
RFuzzy—A Framework for Multi-adjoint Fuzzy
Logic Programming

Victor Pablos Ceruelo
Babel Group

Technical University of Madrid, Spain
e-mail: vpablos@fi.upm.es

Hannes Strass
Computational Logic Group

Technical University of Dresden, Germany
e-mail: hannes.strass@inf.tu-dresden.de

Susana Munoz-Hernandez
Babel Group

Technical University of Madrid, Spain
e-mail: susana@fi.upm.es

Abstract—Fuzzy Logic Programming aims at combining the
advantages of Logic Programming (such as readability, concise-
ness, and a formally well-defined semantics) with the advantages
of Fuzzy Logic (representability of imprecise and uncertain
knowledge).

In this paper, we present the RFuzzy framework for Fuzzy
Logic Programming. It has three main advantages compared to
other Fuzzy Logic Programming frameworks: RFuzzy provides
constructive answers (it responds with direct results instead of
constraints), models multi-adjoint logic, and allows the user1 to
combine fuzzy and crisp reasoning in the same program. It
provides some extensions such as default values (to represent
missing information) and typed predicates. The truth values of
predicates are defined via facts, rules, and functions.

We describe the implementation of our framework and its
operational semantics. RFuzzy has been implemented and is ready
for being used2.

I. INTRODUCTION

Logic Programming is a declarative programming paradigm
that has been successfully used in the field of knowledge
representation and reasoning for many years. But the classical
Logic Programming languages (e.g. Prolog) lack an intuitive
(and user-friendly) way to represent vague world information,
that is, information that is either imprecise or imperfect, or
both.

The result of introducing Fuzzy Logic into Logic Program-
ming has been the development of several fuzzy systems over
Prolog. These systems replace the inference mechanism of
Prolog, SLD-resolution, with a fuzzy variant that is able to
handle partial truth.

Most of these systems implement the fuzzy resolution in-
troduced by Lee in [1], as the Prolog-Elf system [2], the FRIL
Prolog system [3], and the F-Prolog language [4]. However,
there is no common method for fuzzifying Prolog, as has been
noted in [5].

In the present paper, we introduce an expressive, yet simple-
to-use framework for fuzzy Logic Programming, RFuzzy. The

This work is partially supported by the project DESAFIOS - TIN 2006-
15660-C02-02 from the Spanish Ministry of Education and Science, by the
Spanish Ministry of Science and Innovation Research Staff Training Program
- BES-2008-008320 and by the project PROMESAS - S-0505/TIC/0407 from
the Madrid Regional Government.

1We refer as ’user’ to the programmer that wants to represent a fuzzy
problem in a programming framework to make queries and obtain results.

2The RFuzzy module with installation instructions and examples can be
downloaded from http://babel.ls.fi.upm.es/software/rfuzzy/.

R in the name derives from it representing truth values as Real
numbers from the unit interval.

The remainder of the paper is organized as follows. The fol-
lowing subsection compares RFuzzy with other Fuzzy Logic
programming frameworks. The next section introduces the
syntax of RFuzzy programs. Section III introduces the formal
operational semantics underlying the RFuzzy Framework. The
last section mentions aspects of current work and concludes.

A. RFuzzy in Comparison

One of the most promising fuzzy tools for Prolog was the
“Fuzzy Prolog” system [6], [7], as it combined three important
characteristics for modelling fuzziness: 1*) A truth value is
a finite union of sub-intervals on [0, 1] 3. 2*) A truth value
is propagated through the rules by means of an aggregation
operator. The definition of this aggregation operator is general
and it subsumes conjunctive operators (triangular norms [8]
like min, prod, etc.), disjunctive operators [9] (triangular co-
norms, like max, sum, etc.), average operators (averages as
arithmetic average, quasi-linear average, etc.), and hybrid
operators (combinations of the above operators [10]). 3*) Crisp
and fuzzy reasoning are consistently combined [11].

If we compare RFuzzy with “Fuzzy Prolog”, we can see
that 1*) It uses real numbers instead of unions of intervals
between real numbers to represent truth values. Answers like
v = [0, 1] ∩ [0, 1] mean that the program can not conclude
anything about the variable truth value. To distinguish between
having no information and using default information RFuzzy
will fail to answer in this case, so we can infer that no
information in available. 2*) It offers the user a concrete
syntax to define types, so the user does not need to code
them in Prolog code. In “Fuzzy Prolog” we have to code
types taking care of the code translation it does, and this
introduces a lot of errors. 3*) It does not answer user queries
using constraints, so its answers can be used as input in
other programs, like web applications. Constructive answers
are always returned, via the application of constraints like
v = [X,Y], X ≥ 0, X ≤ 1, Y ≥ 0, Y ≤ 1 to the truth values
of the individuals defined by means of types. 4*) Truth value
variables do not need to be coded. Taking care of variables

3An interval is a particular case of union of one element, and a unique
truth value is a particular case of having an interval with only one element.

978-1-4244-4577-6/09/$25.00 ©2009 IEEE

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

RFuzzy
package
preprocessing

package
preprocessing

RFuzzy
program program

CLP(R)
program
ISO Prolog

CLP(R)

Fig. 1. RFuzzy architecture

to manage the predicates’ truth value introduces errors and
makes the code illegible, without giving any advantage. 5*)
Default truth values’ functionality is increased by conditional
default truth values, which are suitable for defining a default
truth value for subsets of individuals.

RFuzzy shares with Fuzzy Prolog most of its nice expressive
characteristics: Prolog-like syntax (based on using facts and
clauses), use of any aggregation operator, flexibility of query
syntax, definition of credibility in rules, etc. Both of them
add fuzziness to a Prolog compiler using CLP(R) instead of
implementing a new fuzzy resolution, as other fuzzy Prologs
do. CLP(R) enables them to represent intervals of truth values
and truth values as constraints over real numbers and aggrega-
tion operators as operations with these constraints, so they use
Prolog’s built-in inference mechanism to handle the concept
of partial truth. Besides, its use enables portability between
ISO Prolog systems, so code transformations performed by
RFuzzy and CLP(R) packages convert RFuzzy code into ISO
Prolog code. Fig. 1 shows the whole process.

There is another fuzzy Logic Programming system that
models multi-adjoint logic, FLOPER [12]. It has a Logic-
Programming-inspired syntax and provides free choice of
aggregation operators and credibility of rules just as RFuzzy
does. There are however some things that FLOPER cannot
do: deal with missing information (which RFuzzy does by
default truth value declarations), type atoms and predicates
to give constructive answers, and provide syntactic sugar to
express truth value functions. RFuzzy will be explained in
greater detail in the following section.

II. RFUZZY SYNTAX

In this section we describe the syntax of new predicates
added to Prolog by RFuzzy to deal with fuzziness.

A. Type Definitions

Prolog code consists of predicate definitions and it is run via
posing a query that is subsequently tried to be proven, so we
can say that Prolog does not have types. In RFuzzy we use an
extension to restrict the predicates’ domains. This extension is
named “types” and its syntax is shown in (1).

:- set prop pred/ar => t pred 1/1 [, t pred 2/1]∗ . (1)

where set prop is a reserved word, pred is the name of the
typed predicate, ar is its arity and t pred {n} is the predicate
used to assure that the value given to the argument in the
position n of a call to pred/ar is correctly typed. The predicate
t pred {n} must have arity 1. In the example below we
define that the valid values for the argument of the predicate
nice weather/1 are the ones defined by the predicate city/1:
Madrid, Moscow, and Berlin.

far away

distance (km)0

1

0 100 500

Fig. 2. Truth value of being far away for a given distance (in kms) from
the hometown.

:− s e t p r o p n i c e w e a t h e r / 1 => c i t y / 1 .

c i t y (madr id) .
c i t y (moscow) .
c i t y (b e r l i n) .

B. Fact Truth Values

Fuzzy facts are facts to which we assign a truth value. To
code them in programs we offer a special syntax, shown in
(2), so Prolog can distinguish between crisp and fuzzy facts.

pred(args) value truth val. (2)

Arguments (args) should be ground terms and the truth
value (truth val) must be a real number between 0 and 1.
The example below defines (among other facts) that the city
madrid has nice weather with a truth value of 0.8.

n i c e w e a t h e r (madr id) v a l u e 0 . 8 .
n i c e w e a t h e r (moscow) v a l u e 0 . 2 .
m a n y s i g h t s (madr id) v a l u e 0 . 6 .

C. Functional Truth Values

For some fuzzy concepts, it is very straightforward to define
truth values as function values of a parameter. For the concept
tall, for example, we could define the truth value of a person
being tall as a function of their body height. Fig. 2 shows
an example in which the truth value function assigns the
truth value of being far away from the city’s distance (in
kilometers) to the user’s hometown.

Functional truth values are syntactic sugar to be able to
code such functions. As those functions are usually continuous
and linear over intervals, the simplest way to define them
is by means of their inflexion points, using interpolation to
determine values between them.

Inflexion points are coded as a list of ordered pairs whose
first element is the crisp value and the second element is the
truth value assigned to it. The syntax is shown in (3), where
external brackets represent the Prolog list symbols and internal
brackets represent cardinality in the formula notation. arg1,
..., argN should be ground terms (numbers) and truth val1,
..., truth valN should be border truth values (real numbers
between 0 and 1, inclusive them).

pred :# ([(arg1, truth val1), (arg2, truth val2)
[, (arg3, truth val3)]∗]) . (3)

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

The example below shows the code for the function shown
in Figure 2. We only need to code up to 500 kms, for greater
distances the default truth value of 1 is used. See Subsection
II-E for more information on default truth values.

:− s e t p r o p fa r away / 1 => c i t y / 1 .
:− d e f a u l t (f a r away / 1 , 1) .
f a r away : # ([(0 , 0) , (1 0 0 , 1) , (5 0 0 , 1)]) .

D. Rule Truth Values

A rule is the tool we offer the user to combine the truth val-
ues of facts, functions, and other rules by means of aggregation
operators like maximum or product. Besides this combination
truth value for the body of the rule, the rule can be given an
overall credibility truth value.

This credibility is used to express how much we trust the
rule, and it is combined with the resultant truth value from the
body of the rule by means of an aggregation operator.

Syntax for defining rule truth values is defined in (4), where
the user can choose two aggregation operators 4: op2 for
combining the truth values of the subgoals of the rule’s body
and op1 for combining the previous result with the credibility
of the rule. Brackets represent optional fields.

pred(arg1 [, arg2]∗) [cred (op1, value1)] : ∼
op2 pred1(arg1 [, arg2]∗)
[, pred2(arg1 [, arg2]∗)] . (4)

The following example shows its usage. As it can be seen
in it, it is not mandatory to code the rule’s credibility when
we don’t need it.

g o o d d e s t i n a t i o n (X) : ˜ prod
n i c e w e a t h e r (X) ,
m a n y s i g h t s (X) .

E. General and Conditioned Default Truth Values

Unfortunately, information that is provided by the user is
not complete in general. So there are many cases in which
we have no information about the truth value of an individual
or a set of them. Nevertheless, it is interesting not to stop a
complex query evaluation just because we have no information
about one or more subgoals if we can use a reasonable
approximation. The solution to this problem is using default
truth values for these cases.

General truth value (Syntax defined in (5)) is an special
case of Conditioned default truth values where the condition
to fulfil by the individuals is always true. Conditioned default
truth value (Syntax defined in (6)) assigns a default truth
value to a subset of individuals of the predicate’s domain (this
predicate’s domain is defined by means of type definitions
(see subsection II-A) that fulfil a condition, defined by the
membership predicate (mship pred/ar).

4Aggregation operators available are: min for minimum, max for maximum,
prod for the product, luka for the Lukasiewicz operator, dprod for the inverse
product and dluka for the inverse Lukasiewicz operator.

pred/ar is in both cases the predicate to which we are
defining default values and tv their respective truth value.

When defining more than one truth value (explicit, condi-
tioned, and/or default truth value) only one will be given back
when doing a query. The precedence when looking for the
truth value goes from most to least concrete.

:- default(pred/ar, tv) . (5)
:- default(pred/ar, tv) => mship pred/ar. (6)

In the example below we define that all countries not having
a explicit truth value for mediterranean diet that are in the
mediterranean country set will have a truth value of 0.8 and
those that are not in the set will have a truth value of 0.1. Last
two lines are part of the big example we use in the section
III.

:− d e f a u l t (m e d i t e r r a n e a n d i e t / 1 , 0 . 1) .
:− d e f a u l t (m e d i t e r r a n e a n d i e t / 1 , 0 . 8)

=> m e d i t e r r a n e a n c o u n t r y / 1 .

m e d i t e r r a n e a n c o u n t r y (s p a i n) .
m e d i t e r r a n e a n c o u n t r y (i t a l y) .
m e d i t e r r a n e a n c o u n t r y (g r e e c e) .

% And so on (Up t o 16 c o u n t r i e s) .

:− d e f a u l t (n i c e w e a t h e r / 1 , 0 . 5) .
:− d e f a u l t (m a n y s i g h t s / 1 , 0 . 2) .

F. Queries and Constructive Answers

During compilation, RFuzzy adds a new argument to the
arguments list of each fuzzy predicate. This argument serves
for querying the predicate’s truth value, and is always added in
the same way, at the end of the arguments list of the predicate.
It can be seen as syntactic sugar, as the predicate truth value
is not part of its arguments, but metadata information. In the
previous example we coded good destination/1, so to query
the system we have to give the predicate two arguments instead
of only one. The second one will represent the query’s truth
value. This can be seen in the example below.

?− g o o d d e s t i n a t i o n (moscow , V) .
V = 0 . 0 4 ?
yes

?− g o o d d e s t i n a t i o n (D, V) , V > 0 . 4 .
D = madrid ,
V = 0 . 4 8 ? ;
no

Of course all the fuzzy tools mentioned before are able to
provide constructive answers for the first query, but none of
them are able to provide answers to the second query. The
regular (easy) questions are asking for the truth value of an
element, but the really interesting queries are the ones that ask
for values that satisfy constraints over the truth value, as can
be seen in the second query.

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

III. OPERATIONAL SEMANTICS

In this section, we explain the formal syntax and semantics
of the language that underlies RFuzzy.

We will use a signature Σ of function symbols and a set
of variables V to “build” the term universe TUΣ,V (whose
elements are the terms). It is the minimal set such that each
variable is a term and terms are closed under Σ-operations. In
particular, constant symbols are terms.

Similarly, we will use a signature Π of predicate symbols
to define the term base TBΠ,Σ,V (whose elements are called
atoms). Atoms are predicates whose arguments are elements
of TUΣ,V . Atoms and terms are called ground if they do not
contain variables. As usual, the Herbrand universe H is the
set of all ground terms, and the Herbrand base B is the set
of all atoms with arguments from the Herbrand universe.

To combine truth values in the set of real truth values
[0, 1], we will make use of aggregation operators. A func-
tion F̂ : [0, 1]n → [0, 1] is called an aggregation operator
if it verifies F̂ (0, . . . , 0) = 0 and F̂ (1, . . . , 1) = 1. We
will use the signature Ω to denote the set of used oper-
ator symbols F and Ω̂ to denote the set of their associ-
ated aggregation operators F̂ . An n-ary aggregation oper-
ator is called monotonic in the i-th argument, if addition-
ally x ≤ x′ implies F̂ (x1, . . . , xi−1, x, xi+1, . . . , xn) ≤
F̂ (x1, . . . , xi−1, x

′, xi+1, . . . , xn). An aggregation operator is
called monotonic if it is monotonic in all arguments.

Immediate examples for aggregation operators that come
to mind are typical examples of t-norms and t-conorms:
minimum min(a, b), maximum max(a, b), product a · b, and
probabilistic sum a + b − a · b. The above general definition
of aggregation operators subsumes however all kinds of min-
imum, maximum or mean operators.

Definition. Let Ω be an aggregation operator signature, Π
a predicate signature, Σ a term signature, and V a set of
variables.

A fuzzy clause is written as

A
c,Fc←−FB1, . . . , Bn

where A ∈ TBΠ,Σ,V is called the head, B1, . . . , Bn ∈
TBΠ,Σ,V is called the body, c ∈ [0, 1] is the credibility value,
and Fc ∈ Ω(2) and F ∈ Ω(n) are aggregation operator symbols
(for the credibility value and the body resp.)

A fuzzy fact is a special case of a clause where n = 0,
c = 1, Fc is the usual multiplication of real numbers “·” and
F = v ∈ [0, 1]. It is written as A← v.

A fuzzy query is a pair 〈A, v〉, where A ∈ TBΠ,Σ,V and v is
either a “new” variable that represents the initially unknown
truth value of A or it is a concrete value v ∈ [0, 1] that is
asked to be the truth value of A. y

Intuitively, a clause can be read as a special case of an
implication: we combine the truth values of the body atoms
with the aggregation operator associated to the clause to
yield the truth value for the head atom. For this truth value
calculation we are completely free in the choice of an operator.

In standard logic programming, the closed-world assump-
tion is employed, i.e. the knowledge base is not only assumed

to be sound but moreover to be complete. Everything that can
not be derived from the knowledge is assumed to be false.
This could be easily modelled in this framework by assuming
the truth value 0 as “default” truth value, so to speak. Yet
we want to pursue a slightly more general approach: arbitrary
default truth values will be explicitly stated for each predicate.
We even allow the definition of different default truth values
for different arguments of a predicate. This is formalized as
follows.

Definition. A default value declaration for a predicate
p ∈ Π(n) is written as default(p(X1, . . . , Xn)) =
[δ1 if ϕ1, . . . , δm if ϕm] where δi ∈ [0, 1] for all i. The ϕi are
first-order formulas restricted to terms from TUΣ,{X1,...,Xn},
the predicates = and 6=, the symbol true, and the junctors ∧
and ∨ in their usual meaning. y

Types can be viewed as inherent properties of terms – each
term can have zero or more types. We use them to restrict the
domains of predicates.

Definition. A term type declaration assigns a type τ ∈ T
to a term t ∈ H and is written as t : τ . A predicate type
declaration assigns a type (τ1, . . . , τn) ∈ T n to a predicate
p ∈ Πn and is written as p : (τ1, . . . , τn), where τi is the type
of p’s i-th argument. y

For a ground atom A = p(t1, . . . , tn) ∈ B we say that it is
well-typed with respect to T iff p : (τ1, . . . , τn) ∈ T implies
τi ∈ tT (ti) for all i.

For a ground clause A
c,Fc←−FB1, . . . , Bn we say that it is

well-typed w.r.t. T iff all Bi are well-typed for 1 ≤ i ≤ n
implies that A is well-typed (i.e. if the clause preserves well-
typing). We say that a non-ground clause is well-typed iff all
its ground instances are well-typed.

A fuzzy logic program P is a triple P = (R,D, T) where
R is a set of fuzzy clauses, D is a set of default value
declarations, and T is a set of type declarations.

From now on, when speaking about programs, we will
implicitly assume the signature Σ to consist of all function
symbols occurring in P , the signature Π to consist of all
the predicate symbols occurring in the program, the set T
to consist of all types occurring in type declarations in T , and
the signature Ω of all the aggregation operator symbols. For
Ω we will furthermore require that all operators from Ω̂ be
monotonic.

Lastly, we introduce the important notion of a “well-
defined” program.

Definition. A fuzzy logic program P = (R,D, T) is called
well-defined iff

• for each predicate symbol p/n occurring in R, there exist
both a predicate type declaration and a default value
declaration;

• all clauses in R are well-typed;
• for each default value declaration
default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm],
the formulas ϕi are pairwise contradictory and
ϕ1 ∨ · · · ∨ ϕm is a tautology, i.e. exactly one default
truth value applies to each element of p/n’s domain.

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

y
The operational semantics will be formalized by a transition

relation that operates on (possibly only partially instantiated)
computation trees. Here, we will not need to keep track of
default value attributes {N,�,H} explicitly, it will be encoded
into the computations.

Definition. Let Ω be a signature of aggregation operator
symbols and W a set of variables with W ∩ V = ∅.

A computation node is a pair 〈A, e〉, where A ∈ TBΠ,Σ,V

and e is a term over [0, 1] and W with function symbols from
Ω. We say that a computation node is ground if e does not
contain variables. A computation node is called final if e ∈
[0, 1]. A final computation node will be indicated as 〈A, e〉.

We distinguish two different types of computation nodes:
C-nodes, that correspond to applications of program clauses,
and D-nodes, that correspond to applications of default value
declarations.

A computation tree is a directed acyclic graph whose
nodes are computation nodes and where any pair of nodes
has a unique (undirected) path connecting them. We call a
computation tree ground or final if all its nodes are ground or
final respectively.

For a given computation tree t we define the tree attribute

zt =


H if t contains no D-node
� if t contains both C- and D-nodes
N if t contains only D-nodes

y
Computation nodes are essentially generalizations of queries

that keep track of aggregation operator usage.
Computation trees as defined here should not be confused

with the usual notion of SLD-trees. While SLD-trees describe
the whole search space for a given query and thus give rise to
different derivations and different answers, computation trees
describe just a state in a single computation.

The computation steps that we perform on computation trees
will be modelled by a relation between computation trees.

Definition.[Transition relation] For a given fuzzy logic pro-
gram P = (R,D, T), the transition relation _ is characterized
by the following transition rules:

Clause: t/
[
〈A′, v〉

]
_

t/

 〈A′, v〉 /

C〈A′, Fc(c, F (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉

µ
If there is a (variable disjoint instance of a) pro-
gram clause A

c,Fc←−FB1, . . . , Bn ∈ R and µ =
mgu(A′, A). (Take a non-final leaf node and add
child nodes according to a program clause; apply the
most general unifier of the node atom and the clause
head to all the atoms in the tree.)
Note that we immediately finalize a node when
applying this rule for a fuzzy fact.

Default: t [〈A, x〉] _ t
[
〈A, x〉/D〈A, δj〉

]
µ

If A does not match with any program
clause head, there is a default value
declaration default(p(X1, . . . , Xn)) =
[δ1 if ϕ1, . . . , δm if ϕm] ∈ D, µ is a substitution
such that p(X1, . . . , Xn)µ = Aµ is a well-typed
ground atom, and there exists a 1 ≤ j ≤ m such
that ϕjµ holds. (Apply a default value declaration
to a non-final leaf node thus finalizing it.)

Finalize:

C〈A,Fc(c, F (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉

_

C〈A, F̂c(c, F̂ (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉

(Take a non-final node whose children are all final
and replace its truth expression by the corresponding
truth value.)

y
Here, the notation t[A] means “the tree t that contains the

node A somewhere”. Likewise, t[A/B] is to be read as “the
tree t where the node A has been replaced by the node B”.

Asking the query 〈A, v〉 corresponds to applying the transi-
tion rules to the initial computation tree 〈A, v〉. The computa-
tion ends successfully if a final computation tree is created, the
truth value of the instantiated query can then be read off the
root node. We will illustrate this with an example computation.

Example. We start with the tree 〈good-destination(Y), v〉 .
Applying the Clause-transition to the
initial tree with the program clause
good-destination(X)1.0,·←−·nice-weather(X), many-sights(X)
yields

C〈good-destination(Y), 1.0 · v1 · v2〉

〈nice-weather(Y), v1〉 〈many-sights(Y), v2〉

Now we apply Clause to the left child with
nice-weather(moscow)← 0.2:

C〈good-destination(moscow), 1.0 · 0.2 · v2〉

C〈nice-weather(moscow), 0.2〉 〈many-sights(moscow), v2〉

Since there exists no clause whose head matches many-

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

sights(moscow), we apply the Default-rule for many-sights
to the right child.

C〈good-destination(moscow), 1.0 · 0.2 · 0.2〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

In the last step, we finalize the root node.

C〈good-destination(moscow), 0.04〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

The calculated truth value for good-destination(moscow) is
thus 0.04. �

The actual operational semantics is now given by the truth
values that can be derived in the defined transition system.
This “canonical model” can be seen as a generalization of the
success set of a program.

Definition. Let P be a well-defined fuzzy logic program.
The canonical model of P for A ∈ B is defined as follows:

cm(P) :=A 7→ ztv

∣∣∣∣∣∣∣
there exists a computation starting
with 〈A,w〉 and ending with a final
computation tree t with root node
〈A, v〉


y

It can be verified that the canonical model cm(P) is indeed
a model of P .

IV. CONCLUSIONS AND CURRENT WORK

RFuzzy offers to the users a new framework to represent
fuzzy problems over real numbers. It has some advantages over
other fuzzy prolog approaches, like Fuzzy Prolog [6], [7], [13]
or FLOPER [12]. They are a simpler syntax, the elimination
of answers with constraints by means of constructive answers
and the introduction of conditioned default truth values.

RFuzzy syntax is simpler because its fuzzy values are real
numbers instead of intervals between real numbers and it hides
the management of truth value variables. As normal fuzzy
problems do not use intervals to represent fuzziness and do
not need to code an uncommon behavior of fuzzy variables,
this syntax reduction is an advantage. Programs written in
RFuzzy syntax are more legible and easier to be understood
than programs written in other fuzzy frameworks.

Answers to user in other fuzzy prolog frameworks are
constraints, and it is difficult (and sometimes impossible)
use them in other programs (like web applications) due to
the management of them. RFuzzy eliminates constraints in
answers by giving to the user the ability to define types,
enabling constructivity in answers (See subsection II-F).

There is also an extension to introduce default truth values.
As world information is sometimes incomplete, RFuzzy offers

to the user the possibility to define default truth values and
default conditioned truth values (see subsection II-E). This
allows us to make inference with default truth values when
we do not know anything about the truth of some fact.

There are countless applications and research lines which
can benefit from the advantages of using the fuzzy representa-
tions offered by RFuzzy. Some examples are: search engines,
knowledge extraction (from databases, ontologies, etc.), the
Semantic Web, business rules, and coding rules (where the
violation of one rule can be given a truth value).

Current work on RFuzzy tries to implement dynamical truth
values, so truth values can be loaded in the program from a
database, enabling its use for dynamical applications in the
web. Semantic Web is one of this applications which should
be improved using fuzzy reasoning to represent fuzzy relations
between objects, so the world they model actually is crisp.
Another problem we are dealing with is that “Tweety is a
bird” with a truth value of 1.0 but it flies with a truth value
of 0 - non-monotonic reasoning. It can be deduced from here
that in our programs defined truth values remove this kind of
inconsistencies, but not all inconsistencies are removed. And
in the end (but not less important) we are trying to apply
constructive negation to the engine, so we can ask not only
which cities are suitable to visit, (see the example) but which
ones are not suitable to visit.

REFERENCES

[1] R. C. T. Lee, “Fuzzy Logic and the resolution principle,” Journal of
the Association for Computing Machinery, vol. 19, no. 1, pp. 119–129,
1972.

[2] M. Ishizuka and N. Kanai, “Prolog-ELF incorporating fuzzy Logic,” in
IJCAI, 1985, pp. 701–703.

[3] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth, Fril: Fuzzy and
Evidential Reasoning in Artificial Intelligence. John Wiley & Sons,
1995.

[4] D. Li and D. Liu, A Fuzzy Prolog Database System. New York: John
Wiley & Sons, 1990.

[5] Z. Shen, L. Ding, and M. Mukaidono, “Fuzzy resolution principle,” in
Proc. of 18th International Symposium on Multiple-valued Logic, vol. 5,
1989.

[6] C. Vaucheret, S. Guadarrama, and S. Munoz-Hernandez, “Fuzzy prolog:
A simple general implementation using clp(r),” in Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, ser. LNAI,
M. Baaz and A. Voronkov, Eds., no. 2514. Tbilisi, Georgia: Springer-
Verlag, October 2002, pp. 450–463.

[7] S. Guadarrama, S. Munoz-Hernandez, and C. Vaucheret, “Fuzzy Prolog:
A new approach using soft constraints propagation,” Fuzzy Sets and
Systems, FSS, vol. 144, no. 1, pp. 127–150, 2004, iSSN 0165-0114.

[8] E. Klement, R. Mesiar, and E. Pap, “Triangular norms,” Kluwer Aca-
demic Publishers.

[9] E. Trillas, S. Cubillo, and J. L. Castro, “Conjunction and disjunction on
([0, 1], <=),” Fuzzy Sets and Systems, vol. 72, pp. 155–165, 1995.

[10] A. Pradera, E. Trillas, and T. Calvo, “A general class of triangular norm-
based aggregation operators: quasi-linear t-s operators,” International
Journal of Approximate Reasoning, vol. 30, no. 1, pp. 57–72, 2002.

[11] S. Munoz-Hernandez, C. Vaucheret, and S. Guadarrama, “Combining
crisp and fuzzy Logic in a prolog compiler,” in Joint Conf. on Declara-
tive Programming: APPIA-GULP-PRODE 2002, J. J. Moreno-Navarro
and J. Mariño, Eds., Madrid, Spain, September 2002, pp. 23–38.

[12] G. Moreno, “Building a fuzzy transformation system.” in SOFSEM,
2006, pp. 409–418.

[13] C. Vaucheret, S. Guadarrama, and S. Munoz-Hernandez, “Fuzzy prolog:
A simple general implementation using clp(r),” in Int. Conf. in Logic
Programming, ICLP 2002, ser. LNCS, P. Stuckey, Ed., no. 2401.
Copenhagen, Denmark: Springer-Verlag, July/August 2002, p. 469.

The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009)
Cincinnati, Ohio, USA - June 14 - 17, 2009

