∅, P ∪ {y}) is not
complete. 2

Grounded semantics Next, we analyse the complexity of verifying that a given pair is the
approximate Kripke-Kleene semantics (the grounded pair) of an ADF D, that is, the least fix-
point of GD. It turns out that verifying if a given pair is grounded has the same complexity as
verifying if the pair is complete. A similar result for the ultimate grounded semantics has been
obtained by Wallner (2014, Theorem 4.1.4). In our proof for approximate semantics below,
showing membership is the tricky part. Our approach is to reduce the steps of the operator
computation into propositional logic (a reduction introduced earlier). In particular we con-
struct two formulas, of which we check one for satisfiability and the other for unsatisfiability.
This gives us an interesting, yet technical proof of membership.

Theorem 4.23. VerGgrd is DP-complete.

Proof. Let D be an ADF and X ⊆ Y ⊆ S.

in DP: We provide a reduction to SAT-UNSAT by extending the construction of Reduction 4.2. We

80 Chapter 4. Computational Complexity

additionally define the formulas

φ≤i =
∧

si /∈X

¬ti ∧
∧

si∈Y
ui (T, U) ≤i (X, Y)

φ≥i =
∧

si∈X
ti ∧

∧
si /∈Y

¬ui (T, U) ≥i (X, Y)

φ= = φ≤i ∧ φ≥i (T, U) = (X, Y)
φ<i = φ≤i ∧ ¬φ≥i (T, U) <i (X, Y)
ψ1 = φcfp ∧ φ= GD(T, U) = (T, U) with T ⊆ U and (T, U) = (X, Y)

ψ2 = φcfp ∧ φ<i GD(T, U) = (T, U) with T ⊆ U and (T, U) <i (X, Y)

Intuitively, φ= will be used to force (X, Y) to be a fixpoint of GD, and φ<i will be used to stipulate
the existence of a fixpoint with strictly less information than (X, Y).

We claim that (1) ψ1 is satisfiable iff (X, Y) is a consistent fixpoint of GD, and (2) ψ2 is satisfiable
iff there is a fixpoint (T, U) <i (X, Y) of GD. From this it follows that (ψ1, ψ2) is a positive
instance of SAT-UNSAT iff (X, Y) is the Kripke-Kleene semantics of D.

1. ψ1 is satisfiable iff (X, Y) is a consistent fixpoint of GD.

“if”: Let (X, Y) be a consistent fixpoint of GD. Set (T, U) = (X, Y), then by Lemma 4.5
there is an interpretation I ⊆ P with I |= φcfp. By definition, we also have I |= φ=,
whence I |= ψ1 and ψ1 is satisfiable.

“only if”: Let ψ1 = φcfp ∧ φ= be satisfiable. Then in particular φcfp is satisfiable and by
Lemma 4.5 there is an interpretation I ⊆ P such that its associated pair (T, U) is a
consistent fixpoint of GD. Since additionally I |= φ=, it follows that (T, U) = (X, Y).

2. ψ2 is satisfiable iff there is a fixpoint (T, U) <i (X, Y) of GD.

“if”: Let (T, U) <i (X, Y) with T ⊆ U and GD(T, U) = (T, U). By Lemma 4.5 we can
define a two-valued interpretation I ⊆ P such that I |= φcfp. It is straightforward to
show that (T, U) <i (X, Y) implies I |= φ<i .

“only if”: Let I ⊆ P be an interpretation with I |= ψ2. Since in particular I |= φcfp,
Lemma 4.5 yields a consistent fixpoint (T, U) of GD. As above, we can show that
(T, U) <i (X, Y).

DP-hard: This follows from the proof in Proposition 4.22: The complete pair to verify there coincides
with the Kripke-Kleene semantics of the constructed ADF. 2

Admissible: Existence non-trivial We next ask whether there exists a non-trivial admissible
pair, that is, if at least one statement has a truth value other than unknown. Clearly, we can
guess a pair and perform the coNP-check to show that it is admissible. The next result shows
that this is also the best we can do.

Theorem 4.24. ExistsGadm is ΣP
2 -complete.

Proof. in ΣP
2 : For ADF D, we guess a pair (X, Y) and verify that X ⊆ Y and (∅, S) <i (X, Y) in

polynomial time, and (X, Y) ≤i GD(X, Y) using the NP oracle (Lemma 4.7, Items 1, 3, and 5).

4.2. General ADFs 81

ΣP
2 -hard: We provide a reduction from the ΣP

2 -hard problem QBF2,∃-TRUTH. Let ∃P∀Qψ be a QBF.
We define an ADF D = (S, L, C) as follows:

S = P ∪ -P ∪Q ∪ {z} where -P = {-p | p ∈ P} ,
ϕp = ¬z ∧ ¬-p for p ∈ P,

ϕ-p = ¬z ∧ ¬p for -p ∈ -P,

ϕq = ¬q for q ∈ Q,

ϕz = ¬z ∧ ¬ψ.

We show that D has a non-trivial admissible pair iff ∃P∀Qψ is true.

“if”: Let M ⊆ P be such that ψ(M,M∪Q) is a tautology. We define a consistent pair (X, Y) by
setting

X = M ∪ {-p | p ∈ P \M}
Y = X ∪Q

(X, Y) is obviously non-trivial, since z /∈ Y. Note that by definition p ∈ X iff p ∈ M, and
p /∈ Y iff p /∈ M, whence ψ(M,M∪Q) = ψ(X,Y). It remains to show that (X, Y) is admissible
for D, that is, X ⊆ G ′D(X, Y) and G ′D(Y, X) ⊆ Y.

X ⊆ G ′D(X, Y):

• Let p ∈ X for p ∈ P. Then by definition -p /∈ Y and ϕ
(X,Y)
p = ¬⊥ ∧ ¬⊥ ≡ >

whence p ∈ G ′D(X, Y).
• Let -p ∈ X for -p ∈ -P. Symmetric.

G ′D(Y, X) ⊆ Y:

• Let p /∈ Y for p ∈ P. Then by definition -p ∈ X and ϕ
(X,Y)
p = ¬⊥ ∧ ¬> ≡ ⊥

whence p /∈ G ′D(Y, X).
• Let -p /∈ Y for -p ∈ -P. Symmetric.

• Finally, for z /∈ Y, we have ϕ
(X,Y)
z = ¬⊥ ∧ ¬ψ(X,Y) ≡ ¬ψ(X,Y) = ¬ψ(M,M∪Q).

Since ψ(M,M∪Q) is a tautology by presumption, ¬ψ(M,M∪Q) = ¬ψ(X,Y) is unsat-
isfiable and z /∈ G ′′D(X, Y) = G ′D(Y, X).

“only if”: Let (X, Y) be a non-trivial admissible pair for D. We have to show that ∃P∀Qψ is
true. Define M = X ∩ P, we show that ψ(M,M∪Q) is a tautology. We first observe that
Q ⊆ Y \ X by their acceptance conditions and since (X, Y) is admissible (thus in particular
conflict-free and Lemma 4.3 applies). We next show z /∈ Y.
By the presumption that (X, Y) is non-trivial, we get that (1) X 6= ∅ or (2) Y (S.

1. X 6= ∅.

(a) z ∈ X. Then ϕ
(X,Y)
z = ¬> ∧ ψ(X,Y) ≡ ⊥ and z /∈ G ′D(X, Y), that is, (X, Y) is not

admissible. Contradiction.
(b) p ∈ X. Then by admissibility p ∈ G ′D(X, Y), that is, the formula

ϕ
(X,Y)
p = (¬z ∧ ¬-p)(X,Y) is variable-free and evaluates to true, whence z /∈ Y and

-p /∈ Y.
(c) -p ∈ X. Symmetric.

2. Y (S.

82 Chapter 4. Computational Complexity

(a) z ∈ S \Y. This is what we want to show.
(b) p ∈ S \Y. By admissibility p /∈ G ′D(Y, X) and the partially evaluated acceptance

formula ϕ
(X,Y)
p = (¬z ∧ ¬-p)(X,Y) must be unsatisfiable. Since z /∈ X, we get

-p ∈ X. By item 1c above, we get z /∈ Y.
(c) -p ∈ S \Y. Symmetric.

Hence z /∈ Y. Since (X, Y) is admissible, z /∈ G ′D(Y, X). Thus the partially evaluated ac-

ceptance formula ϕ
(X,Y)
z = ¬⊥ ∧ ¬ψ(X,Y) is unsatisfiable, that is, ¬ψ(X,Y) is unsatisfiable

and ψ(X,Y) = ψ(M,M∪Q) is a tautology. 2

Again, we use one of the general existence results of Section 3.6: Theorem 3.46 directly
leads to the next result, which considerably simplifies the complexity analysis of deciding the
existence of non-trivial pairs for admissibility-based semantics.

Lemma 4.25. Let (L,v) be a complete lattice and O an approximating operator on the CPO (Lc,≤i).
The following are equivalent:

1. O has a non-trivial admissible pair.

2. O has a non-trivial preferred pair.

3. O has a non-trivial complete pair.

Proof. “(1) =⇒ (2)”: Let (⊥L,>L) <i (x, y) ≤i O(x, y). By Theorem 3.46, there is a preferred pair
(p, q) ∈ Lc for which (⊥L,>L) <i (x, y) ≤i (p, q).

“(2) =⇒ (3)”: By Theorem 3.10 (Strass, 2013, Theorem 3.10), every preferred pair is complete.

“(3) =⇒ (1)”: Any complete pair is admissible (Definition 2.2). 2

This directly shows the equivalence of the respective decision problems, that is, it holds that
ExistsAadm = ExistsApre = ExistsAcom. Recall that A contains all approximation operators defined
on some consistent CPO of S-subset pairs for some set S. Regarding decision problems for
querying, sceptical reasoning with respect to admissibility is trivial, since (∅, S) is always an
admissible pair in any ADF and thus the answer to ScepAadm is always “no”. Furthermore,
credulous reasoning with respect to admissible, complete and preferred semantics coincides.

Lemma 4.26. Let I ∈ {G,U}. It holds that CredIadm = CredIcom = CredIpre.

Proof. Let D be an ADF, O ∈ {GD,UD} and s ∈ S. Assume (X, Y) with s ∈ X is admissible for
O, then there exists a (X′, Y′) with (X, Y) ≤i (X′, Y′) which is preferred for O and where s ∈ X′ by
Theorem 3.46. Since any preferred pair is also complete and any complete pair is also admissible the
claim follows. 2

Lemma 4.25 implies the same complexity for the existence of non-trivial complete and
preferred pairs.

Corollary 4.27. Consider any I ∈ {G,U} and σ ∈ {com, pre}. ExistsOσ is ΣP
2 -complete.

By corollary to Theorem 4.23, the existence of a non-trivial approximate grounded pair can
be decided in DP by testing whether the trivial pair (∅, S) is (not) a fixpoint of the approximate
operator. The following result shows that this bound can be improved, even for the ultimate
operator.

4.2. General ADFs 83

Proposition 4.28. Consider any I ∈ {G,U}. ExistsIgrd is coNP-complete.

Proof. Let D be an ADF. Obviously, D has a non-trivial approximate grounded semantics iff the trivial
pair (∅, S) is not a fixpoint of GD, so we show that the co-problem (deciding whether GD(∅, S) = (∅, S))
is NP-complete.

in NP: We have that GD(∅, S) = (∅, S) iff ∅ ⊆ G ′D(∅, S) ⊆ ∅ and S ⊆ G ′′D(∅, S) ⊆ S. So mainly
we have to verify G ′D(∅, S) ⊆ ∅ and S ⊆ G ′′D(∅, S). By Lemma 4.7, the first part can be decided
in P (item 1) and the second part in NP (item 4).

NP-hard: We give a reduction from SAT. Let ψ be a propositional formula over vocabulary P. Define
an ADF D = (S, L, C) with S = P ∪ {z} for z /∈ P and ϕp = p for p ∈ P and ϕz = z ∧ ψ. It
is readily verified that by definition every statement has a parent that is undecided in (∅, S)
and thus G ′D(∅, S) = ∅. Furthermore, P ⊆ G ′D(S, ∅) is easy to show. Thus S ⊆ G ′D(S, ∅) iff
z ∈ G ′D(S, ∅) iff there is an M ⊆ S with par(z) \M ⊆ S \∅ and M |= ϕz iff there is an M ⊆ S
with M |= ϕz iff ϕz = z ∧ ψ is satisfiable iff ψ is satisfiable.

For I = U , the proof is analogous to the one above – we show NP-completeness of the complementary
problem.

in NP: We have to verify U ′D(∅, S) ⊆ ∅ and S ⊆ U ′′D (∅, S). By Lemma 4.7(2) and Lemma 4.7(4), this
can be done in NP.

NP-hard: The construction is the same as for I = G. 2

Using the result for existence of non-trivial admissible pairs, the verification complexity
for the preferred semantics is straightforward to obtain, similarly as in the case of AFs (Dimo-
poulos and Torres, 1996). The result for the ultimate semantics is due to Wallner (2014, Pro-
position 4.1.14).

Proposition 4.29. Consider any I ∈ {G,U}. VerIpre is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be an ADF and X ⊆ Y ⊆ S. To show that (X, Y) is not preferred, we guess a pair

(M, N) with (X, Y) <i (M, N) and use the NP oracle to show that (M, N) is a complete pair
(which can be done in DP).

ΠP
2 -hard: Consider the complementary problem of deciding whether a given pair is not a preferred pair.

Even for the special case of the pair (∅, S), Theorem 4.24 shows that this problem is ΣP
2 -hard. 2

Entailment problems We now move on to query-based reasoning. Similarly as before, we
mainly utilise the operator for the upper bound to show hardness. Due to this reason, and
for the sake of uniformity of proving results for both operators, we slightly deviate from our
definition of credulous and sceptical reasoning and show hardness for the question whether a
σ-pair exists such that the given statement is false, respectively ask whether the statement is
false in all σ-pairs. For the admissibility-based semantics it is straightforward to see that these
problems can be reduced to each other. For querying statement s in an ADF D consider the
modified ADF D̂ with a fresh statement ŝ and acceptance condition ϕŝ = ¬s. Let O ∈ {GD,UD}
and Ô ∈ {GD̂,UD̂}. It holds that (X, Y) is admissible for O with s ∈ (S \Y) iff (X ∪ {ŝ} , Y) is
admissible for Ô. Likewise, it holds that for all preferred pairs (X, Y) of O we have s ∈ (S \Y)
iff in all preferred pairs (X̂, Ŷ) of Ô we have ŝ ∈ X̂. Further, s is false in the grounded pair of
O iff ŝ is true in the grounded pair of Ô.

84 Chapter 4. Computational Complexity

We now show that on general ADFs credulous reasoning with respect to approximate
admissibility is harder than on AFs. By Lemma 4.26, the same lower bound holds for complete
and preferred semantics. The proof is obtained by the same reduction as the one for the
ultimate admissible semantics (Wallner, 2014, Proposition 4.1.11).

Proposition 4.30. CredGadm is ΣP
2 -complete.

Proof. Membership is given by Theorem 4.8. Hardness is shown by a reduction from the ΣP
2 -hard

problem QBF2,∃-TRUTH.
Let ∃P∀Qψ be a QBF. We define an ADF D as follows:

S = P ∪Q ∪ { f }
ϕp = p for p ∈ P

ϕq = ¬q for q ∈ Q

ϕ f = ¬ f ∧ ¬ψ

We now show that there exists an admissible pair (X, Y) for GD with f ∈ S \Y iff ∃P∀Qψ is true.
Note that for any admissible pair we have that f is not set to true, since then its acceptance condition
evaluates to false.

“if”: Assume the QBF is valid. Then there exists a P′ ⊆ P such that for any Q′ ⊆ Q we have
P′ ∪Q′ |= ψ. We now show that (P′, P′ ∪Q) is admissible for GD. Since for any p ∈ P′ we have
that {p} |= ϕp it follows that P′ ⊆ G ′D(P′, P′ ∪Q) and P′ ⊆ U ′D(P′, P′ ∪Q). Further ∅ |= ϕq
for q ∈ Q, thus Q ⊆ G ′′D(P′, P′ ∪Q). Lastly, R 6|= ϕ f for P′ ⊆ R ⊆ P′ ∪Q since R |= ψ, hence
f 6∈ G ′′D(P′, P′ ∪Q).

“only if”: Assume that there exists an admissible pair (X, Y) for GD such that f ∈ S \Y. First we
show that Q ⊆ (Y \ X). Suppose the contrary, then (X, Y) would not be admissible GD, since
if there is a q ∈ Q and q ∈ X, then q 6∈ G ′′D(X, Y). Similarly q ∈ S \Y implies that q is in the
new lower bound. We now show that X ∪Q′ |= ψ for any Q′ ⊆ Q, thus implying that ψ is valid
(note that X ⊆ P). Suppose there exists a Q′ ⊆ Q such that X ∪Q′ 6|= ψ, then X ∪Q′ |= ϕ f
and X ⊆ (X ∪Q′) ⊆ Y and thus f ∈ G ′′D(X, Y), implying that (X, Y) is not admissible, which
is a contradiction. 2

For credulous and sceptical reasoning with respect to the grounded semantics, we first
observe that the two coincide since there is always a unique grounded pair. Furthermore,
a statement s is true in the approximate grounded pair iff s is true in the least fixpoint (of
GD) iff s is true in all fixpoints iff there is no fixpoint where s is undecided or false. This
condition can be encoded in propositional logic and leads to the next result. For ultimate
semantics and coNP-hardness the proof of Brewka and Woltran (2010, Proposition 13) can be
easily adapted (Wallner, 2014, Proposition 4.1.3).

Proposition 4.31. Consider any I ∈ {G,U}. Both CredIgrd and ScepIgrd are coNP-complete.

Proof. We give the proof for I = G, the case I = U is treated by Wallner (2014, Proposition 4.1.3).

in coNP: We reduce to unsatisfiability checking in propositional logic. Let D = (S, L, C) be an ADF
with S = {s1, . . . , sn} and assume we want to verify that sk is true in the grounded pair of D for
some 1 ≤ k ≤ n. We again extend Reduction 4.2; additionally define the formulas

φ′cfp = φcfp[p/p′ : p ∈ P] (renamed copy of φcfp)

ψ = (φfp ∧ ¬tk ∧ uk) ∨ (φ′fp ∧ ¬u′k)

We claim that ψ is unsatisfiable iff there is no consistent fixpoint where sk is unknown or false.

4.2. General ADFs 85

1. φcfp ∧ ¬tk ∧ uk is unsatisfiable iff there is no consistent fixpoint where sk is undefined:
“if”: Let φcfp ∧ ¬tk ∧ uk be satisfiable. Then there is an interpretation I ⊆ P such that

I |= φcfp and I |= ¬tk ∧ uk. Using Lemma 4.5 we can construct a consistent pair
(T, U) and show that it is a fixpoint of GD with sk ∈ U \ T.

“only if”: Let T ⊆ U ⊆ S such that GD(T, U) = (T, U) and sk ∈ U \ T. Lemma 4.5
yields an interpretation I ⊆ P such that I |= φcfp and I |= ¬tk ∧ uk.

2. φ′cfp ∧ ¬u′k is unsatisfiable iff there is no consistent fixpoint where sk is false: similar.

coNP-hard: Let ψ be a propositional formula over vocabulary P. Define the ADF D = (S, L, C) with
S = P ∪ {z}, ϕp = ¬ψ for p ∈ P, and ϕz =

∧
p∈P ¬p. We show that z is true in the grounded

semantics of GD iff ψ is a tautology.

“if”: Let ψ be a tautology. Then ¬ψ is unsatisfiable and p /∈ G ′′D(∅, S) for all p ∈ P. Ob-
viously ϕz is satisfiable whence z ∈ G ′′D(∅, S). Thus G ′′D(∅, S) = {z}. Furthermore
U ′D(∅, S) = ∅, since no acceptance condition is a tautology. Therefore also G ′D(∅, S) = ∅.
Thus GD(∅, S) = (∅, {z}). Now since z does not occur in the acceptance formula of z, it
is clear that GD(∅, {z}) = ({z} , {z}) = GD({z} , {z}). Thus z is true in the grounded
semantics of GD.

“only if”: Let lfp(GD) = (X, Y) and z ∈ X. By the acceptance condition of z and the fact that
(X, Y) is a fixpoint of GD we get P ∩Y = ∅. Since X ⊆ Y we have (X, Y) = ({z} , {z}).
Assume to the contrary that ψ is not a tautology. Then ¬ψ is satisfiable and
P ⊆ Y = G ′′D(∅, S). Contradiction. 2

Regarding sceptical reasoning for the remaining semantics we need only show the results
for complete and preferred semantics, in all other cases the complexity coincides with credu-
lous reasoning or is trivial. For complete semantics it is easy to see that sceptical reasoning
coincides with sceptical reasoning under grounded semantics, since the grounded pair is the
≤i-least complete pair.

Corollary 4.32. Consider any I ∈ {G,U}. ScepIcom is coNP-complete.

Similar to reasoning on AFs, we step up one level of the polynomial hierarchy by chan-
ging from credulous to sceptical reasoning with respect to preferred semantics, which makes
sceptical reasoning under preferred semantics particularly hard. The proof for the ultimate
semantics uses proof ideas by Dunne and Bench-Capon (2002) and can be found in the work
of Wallner (2014, Theorem 4.1.17). The approximate semantics can be treated in a similar
way (Strass and Wallner, 2015, Theorem 4.22), and we will not reproduce the proof here in its
entirety.

Theorem 4.33. Consider any I ∈ {G,U}. ScepIpre is ΠP
3 -complete.

Proof. Membership is given by Theorem 4.8. Hardness is shown by a reduction from the ΠP
3 -hard

problem QBF3,∀-TRUTH. Let ∀P∃Q∀Rψ be a QBF. We define an ADF D as follows:

S = P ∪Q ∪ -Q ∪ R ∪ { f } with -Q = {-q | q ∈ Q}
ϕp = p for p ∈ P

ϕq = ¬ f ∧ ¬-q for q ∈ Q

ϕ-q = ¬ f ∧ ¬q for -q ∈ -Q

ϕr = ¬r for r ∈ R
ϕ f = ¬ f ∧ ¬ψ

86 Chapter 4. Computational Complexity

The proof proceeds by showing that all preferred pairs (X, Y) of GD have f ∈ S \Y iff ∀P∃Q∀Rψ is
true. For the remaining technicalities, we refer the interested reader to the works of Wallner (2014,
Theorem 4.1.17) and Strass and Wallner (2015, Theorem 4.22). 2

4.2.3 Two-valued Semantics

The complexity results we have obtained so far might lead the reader to ask why we bother
with the approximate operator GD at all: the ultimate operator UD is at least as precise and
for all admissibility-based and most conflict-free-based semantics considered up to now, it
has the same computational costs. We now show that for the verification of two-valued stable
models, the operator for the upper bound plays no role and therefore the complexity difference
between the lower bound operators for approximate (in P) and ultimate (coNP-hard) semantics
comes to bear.

For the ultimate two-valued stable semantics, Brewka et al. (2013) already have some
complexity results: model verification is in DP (Proposition 8), and model existence is
ΣP

2 -complete (Theorem 9). We will show next that we can do better for the approximate
version.

Proposition 4.34. Let D be an ADF and X ⊆ Y ⊆ S. Checking that X is the least fixpoint of G ′D(·, Y)
can be done in polynomial time.

Proof. We provide the following polynomial-time decision procedure with input D, X, Y.

1. Set i = 0 and X0 = ∅.

2. For each statement s ∈ S, do the following:

(a) If par(s) ∩ (Y \ Xi) = ∅ and par(s) ∩ Xi |= ϕs, then set s ∈ Xi+1.

3. If Xi+1 = Xi = X then return “Yes”.

4. If Xi+1 = Xi (X then return “No”.

5. If Xi+1 6⊆ X then return “No”.

6. Increment i and go to step 2.

Overall, the loop between steps 2 and 6 is executed at most |S| times, since Xi ⊆ Xi+1 for all i ∈ N

and we can add at most all statements one by one. In each execution of the loop, step 2a is executed |S|
times. The conditions of step 2a, in particular par(s) ∩ Xi |= ϕs, can be verified in polynomial time.

It remains to show that X is the least fixpoint of G ′D(·, Y) iff the procedure returns “Yes”.

“if”: Assume the procedure returned “Yes” on input D, X, Y.

• X is a fixpoint of G ′D(·, Y), that is, G ′D(X, Y) = X:
“⊆”: Let s ∈ G ′D(X, Y). Then there is a B ⊆ X ∩ par(s) such that Cs(B) = t and

par(s) \ B ⊆ S \Y. As in the proof of Proposition 4.6, we get that B = X ∩ par(s),
Cs(par(s) ∩ X) = t and par(s) ∩ (Y \ X) = ∅. Since the procedure answered “Yes”,
there was an i ∈N with Xi+1 = Xi = X. From step 2a of the procedure, we know that
par(s) ∩ (Y \ Xi) = ∅ and Cs(par(s) ∩ Xi) = t means that s ∈ Xi+1 = X.

“⊇”: Let s ∈ X. Since the procedure answered “Yes”, there was an i ∈N with
Xi+1 = Xi = X. Now s ∈ Xi+1 by step 2a of the procedure means that
par(s) ∩ (Y \ Xi) = ∅ and Cs(par(s) ∩ Xi) = t. Thus there exists a B = par(s) ∩ X
with Cs(B) = t and par(s) \ B ⊆ S \Y, and s ∈ G ′D(X, Y).

4.2. General ADFs 87

• X is the least fixpoint: Assume to the contrary that there is some X′ (X that is a fixpoint of
G ′D(·, Y). But then step 4 of the procedure would have detected Xi+1 = Xi = X′ (X and
returned “No”, contradiction.

“only if”: Let X be the least fixpoint of G ′D(·, Y) and assume to the contrary that the procedure answered
“No”.

• The procedure answered “No” in step 4. By the argument above, we can show that there is
a fixpoint X′ (X, contradiction.

• The procedure answered “No” in step 5. We have Xi+1 6⊆ X for some i ∈N, that is,
there is some s ∈ Xi+1 with s /∈ X. Since s ∈ Xi+1, we have par(s) ∩ (Y \ Xi) = ∅ and
Cs(par(s) ∩ Xi) = t. Since the procedure did not terminate with Xi already, we know
that Xi ⊆ X. Therefore, par(s) ∩ (Y \ X) = ∅ and Cs(par(s) ∩ X) = t. This means
s ∈ G ′D(X, Y) = X. Contradiction. 2

In particular, the procedure can decide whether Y is the least fixpoint of G ′D(·, Y), that is,
whether (Y, Y) is a two-valued stable model of GD. This yields the next result.

Theorem 4.35. 1. VerGstm is in P, and

2. ExistsGstm is NP-complete.

Proof. Let D be an ADF and X ⊆ S.

1. We have to verify that X is the least fixpoint of the operator G ′D(·, X), which can be done in
polynomial time by Proposition 4.34.

2. Deciding whether D has an approximate two-valued stable model is NP-complete:

in NP: To decide whether D has an approximate two-valued stable model, we guess a set X ⊆ S
and verify as above that (X, X) is indeed a two-valued stable model of GD.

NP-hard: Carries over from AFs. 2

The hardness direction of the second part is clear since the respective result from stable se-
mantics of abstract argumentation frameworks carries over.

Brewka et al. (2013) showed that VerUstm is in DP (Proposition 8). We can improve that upper
bound to coNP: basically the operator for the upper bound (contributing the NP part) is not
really needed. We furthermore also provide a hardness proof for coNP.

Proposition 4.36. VerUstm is coNP-complete.

Proof. in coNP: Given an ADF D = (S, L, C) and a set M ⊆ S we first construct the reduct DM in
polynomial time. Now M is an ultimate two-valued stable model of D iff all statements in M are
true in the grounded semantics of DM and (M, M) is a model of D. Verifying if a statement is
true in the ultimate grounded pair of an ADF is coNP-complete due to Proposition 4.31. Thus
verifying that all statements in M are true in the ultimate grounded pair is likewise a problem in
coNP. Verifying if (M, M) is a model of D can be achieved in polynomial time. This means that
VerUstm is in coNP.

88 Chapter 4. Computational Complexity

coNP-hard: Let ψ be a propositional formula over a vocabulary P. We define an ADF D over statements
P with ϕp = ψ for all p ∈ P. When we apply U ′D to the pair (∅, P), there are only two possible

outcomes: either ψ = ψ(∅,P) = ϕ
(∅,P)
p is a tautology, then p ∈ U ′D(∅, P) for all p ∈ P, that is

U ′D(∅, P) = P; otherwise ψ is refutable and accordingly U ′D(∅, P) = ∅. Furthermore, in the
former case it follows from ≤i-monotonicity of UD that P = U ′D(∅, P) ⊆ U ′D(P, P). Thus ψ is a
tautology if and only if P is a fixpoint of U ′D(·, P) and ∅ is not. Now

P is an ultimate two-valued stable model of D

iff P is the least fixpoint of U ′D(·, P)

iff U ′D(∅, P) = P = U ′D(P, P)
iff ψ is a tautology 2

We now turn to the credulous and sceptical reasoning problems for the two-valued se-
mantics. We first recall that a two-valued pair (X, X) is a supported model (or model for
short) of an ADF D iff GD(X, X) = (X, X). Thus it could equally well be characterised by the
two-valued operator by saying that X is a model iff GD(X) = X. Now since UD is the ultimate
approximation of GD, also UD(X, X) = (X, X) in this case. Rounding up, this recalls that ap-
proximate and ultimate two-valued supported models coincide. Hence we get the following
results for reasoning with this semantics.

Corollary 4.37. Consider any I ∈ {G,U}. CredImod is NP-complete and ScepImod is coNP-complete.

Proof. The membership parts are clear since VerImod is in P. Hardness carries over from AFs (Dimo-
poulos and Torres, 1996). 2

For the approximate two-valued stable semantics, the fact that model verification can be
decided in polynomial time leads to the next result.

Corollary 4.38. CredGstm is NP-complete and ScepGstm is coNP-complete.

Proof. The membership parts are clear since VerGstm is in P. Hardness carries over from AFs (Dimopoulos
and Torres, 1996). 2

For the ultimate two-valued stable semantics, things are bit more complex. The follow-
ing result was already presented by Brewka et al. (2013), however they had to leave out the
proof due to space restrictions. We present the proof (following the proof of Theorem 6.12 by
Denecker et al., 2004) here for completeness and since we will need it later on.

Theorem 4.39. ExistsUstm is ΣP
2 -complete.

Proof. Let D = (S, L, C) be an ADF. For membership, we first guess a set M ⊆ S. We can verify in
polynomial time that M is a two-valued supported model of D, and compute the reduct DM. Using the
NP oracle, we can compute the grounded semantics (K′, K′′) of the reduct in polynomial time. It then
only remains to check K′ = M.

For hardness, we provide a reduction from the ΣP
2 -complete problem of deciding whether a QBF2,∃-

formula is valid. Let ∃P∀Qψ be an instance of QBF2,∃-TRUTH where ψ is in DNF and P, Q 6= ∅. We
have to construct an ADF D such that D has a stable model iff ∃P∀Qψ is true.

First of all, define -P = {-p | p ∈ P} for abbreviating the negations of p ∈ P. For guessing an
interpretation for P, define the acceptance formulas ϕp = ¬-p and ϕ-p = ¬p for p ∈ P. Define ψ′ as
the formula ψ[¬p/-p] where all occurrences of ¬p have been replaced by -p. Further add a statement

4.2. General ADFs 89

z with ϕz = ¬z ∧ ¬ψ′, an integrity constraint that ensures truth of ψ′ in any model. For q ∈ Q we
set ϕq = ψ′. Thus we get the statements S = P ∪ -P ∪Q ∪ {z}. We have to show that D has a stable
model iff ∃P∀Qψ is true.

“if”: Let MP ⊆ P be such that the following formula over vocabulary Q is a tautology:

φ = ψ(MP ,MP∪Q)

We now construct a stable model M = MP ∪Q ∪ {-p ∈ -P | p /∈ MP}. We first show that M
is a model of D: For each p ∈ MP, we have -p /∈ M by definition and hence M |= ϕp = ¬-p.
Conversely, if p /∈ MP then -p ∈ M and M |= ϕ-p = ¬p. For q ∈ Q, we have that ϕq = ψ′ and
so we have to show M |= ψ′. This is however immediate since φ (the partial evaluation of ψ with
M as interpretation for P) is a tautology. Finally, by definition z /∈ M, and since M |= ψ′ we get
M 6|= ϕz = ¬z ∧ ¬ψ′ as required.
To show that M is a stable model, we have to show that all statements in M are true in the
ultimate Kripke-Kleene semantics of the reduct DM. The reduct is given by DM = (M, LM, CM)
with

ϕp = ¬⊥ for p ∈ M

ϕ-p = ¬⊥ for -p ∈ M

ϕq = ψ′(∅,M)

The computation of the Kripke-Kleene semantics starts with (∅, M) and leads to the first revision
(K′0, K′′0) = UD(∅, M). Since the acceptance condition of any p, -p ∈ M is tautological, we have
p, -p ∈ K′0, that is, the statements p, -p ∈ M are considered true. For the next step, the acceptance
formula of any q ∈ Q can thus be simplified to

ϕ
(M\Q,M)
q =

(
ψ′(∅,M)

)(M\Q,M)

= ψ′(M\Q,M)

= ψ′[p/⊥ : p /∈ M, -p/⊥ : -p /∈ M, p/> : p ∈ M, -p/> : -p ∈ M],

a formula over Q that is equivalent to φ = ψ(MP ,MP∪Q). By presumption, φ is a tautology.
Hence at this point all acceptance formulas partially evaluated by (K′0, K′′0) are tautologies and
thus UD(K′0, K′′0) = (M, M), which has already been shown to be a fixpoint of UD.

“only if”: Let M ⊆ S be an ultimate two-valued stable model of D. We have to show that ∃P∀Qψ is
true. Define MP = M ∩ P and φ = ψ(MP ,MP∪Q). We show that φ is a tautology.
First of all, since M is a model of DM we have z /∈ M: assume to the contrary that z ∈ M,
then M is a model for ϕz = ¬z ∧ ¬ψ′ ≡ ⊥∧ ¬ψ′, contradiction. Hence M 6|= ¬z ∧ ¬ψ′, that
is, M 6|= ¬ψ′. This shows that M |= ψ′, that is, M |= ϕq for all q ∈ Q, whence Q ⊆ M. Thus
the evaluation of p ∈ P and -p ∈ -P defined by M shows the truth of the formula

ψ′(M,M) = ψ′[p/> : p ∈ M, -p/> : -p ∈ M, p/⊥ : p /∈ M, -p/⊥ : -p /∈ M][q/> : q ∈ Q]

Now since M is a stable model of D, the pair (M, M) is the ultimate grounded semantics of the
reduct DM as above. To show that φ is a tautology, assume to the contrary that φ is refutable.
As observed in the “if” part, φ is equivalent to the formula ϕ

(M\Q,M)
q . Thus also ϕq is refutable,

whence q /∈ U ′DM
(∅, M) for all q ∈ Q and U ′DM

(∅, M) = M \Q. Furthermore we know that

U ′′DM
(∅, M) = M. Now ϕ

(M\Q,M)
q is refutable and thus UDM (M \Q, M) = (M \Q, M). Since

Q 6= ∅, we find that (M, M) is not the least fixpoint of UDM . Contradiction. 2

90 Chapter 4. Computational Complexity

The hardness reduction in this proof makes use of a statement z that is false in any ultimate
two-valued stable model. This can be used to show the same hardness for the credulous
reasoning problem for this semantics: we introduce a new statement x that behaves just like
¬z, then x is true in some model if and only if there exists a model.

Proposition 4.40. The problem CredUstm is ΣP
2 -complete.

Proof. in ΣP
2 : Let D be an ADF and s ∈ S. We can guess a set X ⊆ S with s ∈ X and verify in coNP

that it is an ultimate two-valued stable model.

ΣP
2 -hard: Let ∃P∀Qψ be a QBF. We use the same ADF construction as in the hardness proof of

ExistsUstm and augment D by an additional statement x with ϕx = ¬z. It is clear that in any
model of D, z must be false and so x must be true. So x is true in some two-valued stable model
of D iff D has a two-valued stable model iff ∃P∀Qψ is true. 2

A similar argument works for the sceptical reasoning problem: Given a QBF ∀P∃Qψ, we
construct its negation ∃P∀Q¬ψ, whose associated ADF D has an ultimate two-valued stable
model (where z is false) iff ∃P∀Q¬ψ is true iff the original QBF ∀P∃Qψ is false. Hence ∀P∃Qψ
is true iff z is true in all ultimate two-valued stable models of D.

Proposition 4.41. The problem ScepUstm is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be an ADF and s ∈ S. To decide the co-problem, we guess a set X ⊆ S with s /∈ X

and verify in coNP that it is an ultimate two-valued stable model.

ΠP
2 -hard: Let ∀P∃Qψ be a QBF with ψ in CNF. Define the QBF ∃P∀Q¬ψ and observe that ¬ψ can

be transformed into DNF in linear time. We use this new QBF to construct an ADF D as we
did in the hardness proof of ExistsUstm. As observed in the proof of Proposition 4.40, the special
statement z is false in all ultimate two-valued stable models of D. To show that ∀P∃Qψ is true
iff z is true in all ultimate two-valued stable models of D, we show that ∀P∃Qψ is false iff D has
an ultimate two-valued stable model where z is false:

∀P∃Qψ is false
iff ¬∀P∃Qψ is true
iff ∃P∀Q¬ψ is true
iff D has an ultimate two-valued stable model
iff D has an ultimate two-valued stable model where z is false. 2

4.2.4 Overview

Table 4.1 below provides a concise overview over the complexity of abstract dialectical frame-
works.

4.2.G
eneralA

D
Fs

91

approximate (G), σ conflict-free naive admissible complete preferred grounded model stable model

VerGσ
NP-c

(Proposition 4.11)
DP-c

(Proposition 4.17)
coNP-c

(Proposition 4.21)
DP-c

(Proposition 4.22)
ΠP

2 -c
(Proposition 4.29)

DP-c
(Theorem 4.23)

in P
(Brewka et al.,
2013, Prop. 5)

in P
(Theorem 4.35)

ExistsGσ
in P

(Proposition 4.19)
in P

(Corollary 4.20)
ΣP

2 -c
(Theorem 4.24)

ΣP
2 -c

(Corollary 4.27)
ΣP

2 -c
(Corollary 4.27)

coNP-c
(Proposition 4.28)

NP-c
(Brewka et al.,
2013, Prop. 5)

NP-c
(Theorem 4.35)

CredGσ
NP-c

(Proposition 4.15)
NP-c

(Corollary 4.16)
ΣP

2 -c
(Proposition 4.30)

ΣP
2 -c

(Proposition 4.30,
Lemma 4.26)

ΣP
2 -c

(Proposition 4.30,
Lemma 4.26)

coNP-c
(Proposition 4.31)

NP-c
(Corollary 4.37)

NP-c
(Corollary 4.38)

ScepGσ trivial ΠP
2 -c

(Proposition 4.18) trivial
coNP-c

(Corollary 4.32)
ΠP

3 -c
(Theorem 4.33)

coNP-c
(Proposition 4.31)

coNP-c
(Corollary 4.37)

coNP-c
(Corollary 4.38)

ultimate (U), σ conflict-free naive admissible complete preferred grounded model stable model

VerUσ
NP-c

(Proposition 4.11)
DP-c

(Proposition 4.17)

coNP-c
(Brewka et al.,
2013, Prop. 10)

DP-c
(Brewka et al.,
2013, Cor. 7)

ΠP
2 -c

(Wallner, 2014,
Proposition 4.1.14)

DP-c
(Brewka et al.,
2013, Thm. 6)

in P
(Brewka et al.,
2013, Prop. 5)

coNP-c
(Proposition 4.36)

ExistsUσ
NP-c

(Proposition 4.12)
NP-c

(Corollary 4.14)
ΣP

2 -c
(Theorem 4.24)

ΣP
2 -c

(Corollary 4.27)
ΣP

2 -c
(Corollary 4.27)

coNP-c
(Proposition 4.28)

NP-c
(Brewka et al.,
2013, Prop. 5)

ΣP
2 -c

(Theorem 4.39)

CredUσ
NP-c

(Proposition 4.15)
NP-c

(Corollary 4.16)

ΣP
2 -c

(Wallner, 2014,
Proposition 4.1.11)

ΣP
2 -c

(Proposition 4.30,
Lemma 4.26)

ΣP
2 -c

(Proposition 4.30,
Lemma 4.26)

coNP-c
(Proposition 4.31)

NP-c
(Corollary 4.37)

ΣP
2 -c

(Proposition 4.40)

ScepUσ trivial ΠP
2 -c

(Proposition 4.18) trivial
coNP-c

(Corollary 4.32)

ΠP
3 -c

(Wallner, 2014,
Theorem 4.1.17)

coNP-c
(Wallner, 2014,

Proposition 4.1.3)

coNP-c
(Corollary 4.37)

ΠP
2 -c

(Proposition 4.41)

Table 4.1: Complexity results for semantics of Abstract Dialectical Frameworks.

92 Chapter 4. Computational Complexity

4.3 Bipolar ADFs

In this section, we take a closer look at the special class of ADFs where all links are supporting
or attacking, and more importantly the specific link type is known for each link. We first note
that since BADFs are a subclass of ADFs, all membership results from the previous sections
immediately carry over. However, we can show that many problems will in fact become easier.
Intuitively, computing the revision operators is now P-easy because the associated satisfiabil-
ity/tautology problems only have to treat restricted acceptance formulas. In bipolar ADFs, by
definition, if in some three-valued pair (X, Y) a statement s is accepted by a revision operator
(s ∈ O′(X, Y)), it will stay so if we set its undecided supporters to false and its undecided
attackers to true. Symmetrically, if a statement is rejected by an operator (s /∈ O′′(X, Y)), it will
stay so if we set its undecided supporters to true and its undecided attackers to false. Hence to
decide whether s ∈ O′(X, Y) or s /∈ O′′(X, Y) for given operator O, pair (X, Y) and statement
s, we need only look at one single interpretation that can be constructed from the known link
types. This is the key idea underlying the next result. Recall that BG and BU are the restric-
tions of the sets of operators G and U respectively to BADFs where the type of each link is
known.

Proposition 4.42. Let I ∈ {BG,BU}.

1. ElemI
′

is in P.

2. ElemI
′′

is in P.

Proof. Let D be a BADF with L = L+ ∪̇ L− (that is, all links are either attacking or supporting),
O ∈ {GD,UD}, s ∈ S and X ⊆ Y ⊆ S. The restriction to bipolar ADFs without redundant statements
is immaterial as such links can be removed and redundant statements be replaced by an arbitrary truth
value constant in the acceptance condition.

It suffices to show the claims for I = BU , as Lemma 4.1 tells us that s ∈ U ′′D (X, Y) iff s ∈ G ′′D(X, Y);
furthermore, due to Proposition 4.6 we know that deciding s ∈ G ′D(X, Y) can be done in P.

The main proof idea is to use the information about link polarities to construct canonical interpret-
ations Z such that deciding the element problem for a three-valued pair (X, Y) can be done by deciding
the element problem for the two-valued pair (Z, Z).

1. Define the canonical interpretation through

Z = X ∪ (attD(s) ∩Y)

Clearly, since the pair (Z, Z) is two-valued, the problem s ∈ U ′D(Z, Z) can be decided in P. It
remains to show that this answers the right question, that is, that s ∈ U ′D(Z, Z) iff s ∈ U ′D(X, Y).

if: Let s ∈ U ′D(X, Y). Then (X, Y) ≤i (Z, Z) implies that UD(X, Y) ≤i UD(Z, Z) whence
s ∈ U ′D(X, Y) ⊆ U ′D(Z, Z).

only if: Let s ∈ U ′D(Z, Z). Then Z |= ϕs and also Z |= ϕ
(X,Y)
s .

Assume to the contrary of what we want to show that s /∈ U ′D(X, Y). Then ϕ
(X,Y)
s is refutable

and there is a Z1 ⊆ S with X ⊆ Z1 ⊆ Y such that Z1 6|= ϕ
(X,Y)
s . Define

Z2 = Z1 ∪ (attD(s) ∩Y)

Clearly Z2 6|= ϕ
(X,Y)
s since all statements in attD(s) ∩Y are attacking. Furthermore X ⊆ Z1

implies by definition that Z ⊆ Z2. It also follows that Z2 \ Z ⊆ supD(s). Thus since
Z |= ϕ

(X,Y)
s , we conclude that Z2 |= ϕ

(X,Y)
s . Contradiction. Therefore s ∈ U ′D(X, Y).

4.3. Bipolar ADFs 93

2. Analogously, we define Z = X ∪ (supD(s) ∩Y) and obtain that s ∈ U ′′D (X, Y) iff s ∈ U ′′D (Z, Z):
The “if” direction is clear, and for the “only if” direction assume to the contrary that
s ∈ U ′′D (X, Y) but s /∈ U ′′D (Z, Z). By this presumption, the formula ϕ(X,Y) is satisfiable, but
Z 6|= ϕ(X,Y). Let Z1 ⊆ S with X ⊆ Z1 ⊆ Y be such that Z1 |= ϕ(X,Y). Now define

Z2 = Z1 ∪ (supD(s) ∩Y)

X ⊆ Z1 implies Z ⊆ Z2 and Z2 \ Z ⊆ attD(s). Thus Z 6|= ϕ(X,Y) yields Z2 6|= ϕ(X,Y). On the
other hand, Z1 |= ϕ(X,Y) and Z2 \ Z1 ⊆ supD(s) whence Z2 |= ϕ(X,Y). Contradiction. 2

Using the generic upper bounds of Theorem 4.8, it is now straightforward to show mem-
bership results for BADFs with known link types.

Corollary 4.43. Let I ∈ {BG,BU}, semantics σ ∈ {adm, com} and τ ∈ {scf , nai}. We find that

• VerIσ , VerIτ and VerIgrd are in P;

• VerIpre is in coNP;

• ExistsIσ , ExistsIpre are in NP;

• CredIτ is in P;

• CredIσ and CredIpre are in NP;

• ExistsIgrd, CredIgrd, ScepIgrd, ScepIcom are in P;

• ScepIpre is in ΠP
2 .

Proof. Membership is due to Theorem 4.8 and the complexity bounds of the operators in BADFs in
Proposition 4.42, just note that ΣP

0 = ΠP
0 = DP

0 = P. VerIgrd is in PP = P by Corollary 4.9. For the
existence of non-trivial pairs we can simply guess and check in polynomial time for admissible pairs and
thus also for complete and preferred semantics. 2

Hardness results straightforwardly carry over from AFs.

Proposition 4.44. Let I ∈ {BG,BU} and semantics σ ∈ {adm, com, pre}.

• VerIpre is coNP-hard;

• ExistsIσ and CredIσ are NP-hard;

• ScepIpre is ΠP
2 -hard.

Proof. Hardness results from AFs for these problems carry over to BADFs as for all semantics AFs
are a special case of BADFs. The complexities of the problems on AFs for admissible and preferred
semantics were shown by Dimopoulos and Torres (1996), except for the ΠP

2 -completeness result of
sceptical preferred semantics, which was shown by Dunne and Bench-Capon (2002). The complete
semantics was studied by Coste-Marquis, Devred, and Marquis (2005). 2

94 Chapter 4. Computational Complexity

4.3.1 Symmetric Conflict-free Semantics

For the semantics based on (symmetric) conflict-freeness, it also becomes P-easy to decide
whether non-trivial interpretations exist. Recall that by Lemma 3.48, any set of symmetric
conflict-free interpretations is ≤i-downward-closed. (That is, whenever (X, Y) is conflict-free
then any (X′, Y′) ≤i (X, Y) is also conflict-free.) This also gives a more intuitive explanation of
why VerInai is in P for I ∈ {BG,BU}: To verify that a conflict-free pair (X, Y) is also naive, we
have to verify that the set of pairs

{(X ∪ {s} , Y), (X, Y \ {s}) | s ∈ Y \ X}

contains no conflict-free pair. This check can be done in polynomial time since there are at
most 2 · |S| elements in this set and VerIscf is in P.

Proposition 4.45. Let I ∈ {BG,BU}. ExistsIscf and ExistsInai are in P.

Proof. We first note that the two decision problems coincide by Lemma 4.13. To decide ExistsIscf for
a given ADF D = (S, L, C), we have to check for each s ∈ S whether any of the pairs ({s} , S) or
(∅, S \ {s}) is conflict-free, which can be done in polynomial time by Corollary 4.43. If one of these
pairs is conflict-free, the answer is yes; if all pairs where exactly one statement is not undecided are not
conflict-free, then there is no non-trivial conflict-free pair. (If there was one, then by Lemma 3.48 there
would be a non-trivial conflict-free pair where exactly one statement is true or false.) 2

For sceptical reasoning amongst naive semantics, we can show that the problem remains
hard even for bipolar ADFs. This is because we can introduce new statements, which allows
us to encode tautology checking of propositional formulas in disjunctive normal form into a
bipolar ADF.

Proposition 4.46. Let I ∈ {BG,BU}. ScepInai is coNP-complete.

Proof. in coNP: To verify that a statement s ∈ S does not follow sceptically, we can guess a pair (X, Y)
with s /∈ X and verify in P that it is naive.

coNP-hard: We reduce from tautology checking. Let ψ = ψ1 ∨ . . . ∨ ψn be a propositional formula in
DNF over vocabulary P. Assume additionally (and without loss of generality) that there is no
disjunct ψi that contains both p and ¬p for some p ∈ P. (If there is such a disjunct, we can
remove it without changing the models of ψ.) We construct a bipolar ADF D = (S, L, C) as
follows:

S = P ∪ {z, d1, . . . , dn}
ϕp = p (p ∈ P)

ϕdi
= ψi (1 ≤ i ≤ n)

ϕz = d1 ∨ . . . ∨ dn

We show that z is contained in all naive pairs of D iff ψ is a tautology.

“if”: Let ψ be a tautology. Given an M ⊆ P, define a set NM as follows:

NM = M ∪ {di | M |= ψi} ∪ {z}

We show that for each M ⊆ P, the pair m̄M = (NM, NM) is naive, and these are the only
naive pairs. We first observe that each such pair is two-valued, and thus the two operators

4.3. Bipolar ADFs 95

(approximate and ultimate) coincide on it, furthermore we need only show conflict-freeness
to show naivety. It is clear that m̄M is conflict-free with respect to all p ∈ P. For 1 ≤ i ≤ n,
conflict-freeness of m̄M with respect to di follows by definition. Since ψ is a tautology, there
is at least one di in each NM, and z ∈ NM is justified. Assume there were another naive pair
(X, Y) with z /∈ X. First of all, each naive pair must constitute a two-valued interpretation
of the statements in P, for otherwise the ≤i-maximality condition would be violated. Now
this enforces a fixed truth value for d1, . . . , dn and thus also for z. As argued above, z ∈ NM
necessarily holds.

“only if”: Let ψ be refutable. Then there is an M ⊆ P such that we find M 6|= ψi for all
1 ≤ i ≤ n. We show that the pair m̄ = (M, M) is naive for approximate and ultimate
operator. Clearly by presumption, for all 1 ≤ i ≤ n we find that ψ

(M,M)
i is a Boolean expres-

sion that evaluates to false, so having di /∈ M in the upper bound of the pair m̄ is justified.
Finally, ϕz = d1 ∨ . . . ∨ dn also evaluates to false, thus justifying z /∈ M. Thus there is a
naive pair (X, Y) = (M, M) with z /∈ X. 2

Notably, this result is the only case in which bipolar ADFs are (potentially) more complex
than AFs, as in the latter sceptical reasoning over naive pairs can be done in polynomial
time (Coste-Marquis et al., 2005).3

4.3.2 Two-valued Semantics

Regarding BADFs and two-valued semantics we first show that there is no hope that the
existence problems for approximate and ultimate two-valued stable models coincide as there
are cases when the semantics differ.

Example 4.4. Consider the BADF D = (S, L, C) with statements S = {a, b, c} and acceptance
formulas ϕa = >, ϕb = a ∨ c and ϕc = a ∨ b. The only two-valued supported model is (S, S)
where all statements are true. This pair is also an ultimate two-valued stable model, since
U ′D(∅, S) = {a}, and both ϕ

({a},S)
b = >∨ c and ϕ

({a},S)
c = >∨ b are tautologies, whence we

have U ′D({a} , S) = S. However, (S, S) is not an approximate two-valued stable model: al-

though G ′D(∅, S) = {a}, then G ′D({a} , S) = {a} since the partially evaluated formulas ϕ
({a},S)
b

and ϕ
({a},S)
c contain propositional variables. We thus cannot reconstruct the upper bound S

and D has no approximate two-valued stable models. 3

So approximate and ultimate two-valued stable model semantics are indeed different.
However, we can show that the respective existence problems have the same complexity.

Proposition 4.47. Let I ∈ {BG,BU} and semantics σ ∈ {mod, stm}. VerIσ is in P; ExistsIσ is NP-
complete.

Proof. Membership carries over – for supported models from Proposition 5 of Brewka et al. (2013), for
approximate stable models from Theorem 4.35. For membership for ultimate stable models, we can use
Proposition 4.42 to adapt the decision procedure of Proposition 4.34. In any case, hardness carries over
from AFs (Dimopoulos and Torres, 1996). 2

3To check whether an argument a is sceptically accepted for naive semantics, we only have to check whether all its
attackers are self-attacking: if there is a b that attacks a and is not self-attacking, then the set {b} is conflict-free, thus
there exists a naive set N ⊇ {b} with a /∈ N.

96 Chapter 4. Computational Complexity

For credulous and sceptical reasoning over the two-valued semantics, membership is
straightforward and hardness again carries over from argumentation frameworks.

Corollary 4.48. Let I ∈ {BG,BU} and semantics σ ∈ {mod, stm}. CredIσ is NP-complete; ScepIσ is
coNP-complete.

4.3.3 Overview

4.3.Bipolar
A

D
Fs

97
I ∈ {BG,BU}, σ conflict-free naive admissible complete preferred grounded model stable model

VerIσ
in P

(Corollary 4.43)
in P

(Corollary 4.43)
in P

(Corollary 4.43)
in P

(Corollary 4.43)

coNP-c
(Corollary 4.43,

Proposition 4.44)

in P
(Corollary 4.43)

in P
(Proposition 4.47)

in P
(Proposition 4.47)

ExistsIσ
in P

(Proposition 4.45)
in P

(Proposition 4.45)

NP-c
(Corollary 4.43,

Proposition 4.44)

NP-c
(Corollary 4.43,

Proposition 4.44)

NP-c
(Corollary 4.43,

Proposition 4.44)

in P
(Corollary 4.43)

NP-c
(Proposition 4.47)

NP-c
(Proposition 4.47)

CredIσ
in P

(Corollary 4.43)
in P

(Corollary 4.43)

NP-c
(Corollary 4.43,

Proposition 4.44)

NP-c
(Corollary 4.43,

Proposition 4.44)

NP-c
(Corollary 4.43,

Proposition 4.44)

in P
(Corollary 4.43)

NP-c
(Corollary 4.48)

NP-c
(Corollary 4.48)

ScepIσ trivial
coNP-c

(Proposition 4.46) trivial
in P

(Corollary 4.43)

ΠP
2 -c

(Corollary 4.43,
Proposition 4.44)

in P
(Corollary 4.43)

coNP-c
(Corollary 4.48)

coNP-c
(Corollary 4.48)

Table 4.2: Complexity results for semantics of bipolar Abstract Dialectical Frameworks.

98 Chapter 4. Computational Complexity

4.4 Conclusion

In this chapter we studied the computational complexity of abstract dialectical frameworks
using approximation fixpoint theory. We showed numerous novel results for two families of
ADF semantics, the approximate and ultimate semantics, which are themselves inspired by
argumentation and AFT. We showed that in most cases the complexity increases by one level
of the polynomial hierarchy compared to the corresponding reasoning tasks on AFs. Notable
differences between the two families of semantics lie in the stable model semantics and in
semantics based on symmetric conflict-freeness, where the approximate version is easier than
its ultimate counterpart. For the restricted, yet powerful class of bipolar ADFs we proved that
for the corresponding reasoning tasks AFs and BADFs have (almost) the same complexity,
with the single exception of sceptical reasoning among (symmetric) naive pairs. This suggests
that many types of relations between arguments can be introduced without increasing the
worst-time complexity. On the other hand, our results again emphasise that arbitrary (non-
bipolar) ADFs cannot be compiled into equivalent Dung AFs in deterministic polynomial time,
unless the polynomial hierarchy collapses to the first level. Under the same assumption, ADFs
cannot be implemented directly with methods that are typically applied to AFs, for example
answer-set programming (Egly et al., 2010).

Our results on the complexity of bipolar ADFs led to our extending the ADF system dia-
mond (Ellmauthaler and Strass, 2014, 2016) with specialised implementation techniques for
bipolar ADFs. In the future, we also plan to accommodate the approximate semantics family
into diamond. In another direction of work, QBF encodings for general ADFs were developed
and implemented in the system qadf (Diller, Wallner, and Woltran, 2015). For further future
work several promising directions are possible. Studying easier fragments of ADFs as well as
parameterised complexity analysis can lead to efficient decision procedures, as is witnessed for
AFs (Dvořák, Järvisalo, Wallner, and Woltran, 2014; Dvořák, Ordyniak, and Szeider, 2012). We
also deem it auspicious to use alternative representations of acceptance conditions, for instance
by employing techniques from knowledge compilation (Darwiche and Marquis, 2002).

In recent related work, Gaggl et al. (2015) analysed the computational complexity of naive-
based ADF semantics as defined by Gaggl and Strass (2014), that is, based on the asymmetric
version of conflict-freeness applied to the ultimate approximation operator. A detailed com-
parison of the two types of semantics and their respective complexities is left for future work.
A complexity analysis of other useful AF semantics would also reveal further insights, for
example semi-stable semantics (Verheij, 1996; Caminada, Carnielli, and Dunne, 2012) or ideal
semantics (Dung, Mancarella, and Toni, 2007; Dunne, 2009; Booth, 2015). Furthermore, Pol-
berg, Wallner, and Woltran (2013) and Polberg (2014, 2016) proposed several extension-based
semantics for ADFs, and a complexity analysis would be interesting.

For semantical analysis, it would be useful to consider principle-based evaluations for
ADFs (Baroni and Giacomin, 2007). Furthermore it appears natural to compare (ultimate) ADF
semantics and ultimate logic programming semantics (Denecker et al., 2004) in approximation
fixpoint theory, in particular with respect to computational complexity. Finally, we could ap-
ply the general operator splitting results of Vennekens, Gilis, and Denecker (2006) to abstract
argumentation and compare them to the stand-alone results obtained for AFs (Baumann, 2011)
and ADFs (Linsbichler, 2014).

99

Chapter 5

Relative Expressiveness and
Succinctness

More often than not, different knowledge representation languages have conceptually similar
and partially overlapping intended application areas. What are we to do if faced with an
application and a choice of several possible knowledge representation languages that could
be used for the application? One of the first axes along which to compare different formal-
isms that comes to mind is computational complexity: if a language is computationally too
expensive when considering the problem sizes typically encountered in practice, then this is
a clear criterion for exclusion. But what if the available language candidates have the same
computational complexity? If their expressiveness in the computational-complexity sense of
“What kinds of problems can the formalism solve?” is the same, we need a more fine-grained
notion of expressiveness. In this chapter, we use such a notion and study the expressiveness of
abstract dialectical frameworks, the generalisation of abstract argumentation frameworks that
is the main object of study of this thesis.

Argumentation frameworks are the de-facto standard formalism in abstract argumentation,
a field that studies how (abstract) arguments relate to each other in terms of directed conflicts
(“attacks”), and how these conflicts can be resolved without “looking into” the arguments.
While AFs are popular and well-studied, it has been noted many times in the literature that
their expressive capabilities are somewhat limited. This has only recently been made technic-
ally precise by Dunne, Dvořák, Linsbichler, and Woltran (2014, 2015), who basically showed
that introducing new, purely technical arguments is sometimes inevitable when using AFs
for knowledge representation purposes. However, due to their very nature, the dialectical
meaning of such technical arguments might be – ironically – debatable.

Not surprisingly, quite a number of generalisations of AFs have been proposed (for an
overview we refer to the work of Brewka et al., 2014). As one of the most general AF altern-
atives, ADFs have emerged. ADFs could be called the lovechild of AFs and logic programs,
since they combine intuitions and semantics from Dung-style abstract argumentation as well
as logic programming (Brewka et al., 2013; Alviano and Faber, 2015; see also Chapter 3 of
this thesis). While on the abstract level, ADFs are intended to function as “argumentation
middleware” – a sufficiently expressive target formalism for translations from more concrete
(application) formalisms.

In this chapter, we approach abstract dialectical frameworks as knowledge representation
formalisms, since they are used to represent knowledge about arguments and relationships
between these arguments. We employ this view to analyse the representational capabilities

100 Chapter 5. Relative Expressiveness and Succinctness

of ADFs. Due to their roots in AFs and normal logic programs, we also compare the repres-
entational capabilities of those formalisms in the same setting. In this initial study we restrict
ourselves to looking at two-valued semantics, more specifically the ADF (stable) model se-
mantics, which corresponds to AF stable extension semantics, and the supported and stable
model semantics for normal logic programs. We add propositional logic to have a well-known
reference point. Analysing these precise formalisms additionally makes sense to us because
the computational complexity of their respective model existence problems is the same (with
one exception):

• for AFs, deciding stable extension existence is NP-complete (Dimopoulos et al., 2002);

• for normal logic programs, deciding the existence of supported/stable models is NP-
complete (Bidoit and Froidevaux, 1991; Marek and Truszczyński, 1991);

• for ADFs, deciding the existence of (supported) models is NP-complete, deciding the
existence of stable models is ΣP

2 -complete for general ADFs and NP-complete for the
subclass of bipolar ADFs (Chapter 4);

• the propositional satisfiability problem is NP-complete (Papadimitriou, 2003; Arora and
Barak, 2009).

In view of these almost identical complexities, we use an alternative measure of the ex-
pressiveness of a knowledge representation formalism F : “Given a set of two-valued inter-
pretations, is there a knowledge base in F that has this exact model set?” This notion has
been introduced by Gogic, Kautz, Papadimitriou, and Selman (1995) and lends itself straight-
forwardly to compare different formalisms:

Formalism F2 is at least as expressive as formalism F1 if and only if every know-
ledge base in F1 has an equivalent knowledge base in F2.

So here expressiveness is understood in terms of realisability, “What kinds of model sets can
the formalism express?” (In model theory, this is known as definability.)

It is easy to see that propositional logic can express any set of two-valued interpretations,
it is universally expressive. The same is easy (but less easy) to see for normal logic programs
under supported model semantics. For normal logic programs (NLPs) under stable model
semantics, it is clear that not all model sets can be expressed, since two different stable models
are always incomparable with respect to the subset relation. For canonical logic programs
(CLPs, where we allow nested expressions of the form “not not p” in rule bodies; Lifschitz,
Tang, and Turner, 1999), expressiveness again jumps up to all interpretation sets (Lifschitz and
Razborov, 2006). In this chapter, we study such expressiveness properties for all the mentioned
formalisms under different semantics. It turns out that the languages form a more or less
strict expressiveness hierarchy, with AFs at the bottom, ADFs and normal LPs under stable
semantics higher up and ADFs, normal LPs under supported model semantics, and canonical
LPs at the top together with propositional logic.

To show that a language F2 is at least as expressive as a language F1 we will mainly
use two different techniques. In the best case, we can use a syntactic compact and faithful
translation from knowledge bases of F1 to those of F2. Compact means that the translation
does not change the vocabulary, that is, does not introduce new atoms. Faithful means that the
translation exactly preserves the models of the knowledge base for respective semantics of the
two languages. In the second best case, we assume the knowledge base of F1 to be given in
the form of a set X of desired models and construct a semantic realisation of X in F2, that is,
a knowledge base in F2 with model set precisely X. To show that language F2 is strictly more

Chapter 5. Relative Expressiveness and Succinctness 101

expressive than F1, we additionally have to present a knowledge base kb from F2 of which we
prove that F1 cannot express the model set of kb.

Analysing the expressiveness of argumentation formalisms is a quite recent strand of work.
Its ascent can be attributed to Dunne et al. (2014, 2015), who studied realisability for argument-
ation frameworks (allowing to introduce new arguments as long as they are never accepted).
Likewise, Dyrkolbotn (2014) analysed AF realisability under projection (allowing to introduce
new arguments) for three-valued semantics. Baumann et al. (2014, 2016) studied the express-
iveness of the subclass of “compact” AFs, where each argument is accepted at least once.
Finally, Pührer (2015) analysed the realisability of three-valued semantics for ADFs. Previous
more preliminary works include that of Brewka et al. (2011), who translated ADFs into AFs for
the ADF model and AF stable extension semantics, albeit that translation introduces additional
arguments and is therefore not compact.

The gain that is achieved by our analysis in this chapter is not only one of increased clarity
about fundamental properties of these knowledge representation languages – What can these
formalisms express, actually? – but has several further applications. As Dunne et al. (2015) re-
marked, a major application is in constructing knowledge bases with the aim of encoding a
certain model set. As a necessary prerequisite to this, it must be known that the intended
model set is realisable in the first place. For example, in a recent approach to revising ar-
gumentation frameworks (Coste-Marquis, Konieczny, Mailly, and Marquis, 2014), the authors
avoid this problem by assuming to produce a collection of AFs whose model sets in union pro-
duce the desired model set. While the work of Dunne et al. (2015) showed that this is indeed
necessary in the case of AFs and stable extension semantics, our work shows that for ADFs
under the model semantics, a single knowledge base (ADF) is always enough to realise any
given model set. What is more, if we assume that the intended model set is given in the form
of a propositional formula, then the size of the realising ADF is at most linear in the size of
the formula. This is only one example – we will on several occasions also consider the sizes of
realisations, as is not uncommon in logic-based AI (Darwiche and Marquis, 2002; Lifschitz and
Razborov, 2006; French, van der Hoek, Iliev, and Kooi, 2013; Shen and Zhao, 2014). Indeed,
representation size is a fundamental practical aspect of knowledge representation languages:
universal expressiveness is of little use if the model sets to express require exponential-size
knowledge bases even in the best case!

Of course, the fact that the languages we study have the same computational complexity
means that there in principle exist polynomial intertranslations for the respective decision
problems. But such intertranslations may involve the introduction of a polynomial number
of new atoms. In theory, an increase from n atoms to nk atoms for some k > 1 is of no
consequence. In practice, it has a profound impact: the number n of atoms directly influences
the search space that any implementation potentially has to cover. There, a step from 2n to

2nk
= 2nk−1n =

(
2nk−1

)n

amounts to an exponential increase in search space size. Being able to realise a model set
compactly, without new atoms, therefore attests that a formalism F has a certain basic kind of
efficiency property, in the sense that the F -realisation of a model set does not unnecessarily
enlarge the search space of algorithms operating on it.

It might seem that it is a restricting assumption to view formalisms as sets F of know-
ledge bases kb where F is associated with a two-valued semantics. However, this language
representation model is universal in the sense that it is just another way of expressing lan-
guages as sets of words over {0, 1}. Using an n-element vocabulary An = {a1, . . . , an}, a bin-
ary word w = x1x2 · · · xn of length n is encoded as the set Mw = {ai ∈ An | xi = 1} ⊆ An.

102 Chapter 5. Relative Expressiveness and Succinctness

For example, using the vocabulary A3 = {a1, a2, a3}, the binary word 101 of length 3 cor-
responds to the set M101 = {a1, a3}. Consequently, a set Ln of words of length n can
be represented by a set XLn ⊆ 2An of subsets of An: XLn = {Mw | w ∈ Ln}. With the
above example vocabulary, the word set L3 = {101, 110, 011} is represented by the model
set XL3 = {{a1, a3} , {a1, a2} , {a2, a3}}. Conversely, each sequence (Xn)n≥0 of sets with
Xn ⊆ 2An uniquely determines a language L =

⋃
n≥0 Ln over {0, 1}: for each n ∈N, we have

Ln = {wM | M ∈ Xn} with wM = x1x2 · · · xn where for each i ∈ {1, . . . , n}, xi = 1 if ai ∈ M
and xi = 0 if ai /∈ M. In this chapter we use “language” to refer to object-level languages,
while “formalism” refers to meta-level languages such as propositional logic, argumentation
frameworks, abstract dialectical frameworks, and logic programs.

Formally, the syntax of ADFs is defined via Boolean functions. However, we are interested
in representations of ADFs. So we have to fix a representation of ADFs via fixing a repres-
entation of Boolean functions. We choose to use (unrestricted) propositional formulas, as is
customary in most of the literature (Brewka and Woltran, 2010; Brewka et al., 2013; Polberg
et al., 2013; Polberg, 2014; Gaggl and Strass, 2014; Linsbichler, 2014; Strass and Wallner, 2015;
Pührer, 2015; Gaggl et al., 2015; Strass, 2015a; Strass, 2015b). Exceptions to this custom are the
works of Brewka et al. (2011), who use Boolean circuits, and one of ours (Strass, 2013) where
we used characteristic models (that is, used a representation that is equivalent to representing
the formulas in disjunctive normal form). For the subclass of bipolar ADFs, yet no uniform
representation exists, which is another question we address in this chapter.

By propositional formulas over a vocabulary A we mean formulas over the Boolean basis
{∧,∨,¬}, that is, trees whose leaves (sinks) are atoms from A or the logical constants true > or
false ⊥, and internal nodes are either unary (¬) or binary (∧,∨). We also make occasional use
of Boolean circuits, where “trees” above is replaced by “directed acyclic graphs”; in particular,
we allow unbounded fan-in, that is, reusing sub-circuits. As usual, the depth of a formula
(circuit) is the length of the longest path from the root to a leaf (sink). Figure 5.1 below shows
formula and circuit examples of depth 3.

∨

∧ ∧

p

¬

q q

¬

p

∨

∧ ∧

¬

q

¬

p

Figure 5.1: Representing (p ∧ ¬q) ∨ (q ∧ ¬p) as a formula tree (left) and a circuit (right).

Analysing the expressive power and representation size of Boolean circuits is an established
sub-field of computational complexity (Arora and Barak, 2009; Jukna, 2012). This has led to a
number of language classes whose members can be recognised by Boolean circuits satisfying
certain restrictions. We will need the class AC0, which contains all languages L =

⋃
n≥0 Ln for

which there exist d, k ∈N such that for each n ∈N, there exists a Boolean circuit Cn of depth
at most d and size at most nk where the models of Cn exactly express Ln.1 In other words,
every language L ∈ AC0 can be recognised by a family of polynomial-size Boolean circuits of
a fixed maximal depth that is independent of word length.

1To be more precise, for each n ∈N, the models of Cn are exactly XLn , which in turn expresses Ln.

5.1. Background on Relative Expressiveness 103

The chapter proceeds as follows. We first define the notion of expressiveness (and suc-
cinctness) formally and then introduce the formalisms we will study. After reviewing several
intertranslatability results for these languages, we step-wise obtain the results that lead to the
expressiveness hierarchy, while at times also looking at representational efficiency. We finally
show that allowing to linearly expand the vocabulary leads to a collapse of the hierarchy. The
chapter concludes with a discussion of possible future work.

5.1 Background on Relative Expressiveness

We presume a finite set A of atoms (statements, arguments), the vocabulary. A knowledge
representation formalism interpreted over A is then some set F ; a (two-valued) semantics
for F is a mapping σ : F → 22A

that assigns sets of two-valued models to knowledge bases
kb ∈ F . (So A is implicit in σ.) Strictly speaking, a two-valued interpretation is a mapping from
the set of atoms into the two truth values true and false, but for technical ease we represent
two-valued interpretations by the sets containing the atoms that are true. Below, we write
σ(F) = {σ(kb) | kb ∈ F}; intuitively, σ(F) is the set of interpretation sets that formalism F
can express, with any knowledge base whatsoever. For example, for F = PL propositional
logic and σ = mod the usual model semantics, we have σ(PL) = 22A

since obviously any set
of models is realisable in propositional logic.2 This leads us to compare different pairs of
languages and semantics with respect to the semantics’ range of models. Our concept of
“formalism” concentrates on semantics and decidedly remains abstract. We first define the
expressiveness relation among formalisms.

Definition 5.1. Let A be a finite vocabulary, F1,F2 be formalisms that are interpreted over A
and σ1 : F1 → 22A

and σ2 : F2 → 22A
be two-valued semantics. We define

Fσ1
1 ≤e Fσ2

2 iff σ1(F1) ⊆ σ2(F2) 3

Intuitively, formalism F2 under semantics σ2 is at least as expressive as formalism F1 under
semantics σ1, because all model sets that F1 can express under σ1 are also contained in those
that F2 can produce under σ2. (If the semantics are clear from the context we will omit them;
this holds in particular for argumentation frameworks and propositional logic, where we only
look at a single semantics.) As usual,

• F1 <e F2 iff F1 ≤e F2 and F2 6≤e F1;

• F1
∼=e F2 iff F1 ≤e F2 and F2 ≤e F1.

The relation ≤e is reflexive and transitive by definition, but not necessarily antisymmetric.
That is, there might different formalisms F1 6= F2 that are equally expressive, i.e. F1

∼=e F2.
We next introduce the succinctness relation as defined by Gogic et al. (1995).

Definition 5.2. Let A be a finite vocabulary; let F1 and F2 be formalisms that are inter-
preted over A, have size measures ‖·‖1 and ‖·‖2, and two-valued semantics σ1 and σ2, re-
spectively. Define Fσ1

1 ≤s Fσ2
2 if and only if there is a k ∈N such that for all kb1 ∈ F1 with

σ1(kb1) ∈ σ1(F1) ∩ σ2(F2), there is a kb2 ∈ F2 with σ1(kb1) = σ2(kb2) and ‖kb2‖2 ≤ ‖kb1‖k
1. 3

2For a set X ⊆ 2A we can simply define ϕX =
∨

M∈X ϕM with ϕM =
∧

a∈M a ∧∧a∈A\M ¬a and clearly mod(ϕX) = X.

104 Chapter 5. Relative Expressiveness and Succinctness

Intuitively, Fσ1
1 ≤s Fσ2

2 means that F2 under σ2 is at least as succinct as F1 under σ1. Put
another way, for Fσ1

1 ≤s Fσ2
2 to hold, any knowledge base from F1 with an equivalent coun-

terpart in F2 must have an equivalent counterpart that is at most polynomially larger. Note that
succinctness talks only about those model sets that both can express, so it is most meaningful
when comparing languages that are equally expressive, that is, whenever σ1(F1) = σ2(F2).
As usual, we define F1 <s F2 iff F1 ≤s F2 and F2 6≤s F1, and F1

∼=s F2 iff F1 ≤s F2 and
F2 ≤s F1. The relation ≤s is reflexive, but not necessarily antisymmetric or transitive.

The final general definition is about formalisms polynomially expressing languages. Here,
we already make use of the previously introduced bijection between interpretations and binary
words and use the term “languages” to synonymously refer to both.

Definition 5.3. A formalism F can polynomially express a language L =
⋃

n≥0 Ln under se-
mantics σ : F → 22A

if and only if there is a k ∈N such that for each positive n ∈N there is a
knowledge base kbn ∈ F of that formalism such that σ(kbn) = Ln and ‖kbn‖ ∈ O(nk). 3

We next introduce some specific object-level languages that we will use. First of all,
the language Parity contains all odd-element subsets of the vocabulary. Formally, for
An = {a1, . . . , an} with n ≥ 1 we have

Parityn = {M ⊆ An | ∃m ∈N : |M| = 2m + 1}

As explained before, then Parity =
⋃

n∈N,n≥1 Parityn. It is a textbook result that Parity is ex-
pressible by polynomial-size propositional formulas (Jukna, 2012); for example, we can define
ΦParity

1 (a1) = a1 and for n ≥ 2 set

ΦParity

n (a1, . . . , an) = (ΦParity

n↓ (a1, . . . , an↓) ∧ ¬ΦParity

n↑ (an↓+1, . . . , an)) ∨

(¬ΦParity

n↓ (a1, . . . , an↓) ∧ΦParity

n↑ (an↓+1, . . . , an))

with n↓ =
⌊ n

2
⌋

and n↑ =
⌈ n

2
⌉
. (This construction yields a formula of logarithmic depth and

therefore polynomial size.) It is also a textbook result (although not nearly as easy to see)
that Parity cannot be expressed by depth-bounded polynomial-size circuits, that is, Parity /∈
AC0 (Jukna, 2012).

As another important class, threshold languages are defined for n, k ∈N with n ≥ 1 and
k ≤ n:

Thresholdn,k = {M ⊆ An | k ≤ |M|}

That is, Thresholdn,k contains all interpretations over n atoms where at least k atoms are true.
The special case k =

⌈ n
2
⌉

leads to the majority languages,

Majorityn = Thresholdn,d n
2 e

that contain all interpretations where at least half of the atoms in the vocabulary are true.

5.1.1 Translations Between Considered Formalisms

We briefly review all known translations between the mentioned formalisms.

5.1. Background on Relative Expressiveness 105

From AFs to BADFs Brewka and Woltran (2010) showed how to translate AFs into ADFs:
For an AF F = (A, R), define the ADF associated to F as DF = (A, R, C) with C = {ϕa}a∈A and
ϕa =

∧
(b,a)∈R ¬b for a ∈ A. Clearly, the resulting ADF is bipolar: parents are always attacking.

Brewka and Woltran proved that this translation is faithful for the AF stable extension and ADF
model semantics (Proposition 1). Brewka et al. (2013) later proved the same for the AF stable
extension and ADF stable model semantics (Theorem 4). It is easy to see that the translation
can be computed in polynomial time and induces at most a linear blowup.

From ADFs to PL Brewka and Woltran (2010) also showed that ADFs under supported model
semantics can be faithfully translated into propositional logic: when acceptance conditions
of statements a ∈ A are represented by propositional formulas ϕa, then the supported mod-
els of an ADF D over A are given by the classical propositional models of the formula set
ΦD = {a↔ ϕa | a ∈ A}.

From AFs to PL In combination, the previous two translations yield a polynomial and faithful

translation chain from AFs into propositional logic: Φ(A,R) =
{

a↔
(∧

(b,a)∈R ¬b
) ∣∣∣ a ∈ A

}
.

From ADFs to NLPs Earlier in this thesis (Chapter 3), we showed that ADFs can be faithfully
translated into normal logic programs. For an ADF D = (A, L, C), its standard NLP is

PD = {a← (M ∪ not (par(a) \M)) | a ∈ A, Ca(M) = t}

It follows from Lemma 3.14 (Lemma 3.14 of Strass (2013)) that this translation preserves the
supported model semantics. The translation is size-preserving for the acceptance condition
representation of Chapter 3 via characteristic models; when representing acceptance conditions
via propositional formulas, this cannot be guaranteed as we will show later.3

From AFs to NLPs The translation chain from AFs to ADFs to NLPs is compact, and faithful
for AF stable semantics and NLP stable semantics (Osorio et al., 2005), and AF stable semantics
and NLP supported semantics. It is size-preserving since the single rule for each atom contains
all attackers once: P(A,R) = {a← {not b | (b, a) ∈ R} | a ∈ A}.

From NLPs to PL It is well-known that normal logic programs under supported model se-
mantics can be translated to propositional logic (Clark, 1978). A normal logic program P
becomes the propositional theory ΦP,

ΦP = {a↔ ϕa | a ∈ A} where ϕa =
∨

a←B∈P

(∧
b∈B+

b ∧
∧

b∈B−
¬b

)
for a ∈ A.

For the stable model semantics, additional formulas have to be added, but the extended trans-
lation works all the same (Lin and Zhao, 2004). That translation can even be extended to
canonical logic programs (Lee, 2005).

3Already for complexity reasons, we cannot expect that this translation is also faithful for the stable semantics.
And indeed, the ADF D = ({a} , {(a, a)} , {ϕa = a ∨ ¬a}) has a stable model {a} while its standard logic program
P(D) = {a← {a} , a← {not a}} has no stable model. However, it holds that st(P(D)) ⊆ st(D) (Denecker et al., 2004;
Strass, 2013).

106 Chapter 5. Relative Expressiveness and Succinctness

From NLPs to ADFs The Clark completion of a normal logic program directly yields an
equivalent ADF over the same signature (Brewka and Woltran, 2010). Clearly the translation is
computable in polynomial time and the blowup (with respect to the original logic program) is
at most linear. The resulting translation is faithful for the supported model semantics, which
follows from Lemma 3.16 (Lemma 3.16 of Strass, 2013).

5.1.2 Representing Bipolar Boolean Functions

While bipolarity has hitherto predominantly been defined and used in the context of
ADFs (Brewka and Woltran, 2010), it is easy to define the concept for Boolean functions in
general. Let A be a set of atoms and f : 2A → {t, f} be a Boolean function. An atom a ∈ A
is supporting iff for all M ⊆ A, f (M) = t implies f (M ∪ {a}) = t; we then write a ∈ sup(f).
An atom a ∈ A is attacking iff for all M ⊆ A, f (M) = f implies f (M ∪ {a}) = f; we then write
a ∈ att(f). A Boolean function f : 2A → {t, f} is semantically bipolar iff each a ∈ A is supporting
or attacking or both. Throughout this chapter, we will sometimes take a Boolean function to
be given by an interpretation set and then say that the set is bipolar.

We will now define bipolar propositional formulas for representing bipolar ADFs. This is
important not only for our study, but also since (for three-valued semantics), bipolarity is the
key to BADFs’ low complexity in comparison to general ADFs (Chapter 4). Up to now, we
usually assumed that to specify a bipolar ADF, in addition to statements, links and acceptance
conditions, the user specifies for each link whether it is supporting or attacking. Here we
introduce an arguably simpler way, where support and attack is represented (implicitly) in the
syntax of the propositional formula encoding the acceptance function.

Formally, the polarity of the occurrence of an atom a ∈ A in a formula is determined by the
number of negations on the path from the root of the formula tree to the atom. The polarity is
positive if the number is even and negative if the number is odd.

Definition 5.4. A propositional formula ϕ over A is syntactically bipolar if and only if no atom
a ∈ A occurs both positively and negatively in ϕ. 3

Recall that we only use formulas over the basis {∧,∨,¬} and thus there are no “hidden”
negations, e.g. from material implication. For formulas in negation normal form (that is,
where negation is only applied to atomic formulas), the polarities of the atoms can be read off
the formula directly.

We will now address the question how to represent bipolar Boolean functions. Clearly all
Boolean functions can be represented by propositional formulas; we modify this construction
later and thus reproduce it here: for a Boolean function f : 2A → {t, f}, its associated formula
is

ϕ f =
∨

M⊆A, f (M)=t

ϕM with ϕM =
∧

a∈M
a ∧

∧
a∈A\M

¬a (5.1)

That is, each ϕM has exactly one model M, and ϕ f enumerates those models.
So in particular, all bipolar Boolean functions can be represented by propositional formulas

as well. However, this only guarantees us the existence of such representations but gives us
no way to actually obtain them. Our first fundamental result shows how we can construct a
syntactically bipolar propositional formula from a given semantically bipolar Boolean function.
The converse is straightforward, and thus the two notions of bipolarity are closely related. For
a formula ϕ, its associated Boolean function fϕ returns t if and only if it gets as input a model
of ϕ.

5.1. Background on Relative Expressiveness 107

Theorem 5.1. Let A be a set of atoms.

1. For each syntactically bipolar formula ϕ over A, its Boolean function fϕ is semantically bipolar.

2. For each semantically bipolar Boolean function f : 2A → {t, f}, a syntactically bipolar formula
ψ f with fψ f = f is given by

ψ f =
∨

M⊆A,
f (M)=t

ψM with ψM =
∧

a∈M,
a/∈att(f)

a ∧
∧

a∈A\M,
a/∈sup(f)

¬a (5.2)

Proof. 1. Obvious: every atom occurring only positively is supporting, every atom occurring only
negatively is attacking.

2. Let f : 2A → {t, f} be semantically bipolar. Note first that by (5.2), for any M ⊆ A we have
|= ϕM → ψM. It is easy to see that ψ f is syntactically bipolar: Since f is semantically bipolar,
each a ∈ A is: (1) attacking and not supporting, then it occurs only negatively in ψ f ; or (2)
supporting and not attacking, then it occurs only positively in ψ f ; or (3) supporting and attacking,
then it does not occur in ψ f . It remains to show that fψ f = f ; we show |= ϕ f ↔ ψ f .

|= ϕ f → ψ f : Let v : A→ {t, f} with v(ϕ f) = t. Then there is an M ⊆ A such that f (M) = t
and v(ϕM) = t. (Clearly v = vM.) By |= ϕM → ψM we get v(ψM) = t and thus
v(ψ f) = t.

|= ψ f → ϕ f : For each model v of ψ f , there is an M ⊆ A with f (M) = t such that v(ψM) = t.
To show that each model of ψ f is a model of ϕ f , we show that for all M ⊆ A with f (M) = t,
each model v of ψM is a model of ϕ f . Let |A| = n. Then each ϕM contains exactly n literals.
For the corresponding ψM there is a k ∈N with 0 ≤ k ≤ n such that ψM contains exactly
n− k literals. For two interpretations v1 : A→ {t, f} and v2 : A→ {t, f}, define the dif-
ference between them as δ(v1, v2) = {a ∈ A | v1(a) 6= v2(a)}. (Note that for |A| = n we
always have |δ(v1, v2)| ≤ n.) We will use induction on k to show the following: for each
M ⊆ A with f (M) = t, each v : A→ {t, f} with v(ψM) = t and |δ(v, vM)| = k we find
that v(ϕ f) = t. This covers all models v of ψ f (since |δ(v, vM)| ≤ |A|) and thus establishes
the claim.
k = 0: δ(v, vM) = ∅ implies v = vM whence v(ϕ f) = vM(ϕ f) = vM(ϕM) = t by defin-

ition of ϕM and ϕ f .
k k + 1: Let M ⊆ A with f (M) = t, and v : A→ {t, f} with v(ψM) = t and
|δ(v, vM)| = k + 1. Since k + 1 > 0, there is some a ∈ δ(v, vM), that is, an a ∈ A
with v(a) 6= vM(a).
(a) a is supporting and not attacking. Then necessarily v(a) = t. (If v(a) = f,

then vM(a) 6= v(a) implies vM(a) = t, that is, a ∈ M whence {ψM} |= a
and v(ψM) = f, contradiction.) Define the interpretation w : A→ {t, f} such
that w(a) = f and w(c) = v(c) for c ∈ A \ {a}. Clearly δ(v, w) = {a} and
|δ(w, vM)| = k. Hence the induction hypothesis applies to w and w(ϕ f) = t. Now
w(a) = f, v(a) = t and w(ϕ f) = t. Since a is supporting, also v(ϕ f) = t.

(b) a is attacking and not supporting. Symmetric to the opposite case above.
(c) a is both supporting and attacking. Define interpretation w : A→ {t, f} such that

w(a) = vM(a) and w(c) = v(c) for c ∈ A \ {a}. It follows that |δ(w, vM)| = k,
whence the induction hypothesis applies to w and w(ϕ f) = t. Since a is both
supporting and attacking (thus redundant), we get that v(ϕ f) = w(ϕ f) = t. 2

108 Chapter 5. Relative Expressiveness and Succinctness

This result paves the way for analysing the succinctness of bipolar ADFs, since now we
have a quite natural way of representing them.

5.2 Relative Expressiveness

We now analyse and compare the relative expressiveness of argumentation frameworks (AFs),
(bipolar) abstract dialectical frameworks ((B)ADFs), normal and canonical logic programs
(NLPs/CLPs) and propositional logic (PL). We first look at the different families of semantics
– supported and stable models – in isolation and afterwards combine the results for the two
semantics. For the formalisms F ∈ {ADF, NLP, CLP} that have both supported and stable
semantics, we will indicate the semantics σ via a superscript as in Definition 5.1. For AFs we
only consider the stable semantics, as this is (to date) the only semantics for AFs where all
interpretations are guaranteed to map all arguments to either true (accepted) or false (rejec-
ted, i.e. attacked by an accepted argument). For propositional logic PL we consider the usual
model semantics.

With the syntactic translations we reviewed in the previous section, we currently have the
following expressiveness relationships. For the supported semantics,

AF ≤e BADFsu ≤e ADFsu ∼=e NLPsu ≤e CLPsu ≤e PL

and for the stable semantics,

AF ≤e NLPst <e PL ∼=e CLPst and AF ≤e BADFst ≤e ADFst <e PL

Note that NLPst <e PL and ADFst <e PL hold since sets of stable models of NLPs have an
antichain property, in contrast to model sets of propositional logic.

For the succinctness relation, we have

AF ≤s BADFsu ≤s ADFsu ≤s PL and NLPsu ≤s ADFsu

5.2.1 Supported Semantics

As depicted above, we know that expressiveness from AFs to propositional logic does not
decrease. However, it is not yet clear if any of the relationships is strict. In what follows we
will show that two of them are strict, working our way top-down from most to least expressive.

ADF vs. PL

We first show that ADFs can realise any set of models by showing how a given propositional
formula can be used to construct an equivalent ADF of linear size.4

Theorem 5.2. PL ≤e ADFsu and PL ≤s ADFsu.

Proof. Let ψ be a propositional formula over vocabulary A. Define the ADF Dψ over A by setting, for
all a ∈ A,

ϕa = a↔ ψ = (a ∧ ψ) ∨ (¬a ∧ ¬ψ)

Thus ‖ϕa‖ ∈ O(‖ψ‖), whence
∥∥Dψ

∥∥ ∈ O(|A| · ‖ψ‖). It remains to show su(Dψ) = mod(ψ). Recall
that for any ADF D over A, su(D) = mod(ΦD) for ΦD =

∧
a∈A (a↔ ϕa). Applying the definition

of ϕa in Dψ yields
ΦDψ

=
∧

a∈A (a↔ (a↔ ψ))

4If we consider the vocabulary A to be part of the input, the size increase is quadratic.

5.2. Relative Expressiveness 109

Now for any a ∈ A, the formula (a↔ (a↔ ψ)) is equivalent to ψ. (The proof is by case
distinction on a.) Thus ΦDψ

is equivalent to
∧

a∈A ψ, that is, to ψ, and it follows that
su(Dψ) = mod(ΦDψ

) = mod(ψ). 2

For example, consider the vocabulary A = {a, b} and the propositional formula ψ = a ∧ b.
The canonical construction above yields ADF Dψ with acceptance formulas ϕa = a↔ (a ∧ b)
and ϕb = b↔ (a ∧ b). Now we have:

ϕa = a↔ (a ∧ b) = (a→ (a ∧ b)) ∧ ((a ∧ b)→ a) ≡ ¬a ∨ (a ∧ b) ≡ ¬a ∨ b

Intuitively, ϕa = ¬a ∨ b expresses that a cannot be false, and is true if b is true. By a symmet-
rical argument, the acceptance formula of b is equivalent to ¬b ∨ a. It is readily checked that
su(Dψ) = {{a, b}} as desired. Since we know from Section 5.1.1 that the converse translation
is also possible (in symbols ADFsu ≤s PL), we get the following.

Corollary 5.3. PL ∼=s ADFsu

When the acceptance conditions are written as propositional formulas, the construction to
realise X ⊆ 2A in the proof of Theorem 5.2 defines a space-efficient equivalent of

ϕa =
∨

M∈X,a∈M
ϕM ∨

∨
M⊆A,M/∈X,a/∈M

ϕM

as acceptance formula of a, where ϕM is as in Footnote 2.

ADF vs. NLP

Since ADFs under supported semantics can be faithfully translated into normal logic pro-
grams, which can be likewise further translated to propositional logic, we have the following.

Corollary 5.4. ADFsu ∼=e NLPsu ∼=e PL

However, this does not extend to the succinctness relation, as logic programs stipulate a par-
ticular syntactic form that is essentially a fixed-depth circuit. More specifically, it is easy to see
that any language that is polynomially expressible by normal logic programs under supported
semantics is in AC0. For the stable semantics of so-called canonical logic programs, this has
recently been shown by Shen and Zhao (2014) (Proposition 2.1). The case we are interested
in (supported semantics) works similarly, but we still present the proof for completeness. The
main technical result towards proving that is a lemma showing how to turn a logic program
into an equivalent Boolean circuit of a fixed depth.

Lemma 5.5. For every normal logic program P, there exists a circuit CP over the basis {¬,∧,∨} such
that:

1. CP accepts all and only the supported models of P,

2. the size of CP is linear the size of P,

3. CP has depth 4.

Proof. Let A = {a1, . . . , an} be the vocabulary of P, and its Clark completion be ΦP =
{ai ↔ ψi | ai ∈ A} where the ψi are DNFs over literals from A. Clearly the circuit for ΦP must
compute CP =

∧
ai∈A(ai ↔ ψi) where ai ↔ ψi can be replaced by (¬ai ∨ ψi) ∧ (ai ∨ ¬ψi) with ¬ψi a

CNF over literals from A. The construction can be depicted as follows, where the inner layers are shown
for one i only, and dotted lines represent potential edges.

110 Chapter 5. Relative Expressiveness and Succinctness

∧

∨
ψi → ai ∨

ai → ψi.

∧
¬ψi ∧ . . . ∧

∨. . .∨

ai ¬aia1 ¬a1 . . . an ¬an. . .

Now (1) follows since su(P) = mod(ΦP) and CP accepts all and only the models of ΦP. For (2), if P
contains m = |P| rules, then m ≤ ‖P‖ and the total number of inner gates is bounded by n(2m + 3) ≤
n(2 · ‖P‖+ 3). (3) is clear. 2

While the statement of Lemma 5.5 is actually much stronger and gives a constant upper
bound of the resulting circuit depth for arbitrarily-sized logic programs, it readily follows
that the set of polynomially logic-program expressible languages is a subset of the languages
expressible by alternating Boolean circuits with unbounded fan-in and constant depth.

Proposition 5.6. If L is polynomially expressible by normal logic programs under supported semantics,
then L ∈ AC0.

It follows immediately that normal logic programs cannot polynomially express the lan-
guage Parity.5 This is the supported-semantics counterpart of Theorem 3.1 in (Shen and Zhao,
2014).

Corollary 5.7. Parity has no polynomial size normal logic program representation.

Proof. By Proposition 5.6 and Parity /∈ AC0 (Jukna, 2012). 2

It follows that propositional logic is strictly more succinct than normal logic programs
under supported semantics.

Corollary 5.8. PL 6≤s NLPsu and thus NLPsu <s PL.

From our considerations since Theorem 5.2, it follows that if ψ has a “small” conjunctive
normal form (a conjunction of clauses) and disjunctive normal form (disjunction of monomials)
representation, then there is also a “small” normal logic program representation for mod(ψ).

ADF vs. BADF

It is quite obvious that the canonical ADF constructed in Theorem 5.2 is not bipolar, since a as
well as every atom mentioned by ψ occurs both positively and negatively in ϕa. This raises the
question whether the construction can be adapted to bipolar ADFs.

It turns out that the subclass of bipolar ADFs is strictly less expressive. Towards the proof
of this result we start out with a new concept: that of the conjugate of a model set with

5Logic programs under supported models are universally expressive, so they can express Parity, just not in poly-
nomial size.

5.2. Relative Expressiveness 111

respect to an atom. This concept will be used to characterise ADF realisability and precisely
captures the “if-and-only-if part” of ADFs’ supported model semantics: From the translation
of an ADF D into propositional logic (cf. Section 5.1.1) we can see that the result is basically a
conjunction of equivalences: φD =

∧
a∈A(a↔ ϕa). While the conjunction part will be captured

by set intersection, the conjugate will capture the equivalence part.

Definition 5.5. Let A be a vocabulary, X ⊆ 2A and a ∈ A. The a-conjugate of X is the set

〈a〉(X) = {M ⊆ A | M ∈ X, a ∈ M} ∪ {M ⊆ A | M /∈ X, a /∈ M} 3

Alternatively, we could write 〈a〉(X) = {M ⊆ A | M ∈ X iff a ∈ M}. Intuitively, 〈a〉(X) con-
tains all interpretations M where containment of a in M coincides exactly with containment
of M in X. Formulated in terms of propositional formulas, if X is the model set of formula ϕ
over A, then 〈a〉(X) is the model set of formula a↔ ϕ. Note that the vocabulary A is implicit
in the conjugate function.

Example 5.1. Consider the vocabulary A = {a, b}. The functions 〈a〉(·) and 〈b〉(·) operate on
the set 22A

of interpretation sets over A and are shown in Table 5.1.

ϕ 〈a〉(ϕ) 〈b〉(ϕ)
⊥ ¬a ¬b

¬a ∧ ¬b ¬a ∧ b a ∧ ¬b
a ∧ ¬b ¬a ∨ ¬b ¬a ∧ ¬b
¬a ∧ b ¬a ∧ ¬b ¬a ∨ ¬b
a ∧ b a→ b b→ a

a > a↔ b
b a↔ b >
¬a ⊥ a ∨̇ b
¬b a ∨̇ b ⊥

a ∨̇ b ¬b ¬a
a↔ b b a
a ∨ b b→ a a→ b
¬a ∨ ¬b a ∧ ¬b ¬a ∧ b
a→ b a ∧ b a ∨ b
b→ a a ∨ b a ∧ b
> a b

Table 5.1: Conjugation functions for A = {a, b}. Interpretation sets are represented using formulas
over A, and connective “∨̇” denotes exclusive disjunction XOR.

For two-valued ADF semantics, this conjugation function plays an essential semantical
role, since it provides the “bridge” between models of the acceptance functions and models of
the ADF. But it is also interesting in itself: We first show some properties of the conjugation
function associated to an atom, since some of them will be used in the proof later on. First of
all, it is an involution, that is, its own inverse (and thus in particular a bijection). Next, it is
compatible with the complement operation (logical negation on the formula level). Finally, it
also preserves the evenness of the cardinality of the input set.

Proposition 5.9. Let A be a vocabulary, X ⊆ 2A and a ∈ A.

112 Chapter 5. Relative Expressiveness and Succinctness

1. 〈a〉(〈a〉(X)) = X. (involution)

2. 2A \ 〈a〉(X) = 〈a〉
(
2A \ X

)
. (compatible with negation)

3. |X| is even iff |〈a〉(X)| is even. (preserves evenness)

Proof. Let |A| = n, X ⊆ 2A and a ∈ A.

1. Let M ⊆ A. We have

M ∈ 〈a〉(〈a〉(X)) iff M ∈ 〈a〉(X)↔ a ∈ M
iff (M ∈ X ↔ a ∈ M)↔ a ∈ M
iff M ∈ X ↔ (a ∈ M↔ a ∈ M)

iff M ∈ X

2. Denote

S∈,∈ = {M ⊆ A | M ∈ X, a ∈ M}
S∈,/∈ = {M ⊆ A | M ∈ X, a /∈ M}
S/∈,∈ = {M ⊆ A | M /∈ X, a ∈ M}
S/∈,/∈ = {M ⊆ A | M /∈ X, a /∈ M}

and observe that

2A = S∈,∈ ∪̇ S∈,/∈ ∪̇ S/∈,∈ ∪̇ S/∈,/∈
X = S∈,∈ ∪̇ S∈,/∈

〈a〉(X) = S∈,∈ ∪̇ S/∈,/∈

where ∪̇ denotes disjoint union. Now

2A \ 〈a〉(X) = 2A \ (S∈,∈ ∪̇ S/∈,/∈)

= S∈,/∈ ∪̇ S/∈,∈
= {M ⊆ A | M ∈ X, a /∈ M} ∪̇ {M ⊆ A | M /∈ X, a ∈ M}

=
{

M ⊆ A
∣∣∣ M /∈ 2A \ X, a /∈ M

}
∪̇
{

M ⊆ A
∣∣∣ M ∈ 2A \ X, a ∈ M

}
= 〈a〉

(
2A \ X

)
3. We show that |X|+ |〈a〉(X)| is even. Firstly,

S∈,/∈ ∪̇ S/∈,/∈ = {M ⊆ A | a /∈ M} = 2A\{a}

whence
∣∣S∈,/∈

∣∣+ ∣∣S/∈,/∈
∣∣ = 2n−1. Thus

|X|+ |〈a〉(X)| =
(
|S∈,∈|+

∣∣S∈,/∈
∣∣)+ (|S∈,∈|+

∣∣S/∈,/∈
∣∣)

= 2 · |S∈,∈|+
∣∣S∈,/∈

∣∣+ ∣∣S/∈,/∈
∣∣

= 2 · |S∈,∈|+ 2n−1

is even. 2

5.2. Relative Expressiveness 113

For our current purpose of characterising the expressiveness of bipolar ADFs, we now
use the concept of conjugation to make ADF realisability for the model semantics slightly
more accessible. We show that each ADF realisation of a model set X over an n-element
vocabulary A can equivalently be characterised by an n-tuple (Y1, . . . , Yn) of supersets of X
whose intersection is exactly X. The crux of the proof of this result is how the acceptance
conditions of the realising ADF and the Yi are related through the conjugation function.

Proposition 5.10. Let A = {a1, . . . , an} be a vocabulary and X ⊆ 2A be a set of interpretations. De-
note an ADF over A by the sequence (ϕ1, . . . , ϕn) of its acceptance formulas (for each i ∈ {1, . . . , n},
formula ϕi over A is the acceptance formula of ai), and further define

CX = {(mod(ϕ1), . . . , mod(ϕn)) | su(ϕ1, . . . , ϕn) = X}

YX =

{
(Y1, . . . , Yn)

∣∣∣∣∣ Y1, . . . , Yn ⊆ 2A,

(
n⋂

i=1

Yi

)
= X

}

The sets CX and YX are in one-to-one correspondence; in particular |CX | = |YX |.

Proof. We provide a bijection between CX and YX . Consider the function

f :
(

22A
)n
→
(

22A
)n

with (B1, . . . , Bn) 7→ (〈a1〉(B1) , . . . , 〈an〉(Bn))

which is an involution by Proposition 5.9. Using the results of Section 5.1.1, we get that

(mod(ϕ1), . . . , mod(ϕn)) ∈ CX iff su(ϕ1, . . . , ϕn) = X

iff mod

(∧
1≤i≤n

(ai ↔ ϕi)

)
= X

iff
⋂

1≤i≤n
mod(ai ↔ ϕi) = X

iff
⋂

1≤i≤n
〈ai〉(mod(ϕi)) = X

iff (〈a1〉(mod(ϕ1)) , . . . , 〈an〉(mod(ϕn))) ∈ YX

iff f (mod(ϕ1), . . . , mod(ϕn)) ∈ YX

Thus f (CX) = YX whence f (YX) = f (f (CX)) = CX and f |CX : CX → YX is bijective. 2

This one-to-one correspondence is important since we will later analyse the precise number
of realisations of given model sets. Furthermore, this result shows the role of the conjugation
function for characterising two-valued model realisability for general ADFs. We can now
adapt this characterisation result to the case of bipolar ADFs. More precisely, we give several
necessary and sufficient conditions when a given model set is bipolarly realisable. With this
characterisation in hand, we can later show that a specific interpretation set fails the necessary
conditions and thus cannot be the model set of any BADF. Below, we denote the set of all
supersets of a set X of interpretation sets over A by X↑ =

{
Y ⊆ 2A

∣∣ X ⊆ Y
}

.

Proposition 5.11. Let A = {a1, . . . , an} be a vocabulary and X ⊆ 2A be a set of interpretations. The
following are equivalent:

1. X is bipolarly realisable.

114 Chapter 5. Relative Expressiveness and Succinctness

2. there exist Y1, . . . , Yn ∈ X↑ such that:

(a) (
⋂n

i=1 Yi) = X, and

(b) for each 1 ≤ i ≤ n, the set 〈ai〉(Yi) is bipolar.

3. there exist Y1, . . . , Yn ∈ X↑ such that

(a) (
⋂n

i=1 Yi) = X, and

(b) for each 1 ≤ i, j ≤ n, at least one of :

• for all M ⊆ A, (M ∈ Yi ↔ ai ∈ M)→ (M ∪
{

aj
}
∈ Yi ↔ ai ∈ M ∪

{
aj
}
); or

• for all N ⊆ A, (N ∈ Yi ∨̇ ai ∈ N)→ (N ∪
{

aj
}
∈ Yi ∨̇ ai ∈ N ∪

{
aj
}
).

Proof. (Item 1) =⇒ (2): If X is bipolarly realisable, then there exists a bipolar ADF D = (A, L, C)
with su(D) = X. In particular, there exist bipolar Boolean functions C1, . . . , Cn such that
M ∈ X if and only if for all 1 ≤ i ≤ n we find ai ∈ M iff Ci(M) = t. For each 1 ≤ i ≤ n
define Yi = 〈ai〉(Ci). By assumption, 〈ai〉(Yi) = 〈ai〉(〈ai〉(Ci)) = Ci is bipolar; furthermore
(
⋂n

i=1 Yi) = X follows from the above.

(2) =⇒ (3): Let i ∈ {1, . . . , n} and assume that 〈ai〉(Yi) is bipolar. This means that for all aj ∈ A, we
find that aj is supporting or attacking (or both) in 〈ai〉(Yi). Now aj is supporting in

〈
aj
〉
(Yi) iff

for all M ⊆ A we find:

M ∈ 〈ai〉(Yi)→ M ∪
{

aj
}
∈ 〈ai〉(Yi) , that is,

(M ∈ Yi ↔ ai ∈ M)→ (M ∪
{

aj
}
∈ Yi ↔ ai ∈ M ∪

{
aj
}
)

Similarly, aj is attacking in 〈ai〉(Yi) iff for all N ⊆ A we find:

N /∈ 〈ai〉(Yi)→ N ∪
{

aj
}

/∈ 〈ai〉(Yi) , that is,

¬(N ∈ Yi ↔ ai ∈ N)→ ¬(N ∪
{

aj
}
∈ Yi ↔ ai ∈ N ∪

{
aj
}
)

Thus for all aj ∈ A, we find that at least one of the following:

• for all M ⊆ A, (M ∈ Yi ↔ ai ∈ M)→ (M ∪
{

aj
}
∈ Yi ↔ ai ∈ M ∪

{
aj
}
); or

• for all N ⊆ A, (N ∈ Yi ∨̇ ai ∈ N)→ (N ∪
{

aj
}
∈ Yi ∨̇ ai ∈ N ∪

{
aj
}
).

(3) =⇒ (1): We construct an ADF D = (A, L, C) as follows: for each i ∈ {1, . . . , n} we define
Ci = 〈ai〉(Yi) and finally set L = A× A. Each Ci is bipolar by the equivalences established in the
previous proof item, and su(D) = X follows from the fact that 〈ai〉(Ci) = 〈ai〉(〈ai〉(Yi)) = Yi
and the presumption (

⋂n
i=1 Yi) = X. 2

We now apply this characterisation result to show that there is an interpretation set over
three atoms that cannot be realised by bipolar ADFs under the model semantics. This is the
smallest example in terms of the number of atoms (actually, one of the two smallest examples)
– all interpretation sets over a binary vocabulary are bipolarly realisable.

Proposition 5.12. For vocabulary A3 = {1, 2, 3}, there is no bipolar ADF that realises
X = Even3 = {∅, {1, 2} , {1, 3} , {2, 3}}.

5.2. Relative Expressiveness 115

Proof. Assume to the contrary that X is bipolarly realisable. Then there exist Y1, Y2, Y3 ∈ X↑ from
Proposition 5.11. There are 2|2

A|−|X| = 28−4 = 24 = 16 candidates for each Yi, that is, every Yi must
be of the form X ∪̇ Z with

Z ⊆ {{1} , {2} , {3} , {1, 2, 3}} = 2A \ X

For eleven out of those sixteen model set candidates for each Yi, the set 〈i〉(Yi) is not bipolar. To show
that a model set 〈i〉(Yi) is not bipolar, we provide a statement j ∈ A3 that is neither supporting nor
attacking; we say that such a statement is dependent.

1. For Y1 = X, we get 〈1〉(Y1) = {{1, 2} , {1, 3} , {2} , {3}}, which is not bipolar since statement
2 is dependent: If 2 was supporting, then {3} ∈ 〈1〉(Y1) would imply {2, 3} ∈ 〈1〉(Y1); if 2
was attacking, then ∅ /∈ 〈1〉(Y1) would imply {2} /∈ 〈1〉(Y1). For the remaining cases, the
justifications for a specific statement being dependent are equally easy to read off the model set;
for brevity we just indicate the statements.

2. For Y1 = X ∪ {{1}}, we get 〈1〉(Y1) = {{1, 2} , {1, 3} , {1} , {2} , {3}}, which is not bipolar
since statement 2 is dependent.

3. For Y1 = X ∪ {{2}}, we get 〈1〉(Y1) = {{1, 2} , {1, 3} , {3}}, which is not bipolar since state-
ment 2 is dependent.

4. The case Y1 = X ∪ {{3}} is symmetric to the previous one: we get the model set
〈1〉(Y1) = {{1, 2} , {1, 3} , {2}}, which is not bipolar since statement 3 is dependent.

5. For Y1 = X ∪ {{1, 2, 3}}, we get 〈1〉(Y1) = {{1, 2, 3} , {1, 2} , {1, 3} , {2} , {3}}, which is not
bipolar since statement 2 is dependent.

6. For Y1 = X ∪ {{1} , {2}}, we get 〈1〉(Y1) = {{1, 2} , {1, 3} , {1} , {3}}, which is not bipolar
since statement 3 is dependent.

7. The case Y1 = X ∪ {{1} , {3}} is again symmetric to the previous one.

8. For Y1 = X ∪ {{2} , {3}}, we get 〈1〉(Y1) = {{1, 2} , {1, 3}}, which is not bipolar since state-
ment 2 is dependent.

9. For Y1 = X ∪ {{1} , {1, 2, 3}}, we get 〈1〉(Y1) = {{1, 2, 3} , {1, 2} , {1, 3} , {1} , {2} , {3}},
which is not bipolar since statement 2 is dependent.

10. For Y1 = X ∪ {{2} , {1, 2, 3}}, we get 〈1〉(Y1) = {{1, 2, 3} , {1, 2} , {1, 3} , {3}}, which is not
bipolar since statement 2 is dependent.

11. Y1 = X ∪ {{3} , {1, 2, 3}} is again symmetric to the previous case.

There remains a set C of five candidates (due to symmetry they are the same for each i):

C = {X ∪̇ {{1} , {2} , {3}} ,
X ∪̇ {{1} , {2} , {1, 2, 3}} ,
X ∪̇ {{1} , {3} , {1, 2, 3}} ,
X ∪̇ {{2} , {3} , {1, 2, 3}} ,
X ∪̇ {{1} , {2} , {3} , {1, 2, 3}}}

Basically, the candidates are those where at least three out of the four interpretations in
D = {{1} , {2} , {3} , {1, 2, 3}} are contained in addition to those already in X. Now clearly by the

116 Chapter 5. Relative Expressiveness and Succinctness

assumption that the Yi realise X we have Y1, Y2, Y3 ∈ C. But then there is some M ∈ D with M ∈ Yi

for all 1 ≤ i ≤ 3 and thus M ∈
(⋂3

i=1 Yi

)
= X. However, D ∩ X = ∅. Contradiction. Thus such Yi

do not exist and X is not bipolarly realisable. 2

As the only other interpretation set over A3 that is not bipolarly realisable, we found the
complement of Even3 above, the Parity language over three atoms.

Proposition 5.13. For vocabulary A3 = {1, 2, 3}, there is no bipolar ADF that realises
Parity3 = {{1} , {2} , {3} , {1, 2, 3}}.

Together with the straightforward statement of fact that Even3 can be realised by a non-
bipolar ADF, Proposition 5.12 leads to the next result.

Theorem 5.14. BADFsu <e ADFsu

Proof. Model set Even3 from Proposition 5.12 is realisable under model semantics by ADF DEven3 with
acceptance conditions

ϕ1 = (2 ∨̇ 3), ϕ2 = (1 ∨̇ 3), ϕ3 = (1 ∨̇ 2)

However, there is no bipolar ADF realising Even3, as is witnessed by Proposition 5.12. 2

Another consequence of our characterisation of two-valued model realisability in Propos-
ition 5.10 is that we can get a precise number of distinct realisations of a given model set.
This is significant in that it further illustrates the rather intricate difficulty underlying bipolar
non-realisability: we cannot necessarily use the model set Even3 above to determine a single
reason for bipolar non-realisability, that is, a single link (b, a) that is neither supporting nor
attacking in all realisations. Rather, the culprit(s) might be different in each realisation, and to
show bipolar non-realisability, we have to prove that for all realisations, there necessarily exists
some reason for non-bipolarity. And the number of different ADF realisations of a given model
set X can be considerable.6

Proposition 5.15. Let A be a vocabulary with |A| = n, and X ⊆ 2A an interpretation set with∣∣2A \ X
∣∣ = m. The number of distinct ADFs D with su(D) = X is

r(n, m) = (2n − 1)m

Proof. According to Proposition 5.10, each realisation of X can be characterised by a tuple
(Y1, . . . , Yn) ∈

(
X↑
)n with X =

⋂n
i=1 Yi. Since

∣∣X↑∣∣ = 2m, there are (2m)n such tuples. How-
ever, towards r(n, m), this wrongly counts all tuples (Y1, . . . , Yn) with (

⋂n
i=1 Yi)) X, that is,

|(
⋂n

i=1 Yi) \ X| > 0 (at least once); it remains to subtract them. For any i ∈ {1, . . . , n}, we can overes-
timate the number of tuples (Y1, . . . , Yn) ∈

(
X↑
)n such that |(

⋂n
i=1 Yi) \ X| ≥ i by the expression

q(n, m, i) =
(

m
i

)(
2m−i

)n
(5.3)

This is seen as follows: Let I ⊆
(
2A \ X

)
be a fixed i-element set. (Intuitively, the interpretation-set

X ∪ I contains exactly i interpretations too many.) There are (m
i) such sets. For each such I, we have∣∣I↑∣∣ = 2m−i. Thus there are

(
2m−i)n possible ways to choose n elements (the Y1, . . . , Yn) out of I↑. No

matter how the Yj are chosen, their intersection contains I and thus has at least i elements too many.
However, all sets that have at least i + 1 elements too many are counted twice and have to be subtracted.

6When counting ADFs over A, we do not take into account different link relations, but take L = A× A and only
count different acceptance functions, through which redundant links can be modelled.

5.2. Relative Expressiveness 117

If we subtract q(n, m, i + 1), then we have not counted the sets that have at least i + 2 elements too
many and have to add q(n, m, i + 2), etc. Hence by the inclusion-exclusion principle, the number of
tuples (Y1, . . . , Yn) ∈

(
X↑
)n with

⋂n
i=1 Yi = X is given by

r(n, m) = q(n, m, 0)− q(n, m, 1) + q(n, m, 2)− . . .± q(n, m, m)

=
m

∑
i=0

(−1)iq(n, m, i)

=
m

∑
i=0

(−1)i
(

m
i

)(
2m−i

)n
(by (5.3) above)

=
m

∑
i=0

(
m
i

)
(2n)m−i (−1)i (reordering factors)

= (2n − 1)m (binomial theorem) 2

So the main contributing factor is the number m of interpretations that are excluded from the
desired model set X. For Proposition 5.12, for instance, there are (23 − 1)4 = 74 = 2401 ADFs
with the model set Even3. According to Theorem 5.14, none of them is bipolar. Obviously,
the maximal number of realisations is achieved by X = ∅ whence r(n, 2n) = (2n − 1)2n

. On
the other hand, the model set X = 2A has exactly one realisation, r(n, 0) = 1. Note that the
number of (syntactically distinct) realisations for the other universally expressive formalisms,
logic programs and propositional logic, is unbounded in general since we can add an arbitrary
number of tautologies.

We finally show a reduction of the problem of bipolar realisability to propositional satis-
fiability. This approaches the problem from another angle (a possible implementation deciding
bipolar realisability using a SAT solver), and provides the proof of Theorem 3 by Strass (2015b),
which was not contained in that work.

For a given vocabulary A and set X ⊆ 2A be a set of interpretations, it is our aim to con-
struct a propositional formula φX that is satisfiable if and only if X is bipolarly realisable. The
propositional signature we use is the following: For each a ∈ A and M ⊆ A, there is a pro-
positional variable pM

a that expresses whether Ca(M) = t. This allows to encode all possible
acceptance conditions for the statements in A. To enforce bipolarity, we use additional vari-
ables to model supporting and attacking links: for all a, b ∈ A, there is a variable pa,b

sup saying
that a supports b, and a variable pa,b

att saying that a attacks b. So the vocabulary of φX is given
by

P =
{

pM
a , pa,b

sup, pa,b
att

∣∣∣ M ⊆ A, a ∈ A, b ∈ A
}

To guarantee the desired set of models, we constrain the acceptance conditions as dictated
by X: For any desired set M and statement a, the containment of a in M must correspond
exactly to whether Ca(M) = t; this is encoded in φ∈X . Conversely, for any undesired set M
and statement a, there must not be any such correspondence, which φ/∈

X expresses. To enforce
bipolarity, we state that each link must be supporting or attacking. To model the meaning of
support and attack, we encode all ground instances of their definitions.

Definition 5.6. Let A be a vocabulary and X ⊆ 2A be a set of interpretations. Define the

118 Chapter 5. Relative Expressiveness and Succinctness

following propositional formulas:

φBADF
X = φ∈X ∧ φ/∈

X ∧ φbipolar

φ∈X =
∧

M∈X

 ∧
a∈M

pM
a ∧

∧
a∈A\M

¬pM
a


φ/∈

X =
∧

M⊆A,M/∈X

 ∨
a∈M
¬pM

a ∨
∨

a∈A\M

pM
a


φbipolar =

∧
a,b∈A

((
pa,b

sup ∨ pa,b
att

)
∧ φa,b

sup ∧ φa,b
att

)
φa,b

sup = pa,b
sup →

∧
M⊆A

(
pM

b → pM∪{a}
b

)
(a, b ∈ A)

φa,b
att = pa,b

att →
∧

M⊆A

(
pM∪{a}

b → pM
b

)
(a, b ∈ A) 3

The corresponding result shows the reduction to be correct.

Theorem 5.16. Let A be a vocabulary and X ⊆ 2A be a set of interpretations. X is bipolarly realisable
if and only if φBADF

X is satisfiable.

Proof. “if”: Let I ⊆ P be a model for φX . For each a ∈ A, we define an acceptance condition as fol-
lows: for M ⊆ A, set Ca(M) = t iff pM

a ∈ I. It is easy to see that φbipolar guarantees that these
acceptance conditions are all bipolar. The ADF is now given by Dsu

X = (A, A× A, C). It remains
to show that any M ⊆ A is a model of Dsu

X if and only if M ∈ X.

“if”: Let M ∈ X. We have to show that M is a model of Dsu
X . Consider any a ∈ A.

1. a ∈ M. Since I is a model of φ∈X , we have pM
a ∈ I and thus by definition Ca(M) = t.

2. a ∈ A \M. Since I is a model of φ∈X , we have pM
a /∈ I and thus by definition

Ca(M) = f.
“only if”: Let M /∈ X. Since I is a model of φ/∈

X , there is an a ∈ M such that Ca(M) = f or an
a /∈ M such that Ca(M) = t. In any case, M is not a model of Dsu

X .

“only if”: Let D be a bipolar ADF with su(D) = X. We use D to define a model I for φX . First, for
M ⊆ A and a ∈ A, set pM

a ∈ I iff Ca(M) = t. Since D is bipolar, each link is supporting or
attacking and for all a, b ∈ A we can find a valuation for pa,b

sup and pa,b
att . It remains to show that I

is a model for φX .

1. I is a model for φ∈X : Since D realises X, each M ∈ X is a model of D and thus for all a ∈ A
we have Ca(M) = t iff a ∈ M.

2. I is a model for φ/∈
X : Since D realises X, each M ⊆ A with M /∈ X is not a model of D. Thus

for each such M, there is an a ∈ A witnessing that M is not a model of D: (1) a ∈ M and
Ca(M) = f, or (2) a /∈ M and Ca(M) = t.

3. I is a model for φbipolar: straightforward since D is bipolar by assumption. 2

Remarkably, the decision procedure does not only give an answer, but in the case of a
positive answer we can read off the BADF realisation from the satisfying evaluation of the
constructed formula. We illustrate the construction with an example seen earlier.

5.2. Relative Expressiveness 119

Example 5.2. Consider A3 = {1, 2, 3} and the model set Even3 = {∅, {1, 2} , {1, 3} , {2, 3}}.
The construction of Theorem 5.16 yields these formulas:

φ∈Even3
= ¬p∅

1 ∧ ¬p∅
2 ∧ ¬p∅

3 ∧ φ/∈
Even3

=
(
¬p{1}1 ∨ p{1}2 ∨ p{1}3

)
∧

p{1,2}
1 ∧ p{1,2}

2 ∧ ¬p{1,2}
3 ∧

(
p{2}1 ∨ ¬p{2}2 ∨ p{2}3

)
∧

p{1,3}
1 ∧ ¬p{1,3}

2 ∧ p{1,3}
3 ∧

(
p{3}1 ∨ p{3}2 ∨ ¬p{3}3

)
∧

¬p{2,3}
1 ∧ p{2,3}

2 ∧ p{2,3}
3

(
¬p{1,2,3}

1 ∨ ¬p{1,2,3}
2 ∨ ¬p{1,2,3}

3

)
The remaining formulas about bipolarity are independent of Even3, we do not show them
here. We have implemented the translation of the proof of Theorem 5.16 and used the solver
clasp (Gebser, Kaminski, Kaufmann, Ostrowski, Schaub, and Schneider, 2011) to verify that
φEven3 is unsatisfiable. 3

BADF vs. NLP

Earlier, we used the language Parity to show that propositional logic is (and thus by
PL ∼=s ADFsu general ADFs are) exponentially more succinct than normal logic programs (un-
der supported models). However, for bipolar ADFs, by Proposition 5.13 there is no BADF D
over A3 = {1, 2, 3}with model set su(D) = Parity3 = {{1} , {2} , {3} , {1, 2, 3}}, that is, BADFs
cannot even express Parity. Fortunately, the Majority language does the trick in this case.

Theorem 5.17. BADFsu 6≤s NLPsu

Proof. We show that the language Majority can be polynomially expressed by BADFsu, but not by
NLPsu. The latter fact follows from Majority /∈ AC0 (Jukna, 2012) and Proposition 5.6. We show
the first part by constructing a series of BADFs Dn over An = {a1, . . . , an} (n ∈N, n ≥ 1) such
that su(Dn) = Majorityn. We use results of (Friedman, 1986; Boppana, 1986), who show that for
all positive n ∈N and k ≤ n, the language Thresholdn,k has negation-free propositional formulas
ΦThreshold

n,k of polynomial size s, where we use the bound of Boppana, s ∈ O
(
k4.27n log n

)
. Define D1

by ϕa1 = >, and for n ≥ 2 set k =
⌈ n

2
⌉

and for 1 ≤ i ≤ n,

ϕai = ai ∨ ¬ΦThreshold

n−1,k (a1, . . . , ai−1, ai+1, . . . , an)

Intuitively, the formula ϕai checks whether the remaining variables could achieve a majority without
ai. If so, then ai can be set arbitrarily; otherwise, ai must be set to true. Clearly the Boolean function
computed by ϕai is bipolar, since ai is supporting and all other parents are attacking. For the size of Dn,
we observe that

‖Dn‖ ∈ O
(

n
∥∥∥ΦThreshold

n−1,k

∥∥∥)
whence the overall size is polynomial. It remains to show that su(Dn) = Majorityn.

“⊇”: Let M ∈ Majorityn. We have to show M ∈ su(Dn), that is, a ∈ M iff M |= ϕa for all a ∈ An.
For a ∈ M, it is immediate that M |= ϕa, so let aj /∈ M for some j ∈ {1, . . . , n}. We have
to show M 6|= ϕaj . Since M ∈ Majorityn, we have |M| = m for k =

⌈ n
2
⌉
≤ m ≤ n− 1 and

M ∈ Thresholdn−1,k, that is, we have

M |= ΦThreshold

n−1,k (a1, . . . , aj−1, aj+1, . . . , an)

Together with M 6|= aj, it follows that M 6|= ϕaj .

120 Chapter 5. Relative Expressiveness and Succinctness

“⊆”: Let M /∈ Majorityn. Then |M| = m for 0 ≤ m <
⌈ n

2
⌉
= k. In particular, there is some

aj ∈ An \M. Now m < k implies that there is no N ∈ Thresholdn−1,k with |N| = m = |M|.
Thus M 6|= ΦThreshold

n−1,k (a1, . . . , aj−1, aj+1, . . . , an) whence it follows that M |= ϕaj . Together
with M 6|= aj we conclude that M /∈ su(Dn). 2

Since every BADF is an ADF of the same size, we get:

Corollary 5.18. ADFsu 6≤s NLPsu

In combination with the translation from logic programs to ADFs (implying the relation
NLPsu ≤s ADFsu), this means that also ADFs are strictly more succinct than logic programs.

Corollary 5.19. NLPsu <s ADFsu

BADF vs. AF

It is comparably easy to show that BADF models are strictly more expressive than AFs, since
sets of supported models of bipolar ADFs do not have the antichain property.

Proposition 5.20. AF <e BADFsu

Proof. Consider vocabulary A = {a} and BADF D = (A, {(a, a)} , {ϕa}) with ϕa = a. It is straight-
forward to check that its model set is su(D) = {∅, {a}}. Since model sets of AFs under stable extension
semantics satisfy the antichain property, there is no equivalent AF over A. 2

This yields the following overall relationships:

AF <e BADFsu <e ADFsu ∼=e NLPsu ∼=e CLPsu ∼=e PL

For a concise overview of relative succinctness, we present the results and open problems
at a glance in Table 5.2 below.7

BADFsu ADFsu NLPsu PL
BADFsu = ≤s 6≤s ≤s
ADFsu ? = 6≤s ∼=s
NLPsu ? <s = <s
PL ? ∼=s 6≤s =

Table 5.2: Relative succinctness results for (bipolar) ADFs under the model semantics, normal logic
programs under the supported semantics, and classical propositional logic. An entry ◦ in row F1 and
column F2 means F1 ◦ F2; question marks signify open problems.

7We remark that the three open problems in Table 5.2 are really only two: It is easy to show that ADFs and
propositional logic behave equivalently in relation to bipolar ADFs, since they are equally expressive and equally
succinct; that is, it holds that ADFsu ≤s BADFsu if and only if PL ≤s BADFsu.

5.2. Relative Expressiveness 121

5.2.2 Stable Semantics

As before, we recall the current state of knowledge:

AF ≤e BADFst ≤e ADFst <e PL and AF ≤e NLPst <e PL ∼=e CLPst

We first show that BADFs are strictly more expressive than AFs.

Proposition 5.21. AF <e BADFst

Proof. Consider the set X2 = {{a, b} , {a, c} , {b, c}} of desired models. Dunne et al. (2015) proved
that X2 is not realisable with stable AF semantics. However, the model set X2 is realisable with BADF
DX2 under stable semantics:

ϕa = ¬b ∨ ¬c, ϕb = ¬a ∨ ¬c, ϕc = ¬a ∨ ¬b

Let us exemplarily show that M = {a, b} is a stable model (the other cases are completely symmetric):
The reduct DM is characterised by the two acceptance formulas ϕa = ¬b ∨ ¬⊥ and ϕb = ¬a ∨ ¬⊥.
We then easily find that ΓDM (∅, ∅) = (M, ∅) = ΓDM (M, ∅). 2

Intuitively, the argument for AF non-realisability of X2 is as follows: Since a and b occur
in an extension together, there can be no attack between them. The same holds for the pairs
a, c and b, c. But then the set {a, b, c} is conflict-free and thus there must be a stable extension
containing all three arguments, which is not allowed by X2. The reason is AFs’ restriction to
individual attack, as set attack (also called joint or collective attack) suffices to realise X2 as
seen above.

The construction that we used in the proof above to realise X2 comes from the work of
Eiter, Fink, Pührer, Tompits, and Woltran (2013) in logic programming, and can be generalised
to realise any non-empty model set satisfying the antichain property.

Definition 5.7. Let X ⊆ 2A. Define the following BADF Dst
X = (A, L, C) where Ca for a ∈ A is

given by

ϕa =
∨

M∈X,a∈M

 ∧
b∈A\M

¬b


and thus L = {(b, a) | M ∈ X, a ∈ M, b ∈ A \M}. 3

The next result shows that the construction indeed works.

Theorem 5.22. Let X with ∅ 6= X ⊆ 2A be a ⊆-antichain. We find that st(Dst
X) = X.

Proof. Let M ⊆ A.

“⊆”: Let M /∈ X. We show that M /∈ su(Dst
X) ⊇ st(Dst

X); we use a case distinction.

1. There is an N ∈ X with M (N. Then there is an a ∈ N \M. Consider its acceptance
formula ϕa. Since a ∈ N and N ∈ X, the formula ϕa has a disjunct ψa,N =

∧
b∈A\N ¬b.

Now M ⊆ N implies A \ N ⊆ A \M and M is a model for ψa,N . Thus M is a model for
ϕa although a /∈ M, hence M /∈ su(Dst

X).
2. For all N ∈ X, we have M 6⊆ N. Then X 6= ∅ implies M 6= ∅, so let a ∈ M. For each

N ∈ X with a ∈ N, the acceptance formula ϕa contains a disjunct ψa,N =
∧

b∈A\N ¬b.
By assumption, for each N ∈ X there is a bN ∈ M \ N. Clearly bN ∈ A \ N and bN is
evaluated to true by M. Hence for each N ∈ X with a ∈ N, the disjunct ψa,N is evaluated
to false by M. Thus ϕa is false under M and M /∈ su(Dst

X).

122 Chapter 5. Relative Expressiveness and Succinctness

“⊇”: Let M ∈ X. We first show that M ∈ su(Dst
X), that is: for all a ∈ A, we find a ∈ M iff M is a

model for ϕa.

1. Let a ∈ M. By construction, we have that ϕa in Dst
X contains a disjunct of the form

ψa,M =
∧

b∈A\M ¬b. According to the interpretation M, all such b ∈ A \M are false and
thus ψa,M is true whence ϕa is true.

2. Let a ∈ A \M and consider its acceptance formula ϕa. Assume to the contrary that M
is a model for ϕa. Then there is some N ∈ X with a ∈ N such that M is a model for
ψa,N =

∧
b∈A\N ¬b, that is, A \ N ⊆ A \M. Hence M ⊆ N; and, since a ∈ N \M, even

M (N, whence X is not a ⊆-antichain. Contradiction. Thus M is no model for ϕa.

Now consider the reduct DM of Dst
X with respect to M. There, ϕM

a contains the dis-
junct ψM

a,M = ψa,M[b/⊥ : b /∈ M] where all b ∈ A \M have been replaced by false, whence
ψM

a,M = ¬⊥ ∧ . . . ∧ ¬⊥ and ϕM
a is equivalent to true. Thus each a ∈ M is true in the least

fixpoint of ΓDM and thus M ∈ st(Dst
X). 2

The restriction to non-empty model sets is immaterial for relative expressiveness, since we can
use the construction of Theorem 5.2 and the fact that st(D) ⊆ su(D) for any ADF D to realise
the empty model set. As the stable model semantics for ADFs and logic programs both have
the antichain property, we get:

Corollary 5.23. ADFst ≤e BADFst and NLPst ≤e BADFst

This leads to the following overall relationships:

AF <e BADFst ∼=e ADFst ∼=e NLPst <e PL ∼=e CLPst

We remark that the antichain property provides a characterisation of realisability with the stable
semantics; that is, a model set is stable-realisable iff it is a ⊆-antichain.

5.2.3 Supported vs. Stable Semantics

Now we put the supported and stable pictures together. From the proof of Theorem 5.22, we
can read off that for the canonical realisation Dst

X of an antichain X, the supported and stable
semantics coincide, that is, su(Dst

X) = st(Dst
X) = X. With this observation, also bipolar ADFs

under the supported semantics can realise any antichain, and we have this:

Proposition 5.24. BADFst ≤e BADFsu

As we have seen in Proposition 5.20, there are bipolar ADFs with supported-model sets
that are not antichains. We get:

Corollary 5.25. BADFst <e BADFsu

This result allows us to close the last gap and put together the big picture on relative
expressiveness in Figure 5.2 below.

5.3. Allowing Vocabulary Expansion 123

AF

BADFst ∼=e ADFst ∼=e NLPst

BADFsu

ADFsu ∼=e NLPsu ∼=e CLPst ∼=e PL

Figure 5.2: The expressiveness hierarchy. Expressiveness strictly increases from bottom to top. Fσ

denotes formalism F under semantics σ, where “su” is the supported and “st” the stable model se-
mantics; formalisms are among AFs (argumentation frameworks), ADFs (abstract dialectical frame-
works), BADFs (bipolar ADFs), NLPs (normal logic programs), CLPs (canonical logic programs –
normal logic programs extended by double negation as failure) and PL (propositional logic).

5.3 Allowing Vocabulary Expansion

Up to here, we only considered compact realisations, that do not introduce new vocab-
ulary elements. In this section, we allow the introduction of a small number of new
atoms/arguments/statements. More precisely, small means the number is linear in the size
of the source knowledge base (representing the model set that we wish to realise in a target
language). For the purpose of realisability, the new vocabulary elements are projected out of
the resulting models.

As it turns out, adding additional arguments already makes AFs universally expressive (un-
der projection). More technically, we will now show that for each propositional formula ϕ over
vocabulary A, there exists an AF Fϕ over an expanded vocabulary A ∪ Aϕ such that the models
of ϕ and the stable extensions of Fϕ correspond one-to-one. Roughly, this is possible since AFs
can be regarded as a syntactic variant of classical propositional logic that has as its only con-
nective the logical NOR “↓” (Gabbay, 2011; Brewka et al., 2011). Using this connective, negation
is expressed by ¬ϕ = ϕ ↓ ϕ and disjunction by ϕ ∨ ψ = ¬(ϕ ↓ ψ) = (ϕ ↓ ψ) ↓ (ϕ ↓ ψ). These
equivalences can be used to translate arbitrary propositional formulas (over ¬,∧,∨) into the
syntactical ↓-fragment; to guarantee that the size increase is at most linear, we introduce names
aψ for subformulas ψ (Tseitin, 1968). The next definition combines all of these ideas.

Definition 5.8. Let ϕ be a formula using ¬,∧,∨ over vocabulary A. Define the sets Aϕ and Rϕ

inductively as follows:

A> = {a>} R> = ∅
A⊥ = {a⊥} R⊥ = {(a⊥, a⊥)}
Ap =

{
p, a¬p

}
for p ∈ A Rp =

{
(p, a¬p), (a¬p, p)

}
for p ∈ A

A¬ξ =
{

a¬ξ

}
∪ Aξ R¬ξ =

{
(aξ , a¬ξ)

}
∪ Rξ

Aζ∧ξ =
{

aζ∧ξ , a¬ζ , a¬ξ

}
∪ A¬ζ ∪ A¬ξ Rζ∧ξ =

{
(a¬ζ , aζ∧ξ), (a¬ξ , aζ∧ξ)

}
∪ R¬ζ ∪ R¬ξ

Aζ∨ξ =
{

aζ∨ξ , aζ↓ξ
}
∪ Aζ ∪ Aξ Rζ∨ξ =

{
(aζ↓ξ , aζ∨ξ), (aζ , aζ↓ξ), (aζ , aζ↓ξ)

}
∪ Rζ ∪ Rξ

The AF associated to ϕ is given by Fϕ = (Aϕ ∪ A⊥, Rϕ ∪
{
(aϕ, a⊥)

}
∪ R⊥). 3

The argument a> is unattacked and thus part of every stable extension (is true in every inter-
pretation); the argument a⊥ attacks itself and thus cannot be part of any stable extension (is

124 Chapter 5. Relative Expressiveness and Succinctness

false in every interpretation). The mutually attacking arguments p and a¬p for p ∈ A serve
to “guess” a valuation of A, while aϕ and a⊥ guarantee that only (and all) valuations that are
models of ϕ can lead to stable extensions of Fϕ: intuitively, a⊥ must be attacked, and the only
candidate to do so is aϕ. The arguments and attacks for the Boolean connectives express their
usual truth-theoretic semantics, as our first technical result for this translation shows.

Lemma 5.26. Let ϕ be a formula over vocabulary A and Fϕ its associated AF. For each stable extension
M of Fϕ and aζ , aξ ∈ Aϕ, we have:

• a¬ξ ∈ M iff aξ /∈ M;

• aζ∧ξ ∈ M iff both aζ ∈ M and aξ ∈ M;

• aζ∨ξ ∈ M iff one of aζ ∈ M or aξ ∈ M;

• aζ↓ξ ∈ M iff neither aζ ∈ M nor aξ ∈ M.

Proof. • By definition, the only attacker of an argument of the form a¬ξ is the argument aξ . Thus
aξ ∈ M iff a¬ξ /∈ M.

• The only attackers of aζ∧ξ are the arguments a¬ζ and a¬ξ . By the case above, we have a¬ζ ∈ M iff
aζ /∈ M, and a¬ξ ∈ M iff aξ /∈ M. Consequently, aζ ∈ M and aξ ∈ M iff a¬ζ /∈ M and a¬ξ /∈ M
iff aζ∧ξ ∈ M.

• The only attacker of aζ∨ξ is the argument aζ↓ξ . Similarly to the previous cases, we can show that
aζ↓ξ ∈ M iff aζ /∈ M and aξ /∈ M, and that aζ∨ξ ∈ M iff aζ↓ξ /∈ M. In combination, aζ∨ξ ∈ M
iff aζ ∈ M or aξ ∈ M.

• The only attackers of aζ↓ξ are the arguments aζ and aξ . It directly follows that aζ↓ξ ∈ M iff
neither aζ ∈ M nor aξ ∈ M. 2

These correspondences can be used to show by induction that the newly introduced argu-
ments capture the semantics of the formulas they encode (for all subformulas ψ of ϕ).

Lemma 5.27. Let ϕ be a formula over A and Fϕ its associated AF. For each stable extension M of Fϕ

and aψ ∈ Aϕ, we have aψ ∈ M iff M ∩ A is a model of ψ.

Proof. Let M be a stable extension of F. We use structural induction on ψ.

ψ = >: Trivial: a> ∈ M since it has no attackers.

ψ = ⊥: Trivial: a⊥ /∈ M since the set {a⊥} is not conflict-free.

ψ = p ∈ A: Trivial: p ∈ M iff M |= p by definition.

ψ = ¬ξ: aψ ∈ M iff a¬ξ ∈ M iff aξ /∈ M iff M 6|= ξ iff M |= ¬ξ iff M |= ψ.

ψ = ζ ∧ ξ: aψ ∈ M iff aζ∧ξ ∈ M iff aζ ∈ M and aξ ∈ M iff M |= ζ and M |= ξ iff M |= ζ ∧ ξ iff
M |= ψ.

ψ = ζ ∨ ξ: aψ ∈ M iff aζ∨ξ ∈ M iff aζ ∈ M or aξ ∈ M iff M |= ζ or M |= ξ iff M |= ζ ∨ ξ iff
M |= ψ.

ψ = ζ ↓ ξ: aψ ∈ M iff aζ↓ξ ∈ M iff aζ /∈ M and aξ /∈ M iff M 6|= ζ and M 6|= ξ iff M |= ζ ↓ ξ iff
M |= ψ. 2

5.3. Allowing Vocabulary Expansion 125

This lets us show the main result of this section, namely that the AF stable extension
semantics is universally expressive under projection.

Theorem 5.28. Let ϕ be a formula over vocabulary A and Fϕ its associated AF.

1. For each model M ⊆ A of ϕ, there exists a stable extension E of Fϕ with M = E ∩ A.

2. For each stable extension E of Fϕ, the set E ∩ A is a model of ϕ.

Proof. 1. Let M ⊆ A be a model of ϕ. Define the set

E =
{

aψ

∣∣ aψ ∈ Aϕ, M |= ψ
}

Observe that M = E ∩ A. By presumption, aϕ ∈ E. It remains to show that E is a stable exten-
sion, that is, E is conflict-free and attacks all arguments b /∈ E.

E is conflict-free: Assume to the contrary that there is an attack r = (a, b) ∈ Rϕ with a, b ∈ E.
By definition, there are only these cases:

• a is arbitrary and b = ⊥. But then by definition of E we get M |= ⊥, contradiction.
• r = (p, a¬p) or r = (a¬p, p) for p ∈ A. But then by definition of E we get M |= p and

M |= ¬p, contradiction.
• r = (aξ , a¬ξ). But then by definition of E we get M |= ξ and M |= ¬ξ, contradiction.
• r = (a¬ζ , aζ∧ξ) or r = (a¬ξ , aζ∧ξ). Then M |= ζ ∧ ξ, and M |= ¬ζ or M |= ¬ξ, con-

tradiction.
• r = (aζ↓ξ , aζ∨ξ). Then M |= ζ ↓ ξ, whence M |= ¬(ζ ∨ ξ). But also M |= ζ ∨ ξ,

contradiction.
• r = (aζ , aζ↓ξ) or r = (aξ , aζ↓ξ). Then M |= ζ ↓ ξ, and M |= ζ or M |= ξ. But then

also M |= ζ ∨ ξ, contradiction.

E attacks all arguments not in E: Let b ∈ (A ∪ Aϕ ∪ {a⊥}) \ E be an argument. By defini-
tion, there is a formula ψ such that b = aψ and M 6|= ψ. We use structural induction.

• If ψ = ⊥ then aϕ ∈ E attacks a⊥ by definition.
• If ψ = ¬ξ, then M |= ξ whence aξ ∈ E attacks aψ by definition.
• If ψ = ζ ∧ ξ, then M |= ¬ζ or M |= ¬ξ whence a¬ζ ∈ E or a¬ξ ∈ E. In any case, E

attacks aψ by definition.
• If ψ = ζ ∨ ξ, then M |= ζ ↓ ξ whence aζ↓ξ ∈ E attacks aψ by definition.
• If ψ = ζ ↓ ξ, then M |= ζ ∨ ξ whence aζ ∈ E or aξ ∈ E.

In any case, E attacks aψ by definition.

2. Let E be a stable extension of Fϕ. Since E is conflict-free, a⊥ /∈ E. Since E is stable, E attacks a⊥,
which yields aϕ ∈ E. By Lemma 5.27, E ∩ A is a model of ϕ. 2

In particular, Fϕ has no stable extension iff ϕ is unsatisfiable. While this shows that the
construction of Definition 5.8 works as intended, it remains to show that the number of new
arguments is at most linear in the formula size. We can even show that the total increase in
size is only linear, thus also the number of new arguments is linear.

Proposition 5.29. For any formula ϕ, we find that
∥∥Fϕ

∥∥ ∈ O(‖ϕ‖).

126 Chapter 5. Relative Expressiveness and Succinctness

Proof. We first note that ∥∥Fϕ

∥∥ =
∥∥(Aϕ ∪ A⊥, Rϕ ∪

{
(aϕ, a⊥)

}
∪ R⊥)

∥∥
=
∣∣Aϕ ∪ A⊥

∣∣+ ∣∣Rϕ ∪
{
(aϕ, a⊥)

}
∪ R⊥

∣∣
=
∣∣Aϕ

∣∣+ 1 +
∣∣Rϕ

∣∣+ 2

=
∣∣Aϕ

∣∣+ ∣∣Rϕ

∣∣+ 3

We now use structural induction on ϕ to show that for all formulas ϕ, we find
∣∣Aϕ

∣∣ ≤ 5 · ‖ϕ‖ and∣∣Rϕ

∣∣ ≤ 4 · ‖ϕ‖. It then follows that
∥∥Fϕ

∥∥ ≤ (5 + 4) · ‖ϕ‖+ 3 = 9 · ‖ϕ‖+ 3 ∈ O(‖ϕ‖).

ϕ = >:

|A>| = |{a>}| = 1 ≤ 5 = 5 · ‖>‖
|R>| = |∅| = 0 ≤ 4 = 4 · ‖>‖

ϕ = ⊥:

|A⊥| = |{a⊥}| = 1 ≤ 5 = 5 · ‖⊥‖
|R⊥| = |{(a⊥, a⊥)}| = 1 ≤ 4 = 4 · ‖⊥‖

ϕ = a ∈ A:

|Aa| = |{a, a¬a}| = 2 ≤ 5 = 5 · ‖a‖
|Ra| = |{(a, a¬a), (a¬a, a)}| = 2 ≤ 4 = 4 · ‖a‖

ϕ = ¬ξ: ∣∣Aϕ

∣∣ = ∣∣Aξ ∪
{

a¬ξ

}∣∣ ≤ ∣∣Aξ

∣∣+ 1 ≤ (5 · ‖ξ‖) + 1 ≤ 5 · (‖ξ‖+ 1) = 5 · ‖ϕ‖∣∣Rϕ

∣∣ = ∣∣Rξ ∪
{
(aξ , a¬ξ)

}∣∣ ≤ ∣∣Rξ

∣∣+ 1 ≤ (4 · ‖ξ‖) + 1 ≤ 4 · (‖ξ‖+ 1) = 4 · ‖ϕ‖

ϕ = ζ ∧ ξ: ∣∣Aϕ

∣∣ ≤ ∣∣A¬ζ

∣∣+ ∣∣A¬ξ

∣∣+ 3 ≤ (
∣∣Aζ

∣∣+ 1) + (
∣∣Aξ

∣∣+ 1) + 3

≤ (5 · ‖ζ‖+ 1) + (5 · ‖ξ‖+ 1) + 3 = 5 · ‖ζ‖+ 5 · ‖ξ‖+ 5
= 5 · (‖ζ‖+ ‖ξ‖+ 1) = 5 · ‖ζ ∧ ξ‖

∣∣Rϕ

∣∣ ≤ ∣∣R¬ζ

∣∣+ ∣∣R¬ξ

∣∣+ 2 ≤ (
∣∣Rζ

∣∣+ 1) + (
∣∣Rξ

∣∣+ 1) + 2

≤ (4 · ‖ζ‖+ 1) + (4 · ‖ξ‖+ 1) + 2 = 4 · ‖ζ‖+ 4 · ‖ξ‖+ 4
= 4 · (‖ζ‖+ ‖ξ‖+ 1) = 4 · ‖ϕ‖

ϕ = ζ ∨ ξ: ∣∣Aϕ

∣∣ ≤ ∣∣Aζ

∣∣+ ∣∣Aξ

∣∣+ 2 ≤ 5 · ‖ζ‖+ 5 · ‖ξ‖+ 2

≤ 5 · ‖ζ‖+ 5 · ‖ξ‖+ 5 = 5 · (‖ζ‖+ ‖ξ‖+ 1) = 5 · ‖ϕ‖

∣∣Rϕ

∣∣ ≤ ∣∣Rζ

∣∣+ ∣∣Rξ

∣∣+ 3 ≤ (4 · ‖ζ‖) + (4 · ‖ξ‖) + 3

≤ 4 · ‖ζ‖+ 4 · ‖ξ‖+ 4 = 4 · (‖ζ‖+ ‖ξ‖+ 1) = 4 · ‖ϕ‖ 2

5.4. Discussion 127

Hence under projection, the AF stable extension semantics can realise as much as proposi-
tional logic can. With the results of the previous section (AF ≤e PL), this means that allowing
to introduce a linear number of new vocabulary elements (that are later projected out), all
languages considered in this chapter are equally (universally) expressive.

However, we must note that equal expressiveness does not mean equal efficiency: When
we assume that a knowledge base of size n leads to a search space of size O(2n), then a linear
increase in knowledge base size (that is, from n to c · n for some constant c) leads to a polynomial
increase in search space size (that is, from O(2n) to O(2c·n) = O

(
(2n)c).

5.4 Discussion

We compared the expressiveness of abstract argumentation frameworks, abstract dialectical
frameworks, normal (and canonical) logic programs and propositional logic. We showed that
expressiveness under different semantics varies for the formalisms and obtained a neat ex-
pressiveness hierarchy. These results inform us about the capabilities of these languages to
encode sets of two-valued interpretations, and help us decide which languages to use for spe-
cific applications. Furthermore, we have seen that the results are sensitive to the vocabulary
one is permitted to use, as the hierarchy collapses when we allow to introduce even only a
linear number of new atoms.

Concerning succinctness, we have shown that ADFs (under model semantics) are expo-
nentially more succinct than normal logic programs (under supported model semantics), and
that even bipolar ADFs (under model semantics) – although being less expressive – can suc-
cinctly express some model sets where equivalent normal logic programs (under supported
model semantics) over the same vocabulary must necessarily blow up exponentially in size.
It is open whether the converse direction also holds, that is, whether BADFs are exponen-
tially more succinct than logic programs (if NLPsu ≤s BADFsu) or the two are just mutually
incomparable in terms of succinctness (if NLPsu 6≤s BADFsu). For the stable semantics, relative
succinctness of logic programs and BADFs is completely open, partly due to the technical as-
pect that the two stable semantics are conceptually different, as ADFs in fact employ ultimate
stable models (Section 3.3). Furthermore, for general ADFs, the computational complexity of
the model existence problem of stable semantics is higher than for normal logic programs, so
a succinctness comparison with regard to stable models would be of limited significance.

It is easy to see that AFs have a somewhat special role as they are representation-
ally succinct in any case: for a vocabulary An, there is syntactically no possibility to spe-
cify a knowledge base (an AF) of exponential size, since the largest AF over An has size
‖(An, An × An)‖ = n + n2 and is thus polynomially large. So anything that can be expressed
with an AF can be expressed in reasonable space by definition. However, this “strength” of
AFs should be taken with a grain of salt, since they are comparably inexpressive. This can
(in addition to the results we presented) already be seen from a simple counting argument:
even if all syntactically different AFs over An were semantically different (which they are not),
they could express at most 2n2

different model sets, which is – for increasing n – negligible in
relation to the 22n

possible model sets over An.
In their original paper, Gogic et al. (1995) also used a relaxed version of succinctness, where

they allowed to introduce a linear number of new variables. It follows from our results in
Section 5.3 that all formalisms we consider here are equally succinct under this relaxed notion.

Recently, Shen and Zhao (2014) showed that canonical logic programs under stable models
and propositional logic are succinctly incomparable (under the assumption that P 6⊆ NC1

/poly,
the Boolean circuit equivalent of the assumption NP 6⊆ P), and also provide interesting avenues

128 Chapter 5. Relative Expressiveness and Succinctness

for further succinctness studies. We can also add succinctness questions of our own: firstly that
of comparing disjunctive logic programs under stable models with general ADFs under stable
models, since the two have an equally complex (ΣP

2 -complete) model existence problem (Eiter
and Gottlob, 1995; Theorem 4.39). What is more, as the reader knows there are alternative
proposals for stable model semantics for ADFs:

• the approximate stable model semantics (Definition 3.2; Strass, 2013, Definition 3.2), for
which model existence is NP-complete and thus potentially easier than that of ultimate
stable model semantics;

• the “grounded model” semantics by Bogaerts, Vennekens, and Denecker (2015, Defini-
tion 6.8), whose model existence problem is also ΣP

2 -complete (Bogaerts et al., 2015);

• the “F-stable model” semantics by Alviano and Faber (2015, Definition 10).

It follows from Theorem 5.9 of Bogaerts et al. (2015) that grounded models and F-stable models
coincide. Still, they are demonstrably different from both approximate and ultimate stable
models for ADFs (Alviano and Faber, 2015),8 and their relative succinctness in comparison to
normal/disjunctive logic programs is unanalysed.

There is more potential for further work on expressiveness and succinctness. First of all,
a “nice” characterisation of bipolar ADF realisability is still missing; we are unsure whether
much improvement over Proposition 5.11 is possible. Incidentally, for AFs the exact character-
isation of compact stable extension realisability constitutes a major open problem (Baumann
et al., 2014; Dunne et al., 2015; Baumann et al., 2016). Second, there are further semantics for
abstract dialectical frameworks whose expressiveness could be studied; Dunne et al. (2015)
and Dyrkolbotn (2014) already analyse many of them for argumentation frameworks. This
chapter is thus only a start and the same can be done for the remaining semantics. For ex-
ample the admissible, complete and preferred semantics are all defined for AFs, (B)ADFs
and NLPs (see Chapter 3), and Pührer (2015) has already made a huge step into that direc-
tion by characterising realisability. Third, there are further formalisms in abstract argumenta-
tion (Brewka et al., 2014) whose expressiveness is by and large unexplored to the best of our
knowledge. Finally, the representational succinctness of the subclass of bipolar ADFs (using
bipolar propositional formulas to represent them) under supported model semantics is mostly
open (cf. Table 5.2), with some evidence pointing toward meaningful capabilities.

8In the terminology of Alviano and Faber (2015), approximate stable models are called S-stable models and ultimate
stable models (Brewka et al., 2013) are called B-stable models. Both are shown to be different from F-stable models.

129

Chapter 6

An Application to Theory Bases

Abstract argumentation frameworks (AFs; Dung, 1995) are widely used in argumentation re-
search. As we have seen in the background chapter (Chapter 2), such an AF consists of a set
of arguments and an attack relation between these arguments. Their semantics determines
which sets of arguments of a given AF can be accepted according to specific criteria. A com-
mon way to employ Dung’s AFs is as abstraction formalism. In this view, expressive languages
are used to model concrete argumentation scenarios, and translations into Dung AFs provide
these original languages with semantics. The advantage of translating into an argumentation
formalism is that the resulting semantics can be given a dialectical interpretation, which can
be used to inform humans how a particular conclusion was inferred.

However, the approach is not without its problems. Caminada and Amgoud (2007) re-
ported some difficulties they encountered when defining an abstract argumentation-based se-
mantics for defeasible theory bases. Defeasible theory bases are simple logic-inspired formal-
isms working with inference rules on a set of literals. Inference rules can be strict, in which
case the conclusion of the inference (a literal) must necessarily hold whenever all antecedents
(also literals) hold. Inference rules can also be defeasible, which means that the conclusion
usually holds whenever the antecedents hold. Here, the word “usually” suggests that there
could be exceptional cases where a defeasible rule has not been applied (Pollock, 1987).

In response to the problems they encountered, Caminada and Amgoud (2007) stated gen-
eral rationality postulates for AFs based on defeasible theories. The intention of these pos-
tulates is to mathematically capture what humans perceive as rational behaviour from the
semantics of defeasible theory bases. First of all the closure postulate says that whatever model
or extension the target formalism (the AF) produces, it must be closed under application of
strict rules, meaning that all applicable strict rules have been applied. Direct and indirect
consistency postulates express that any model or extension of the target formalism must be in-
ternally consistent with respect to the literals of the defeasible theory base (directly) and even
with respect to application of strict rules (indirectly).

Later, Wyner et al. (2009) criticised Caminada and Amgoud’s definition of arguments on
ontological grounds and gave an alternative translation. We are agnostic with respect to Wyner
et al.’s criticism, but use their translation as a starting point for our own work. Such a fur-
ther refinement is necessary since the translation of Wyner et al. (2009) still yields unintuitive
results on benchmark examples and does not satisfy the closure and indirect consistency pos-
tulates. Wyner et al. (2013) later fixed these issues by adding a meta-level integrity constraint
on the obtained extensions, thus ruling out violation of the postulates. Our translation has
this integrity constraint built into it, such that models can be taken as they are. In more recent

130 Chapter 6. An Application to Theory Bases

further work, Wyner, Bench-Capon, Dunne, and Cerutti (2015) once again modified the defin-
ition of AFs associated to defeasible theories – unfortunately in such a way that the rationality
postulates are again not fulfilled.1 Therefore, we will mainly base this chapter on the work of
Wyner et al. (2013).

The basis of our solution to the aforementioned problems of previous approaches is a shift
in the target language. While until now abstract argumentation frameworks were the formal-
ism of choice, we will use the more general abstract dialectical frameworks (ADFs) (Brewka and
Woltran, 2010). Where AFs allow only attacks between arguments, ADFs can also represent
support relations and many more. The modelling capacities of ADFs in comparison to AFs –
which we studied earlier in this thesis – enables us to give a direct and straightforward trans-
lation from defeasible theory bases to abstract dialectical frameworks. We will show that this
translation – the first main contribution of this chapter – treats the benchmark examples right
and satisfies the rationality postulates of Caminada and Amgoud (2007). We consider this fur-
ther important evidence that abstract dialectical frameworks are useful tools for representing
and reasoning about argumentation scenarios. We also perform a complexity analysis of our
translation; this is significant in that we are not aware of complexity analyses of the mentioned
previous approaches.

The availability of support in ADFs (in contrast to AFs) as a target formalism will be of
fundamental importance to our translation. Among other things, it will allow us to resolve
cyclic dependencies among literals in a defeasible theory base in a straightforward way. The
treatment of such support cycles is built into ADF standard semantics, which can be considered
a product of decades of research into nonmonotonic knowledge representation languages.

As the second main contribution of this chapter, we introduce a possible-worlds semantics
for defeasible theory bases. This provides a language for formulating different intuitions about
the meaning of strict and defeasible rules. Furthermore, it nicely illustrates the difficulties in
formally defining semantics for collections of such rules. The semantics is inspired by possible-
worlds semantics for autoepistemic logic (Denecker et al., 2003), we therefore indirectly present
potential epistemic modal readings of strict and defeasible rules.

In the rest of this chapter, we first recall some necessary background on defeasible theory
bases. In Section 6.2 we look at the translations of Caminada and Amgoud (2007) and Wyner
et al. (2009), discuss some problems of these, and introduce generalised versions of the ra-
tionality postulates. In Section 6.3 we then define our own translation from defeasible theory
bases to ADFs. We show how it treats the problematic examples, prove that it satisfies the
(generalised versions of the) rationality postulates and analyse its computational complexity.
We then introduce our direct semantics for defeasible theories and illustrate its behaviour on
several examples, and afterwards clarify its connections to autoepistemic logic. We conclude
with a discussion of related and future work.

6.1 Background on Defeasible Theories

Following Caminada and Amgoud (2007), we use a set Lit of literals that are built using
syntactical negation ¬· and define a semantic negation function · such that for an atom p we
have p = ¬p and ¬p = p. Throughout this chapter, we assume that Lit is closed under negation
in the sense that ψ ∈ Lit implies ψ ∈ Lit. A set S ⊆ Lit of literals is consistent iff there is no literal
ψ ∈ Lit such that both ψ ∈ S and ¬ψ ∈ S. For literals φ1, . . . , φn, ψ ∈ Lit, a strict rule over Lit is
of the form r : φ1, . . . , φn → ψ; a defeasible rule over Lit is of the form r : φ1, . . . , φn ⇒ ψ. (The

1The strict rule set {→ a, a→ ¬a} is “well-formed” according to their definition, consequently their approach
violates closure as not both a and ¬a are concluded from the resulting AF.

6.2. Instantiations to Abstract Argumentation Frameworks 131

only difference is the arrows.) Here r is the unique rule name, the literals φ1, . . . , φn constitute
the rule body and ψ is the rule head or conclusion. Intuitively, a strict rule says that the rule
head is necessarily true whenever all body literals are true; a defeasible rule says that the head
ψ is usually true whenever all body literals are true. In definitions, we use the symbol V as
meta-level variable for→ and⇒.

For a set M ⊆ Lit of literals and a set StrInf of strict rules over Lit, we say that M is closed
under StrInf iff r : φ1, . . . , φn → ψ ∈ StrInf and φ1, . . . , φn ∈ M imply ψ ∈ M. Accordingly, the
closure of M under StrInf is the ⊆-least set ClStrInf (M) that contains M and is closed under
StrInf . A defeasible theory base (also defeasible theory or theory base) is a triple (Lit, StrInf , DefInf)
where Lit is a set of literals, StrInf is a set of strict rules over Lit and DefInf is a set of defeasible
rules over Lit. The semantics of theory bases is usually defined via a translation to abstract
argumentation frameworks. Here, we will in a similar fashion define such a translation to
ADFs. It will turn out that ADFs resulting from our automatic translation from defeasible
theory bases are all bipolar. This is especially significant as the complexity results of Chapter 4
show that bipolar ADFs are as complex as AFs, thus the additional modelling capacities of
bipolar ADFs come essentially for free.

6.2 Instantiations to Abstract Argumentation Frameworks

The general approach to provide a semantics for defeasible theories is to translate the defeas-
ible theory into an argumentation formalism and then let the already existing semantics for
that argumentation formalism determine the semantics of the defeasible theory. In the liter-
ature, the target formalism of choice are Dung’s abstract argumentation frameworks. They
abstract away from everything except arguments and attacks between them, so to define a
translation to AFs one has to define arguments and attacks. We now review two particular
such approaches.

6.2.1 The Approach of Caminada and Amgoud (2007)

Caminada and Amgoud (2007) define a translation from defeasible theories to argumentation
frameworks. They create arguments in an inductive way by applying one or more inference
rules. The internal structure of the arguments reflects how a particular conclusion was derived
by applying an inference rule to the conclusions of subarguments, and allows arguments to
be nested. So the base case of the induction takes into account rules with empty body, that
is, rules of the form → ψ (or ⇒ ψ) for some literal ψ. Each such rule leads to an argument
A = [→ ψ] (or [⇒ ψ]), and the conclusion of the rule becomes the conclusion of the argu-
ment. For the induction step, we assume there are arguments A1, . . . , An with conclusions
φ1, . . . , φn, respectively. If there is a strict rule φ1, . . . , φn → ψ, we can build a new argument
A = [A1, . . . , An → ψ] with conclusion ψ. (Likewise, if there is a defeasible rule φ1, . . . , φn ⇒ ψ,
we can build a new argument A = [A1, . . . , An ⇒ ψ].) Similar to rules, arguments can be strict
or defeasible, where application of at least one defeasible rule makes the whole argument
defeasible. In other words, strict arguments only use strict rules to derive their conclusion.

For these arguments, Caminada and Amgoud (2007) then define two different kinds of
attacks, rebuts and undercuts. An argument a rebuts another argument b if a subargument of
a concludes some literal ψ, while there is a defeasible subargument of b that concludes ψ. An
argument a undercuts another argument b if the latter has a subargument that results from
applying a defeasible rule and the applicability of that rule is disputed by a subargument of

132 Chapter 6. An Application to Theory Bases

a. (So as a matter of principle, only defeasible arguments can be attacked.) Caminada and
Amgoud (2007) observed some difficulties of this translation.

Example 6.1 (Married John. Caminada and Amgoud, 2007, Example 4). Consider the follow-
ing vocabulary with intended natural-language meaning:

w . . . John wears something that looks like a wedding ring,
g . . . John often goes out late with his friends,

m . . . John is married,
b . . . John is a bachelor,
h . . . John has a spouse.

There are several relationships between these propositions, which are captured in the following
theory base:

Lit = {w, g, h, m, b,¬w,¬g,¬h,¬m,¬b}
StrInf = {r1 : → w, r2 : → g, r3 : b→ ¬h, r4 : m→ h}
DefInf = {r5 : w⇒ m, r6 : g⇒ b}

In the ASPIC system of Caminada and Amgoud (2007), all the literals in the set S = {w, g, m, b}
are contained in all extensions (with respect to any of Dung’s standard semantics) of the con-
structed AF. Caminada and Amgoud observe that this is clearly unintended since the natural-
language interpretation would be that John is a married bachelor. Moreover, the closure of
S under StrInf is ClStrInf (S) = {w, g, m, b, h,¬h}, which is inconsistent. So not only are there
applicable strict rules that have not been applied in S, but their application would lead to
inconsistency. 3

To avoid anomalies such as the one just seen, Caminada and Amgoud (2007) went on to
define three natural rationality postulates for rule-based argumentation-based systems that
are concerned with the interplay of consistency and strict rule application. Our formulation of
them is slightly different for various reasons:

• We are concerned with argumentation frameworks as well as with abstract dialectical
frameworks in this chapter, so we made the postulates parametric in the target argu-
mentation formalism.

• We removed the respective second condition on the sceptical conclusions with respect to
all extensions/models. Propositions 4 and 5 in (Caminada and Amgoud, 2007) show that
they are redundant in their case.

• We are not constrained to formalisms and semantics where there are only finitely many
extensions/models.

• For the sake of readability, we assume that the literals Lit of the defeasible theory are
contained in the vocabulary of the target formalism.2

The first postulate requires that the set of conclusions for any extension should be closed
under application of strict rules.

2This is not a proper restriction since reconstruction of conclusions about the original defeasible theory is one of
the goals of the whole enterprise and so there should be at least a translation function from argumentation models to
theory models.

6.2. Instantiations to Abstract Argumentation Frameworks 133

Postulate 6.1 (Closure). Let (Lit, StrInf , DefInf) be a defeasible theory. Its translation satisfies clos-
ure for semantics σ iff for any σ-model M, we find that ClStrInf (Lit∩M) ⊆ Lit∩M.

Naturally, the notion of consistency is reduced to consistency of a set of literals of the
underlying logical language. Note that consistency only concerns the local consistency of a
given single model of the target formalism. It may well be that the formalism is globally
inconsistent in the sense of not allowing for any model with respect to a particular semantics.
The latter behaviour can be desired, for example if the original theory base is inconsistent
already.

Postulate 6.2 (Direct Consistency). Let (Lit, StrInf , DefInf) be a defeasible theory with translation
X and σ a semantics. X satisfies direct consistency iff for all σ-models M we have that Lit∩M is
consistent.

Caminada and Amgoud (2007) remark that it is usually easy to satisfy direct consistency,
but much harder to satisfy the stronger notion of indirect consistency. For this to hold, for
each model its closure under strict rules must be consistent.

Postulate 6.3 (Indirect Consistency). Let (Lit, StrInf , DefInf) be a defeasible theory with transla-
tion X and σ a semantics. X satisfies indirect consistency iff for all σ-models M we have that
ClStrInf (Lit∩M) is consistent.

As a counterpart to Proposition 7 of Caminada and Amgoud (2007), we can show that
closure and direct consistency together imply indirect consistency.

Proposition 6.1. Let (Lit, StrInf , DefInf) be a defeasible theory with translation X and σ a semantics.
If X satisfies closure and direct consistency, then it satisfies indirect consistency.

Proof. Let X satisfy closure and direct consistency, and let M be a σ-model for X. We have to show that
ClStrInf (Lit∩M) is consistent. Since X satisfies closure, ClStrInf (Lit∩M) ⊆ Lit∩M. Now since X
satisfies direct consistency, Lit∩M is consistent. Hence its subset ClStrInf (Lit∩M) ⊆ Lit is consistent
and X satisfies indirect consistency. 2

While Caminada and Amgoud (2007) observed problematic issues in giving argument-
based semantics to defeasible theory bases, they still succeeded in devising an approach that
is able to achieve closure and direct and indirect consistency for any admissibility-based se-
mantics by using appropriate (semantics-dependent) definitions of rebut and undercut.

6.2.2 The Approach of Wyner, Bench-Capon, and Dunne (2013)

Wyner et al. (2009, 2013) identified some problems of the approach of Caminada and Amgoud
(2007) and proposed an alternative translation from theory bases to argumentation frame-
works. We do not necessarily support or reject their philosophical criticisms, but rather find
the translation technically appealing. They create an argument for each literal in the theory
base’s language and additionally an argument for each rule. Intuitively, the literal arguments
indicate that the literal holds, and the rule arguments indicate that the rule is applicable. Fur-
thermore, the defined conflicts between these arguments are straightforward:

1. opposite literals attack each other;

2. rules are attacked by the negations of their body literals;

3. defeasible rules are attacked by the negation of their head;

134 Chapter 6. An Application to Theory Bases

4. all rules attack the negation of their head.

Definition 6.1 (Wyner et al., 2009, Definitions 4 and 5). Let TB = (Lit, StrInf , DefInf) be a de-
feasible theory. Define an argumentation framework F(TB) = (A, R) by

A = Lit∪ {r | r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf}
R =

{
(ψ, ψ)

∣∣ ψ ∈ Lit
}

∪
{
(φi, r)

∣∣ r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf , 1 ≤ i ≤ n
}

∪
{
(ψ, r)

∣∣ r : φ1, . . . , φn ⇒ ψ ∈ DefInf
}

∪
{
(r, ψ)

∣∣ r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf
}

3

As mentioned in the introduction to this chapter, a further definition is needed to rule out
extensions that are not closed under strict rules.

Definition 6.2 (Wyner et al., 2013, Definition 7). Let TB = (Lit, StrInf , DefInf) be a defeasible
theory and F(TB) = (A, R) its associated argumentation framework. An extension M ⊆ A
of F(TB) is well-formed if there is no strict rule r : φ1, . . . , φn → ψ ∈ StrInf such that
{r, φ1, . . . , φn} ⊆ M but ψ /∈ M. 3

It is decidable in polynomial time whether a given extension M is well-formed: we can
compute ClStrInf (M) and then check whether ClStrInf (M) ⊆ M. This means that the additional
computational cost incurred by Definition 6.2 is acceptable under standard assumptions.3 For
illustration, let us now look at one of the examples of Wyner et al. (2013) which they adapted
from (Caminada and Amgoud, 2007).

Example 6.2 (Wyner et al., 2013, Example 4). Consider the following theory base.

Lit = {x1, x2, x3, x4, x5,¬x1,¬x2,¬x3,¬x4,¬x5}
StrInf = {r1 : → x1, r2 : → x2, r3 : → x3, r4 : x4, x5 → ¬x3}
DefInf = {r5 : x1 ⇒ x4, r6 : x2 ⇒ x5}

We can see that x1, x2, x3 are strictly asserted and thus should be contained in any extension.
The AF translation is depicted below.

r2 x2 ¬x2 r6 ¬x5 x5

r3 ¬x3 x3 r4

r1 x1 ¬x1 r5 ¬x4 x4

3It might even be possible to encode Definition 6.2 directly into the translated AF by adding, for each strict rule
r : φ1, . . . , φn → ψ ∈ StrInf , a new argument -r (“r is inapplicable”) and the attacks (-r, -r), (ψ, -r), (φ1, -r), . . . , (φn, -r).

6.3. Instantiations to Abstract Dialectical Frameworks 135

The stable extensions of this AF are as follows:

S1 = {x1, x2, x3,¬x4,¬x5, r1, r2, r3} S2 = {x1, x2, x3,¬x4, x5, r1, r2, r3, r6}
S3 = {x1, x2, x3, x4,¬x5, r1, r2, r3, r5} S4 = {x1, x2, x4, x5, r1, r2, r3, r4, r5, r6}

While the first three extensions can be considered intended, S4 is not closed under strict rules
and indirectly inconsistent: r3 is applicable but x3 does not hold, r4 is applicable but ¬x3
does not hold. Indeed, S4 is not well-formed and thus should not be considered for drawing
conclusions (Wyner et al., 2013). 3

A similar observation can be made in Example 6.1: the AF translation according to Wyner
et al. (2009) has a stable extension {w, g, m, b, r1, r2, r3, r4, r5, r6} where John is a married bach-
elor; but again, this extension is not well-formed and thus discarded.

6.3 Instantiations to Abstract Dialectical Frameworks

In this section, we extend the theory base to AF translation of Wyner et al. (2009) to ADFs. Due
to the availability of support, this is straightforward. Indeed, support and attack are sufficient
for our purposes and we can therefore restrict our attention to bipolar ADFs.

6.3.1 From Theory Bases to ADFs

As in the approach of Wyner et al. (2009), we directly use the literals from the theory base
as statements that express whether the literal holds. We also use rule names as statements
indicating that the rule is applicable. Additionally, for each rule r we use a statement -r indic-
ating that the rule has not been applied. Not applying a rule is acceptable for defeasible rules,
but unacceptable for strict rules since it would violate the closure postulate. This is enforced
via integrity constraints saying that it may not be the case in any model that the rule body
holds but the head does not hold. Technically, for a strict rule r, we introduce a conditional
self-attack of -r; this self-attack becomes active if (and only if) the body of r is satisfied but
the head of r is not satisfied, thereby preventing this undesirable state of affairs from getting
included in a model. Defeasible rules offer some degree of choice, whence we leave it to the
semantics whether or not to apply them. This choice is modelled by a mutual attack cycle
between r and -r. The remaining acceptance conditions are equally straightforward:

• Opposite literals attack each other.

• A literal is accepted whenever some rule deriving it is applicable, that is, all rules with
head ψ support statement ψ.

• A strict rule is applicable whenever all of its body literals hold, that is, the body literals
of r are exactly the supporters of r.

• Likewise, a defeasible rule is applicable whenever all of its body literals hold, and addi-
tionally the negation of its head literal must not hold.

In particular, literals cannot be accepted unless there is some rule deriving them.

136 Chapter 6. An Application to Theory Bases

Definition 6.3. Let TB = (Lit, StrInf , DefInf) be a theory base. Define an ADF
D(TB) = (S, L, C) by S = Lit∪ {r, -r | r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf}; the acceptance
functions of statements s can be parsimoniously represented by propositional formulas ϕs:4

For a literal ψ ∈ Lit, we define

ϕψ = ¬[ψ] ∧
∨

r:φ1,...,φnVψ∈StrInf∪DefInf

[r]

For a strict rule r : φ1, . . . , φn → ψ ∈ StrInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] and
ϕ-r = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r]

For a defeasible rule r : φ1, . . . , φn ⇒ ψ ∈ DefInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r] and
ϕ-r = ¬[r]

Finally, there is a link (s′, s) ∈ L iff [s′] occurs in the acceptance formula ϕs. 3

(For the formulas defined above, the empty disjunction leads to ⊥ – logical falsity – and the
empty conjunction to > – logical truth.)

Let us see how our translation treats the examples seen earlier.

Example 6.3 (Continued from Example 6.2). Definition 6.3 yields these acceptance formulas:

ϕx1 = ¬[¬x1] ∧ [r1] ϕ¬x1 = ⊥
ϕx2 = ¬[¬x2] ∧ [r2] ϕ¬x2 = ⊥
ϕx3 = ¬[¬x3] ∧ [r3] ϕ¬x3 = ¬[x3] ∧ [r4]

ϕx4 = ¬[¬x4] ∧ [r5] ϕ¬x4 = ⊥
ϕx5 = ¬[¬x5] ∧ [r6] ϕ¬x5 = ⊥
ϕr1 = > ϕ-r1 = ¬[x1] ∧ ¬[-r1]

ϕr2 = > ϕ-r2 = ¬[x2] ∧ ¬[-r2]

ϕr3 = > ϕ-r3 = ¬[x3] ∧ ¬[-r3]

ϕr4 = [x4] ∧ [x5] ϕ-r4 = [x4] ∧ [x5] ∧ ¬[¬x3] ∧ ¬[-r4]

ϕr5 = [x1] ∧ ¬[¬x4] ∧ ¬[-r5] ϕ-r5 = ¬[r5]

ϕr6 = [x2] ∧ ¬[¬x5] ∧ ¬[-r6] ϕ-r6 = ¬[r6]

Statements with an acceptance condition of the form ¬p1 ∧ . . . ∧ ¬pn behave like AF argu-
ments. So in particular r1, r2, r3 are always t since these rules have an empty body. Similarly,
-r1, -r2, -r3 are self-attacking arguments. The statements ¬x1,¬x2,¬x4,¬x5 are always f since
there are no rules deriving these literals. The remaining acceptance conditions are clear from
the definitions: literals are supported by the rules deriving them and rules in turn are suppor-
ted by their body literals.

6.3. Instantiations to Abstract Dialectical Frameworks 137

-r2 r2 -r6

¬x2 x2 r6 x5 ¬x5

r3

-r3 x3 ¬x3 r4

-r4

¬x1 x1 r5 x4 ¬x4

-r1 r1 -r5

−

−

−

−

−

−

−

−+

+

+
+

+

+

+

+

+
+

+

+

+

− −

−−

−

−

−

−

+

+

−

−

−

−

−

−

−
−

Figure 6.1: Graphical depiction of the ADF from Example 6.2. Edge labels + and − indicate supporting
and attacking links. Several statements have constant truth values as acceptance conditions, in the
picture this is indicated via a link from the surroundings. (This is inspired by conventions from automata
theory, where initial states are indicated likewise.)

For illustration, we also provide the ADF in form of a labelled graph in Figure 6.1. For this
ADF, models and stable models coincide, and there are three of them:

M1 = {x1, x2, x3, r1, r2, r3, -r5, -r6} M2 = {x1, x2, x3, x4, r1, r2, r3, r5, -r6}
M3 = {x1, x2, x3, x5, r1, r2, r3, -r5, r6}

Roughly, in M1 none of the defeasible rules r5, r6 has been applied – indicated by -r5 and -r6
–, while in M2 and M3 either one of them has been applied. As intended, there is no model
where both defeasible rules have been applied, as this would lead to a set that contains both x4
and x5; this in turn would make rule r4 applicable, allowing to conclude ¬x3 in contradiction
to x3 being strictly true according to rule r3. We can furthermore see that all of the models are
closed under strict rule application (they contain x1, x2, x3 and no other strict rule is applicable)
and directly consistent, thus also indirectly consistent. 3

A similar observation can be made for John (not) being married (Ex-
ample 6.1); our ADF translation has three (stable) models: M1 = {w, g, r1, r2, -r5, -r6},

4In these formulas, we write ADF statements in brackets, to avoid confusion between negation being applied inside
a statement name – as in [¬x] – and negation being applied in the formula outside of the statement’s name – as in
¬[-r]. Thus [¬x] and ¬[x] are syntactically different literals in the language of acceptance formulas; their meaning is
intertwined via the semantics of ADFs.

138 Chapter 6. An Application to Theory Bases

M2 = {w, g, h, m, r1, r2, r4, r5, -r6} and M3 = {w, g, b,¬h, r1, r2, r3, -r5, r6}. Again, the argument-
ation translation of the theory base satisfies closure and direct and indirect consistency. We
will later prove that the satisfaction of the postulates is not a coincidence in our approach. But
first of all let us consider another problem which often arises in knowledge representation
and reasoning.

6.3.2 Support Cycles in Theory Bases

When logical, rule-based approaches are used for knowledge representation, a recurring issue
is that of cyclic dependencies between propositions of the knowledge base. If such support
cycles are carelessly overlooked or otherwise not treated in an adequate way, they can lead
to counterintuitive conclusions. Consider this famous example by Denecker, Theseider-Dupré,
and Van Belleghem (1998).

Example 6.4 (Gear Wheels; Denecker et al., 1998). There are two interlocked gear wheels x
and y that can be separately turned and stopped. Let x0 and y0 denote whether x (resp.
y) turns at time point 0, and likewise for a successive time point 1. At any one time point,
whenever the first wheel turns (resp. stops), it causes the second one to turn (resp. stop), and
vice versa. This is expressed by strict rules r1 to r8. Without a cause for change, things usually
stay the way they are from one time point to the next, which is expressed by the defeasible
rules ra to rd.

Lit = {x0, y0, x1, y1,¬x0,¬y0,¬x1,¬y1}
StrInf = {r1 : x0 → y0, r2 : y0 → x0, r3 : ¬x0 → ¬y0, r4 : ¬y0 → ¬x0,

r5 : x1 → y1, r6 : y1 → x1, r7 : ¬x1 → ¬y1, r8 : ¬y1 → ¬x1}
DefInf = {ra : x0 ⇒ x1, rb : ¬x0 ⇒ ¬x1, rc : y0 ⇒ y1, rd : ¬y0 ⇒ ¬y1}

For later reference, we denote this theory base by TBGW = (Lit, StrInf , DefInf). To model
a concrete scenario, we add the rules StrInf ′ =

{
ri :→ ¬x0, rj :→ ¬y0

}
expressing that both

wheels initially stand still. We denote the augmented theory base for this concrete scenario
by TB′GW = (Lit, StrInf ∪ StrInf ′, DefInf). It is clearly unintended that there is some model for
TB′GW where the gear wheels magically start turning with one being the cause for the other
and vice versa. 3

The same holds for defeasible rules.

Example 6.5 (Defeasible cycle). Consider these defeasible rules saying that rain and
wet grass usually go hand in hand: Lit = {rain, wet,¬rain,¬wet}, StrInf = ∅ and
DefInf = {r1 : rain⇒ wet, r2 : wet⇒ rain}. The intended meaning is that one is usually ac-
companied by the other, not that both may appear out of thin air. 3

To see how argumentation translations of theory bases treat such cycles, let us look at a
simplified version of the gear wheels example.

Example 6.6 (Strict cycle). Consider a theory base with two literals mutually supporting
each other through strict rules: Lit = {x1, x2,¬x1,¬x2}, the strict rules are given by

6.3. Instantiations to Abstract Dialectical Frameworks 139

StrInf = {r1 : x1 → x2, r2 : x2 → x1} and DefInf = ∅. Our ADF translation of this example
yields the acceptance formulas

ϕx1 = [r2] ϕ¬x1 = ⊥ ϕr1 = [x1] ϕ-r1 = [x1] ∧ ¬[x2] ∧ ¬[-r1]

ϕx2 = [r1] ϕ¬x2 = ⊥ ϕr2 = [x2] ϕ-r2 = [x2] ∧ ¬[x1] ∧ ¬[-r2]

We can see that the support cycle between x1 and x2 in StrInf is directly translated into a
support cycle between the ADF statements x1, r1, x2, r2 in the centre of the picture.

¬x1 x1

-r1

r1

-r2

r2

¬x2x2

−

−

−

−

+ +

++

+ −

− +

− −

−

−

The ADF has two models, M1 = {x1, x2, r1, r2} and M2 = ∅. Only M2 is a stable model due
to the cyclic self-support of the statements in M1. Note that not only do x1 and x2 not hold
in M2, neither do ¬x1 and ¬x2 (there are no rules possibly deriving them). In contrast, the
translation of Wyner et al. (2009) yields the AF

r1

r2

x1 x2¬x1 ¬x2

with two stable extensions S1 = {x1, r1, x2, r2} and S2 = {¬x1,¬x2}. In S1, x1 and x2 hold due
to self-support while in S2 they are “guessed” to be false.5 3

In our view, this is problematic since it is not made clear to the user that these different
extensions arise due to self-support. Even if we grant that for some application domains, cyclic
self-support of literals might be intended or at least not unintended, the user should be able
to distinguish whether different models/extensions arise due to present or absent self-support
on the one hand, or due to conflicts between defeasible conclusions on the other hand. ADFs
provide this important distinction, since cycles are allowed in models and disallowed in stable

5In this chapter, we consider only stable extension semantics for AFs. It might be possible to choose/come up with
an AF semantics that treats the above AF differently.

140 Chapter 6. An Application to Theory Bases

models, while both semantics are identical in their treatment of conflicts between defeasible
conclusions.

In the approach of Caminada and Amgoud (2007), treatment of cycles is built into the
definition of the set of arguments in the resulting argumentation framework. The arguments
are created using structural induction, where rules with empty bodies form the induction base
and all other rules form the induction step. For the general gear wheel domain TBGW of
Example 6.4, and for Examples 6.5 and 6.6, their translation would not create any arguments
(there are no assertions in the theory bases), and the approach could not draw any conclusions
about these examples. The concrete scenario of the interlocked gear wheel domain TB′GW in
Example 6.4, where both wheels initially stand still, would be treated correctly by the approach
of Caminada and Amgoud (2007). But note that the well-foundedness of the treatment of cyclic
dependencies is built into the syntax of the resulting argumentation framework – there are no
arguments that could conclude that any of the wheels is turning, although there are (strict and
defeasible) rules with such conclusions.6 Consequently, a part of the semantics of the theory
base is already fixed by the translation, irrespective of the argumentation semantics that is
used later on.

6.3.3 Inconsistent Theory Bases

Example 6.7 (Inconsistent Theory Base). Consider the following (obviously inconsistent) the-
ory base in which both a literal and its negation are strictly asserted: Lit = {x,¬x},
StrInf = {r1 :→ x, r2 :→ ¬x} and DefInf = ∅. Our ADF translation yields the acceptance
formulas

ϕx = ¬[¬x] ∧ [r1] ϕr1 = > ϕ-r1 = ¬[x] ∧ ¬[-r1]

ϕ¬x = ¬[x] ∧ [r2] ϕr2 = > ϕ-r2 = ¬[¬x] ∧ ¬[-r2]

This ADF has no models, and so the theory base’s inconsistency is detected.
On the other hand, the associated argumentation framework due to Wyner

et al. (2009) is given by the set of arguments A = {x,¬x, r1, r2} and the attacks
R = {(x,¬x), (¬x, x), (r1,¬x), (r2, x)}. In the only stable extension {r1, r2} both rules are ap-
plicable but none of the head literals hold due to immanent conflict. Again, this extension is
not well-formed and the inconsistency is made obvious.

In the approach of Caminada and Amgoud (2007), we can construct two strict arguments
that conclude x and ¬x, respectively. There are no attacks between these arguments, since
rebuts are impossible between strict arguments and rules without body cannot be undercut.
So their resulting AF has a stable extension from which both x and ¬x can be concluded,
which detects the inconsistency. 3

6.3.4 Properties of the Translation

In this section, we analyse some theoretical properties of our translation. First we show that
it satisfies (our reformulations of) the rationality postulates of Caminada and Amgoud (2007).
Then we analyse the computational complexity of translating a given theory base and show
that the blowup is at most quadratic.

6See also the discussion of the (non-)treatment of partial knowledge bases by Wyner et al. (2013).

6.3. Instantiations to Abstract Dialectical Frameworks 141

Postulates It is elementary to show that the ADFs resulting from our translation satisfy direct
consistency. This is because the statements ψ and ψ mutually attack each other.

Proposition 6.2. For any theory base TB = (Lit, StrInf , DefInf), its associated ADF D(TB) satisfies
direct consistency with respect to the model semantics.

Proof. Let M be a model for D(TB) and assume to the contrary that M ∩ Lit is inconsistent. Then there
is a ψ ∈ Lit such that ψ ∈ M and ¬ψ ∈ M. Since ¬ψ ∈ M, the acceptance condition of ¬ψ yields
ψ /∈ M. Contradiction. 2

We can also prove that they satisfy closure: by construction, the (acceptance conditions
of) statements -r for strict rules r guarantee that the rule head is contained in any model that
contains the rule body.

Proposition 6.3. For any theory base TB = (Lit, StrInf , DefInf), its associated ADF D(TB) satisfies
closure with respect to the model semantics.

Proof. Let M be a model of D(TB) and r : φ1, . . . , φn → ψ ∈ StrInf such that we find
φ1, . . . , φn ∈ M. We have to show ψ ∈ M. By definition, D(TB) has a statement -r with parents
par(-r) = {φ1, . . . , φn, ψ, -r}. We next show that -r /∈ M: assume to the contrary that -r ∈ M. Then
by the acceptance condition of -r we get -r /∈ M, contradiction. Thus -r /∈ M. Now the accept-
ance condition of -r yields φ1 /∈ M or . . . or φn /∈ M or ψ ∈ M or -r ∈ M. By assumption, we have
φ1, . . . , φn ∈ M and -r /∈ M, thus we get ψ ∈ M. 2

By Proposition 6.1 the translation satisfies indirect consistency.

Corollary 6.4. For any theory base TB = (Lit, StrInf , DefInf), its associated ADF D(TB) satisfies
indirect consistency with respect to the model semantics.

Since any stable model is a model, our translation also satisfies the postulates for the stable
model semantics.

Corollary 6.5. For any theory base TB = (Lit, StrInf , DefInf), its associated ADF D(TB) satisfies
closure and direct and indirect consistency with respect to the stable model semantics.

It should be noted that defeasible rules may or may not be applied – the approach is not
“eager” to apply defeasible rules.

Complexity For a theory base TB = (Lit, StrInf , DefInf), we define the size of its constituents
as follows. Quite straightforwardly, the size of a set of literals is just its cardinality, the size
of a rule is the number of literals in it, the size of a set of rules is the sum of the sizes of its
elements and the size of a theory base is the sum of the sizes of its components.

‖Lit‖ = |Lit|
‖r : φ1, . . . , φn V ψ‖ = n + 1

‖StrInf‖ = ∑
r∈StrInf

‖r‖

‖DefInf‖ = ∑
r∈DefInf

‖r‖

‖TB‖ = ‖Lit‖+ ‖StrInf‖+ ‖DefInf‖

142 Chapter 6. An Application to Theory Bases

We want to analyse the size of its ADF translation D(TB) = (S, L, C) according to
Definition 6.3. Clearly, the number of statements is linear in the size of the theory
base, since we have one statement for each literal and two statements for each rule:
|S| = |Lit|+ 2 · (|StrInf |+ |DefInf |). Since L ⊆ S × S, the number of links in L is at most
quadratic in the cardinality of S: |L| ≤ |S|2. Finally, we have seen in Definition 6.3 that the
acceptance conditions of statements can be parsimoniously represented by propositional for-
mulas. It can be checked that the size of each one of these formulas is at most linear in the
size of the theory base. Since there are linearly many statements with one acceptance formula
each, the acceptance conditions can be represented in quadratic space. So overall, the resulting
ADF D(TB) = (S, L, C) can be represented in space which is at most quadratic in the size of
the original theory base. In particular, in our approach a finite theory base always yields a fi-
nite argumentation translation. This is in contrast to the definition of Caminada and Amgoud
(2007), where the strict rule set StrInf = {r0 :→ a, r1 : a→ b, r2 : b→ a} allows to construct
infinitely many arguments A1 = [→ a], A2 = [A1 → b], A3 = [A2 → a], A4 = [A3 → b], . . .7

6.4 A Direct Semantics for Defeasible Theory Bases

We have previously seen how ADFs can be used to give a semantics to defeasible theory bases.
Albeit we introduced additional, merely technical statements (like -r), we were able to address
shortcomings of previous approaches. Still, there remains the issue that the ADF-based se-
mantics is not necessarily eager to apply defeasible rules. In what follows, we will introduce
a direct semantics for defeasible theory bases that possesses this eagerness property. It will
additionally allow us to more precisely clarify our intuitions about what rules mean, especially
the difference between strict and defeasible rules. While our intuitions on defeasible rules are
quite clear, we will argue that there are two different intuitions on strict rules. One intuition
says that strict rules are directed inference rules that operate on the knowledge level, that is,
whenever the premises are known then the conclusion is inferred. In particular, in being direc-
ted these rules do not automatically entail any of their contrapositives. Let us call this intuition
(DR) for directed inference rule; we will see that (DR) can lead to problems with global inconsist-
ency. Another intuition says that strict rules are just like material implications in propositional
logic, let us call it (MI). In particular, in this intuition strict rules are not directed and therefore
equivalent to their contrapositives.8 (MI) is unproblematic in its interaction with defeasible
rules, but raises the philosophical question why strict rules should allow for contraposition
and defeasible rules should not. These questions are pervasive in giving semantics to non-
monotonic rule-based systems, and may account for (parts of) the complications encountered
by Caminada and Amgoud (2007).

To formalise the two mentioned intuitions, we make use of concepts from epistemic modal
logic. We consider epistemic states in the form of sets of possible worlds, where a possible
world is simply a two-valued interpretation of a propositional vocabulary. More precisely, let
A be a propositional signature. Then an interpretation over A can be represented as a set
w ⊆ A as usual; we will also call an interpretation a world. We then define the set of worlds
over A as WA = 2A. A set Q ⊆WA is then an epistemic state: intuitively, any entity being in the
epistemic state Q considers all and only the worlds w ∈ Q to be possible, that is, to be the one
single “real” world the entity “lives in.” Put another way, an epistemic state Q signifies that

7Even if we exclude cycles in rules, there are rule sets that allow for exponentially many arguments: Set D0 =
{⇒ p0,⇒ ¬p0}, D1 = D0 ∪ {p0 ⇒ p1,¬p0 ⇒ p1} and for i ≥ 1, Di+1 = Di ∪ {p0, pi ⇒ pi+1,¬p0, pi ⇒ pi+1}. For any
n ∈N, the size of Dn is linear in n and Dn leads to 2n+1 arguments, among them 2n arguments for pn.

8Caminada and Amgoud have a similar concept, closure under transposition (Caminada and Amgoud, 2007, Def. 17).

6.4. A Direct Semantics for Defeasible Theory Bases 143

any entity subscribing to this epistemic state cannot distinguish the worlds in Q with what it
knows. (But it can distinguish worlds in Q from those not in Q.) The knowledge associated
with an epistemic state Q over A is simply the set of propositional formulas over A which are
true in all possible worlds, the theory {ϕ | w |= ϕ for all w ∈ Q}.

We start to formalise the intuition (MI), where strict rules φ1, . . . , φn → ψ are interpreted as
material implications (φ1 ∧ . . . ∧ φn)→ ψ in propositional logic. To do this, we define a satis-
faction relation |=, that indicates whether an epistemic state together with a specific world (the
“real world”) satisfies an element of a defeasible theory base. Of course, it is trivial to define
this for literals. For strict rules, the real world must satisfy the above material implication.
For defeasible rules r : φ1, . . . , φn ⇒ ψ, our intuition is as follows: Assume that w is the real
world and Q is our epistemic state. If we know that all body literals φ1, . . . , φn hold, and we do
not know that the conclusion is false, then for the pair Q, w to satisfy the defeasible rule, the
conclusion must hold in the real world w. Otherwise, quite simply, the defeasible rule would
not be a very valuable guide on what normally holds in the world. In our formalisation below,
this intuition is split up into three ways how a defeasible rule can be satisfied:

1. Not all of the body literals are known. (Then the rule is inapplicable due to insufficient
premises.)

2. The negation of the head literal is known. (Then the rule is inapplicable due to an
exception.)

3. The head literal is actually true. (Then the defeasible rule is good regardless of what we
know, because it tells us something true about the world.)

Definition 6.4. Let TB = (Lit, StrInf , DefInf) be a defeasible theory. Let A ⊆ Lit be all atoms of
the language, a ∈ A, w ∈WA and Q ⊆WA.9

w |= a iff a ∈ w
w |= ¬a iff a /∈ w
w |= r : φ1, . . . , φn → ψ iff w |= (φ1 ∧ . . . ∧ φn)→ ψ in propositional logic

Q, w |= r : φ1, . . . , φn ⇒ ψ iff there is a v ∈ Q and 1 ≤ i ≤ n with v 6|= φi

or for all v ∈ Q we have v 6|= ψ

or w |= ψ

Q, w |= TB iff Q, w |= r for all r ∈ StrInf ∪DefInf 3

We use Examples 1 and 2 from the work of Wyner et al. (2013) to illustrate the definitions.

Example 6.8 (Partial theories). Consider the set of literals Lit = {x1, x2,¬x1,¬x2}; then the
set of atoms is A = {x1, x2}. Consequently, there are four possible worlds, that is,
WA = {∅, {x1} , {x2} , {x1, x2}}. It follows that 2WA contains 24 = 16 different epistemic states,
among them the state WA where any world is considered possible (thus the agent knows
nothing) and the state ∅ where the agent’s knowledge is inconsistent.

Considering the strict rule r1 : x1 → x2, it is easy to see that it is satisfied by all worlds ex-
cept {x1}. For its defeasible variant r2 : x1 ⇒ x2 we have the following: Assume the epistemic
state Q = {{x1} , {x1, x2}} where we know that x1 is true but are oblivious whether x2 holds,
and the real world w = {x1} where x2 is false. Then we have Q, w 6|= r2 : x1 ⇒ x2 since we
know that the rule’s body is true, do not know that its head is false, but its head is false in the
real world. For w′ = {x1, x2}, we would get Q, w′ |= r2 : x1 ⇒ x2 since w′ |= x2. 3

9For conciseness, we leave out the epistemic state or the real world when it is not used in the definition of the
satisfaction relation.

144 Chapter 6. An Application to Theory Bases

With the satisfaction relation at hand, it is then straightforward to define when an epistemic
state Q is a model of a defeasible theory: whenever Q coincides with the set of possible worlds
w for which the pair Q, w satisfies all rules in the defeasible theory base.

Definition 6.5. For a theory base TB, a set Q ⊆ WA of possible worlds is a model for TB if and
only if Q = {w ∈WA | Q, w |= TB}. 3

Example 6.9 (Continued from Example 6.8). For the defeasible theory base TB1 consisting
only of the strict rule r1 : x1 → x2, we get a single model Q1 = {∅, {x2} , {x1, x2}}. In Q1
we know that x1 implies x2, but we do not know anything else. These possible worlds cor-
respond one-to-one with the preferred extensions that Wyner et al. obtain for the very same
theory (Wyner et al., 2013, Example 1).

For the defeasible theory base TB2 consisting only of the defeasible rule r2 : x1 ⇒ x2, the
only model is Q2 = WA where all worlds are considered possible. Intuitively, the premise of
the defeasible rule is not known, and so the rule cannot be applied. 3

Let us consider some further examples.

Example 6.10 (Continued from Example 6.1). For the married John example, we get two mod-
els:

Q1 = {{g, w, b}} and Q2 = {{g, w, m, h}}

In both models, the epistemic state is fully determined, that is, we know exactly which world
is the real one. In Q1, John is a bachelor; in Q2, he is married and thus has a spouse. In both
epistemic states, John goes out and wears a ring. Note that the semantics is eager to apply
defeasible rules – while Q1 and Q2 directly correspond to the models M3 and M2 (page 137)
of the ADF translation, there is no possible-worlds equivalent of M1 where no defeasible rule
has been applied. The reason for this is easy to see: if the epistemic state Q3 = {{g, w}} were a
model, then we would have Q3 = {w ∈WA | Q3, w |= TB}. However for v′ = {g, w, b}, we find
that Q3, v′ |= TB but v′ /∈ Q3. Intuitively, the pair Q3, v′ satisfies the defeasible rule r6 : g⇒ b
because v′ |= b; so according to what is known v′ should be considered a possible world, but
Q3 does not do so. (The same can be shown for v′′ = {g, w, m, h}.) 3

The behaviour of the other problematic example follows suit.

Example 6.11 (Continued from Example 6.3). Again, we get two models:

Q1 = {{x1, x2, x3, x4}} and Q2 = {{x1, x2, x3, x5}}

In both models, the set of applicable (and applied) defeasible rules is maximal; in contrast to
the AF- and ADF-based semantics, there is no third model in which no defeasible rule has
been applied. 3

We consider this eagerness to apply defeasible rules one of the most important differences
between our direct semantics and the several previously seen translation-based semantics. As
another difference, the outcome (model) of the possible-worlds semantics is not a propositional
valuation, but a propositional theory (the set of all propositional formulas that are true in all
worlds that are considered possible by the epistemic state). With respect to consistency of this
theory, we note that, given a defeasible theory base TB, there are essentially two possibilities
for its possible-worlds semantics:

1. TB has the empty epistemic state as its only model;

6.4. A Direct Semantics for Defeasible Theory Bases 145

2. TB has a non-empty model.

The first case is an indication of inconsistency on the level of strict rules.

Example 6.12 (Continued from Example 6.7). Recall the defeasible theory base comprising
Lit = {x,¬x}, StrInf = {r1 :→ x, r2 :→ ¬x} and DefInf = ∅. We see that none of the pos-
sible worlds ∅ and {x} satisfies both strict rules. Thus the rule base has the model ∅ where no
world is possible and its inconsistency is obviated. 3

For each model of a defeasible theory base, we have by definition that all its possible worlds
satisfy the material implications associated with the strict rules. Thus, closure holds in each
possible world and in particular in the propositional theory derived from the epistemic state.

So consistency and closure do not pose problems for the possible-worlds semantics. How-
ever, it has its issues with positive cyclic dependencies.

Example 6.13 (Continued from Example 6.5). Recall the example saying that rain and wet
grass usually accompany each other: DefInf = {r1 : rain⇒ wet, r2 : wet⇒ rain}. The theory
base has two models, Q1 = WA and Q2 = {{rain, wet}}. In Q1 nothing is known about rain or
wet grass; in Q2 both are known, where each is defeasibly derived from the other. 3

Such issues, which are problematic with regard to causality, motivate us to define a refined
version of the model semantics that excludes such cycles, a stable model semantics. Roughly, for
a model to be stable, there must be a constructive derivation of its defeasible conclusions. For
instance, Q2 above is not stable since the two conclusions cyclically depend on each other.

To achieve this constructiveness technically, we need a refinement of the satisfaction relation
for defeasible rules and the notion of a model. The key change is not to check satisfaction of a
rule’s body against the model itself, but to check that all defeasible conclusions can be derived
either from strict knowledge or from defeasible conclusions that are themselves constructively
derived. This intuition comes from similar constructions in logic programming and default
logic. The more technical description is to try to reconstruct a given model in an acyclic
way. This construction starts with the set WA of all possible worlds. There, nothing is known
because any world is considered possible. The construction now step-wise removes worlds that
are no longer considered possible. The worlds violating some strict rules are the first to go. If
this leads to an increase in knowledge, then defeasible rules might become applicable and are
applied through the refined model relation. If this leads to a further increase in knowledge
(that is, a further decrease in the set of possible worlds), then the process continues. Otherwise
the process stops, in which case we check what has been constructed. If the model could be
fully reconstructed, then it is stable, otherwise it is not.

Definition 6.6. Let TB be a defeasible theory base over a vocabulary A, w ∈WA be a world
and Q, R ⊆WA be epistemic states.

Q, R, w |= r : φ1, . . . , φn → ψ iff w |= (φ1 ∧ . . . ∧ φn)→ ψ in propositional logic
Q, R, w |= r : φ1, . . . , φn ⇒ ψ iff there is a v ∈ R and 1 ≤ i ≤ n with v 6|= φi

or for all v ∈ Q we have v 6|= ψ

or w |= ψ

Q, R, w |= TB iff Q, R, w |= r for all r ∈ StrInf ∪DefInf

Now set R0 = WA and for i ≥ 0 define

Ri+1 = {w ∈WA | Q, Ri, w |= TB} and R∞ =
⋂
i≥0

Ri

A set Q of possible worlds is a stable model for TB iff Q = R∞. 3

146 Chapter 6. An Application to Theory Bases

It can be shown that the name “stable model” is well-chosen in that every stable model is a
model (Denecker et al., 2003).10

Example 6.14 (Continued from Example 6.13). Let us check if Q2 = {{rain, wet}} is stable.
We initialise the set of possible worlds R0 = WA = {∅, {rain} , {wet} , {rain, wet}}. Now for
obtaining R1 according to Definition 6.6, we observe that neither defeasible rule’s premise is
known in the epistemic state R0 and we have Q2, R0, w |= TB for every world w ∈WA. Thus
R1 = R0 = WA, we could not reconstruct Q2 and therefore it is not a stable model.

For Q1 = WA, on the other hand, the process terminates likewise after the first step. In this
case, Q1 could be reconstructed and is thus stable. 3

While the stable model semantics can deal with defeasible cycles, it is at a loss with respect
to strict cycles, that is, positive cyclic dependencies among literals in strict rules.

Example 6.15 (Continued from Example 6.6). Recall that the only rules of this example are
strict, and given by StrInf = {r1 : x1 → x2, r2 : x2 → x1}. Since there are no defeasible rules,
models and stable models coincide. Clearly any world satisfying both rules satisfies the pro-
positional formula x1 ↔ x2, so the (stable) models of the theory base – there are two of them,
{∅} and {{x1, x2}} – correspond one-to-one to the models of the formula – ∅ and {x1, x2}.
The second (stable) model, {{x1, x2}}, where we know that both atoms are true, might be
undesired in a causal context such as that of Example 6.4. 3

Here, our alternative intuition (DR) for strict rules comes into play. It is closer to the
intuition behind defeasible rules and basically says that a strict rule is a directed inference rule
on the knowledge level, and so we can use the same techniques for breaking strict cycles that
we used earlier for defeasible ones. The formal definition simply says that with epistemic state
Q, R (definitely possible worlds Q, potentially possible worlds R) in actual world w, a strict
rule is satisfied if and only if knowing the truth of the premises implies the actual truth of
its conclusion, where “knowing” refers to the conservative knowledge estimate given by the
potentially possible worlds R:

Q, R, w |= r : φ1, . . . , φn → ψ iff there is a v ∈ R and 1 ≤ i ≤ n with v 6|= φi

or w |= ψ

The remaining definitions, in particular those of models and stable models, stay the same.11

This formal semantics of strict rules is just like that for defeasible rules, only without the
additional condition that checks that the conclusion is not known to be false.

With this alternative semantics for strict rules, also positive strict cycles can be treated by
the stable model semantics. However, there is another problem: this semantics is not able to
produce the desired outcome of the “Married John” rule base.

Example 6.16 (Continued from Example 6.10). For the married John example and the intu-
ition where strict rules are interpreted according to propositional material implication, we had
two models, Q1 = {{g, w, b}} and Q2 = {{g, w, m, h}}. Unfortunately, neither of the models
persists when strict rules are interpreted according to our alternative intuition, where they are
much closer to defeasible rules. Then, the semantics’ eagerness to apply rules also applies
to strict rules and leads to global inconsistency in the sense of allowing as the only model
of the theory base the empty epistemic state. We exemplify this by showing that Q1 is not a

10Roughly, for i ≥ 0 we have Ri ⊇ Ri+1 whence for each stable model we have Q = Ri for some i ∈N, furthermore
it can be shown that Q, Q, w |= r (Definition 6.6) iff Q, w |= r (Definition 6.5).

11For the definition of a model the (DR) intuition uses the fact that Q, w |= r iff Q, Q, w |= r.

6.4. A Direct Semantics for Defeasible Theory Bases 147

model any more: Recall that Q1 is a model iff Q1 = {w ∈WA | Q1, w |= TB}, in other words,
if and only if {g, w, b} is the one single world v for which we find Q1, v |= TB. However, this
is not the case. There is another world, v′ = {g, w, b, m}, which satisfies the theory base in the
epistemic state Q1: First of all, the two strict rules r1 and r2 are satisfied by Q1, v′ since v′ |= w
and v′ |= g. We also have Q1, v′ |= r3 : b→ ¬h since v′ |= ¬h. We find that Q1, v′ |= r4 : m→ h
since Q1 6|= m. Finally, we can also show that Q1, v′ |= r5 : w⇒ m because v′ |= m; and that
Q1, v′ |= r6 : g⇒ b since v′ |= b.

The problem is caused by r4. Roughly speaking, there is incomplete knowledge about m – it
is not known although it holds. In general, it is clear that the world v′ should not be considered
possible since in it John is a married bachelor. But the way strict rules are interpreted according
to the alternative intuition, the semantics has no way to figure this out, because strict rules do
not operate on the level of single worlds, but only through the interaction of epistemic states
and single worlds. A similar thing happens for Q2; likewise it can be verified that the theory
has no models at all. 3

This illustrates the difficulty of devising a semantics for defeasible theory bases that both
possesses an eagerness to apply rules as well as it prevents self-supporting conclusions. Fur-
thermore, our formalisation made it clear that the issue is linked to the question on which
level strict rules should be enforced – on the level of single possible worlds or on theory level
(knowledge level).

6.4.1 Relationship to Autoepistemic Logic

To explain the connection to related work in nonmonotonic reasoning, we briefly sketch how
our possible-worlds semantics links to Moore’s autoepistemic logic (AEL) (Moore, 1985). Pro-
positional AEL enhances classical propositional logic by a unary modal connective K for know-
ledge. So for a formula ϕ, the AEL formula Kϕ stands for “ϕ is known.” The semantics of
autoepistemic logic is defined as follows: For a set B of formulas (the initial beliefs), a set T is an
expansion of B if it coincides with the deductive closure of B ∪ {Kϕ | ϕ ∈ T} ∪ {¬Kϕ | ϕ /∈ T}.
In words, T is an expansion if it equals what can be derived using the initial beliefs B and
positive and negative introspection with respect to T itself.12 The intuition behind K can be
used to define a straightforward translation from theory bases into autoepistemic logic for the
intuition (MI) behind strict rules.

Definition 6.7. Let TB = (Lit, StrInf , DefInf) be a defeasible theory. Define an autoepistemic
theory Ω(TB) as follows.

Ω(TB) = {Ω(r) | r ∈ StrInf ∪DefInf}
Ω(φ1, . . . , φn → ψ) = (φ1 ∧ . . . ∧ φn)→ ψ

Ω(φ1, . . . , φn ⇒ ψ) = (K(φ1 ∧ . . . ∧ φn) ∧ ¬K¬ψ)→ ψ 3

With this translation, theory base models according to Definition 6.5 correspond one-to-
one to expansions of the resulting autoepistemic theory. Likewise, stable models of the theory
base are in one-to-one correspondence with strong expansions of the autoepistemic theory, a
constructive refinement of the original expansion semantics (Denecker et al., 2003).

For our alternative intuition (DR) for strict rules, the associated AEL translation is
Ω(φ1, . . . , φn → ψ) = (K(φ1 ∧ . . . ∧ φn))→ ψ. It is readily seen that this translation is quite
close to that of a defeasible rule. The relation of our intuition behind theory base semantics
with default logic (Reiter, 1980) is immediate from reversing the translation of Konolige (1988).

12Moore himself also gave a possible-worlds based treatment of autoepistemic logic (Denecker et al., 2003).

148 Chapter 6. An Application to Theory Bases

6.4.2 Defining Further Semantics

The translation from defeasible theory bases into autoepistemic logic immediately provides us
with the possibility to define further argumentation semantics in terms of possible-world struc-
tures. Up to now, we explicitly only considered possible-world structures Q ⊆WA that were
in a sense two-valued, that is, a possible world w ∈WA was either considered an epistemic
alternative (w ∈ Q) or not (w /∈ Q). This is similar to the stable semantics in abstract argument-
ation, where each argument is either accepted or rejected. However, there are also three-valued
abstract argumentation semantics, like the complete semantics, where the status of an argu-
ment might be neither accepted nor rejected, but undecided. To generalise such three-valued
semantics to a possible-world setting, we need possible-worlds structures in which the epi-
stemic status of a possible world w can be likewise undecided, that is, for all that is known,
the world w might be an epistemic alternative.

Denecker et al. (2003) provided such a three-valued (even four-valued) possible-world treat-
ment for autoepistemic logic. This treatment is embedded into the general algebraic frame-
work of approximation fixpoint theory (Denecker et al., 2000). There, knowledge bases are asso-
ciated with certain operators, and the semantics of the knowledge bases is then defined via
fixpoints of these operators. In Chapter 3, we generalised several argumentation semantics to
this abstract, operator-based setting. Applying these general definitions of semantics to the ap-
proximation operator for autoepistemic logic as defined by Denecker et al. (2003) immediately
yields all of these semantics for defeasible theory bases. The pair (2WA ,⊇) is a complete lattice
and its associated bilattice with information ordering is given by (2WA × 2WA ,vi). This bilat-
tice contains approximations of possible-world structures. The next definition is by Denecker
et al. (2003) and specifies a model relation for approximative possible-world structures.

Definition 6.8. Let P, S ⊆WA, w ∈WA and a ∈ A.

(P, S), w |= a iff a ∈ w
(P, S), w |= ϕ1 ∧ ϕ2 iff both (P, S), w |= ϕ1 and (P, S), w |= ϕ2

(P, S), w |= ϕ1 ∨ ϕ2 iff one of (P, S), w |= ϕ1 or (P, S), w |= ϕ2

(P, S), w |= ¬ϕ iff (S, P), w 6|= ϕ

(P, S), w |= Kϕ iff for all v ∈ P, we have (P, S), v |= ϕ

For an autoepistemic theory Ω, we have (P, S), w |= Ω iff (P, S), w |= ϕ for all ϕ ∈ Ω. 3

With this definition, it is immediate to define an approximation operator:

Definition 6.9. Let Ω be an autoepistemic theory over a propositional signature A. Consider
P, S ⊆WA and w ∈WA. Define the operator DΩ : 2WA × 2WA → 2WA × 2WA by

DΩ(P, S) = (D′Ω(P, S),D′Ω(S, P))

D′Ω(P, S) = {w ∈WA | (S, P), w |= Ω} 3

We can then use the definition of operator-based semantics from Chapter 3 (Table 3.1). We now
give some examples to provide a glimpse of how some of the generalised semantics behave.

First of all, we want to note that most semantics for argumentation frameworks allow for
more than one generalisation. We have seen this already in the case of the stable extension
semantics, which can be generalised to ADFs in at least two ways, to models and stable models.
Likewise, we presented two versions of two-valued epistemic semantics for defeasible theory
bases. In the same vein, the grounded semantics for abstract argumentation can be generalised

6.5. Conclusion 149

in at least two ways: to the Kripke-Kleene semantics, the cycle-supporting version of the
grounded semantics, and to the well-founded semantics, the cycle-rejecting version of the
grounded semantics (Denecker et al., 2003).

Let us consider the rain/wet grass example (Example 6.5). There, the grounded (Kripke
Kleene) semantics considers the world {rain, wet} to be definitely possible, and all other worlds
to be potentially possible. The grounded (well-founded) semantics for this example corresponds
to the two-valued epistemic model given by WA and considers all worlds to be definitely
possible. Intuitively, the well-founded semantics does not derive any knowledge from the two
mutually supporting defeasible rules (all possible worlds occur in all stable models), while
the Kripke-Kleene semantics lends some more credence to the world where both rain and wet
grass are true (because this one world occurs in both models, while all others only occur in
one of them).

Example 6.17. Consider the literals Lit = {x1, x2,¬x1,¬x2} and the theory base given by de-
feasible rules DefInf = {r1 : ⇒ x1, r2 : ⇒ ¬x1} and the strict rule StrInf = {r3 : x1 → x2}.
It is clear that not both defeasible rules can be applied, so there are two different models:
Q1 = {{x1, x2}} where r1 has been applied, and r3 then infers x2; and Q2 = {∅, {x2}} where
r2 has been applied, and we do not know about x2. In (both versions of) the grounded se-
mantics of this theory base, no world is definitely considered possible, as the two models are
disjoint. However, all the worlds in Q1 ∪Q2 are considered potentially possible. 3

Likewise, in Example 6.2, both versions of grounded semantics consider the three worlds
{x1, x2, x3}, {x1, x2, x3, x4} and {x1, x2, x3, x5} to be possible, albeit none of them definitely
so. This shows that the generalised grounded semantics are not equal to sceptical reasoning
among (stable) models, but rather an independent, weaker semantics. Indeed, this and other
relationships between argumentation semantics carry over to their generalised versions.

6.5 Conclusion

In this chapter we presented a translation from theory bases to abstract dialectical frame-
works. The translated frameworks satisfy the rationality postulates closure and direct/indirect
consistency, which we generalised to make them independent of a specific target formalism.
Furthermore, the translated frameworks can detect inconsistencies in the rule base and cyclic
supports amongst literals. We also showed that the translation involves at most a quadratic
blowup and is therefore effectively computable. In addition, our translation produces a num-
ber of statements which is linear in the size of the theory base and can be considered efficient
in this regard. (In the approach of Caminada and Amgoud (2007) the number of produced
arguments is unbounded in general.) In terms of desired behaviour, we compared our trans-
lation to previous approaches from the literature (Caminada and Amgoud, 2007; Wyner et al.,
2009, 2013, 2015) and demonstrated how we avoid common problems. We also introduced
possible-worlds semantics as a language to “think aloud” about defeasible theories. Along
with this we presented two possible intuitions for strict rules and argued why we prefer one
over the other. Of course, other intuitions are possible, and we mainly consider the present
work a start for formulating intuitions in a formally precise way.

In earlier work, Brewka and Gordon (2010) translated Carneades (Gordon et al., 2007)
argument evaluation structures (directly) to ADFs. They extended the original Carneades
formalism by allowing cyclic dependencies among arguments. Meanwhile, Van Gijzel and
Prakken (2011) also translated Carneades into AFs (via ASPIC+ (Prakken, 2010; Modgil and
Prakken, 2013), that extends and generalises the definitions of Caminada and Amgoud (2007)).

150 Chapter 6. An Application to Theory Bases

They can deal with cycles, but there is only one unique grounded, preferred, complete, stable
extension. Thus the semantic richness of abstract argumentation is not used, and the user
cannot choose whether they want to accept or reject circular justifications of arguments. In
contrast, in the approach of Brewka and Gordon (2010) the user can decide whether cyclic
justifications should be allowed or disallowed, by choosing models or stable models as ADF
semantics.

We regard the results of this chapter as another piece of evidence that abstract dialectical
frameworks are well-suited as target formalisms for translations from rule-based nonmono-
tonic languages such as defeasible theory bases. A natural next step is to consider as input
the specification language of ASPIC+ (Prakken, 2010; Modgil and Prakken, 2013), for which
a recent approach to preferences between statements (Brewka et al., 2013) is a good starting
point. In view of possible semantics for defeasible theories, it also seems fruitful to look at
additional rationality postulates, for example those studied by Caminada et al. (2012) or Dung
and Thang (2014). Further work could also encompass the study of further ADF semantics,
like complete or preferred models (Brewka et al., 2013), and whether our translation to ADFs
can be modified such that it is eager to apply defeasible rules and even coincides with our
possible-world semantics.

151

Chapter 7

Discussion

In this thesis, we extensively, and in several regards also intensively, studied abstract dialect-
ical frameworks (ADFs). Through defining their semantics via the notion of approximating
operators, analysing their computational complexity and expressiveness, and applying ADFs
to open issues in instantiated argumentation, we mapped out what ADFs can do, exemplified
how they can be used, and at the same time explored their limits.

So what’s next?
How can abstract argumentation be put to action?
At this point it might be useful to recall Walton’s definition of an argument as (1) an

object consisting of premises linked to a conclusion via an inference, that is (2) related to
other arguments. While approaches to abstract argumentation are formidable in analysing
the relationship between arguments, they decidedly ignore argument internals. And while
this circumstance is often advertised as a strength of abstract argumentation, it is very well a
significant limitation, as Walton (2009) so aptly recognises:

It is important to emphasize that the use of such concepts and techniques [those of
formal argumentation], while they have proved very valuable for teaching skills of
critical thinking, have raised many problems about how to make the concepts and
techniques more precise so that they can be applied more productively to realistic
argumentation in natural language texts of discourse. Many of these problems
arise from the fact that it can be quite difficult to interpret what is meant in a
natural language text of discourse and precisely identify arguments contained in it.
Ambiguity and vagueness are extremely common, and in many instances, the best
one can do is to construct a hypothesis about how to interpret the argument based
on the evidence given from the text of discourse.

Thus a lot of uncharted territory lies ahead of argumentation theory researchers.

7.1 Related and Possible Future Work

The reach of (some of) the formal results reported on herein has meanwhile exceeded the field
of abstract argumentation and begun to influence neighbouring areas: In cooperation with
Mario Alviano and Wolfgang Faber, we employed the computationally attractive properties of
bipolar ADFs to aggregates in answer set programming. That has lead to a unifying view on
polynomial-time decidable aggregates for the Pelov/Son-Pontelli stable model semantics for

152 Chapter 7. Discussion

logic programs with aggregates (Alviano, Faber, and Strass, 2016). It also shows that Brewka
and Woltran’s intuitions for defining bipolar ADFs were spot-on; at the same time it raises
the question of how much the notion of bipolarity can be extended without sacrificing its nice
computational properties. That is but one open question among many which are brought up
by the work of others; in the remainder, we will therefore discuss related work on ADFs as
well as emerging possibilities for future work.

Alviano and Faber (2015) compare several stable model semantics for ADFs and logic pro-
grams with aggregates. Their results show that when restricting to logic programs with ex-
actly one rule for each atom, there is a perfect match of stable model semantics for the two
formalisms: the PSP stable model semantics defined by Pelov (2004); Son and Pontelli (2007);
Pelov, Denecker, and Bruynooghe (2007) coincides with the ultimate stable model semantics
(Definition 3.7); the GZ stable model semantics defined by Gelfond and Zhang (2014) coincides
with the approximate stable model semantics (Definition 3.2); the FLP stable model semantics
(Faber, Pfeifer, and Leone, 2011) constitutes a new stable model semantics for ADFs, that Alvi-
ano and Faber (2015) call “F-stable” models.

Further Semantics Polberg et al. (2013) defined further extension-based semantics based on
several novel, fine-grained notions of admissibility. Further novel extension-based semantics
have been proposed by Polberg (2014). Polberg and Doder (2014) introduced probabilistic
semantics for ADFs.

As hinted at in several places earlier, Gaggl and Strass (2014) generalised the (AF) cf2
and stage2 semantics to ADFs (based on ultimate asymmetric conflict-free interpretations).
Further semantics that we already mentioned in some places are the grounded-fixpoint se-
mantics (Bogaerts et al., 2015, Definition 6.8) and the F-stable models by Alviano and Faber
(2015, Definition 10).

Other Work on ADFs Ellmauthaler and Wallner (2012) provided an implementation of ADFs
which is based on answer set programming. Another such implementation was presented by
Ellmauthaler and Strass (2014), with precursory work (Brewka et al., 2013; Ellmauthaler and
Strass, 2013) and a recent continuation (Ellmauthaler and Strass, 2016). Diller et al. (2015)
present an ADF implementation based on reasoning with quantified Boolean formulas.

In acclaimed work, Linsbichler (2014) applied the concept of splitting (Lifschitz and Turner,
1994; Turner, 1996; Baumann, 2011) to abstract dialectical frameworks. His ADF splitting
method is identical to (if not slightly more general than) the ADF decomposition approach
proposed at the same conference by Gaggl and Strass (2014).

Bochman (2016) explains the relationship of ADFs with the causal calculus of McCain
and Turner (1997) and suggests possibilities for future extensions of ADFs. Polberg (2016)
provides translations from other generalisations of Dung AFs into abstract dialectical frame-
works, thereby giving further evidence on how ADFs can be successfully put to use in formal
argumentation.

153

Bibliography

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004. doi: 10.4007/annals.2004.160.781.

Latifa Al-Abdulkarim, Katie Atkinson, and Trevor J. M. Bench-Capon. Abstract dialectical
frameworks for legal reasoning. In Rinke Hoekstra, editor, Proceedings of the Twenty-Seventh
Annual Conference on Legal Knowledge and Information Systems (JURIX), volume 271 of Frontiers
in Artificial Intelligence and Applications, pages 61–70. IOS Press, December 2014.

Latifah Al-Abdulkarim, Katie Atkinson, and Trevor J. M. Bench-Capon. Evaluating the use of
abstract dialectical frameworks to represent case law. In Proceedings of the Fifteenth Interna-
tional Conference on Artificial Intelligence and Law (ICAIL), pages 156–160, June 2015.

Mario Alviano and Wolfgang Faber. Stable model semantics of abstract dialectical frame-
works revisited: A logic programming perspective. In Qiang Yang and Michael Wooldridge,
editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI), pages 2684–2690, Buenos Aires, Argentina, July 2015. IJCAI/AAAI.

Mario Alviano, Wolfgang Faber, and Hannes Strass. Boolean functions with ordered domains
in answer set programming. In Dale Schuurmans and Michael Wellman, editors, Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI), pages 879–885, Phoenix, AZ,
USA, February 2016.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

Unnamed authors. Digital intuition: A computer program that can outplay humans in the
abstract game of Go will redefine our relationship with machines. Nature, 529:437, 2016.
doi: 10.1038/529437a. URL http://www.nature.com/news/digital-intuition-1.19230.
Editorial.

Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence, 171(10–15):675–700, 2007.

Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and Wolfgang
Faber, editors, Proceedings of the Eleventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), volume 6645 of LNCS, pages 40–53. Springer-Verlag Ber-
lin Heidelberg, 2011.

Ringo Baumann and Hannes Strass. On the number of bipolar Boolean functions. Journal
of Logic and Computation, 2017. doi: 10.1093/logcom/exx025. Advance Access Online 07
August 2017.

http://www.nature.com/news/digital-intuition-1.19230

154 Bibliography

Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Hannes Strass, and Stefan Woltran.
Compact argumentation frameworks. In Proceedings of the Twenty-First European Conference
on Artificial Intelligence (ECAI), pages 69–74, Prague, Czech Republic, August 2014.

Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Christof Spanring, Hannes Strass,
and Stefan Woltran. On rejected arguments and implicit conflicts: The hidden power of ar-
gumentation semantics. Artificial Intelligence, pages 244–284, 2016. doi: 10.1016/j.artint.2016.
09.004. URL http://www.sciencedirect.com/science/article/pii/S0004370216301102.

Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in Artificial Intelligence. Artificial
Intelligence, 171(10–15):619–641, July 2007.

Philippe Besnard and Sylvie Doutre. Characterization of Semantics for Argument Systems.
In Didier Dubois, Christopher A. Welty, and Mary-Anne Williams, editors, Proceedings of the
Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR2004),
pages 183–193. AAAI Press, 2004.

Nicole Bidoit and Christine Froidevaux. Negation by default and unstratifiable logic programs.
Theoretical Computer Science, 78(1):85–112, 1991.

Alexander Bochman. Abstract dialectical argumentation among close relatives. In Pietro
Baroni, Thomas F. Gordon, Tatjana Scheffler, and Manfred Stede, editors, Computational
Models of Argument – Proceedings of COMMA 2016, Potsdam, Germany, 12–16 September,
2016., volume 287 of Frontiers in Artificial Intelligence and Applications, pages 127–138. IOS
Press, 2016. doi: 10.3233/978-1-61499-686-6-127. URL http://dx.doi.org/10.3233/
978-1-61499-686-6-127.

Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their applications
in knowledge representation. Artificial Intelligence, 224:51–71, 2015.

Richard Booth. Judgment aggregation in abstract dialectical frameworks. In Thomas Eiter,
Hannes Strass, Mirosłlaw Truszczyński, and Stefan Woltran, editors, Advances in Knowledge
Representation, Logic Programming, and Abstract Argumentation – Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in Computer Science,
pages 296–308. Springer-Verlag Berlin Heidelberg, 2015. doi: 10.1007/978-3-319-14726-0_20.
URL http://dx.doi.org/10.1007/978-3-319-14726-0_20.

Ravi B. Boppana. Threshold functions and bounded depth monotone circuits. Journal of Com-
puter and System Sciences, 32(2):222–229, 1986.

Nicolas Bourbaki. Sur le théorème de Zorn. Archiv der Mathematik, pages 434–437, 1949/50.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015. doi: 10.1126/science.1259433.
URL http://science.sciencemag.org/content/347/6218/145.

Gerhard Brewka and Thomas F. Gordon. Carneades and abstract dialectical frameworks: A
reconstruction. In Proceedings of the Third International Conference on Computational Models of
Argument (COMMA), volume 216 of FAIA, pages 3–12. IOS Press, September 2010.

Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proceedings of the
Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR),
pages 102–111, 2010.

http://www.sciencedirect.com/science/article/pii/S0004370216301102
http://dx.doi.org/10.3233/978-1-61499-686-6-127
http://dx.doi.org/10.3233/978-1-61499-686-6-127
http://dx.doi.org/10.1007/978-3-319-14726-0_20
http://science.sciencemag.org/content/347/6218/145

Bibliography 155

Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract dia-
lectical frameworks and standard AFs. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI), pages 780–785. IJCAI/AAAI, 2011.

Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner, and Stefan
Woltran. Abstract dialectical frameworks revisited. In Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 803–809. IJCAI/AAAI, August
2013.

Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of Dung frameworks
and their role in formal argumentation. IEEE Intelligent Systems, 29(1):30–38, 2014. ISSN
1541-1672. Special Issue on Representation and Reasoning.

Martin Caminada. On the Issue of Reinstatement in Argumentation. In Proceedings of the Tenth
European Conference on Logics in Artificial Intelligence, volume 4160 of Lecture Notes in Computer
Science, pages 111–123. Springer-Verlag Berlin Heidelberg, September 2006.

Martin Caminada. An Algorithm for Stage Semantics. In Computational Models of Argument:
Proceedings of COMMA 2010, pages 147–158, 2010.

Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms. Artifi-
cial Intelligence, 171(5–6):286–310, 2007.

Martin W.A. Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable Semantics. Journal
of Logic and Computation, 22(5):1207–1254, 2012.

Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract argumentation sys-
tems. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence,
pages 65–84. Springer-Verlag Berlin Heidelberg, 2009.

Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors, Logic and Data
Bases, pages 293–322. Plenum Press, 1978.

Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation frame-
works. In Lluis Godo, editor, Proceedings of the Eighth European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), volume 3571 of LNCS,
pages 317–328. Springer-Verlag Berlin Heidelberg, 2005.

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. On the
revision of argumentation systems: Minimal change of arguments statuses. In Proceedings of
the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 52–61, 2014.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press,
second edition, 2002.

Marc Denecker, D. Theseider-Dupré, and Kristof Van Belleghem. An Inductive Definition
Approach to Ramifications. Linköping Electronic Articles in Computer and Information Science,
3(7):1–43, January 1998.

156 Bibliography

Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, Stable Operat-
ors, Well-Founded Fixpoints and Applications in Nonmonotonic Reasoning. In Logic-Based
Artificial Intelligence, pages 127–144. Kluwer Academic Publishers, 2000.

Marc Denecker, V. Wiktor Marek, and Mirosław Truszczyński. Uniform Semantic Treatment of
Default and Autoepistemic Logics. Artificial Intelligence, 143(1):79–122, 2003.

Marc Denecker, Victor W. Marek, and Mirosław Truszczyński. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Information and Computa-
tion, 192(1):84–121, 2004.

Marc Denecker, Gerhard Brewka, and Hannes Strass. A formal theory of justifications. In
Francesco Calimeri, Giovambattista Ianni, and Mirosław Truszczyński, editors, Proceedings
of the Thirteenth International Conference on Logic Programming and Non-monotonic Reason-
ing (LPNMR), pages 250–264, Lexington, KY, USA, September 2015. Springer-Verlag Berlin
Heidelberg.

Martin Diller, Johannes Peter Wallner, and Stefan Woltran. Reasoning in abstract dialectical
frameworks using quantified Boolean formulas. Argument & Computation, 6(2):149–177, 2015.

Yannis Dimopoulos and Alberto Torres. Graph Theoretical Structures in Logic Programs and
Default Theories. Theoretical Computer Science, 170(1–2):209–244, 1996.

Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. On the computational complexity of
assumption-based argumentation for default reasoning. Artificial Intelligence, 141(1/2):57–78,
2002.

Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmono-
tonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77:321–358,
1995.

Phan Minh Dung and Phan Minh Thang. Closure and consistency in logic-associated argu-
mentation. Journal of Artificial Intelligence Research, 49:79–109, 2014.

Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argument-
ation. Artificial Intelligence, 171(10):642–674, 2007.

Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence, 173(18):
1559–1591, 2009.

Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in Finite Argument Systems. Artificial
Intelligence, 141(1/2):187–203, 2002.

Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages 85–104.
Springer-Verlag Berlin Heidelberg, 2009.

Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. In Proceedings of the Fourteenth Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 72–81,
Vienna, Austria, July 2014.

Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics of
multiple viewpoints in abstract argumentation. Artificial Intelligence, 228:153–178, 2015.

Bibliography 157

Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artificial Intelligence, 186:157–173, 2012.

Wolfgang Dvořák, Matti Järvisalo, Johannes P. Wallner, and Stefan Woltran. Complexity-
Sensitive Decision Procedures for Abstract Argumentation. Artificial Intelligence, 206:53–78,
2014.

Sjur Kristoffer Dyrkolbotn. How to argue for anything: Enforcing arbitrary sets of labellings
using AFs. In Proceedings of the Fourteenth International Conference on the Principles of Knowledge
Representation and Reasoning (KR), pages 626–629, Vienna, Austria, July 2014.

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set Programming Encodings for
Argumentation Frameworks. Argument and Computation, 1(2):147–177, 2010.

Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3–4):289–323, 1995.

Thomas Eiter, Michael Fink, and João Moura. Paracoherent Answer Set Programming. In
Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and
Reasoning, May 2010.

Thomas Eiter, Michael Fink, Jörg Pührer, Hans Tompits, and Stefan Woltran. Model-based
recasting in answer-set programming. Journal of Applied Non-Classical Logics, 23(1–2):75–104,
2013.

Stefan Ellmauthaler and Hannes Strass. The DIAMOND system for argumentation: Prelimin-
ary report. In Michael Fink and Yuliya Lierler, editors, Proceedings of the Sixth International
Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP), September
2013.

Stefan Ellmauthaler and Hannes Strass. The DIAMOND System for Computing with Abstract
Dialectical Frameworks. In Simon Parsons, Nir Oren, and Chris Reed, editors, Proceedings
of the Fifth International Conference on Computational Models of Argument (COMMA), volume
266 of FAIA, pages 233–240, The Scottish Highlands, Scotland, United Kingdom, September
2014. IOS Press.

Stefan Ellmauthaler and Hannes Strass. DIAMOND 3.0 – A native C++ implementation of
DIAMOND. In Pietro Baroni, editor, Proceedings of the Sixth International Conference on Com-
putational Models of Argument (COMMA), volume 287 of FAIA, pages 471–472, Potsdam, Ger-
many, September 2016. IOS Press.

Stefan Ellmauthaler and Johannes Peter Wallner. Evaluating Abstract Dialectical Frameworks
with ASP. In Computational Models of Argument: Proceedings of COMMA 2012, pages 505–506,
2012.

Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011. doi: 10.
1016/j.artint.2010.04.002. URL http://dx.doi.org/10.1016/j.artint.2010.04.002.

Melvin Fitting. Fixpoint Semantics for Logic Programming: A Survey. Theoretical Computer
Science, 278(1–2):25–51, 2002.

Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld Kooi. On the succinctness of some
modal logics. Artificial Intelligence, 197:56–85, 2013.

http://dx.doi.org/10.1016/j.artint.2010.04.002

158 Bibliography

Joel Friedman. Constructing O(n log n) size monotone formulae for the k-th elementary sym-
metric polynomial of n Boolean variables. SIAM Journal on Computing, 15:641–654, 1986.

Dov M. Gabbay. Dung’s argumentation is essentially equivalent to classical propositional logic
with the Peirce-Quine dagger. Logica Universalis, 5(2):255–318, 2011.

Dov M. Gabbay and Artur S. d’Avila Garcez. Logical Modes of Attack in Argumentation
Networks. Studia Logica, 93(2–3):199–230, 2009.

Sarah A. Gaggl and Hannes Strass. Decomposing Abstract Dialectical Frameworks. In Simon
Parsons, Nir Oren, and Chris Reed, editors, Proceedings of the Fifth International Conference on
Computational Models of Argument (COMMA), volume 266 of FAIA, pages 281–292. IOS Press,
September 2014.

Sarah Alice Gaggl, Sebastian Rudolph, and Hannes Strass. On the computational complexity
of naive-based semantics for abstract dialectical frameworks. In Qiang Yang and Michael
Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI), pages 2985–2991, Buenos Aires, Argentina, July 2015. IJCAI/AAAI.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider. Potassco:
The Potsdam Answer Set Solving Collection. AI Communications, 24(2):105–124, 2011. Avail-
able at https://potassco.org.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of the International Conference on Logic Programming (ICLP), pages 1070–1080.
The MIT Press, 1988.

Michael Gelfond and Yuanlin Zhang. Vicious circle principle and logic programs with ag-
gregates. Theory and Practice of Logic Programming, 14(4-5):587–601, 2014. doi: 10.1017/
S1471068414000222. URL http://dx.doi.org/10.1017/S1471068414000222.

Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman. The comparative lin-
guistics of knowledge representation. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 862–869. Morgan Kaufmann, 1995.

Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades model of argument
and burden of proof. Artificial Intelligence, 171(10–15):875–896, 2007.

Georg Gottlob. Translating Default Logic into Standard Autoepistemic Logic. Journal of the
ACM, 42(4):711–740, 1995.

Davide Grossi. Fixpoints and Iterated Updates in Abstract Argumentation. In Proceedings of the
Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning
(KR), pages 65–74. AAAI Press, 2012.

Hadassa Jakobovits and Dirk Vermeir. Robust Semantics for Argumentation Frameworks.
Journal of Logic and Computation, 9(2):215–261, 1999.

Tomi Janhunen. On the Intertranslatability of Non-monotonic Logics. Annals of Mathematics
and Artificial Intelligence, 27(1–4):79–128, 1999.

Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and
Combinatorics. Springer-Verlag Berlin Heidelberg, 2012.

https://potassco.org
http://dx.doi.org/10.1017/S1471068414000222

Bibliography 159

Kurt Konolige. On the Relation Between Default and Autoepistemic Logic. Artificial Intelligence,
35(3):343–382, 1988.

Joohyung Lee. A model-theoretic counterpart of loop formulas. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI), pages 503–508. Professional Book Center, aug 2005. URL
http://ijcai.org/Proceedings/05/Papers/1280.pdf.

Vladimir Lifschitz and Alexander Razborov. Why are there so many loop formulas? ACM
Transactions on Computational Logic, 7(2):261–268, April 2006.

Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Pascal Van Hentenryck,
editor, Logic Programming, Proceedings of the Eleventh International Conference on Logic Program-
ming, Santa Marherita Ligure, Italy, June 13-18, 1994, pages 23–37. MIT Press, 1994.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 25(3–4):369–389, 1999. ISSN 1012-2443.
doi: 10.1023/A:1018978005636.

Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

Thomas Linsbichler. Splitting abstract dialectical frameworks. In Simon Parsons, Nir Oren, and
Chris Reed, editors, Proceedings of the Fifth International Conference on Computational Models of
Argument (COMMA), volume 266 of FAIA, pages 357–368. IOS Press, September 2014.

V. Wiktor Marek and Mirosław Truszczyński. Autoepistemic logic. Journal of the ACM, 38(3):
587–618, 1991.

Norman McCain and Hudson Turner. Causal theories of action and change. In Benjamin
Kuipers and Bonnie L. Webber, editors, Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI
97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., pages 460–465. AAAI Press / The MIT
Press, 1997. URL http://www.aaai.org/Library/AAAI/1997/aaai97-071.php.

Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelli-
gence, 173(9–10):901–934, 2009.

Sanjay Modgil and Henry Prakken. A general account of argumentation and preferences.
Artificial Intelligence, 195(0):361–397, 2013.

Robert Moore. Semantical Considerations of Nonmonotonic Logic. Artificial Intelligence, 25(1):
75–94, 1985.

Søren H. Nielsen and Simon Parsons. A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In Argumentation in Multi-Agent
Systems, volume 4766 of LNCS, pages 54–73. Springer, 2006.

Juan Carlos Nieves, Mauricio Osorio, and Claudia Zepeda. A Schema for Generating Relevant
Logic Programming Semantics and its Applications in Argumentation Theory. Fundamenta
Informaticae, 106(2–4):295–319, 2011.

Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew Barry.
An A-Prolog decision support system for the Space Shuttle. In Alessandro Provetti and
Tran Cao Son, editors, Answer Set Programming, 2001.

http://ijcai.org/Proceedings/05/Papers/1280.pdf
http://www.aaai.org/Library/AAAI/1997/aaai97-071.php

160 Bibliography

Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves, and Ulises Cortés. Inferring acceptable
arguments with answer set programming. In Proceedings of the Sixth Mexican International
Conference on Computer Science (ENC), pages 198–205, 2005.

Christos H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

Nikolay Pelov. Semantics of logic programs with aggregates. PhD thesis, Katholieke Universiteit
Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, 3001 Heverlee, Bel-
gium, April 2004.

Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and stable se-
mantics of logic programs with aggregates. Theory and Practice of Logic Programming, 7
(3):301–353, 2007. doi: 10.1017/S1471068406002973. URL http://dx.doi.org/10.1017/
S1471068406002973.

Sylwia Polberg. Extension-based semantics of abstract dialectical frameworks. In Ulle Endriss
and João Leite, editors, Proceedings of the Seventh European Starting AI Researcher Symposium
(STAIRS), volume 264 of FAIA, pages 240–249. IOS Press, August 2014.

Sylwia Polberg. Understanding the abstract dialectical framework. In Loizos Michael and
Antonis C. Kakas, editors, Proceedings of the Fifteenth European Conference on Logics in Ar-
tificial Intelligence (JELIA), volume 10021 of Lecture Notes in Computer Science, pages 430–
446. Springer-Verlag Berlin Heidelberg, November 2016. doi: 10.1007/978-3-319-48758-8_28.
URL http://dx.doi.org/10.1007/978-3-319-48758-8_28.

Sylwia Polberg and Dragan Doder. Probabilistic abstract dialectical frameworks. In Eduardo
Fermé and João Leite, editors, Proceedings of the Fourteenth European Conference on Logics in
Artificial Intelligence (JELIA), volume 8761 of Lecture Notes in Computer Science, pages 591–599.
Springer-Verlag Berlin Heidelberg, September 2014.

Sylwia Polberg, Johannes P. Wallner, and Stefan Woltran. Admissibility in the abstract dialect-
ical framework. In João Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre, and Stefan
Woltran, editors, Proceedings of the Fourteenth International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA XIV), volume 8143 of LNAI, pages 102–118. Springer-Verlag
Berlin Heidelberg, 2013.

John L Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.

Henry Prakken. An abstract framework for argumentation with structured arguments. Argu-
ment & Computation, 1(2):93–124, 2010.

Henry Prakken and Giovanni Sartor. A System for Defeasible Argumentation, with Defeas-
ible Priorities. In Artificial Intelligence Today, LNAI, pages 365–379. Springer-Verlag Berlin
Heidelberg, 1999.

Jörg Pührer. Realizability of three-valued semantics for abstract dialectical frameworks. In
Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI), pages 3171–3177. IJCAI/AAAI, Buenos Aires,
Argentina, July 2015.

Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

Domenico Saccà and Carlo Zaniolo. Deterministic and Non-Deterministic Stable Models.
Journal of Logic and Computation, 7(5):555–579, 1997.

http://dx.doi.org/10.1017/S1471068406002973
http://dx.doi.org/10.1017/S1471068406002973
http://dx.doi.org/10.1007/978-3-319-48758-8_28

Bibliography 161

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007.
doi: 10.1126/science.1144079. URL http://science.sciencemag.org/content/317/5844/
1518.

Yuping Shen and Xishun Zhao. Canonical logic programs are succinctly incomparable with
propositional formulas. In Proceedings of the Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning (KR), pages 665–668, Vienna, Austria, July 2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529:484–489, 2016.
doi: 10.1038/nature16961. URL http://dx.doi.org/10.1038/nature16961.

Tran Cao Son and Enrico Pontelli. A constructive semantic characterization of aggregates in
answer set programming. Theory and Practice of Logic Programming, 7(3):355–375, 2007.

Hannes Strass. Approximating operators and semantics for abstract dialectical frameworks.
Artificial Intelligence, 205:39–70, December 2013.

Hannes Strass. Expressiveness of two-valued semantics for abstract dialectical frameworks.
Journal of Artificial Intelligence Research, 54:193–231, 2015a.

Hannes Strass. The relative expressiveness of abstract argumentation and logic programming.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), pages 1625–
1631, Austin, TX, USA, January 2015b.

Hannes Strass. Instantiating rule-based defeasible theories in abstract dialectical frameworks
and beyond. Journal of Logic and Computation, February 2015c. Advance Access published
11 February 2015, http://dx.doi.org/10.1093/logcom/exv004.

Hannes Strass and Johannes Peter Wallner. Analyzing the computational complexity of ab-
stract dialectical frameworks via approximation fixpoint theory. Artificial Intelligence, 226:
34–74, 2015.

Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

Francesca Toni and Marek Sergot. Argumentation and answer set programming. In M. Bal-
duccini and T. Son, editors, Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning: Essays in Honor of Michael Gelfond, volume 6565 of LNAI, pages 164–180. Springer,
2011.

G. S. Tseitin. On the complexity of derivations in the propositional calculus. Structures in
Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics (translated
from Russian), pages 115–125, 1968.

Hudson Turner. Splitting a default theory. In William J. Clancey and Daniel S. Weld, editors,
Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8,
1996, Volume 1., pages 645–651. AAAI Press / The MIT Press, 1996. URL http://www.aaai.
org/Library/AAAI/1996/aaai96-096.php.

http://science.sciencemag.org/content/317/5844/1518
http://science.sciencemag.org/content/317/5844/1518
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1093/logcom/exv004
http://www.aaai.org/Library/AAAI/1996/aaai96-096.php
http://www.aaai.org/Library/AAAI/1996/aaai96-096.php

162 Bibliography

Bas Van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence – Volume
Two, pages 1113–1119. IJCAI/AAAI, 2011.

Joost Vennekens, David Gilis, and Marc Denecker. Splitting an operator: Algebraic modularity
results for logics with fixpoint semantics. ACM Transactions on Computational Logic, 7(4):
765–797, 2006.

Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation
stages. In J.-J. Ch. Meyer and L.C. van der Gaag, editors, Proceedings of the Eighth Dutch
Conference on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

Toshiko Wakaki and Katsumi Nitta. Computing Argumentation Semantics in Answer Set
Programming. In Proceedings of the Annual Conference of Japanese Society for Artificial Intelligence
(JSAI), pages 254–269, 2008.

Johannes P. Wallner. Complexity Results and Algorithms for Argumentation – Dung’s Frameworks
and Beyond. PhD thesis, Vienna University of Technology, Institute of Information Systems,
2014. URL http://permalink.obvsg.at/AC11706119.

Douglas Walton. Argumentation theory: A very short introduction. In Argumentation in Artifi-
cial Intelligence. Springer Dordrecht Heidelberg London New York, 2009.

Yining Wu, Martin Caminada, and Dov M. Gabbay. Complete Extensions in Argumentation
Coincide with 3-Valued Stable Models in Logic Programming. Studia Logica, 93(2–3):383–403,
2009.

Adam Wyner, Trevor Bench-Capon, and Paul Dunne. Instantiating knowledge bases in ab-
stract argumentation frameworks. In Proceedings of the AAAI Fall Symposium – The Uses of
Computational Argumentation, 2009.

Adam Wyner, Trevor J. M. Bench-Capon, and Paul E. Dunne. On the instantiation of know-
ledge bases in abstract argumentation frameworks. In Proceedings of CLIMA XIV, volume
8143 of LNAI, pages 34–50. Springer-Verlag Berlin Heidelberg, September 2013.

Adam Wyner, Trevor Bench-Capon, Paul Dunne, and Federico Cerutti. Senses of ‘argument’
in instantiated argumentation frameworks. Argument & Computation, 6(1):50–72, 2015.

http://permalink.obvsg.at/AC11706119

163

Index

S defends a, 11
a-conjugate of X, 108

abstract dialectical framework (ADF), 12
ADF D(F) associated to an AF F, 14
admissible pair for an operator, 46
admissible pair in an ADF, 29
admissible set for an AF, 11
AF associated to ϕ, 121
antimonotone operator, 7
approximate operator, 22
approximate stable model of an ADF, 27
approximating operator, 8
approximating operators, 8
argumentation stage, 49
atoms of a logic program, 6
attacking, 103
attacking link in an ADF, 13

bilattice, 8
bipolar ADF, 13
BW-admissible set of an ADF, 14
BW-preferred model of an ADF, 14
BW-stable model of a bipolar ADF, 13
BW-well-founded model of an ADF, 14

canonical approximating operator O, 8
canonical logic program rule, 6
characteristic function of an AF, 11
closed under a set of strict rules in a DTB, 129
closure of M under StrInf , 129
closure postulate, 130
coherent pair, 43
compact translation, 98
complete extension of an AF, 11
complete lattice, 7
complete stable operator for O, 9
conclusion of a rule in a DTB, 128
conflict-free pair for an operator (asymmetric), 47

164

conflict-free pair for an operator (symmetric), 48
conflict-free set of an ADF, 13
conflict-free set of arguments, 11
consistent pair, 8
consistent set of literals, 128

defeasible rule of a DTB, 128
defeasible theory, 129
defeasible theory base, 129
definite logic program rule, 6
dependent, 112
difference, 105
direct consistency postulate, 131
doubly-negated logic program literals, 6

epistemic state, 140
exact pair, 8
Example 6.2, 132

Example 6.3, 134
Example 6.11, 142

Example 2.2, 12
Example 2.3, 13
Example 2.4, 14
Example 3.7, 30
Example 3.8, 31

Example 3.15, 47
Example 3.16, 47

Example 2.5, 15
Example 6.7, 137

Example 6.12, 142
Example 6.1, 129

Example 6.10, 141
Example 6.16, 144

Example 6.5, 136
Example 6.13, 142
Example 6.14, 143

Example 6.6, 136
Example 6.15, 143

Example 6.8, 141
Example 6.9, 141

expansion, 145

faithful translation, 98
finitary AF, 11
fixpoint, 7

grounded extension of an AF, 11

indirect consistency postulate, 131
information ordering ≤i, 8

165

JV-labelling, 40

L-conflict-free pair for an operator, 50
L-stable model of a logic program, 10
L-stable pair for an operator, 46
L-supported model of a logic program, 10
L-supported pair for an operator, 46
links of an ADF, 12
logic program (LP), 6

M-conflict-free pair for an operator, 49
M-stable model of a logic program, 10
M-supported model of a logic program, 10
model for TB, 141
model for an ADF, 13
monotone operator, 7

naive extension of an AF, 11
negation-as-failure literals over a logic program signature, 6
negative, 104
negative body atoms of a normal logic program rule, 6
normal logic program rule, 6

partial valuation of ϕ by (X, Y), 58
partially ordered set (poset), 7
polarity, 104
positive, 104
positive body atoms of a normal logic program rule, 6
postfixpoint, 7
preferred extension of an AF, 11
prefixpoint, 7

range of an AF extension, 11
realisation, 98
reliable pair for an operator O, 29
roof, 51
rule body in a DTB, 128
rule head in a DTB, 128
rule name in a DTB, 128

semantically bipolar, 103
semi-stable extension of an AF, 11
set of worlds over A, 140
signature of a logic program, 6
stable extension of an AF, 11
stable model, 35
stable model for TB, 143
stable operator SO, 8
stable operator for O, 9
stage extension of an AF, 11

166

standard logic program P(D) of an ADF D, 31
statements of an ADF, 12
strict rule of a DTB, 128
supported model of a logic program, 10
supporting, 103
supporting link in an ADF, 13
symmetric operator, 8
syntactically bipolar, 104

theory base, 129
three-valued interpretations, 35
three-valued stable model of a logic program, 10
total JV-labelling, 40
truth ordering ≤t, 8
two-valued interpretation, 6
two-valued model for an ADF, 13

ultimate admissible, 34
ultimate approximation, 9
ultimate complete, 34
ultimate family of ADF semantics, 34
ultimate grounded, 34
ultimate preferred, 34

vocabulary, 101

well-formed extension of a theory-based AF (Wyner et al., 2013), 132
well-founded model of a logic program, 10
world, 140

	Introduction
	Publications

	Background
	Mathematical Notation
	Logic in Knowledge Representation and Reasoning
	Lattice Theory
	Approximation Fixpoint Theory
	Logic Programming

	Abstract Argumentation
	Abstract Argumentation Frameworks
	Abstract Dialectical Frameworks

	Complexity Theory

	Defining Semantics via Approximation Fixpoint Theory
	Approximate Semantics of ADFs
	The Characteristic Approximate Operator of an ADF

	Relationship to Normal Logic Programs
	From ADFs to Logic Programs
	From Logic Programs to ADFs

	Ultimate Semantics of Abstract Dialectical Frameworks
	AF Semantics as Special Cases
	Fixpoint Semantics for Abstract Argumentation Frameworks
	From Argumentation Frameworks to Logic Programs
	From Logic Programs to Argumentation Frameworks

	General Semantics for Approximating Operators
	Admissible
	Semi-stable
	Conflict-free (Asymmetric)
	Conflict-free (Symmetric)
	Naive
	Stage

	Existence Results for General Operators
	Overview of Results
	Concluding Remarks

	Computational Complexity
	Preparatory Considerations
	Notation and Decision Problems
	Relationship Between the Operators
	Reductions and Encoding Techniques
	Operator Complexities
	Generic Upper Bounds

	General ADFs
	Symmetric Conflict-free Semantics
	Admissibility-based Semantics
	Two-valued Semantics
	Overview

	Bipolar ADFs
	Symmetric Conflict-free Semantics
	Two-valued Semantics
	Overview

	Conclusion

	Relative Expressiveness and Succinctness
	Background on Relative Expressiveness
	Translations Between Considered Formalisms
	Representing Bipolar Boolean Functions

	Relative Expressiveness
	Supported Semantics
	Stable Semantics
	Supported vs. Stable Semantics

	Allowing Vocabulary Expansion
	Discussion

	An Application to Theory Bases
	Background on Defeasible Theories
	Instantiations to Abstract Argumentation Frameworks
	The Approach of Caminada and Amgoud (2007)
	The Approach of Wyner, Bench-Capon, and Dunne (2013)

	Instantiations to Abstract Dialectical Frameworks
	From Theory Bases to ADFs
	Support Cycles in Theory Bases
	Inconsistent Theory Bases
	Properties of the Translation

	A Direct Semantics for Defeasible Theory Bases
	Relationship to Autoepistemic Logic
	Defining Further Semantics

	Conclusion

	Discussion
	Related and Possible Future Work

	Bibliography
	Index

