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Abstract

We present a probabilistic sensor model for camera-pose estimation in hallways and
cluttered office environments. The model is based on the comparison of features ob-
tained from a given 3D geometrical model of the environment with features present
in the camera image. The techniques involved are simpler than state-of-the-art
photogrammetric approaches. This allows the model to be used in probabilistic
robot localisation methods. Moreover, it is very well suited for sensor fusion. The
sensor model has been used with Monte-Carlo localisation to track the position of
a mobile robot in a hallway navigation task. Empirical results are presented for
this application.

1 Introduction

The problem of accurate localisation is fundamental to mobile robotics. To
solve complex tasks successfully, an autonomous mobile robot has to es-
timate its current pose correctly and reliably. The choice of the locali-
sation method generally depends on the kind and number of sensors, the
prior knowledge about the operating environment, and the computing re-
sources available. Recently, vision-based navigation techniques have become
increasingly popular [3]. Among the techniques for indoor robots, we can
distinguish methods that were developed in the field of photogrammetry and
computer vision, and methods that have their origin in Al robotics.

An important technical contribution to the development of vision-based nav-
igation techniques was the work by [10] on the recognition of 3D-objects from
unknown viewpoints in single images using scale-invariant features. Later,



this technique was extended to global localisation and simultaneous map
building [11].

The FINALE system [8] performed position tracking by using a geometri-
cal model of the environment and a statistical model of uncertainty in the
robot’s pose given the commanded motion. The robot’s position is repre-
sented by a Gaussian distribution and updated by Kalman filtering. The
search for corresponding features in camera image and world model is opti-
mised by projecting the pose uncertainty into the camera image.

Monte Carlo localisation (MCL) based on the condensation algorithm
has been applied successfully to tour-guide robots [1]. This vision-based
Bayesian filtering technique uses a sampling-based density representation.
In contrast to FINALE, it can represent multi-modal probability distribu-
tions. Given a visual map of the ceiling, it localises the robot globally using
a scalar brightness measure. [4] presented a vision-based MCL approach
that combines visual distance features and visual landmarks in a RoboCup
application. As their approach depends on artificial landmarks, it is not
applicable in office environments.

The aim of our work is to develop a probabilistic sensor model for camera-
pose estimation. Given a 3D geometrical map of the environment, we want
to find an approximate measure of the probability that the current camera
image has been obtained at a certain place in the robot’s operating environ-
ment. We use this sensor model with MCL to track the position of a mobile
robot navigating in a hallway. Possibly, it can be used also for localisation
in cluttered office environments and for shape-based object detection.

On the one hand, we combine photogrammetric techniques for map-based
feature projection with the flexibility and robustness of MCL, such as the
capability to deal with localisation ambiguities. On the other hand, the
feature matching operation should be sufficiently fast to allow sensor fusion.
In addition to the visual input, we want to use the distance readings obtained
from sonars and laser to improve localisation accuracy.

The paper is organised as follows. In Section 2, we discuss previous work.
In Section 3, we describe the components of the visual sensor model. In
Section 4, we present experimental results for position tracking using MCL.
We conclude in Section 5.

2 Related Work

In classical approaches to model-based pose determination, we can distin-
guish two interrelated problems. The correspondence problem is concerned
with finding pairs of corresponding model and image features. Before this
mapping takes place, the model features are generated from the world model



using a given camera pose. Features are said to match if they are located
close to each other. Whereas the pose problem consists of finding the 3D
camera coordinates with respect to the origin of the world model given the
pairs of corresponding features [2]. Apparently, the one problem requires the
other to be solved beforehand, which renders any solution to the coupled
problem very difficult [6].

The classical solution to the problem above follows a hypothesise-and-test
approach:

(1) Given a camera pose estimate, groups of best matching feature pairs
provide initial guesses (hypotheses).

(2) For each hypothesis, an estimate of the relative camera pose is com-
puted by minimising a given error function defined over the associated
feature pairs.

(3) Now as there is a more accurate pose estimate available for each hy-
pothesis, the remaining model features are projected onto the image
using the associated camera pose. The quality of the match is eval-
uated using a suitable error function, yielding a ranking among all
hypotheses.

(4) The highest-ranking hypothesis is selected.

Note that the correspondence problem is addressed by steps (1) and (3),
and the pose problem by (2) and (4).

The performance of the algorithm will depend on the type of features used,
e.g., edges, line segments, or colour, and the choice of the similarity measure
between image and model, here referred to as error function. Line segments
is the feature type of our choice as they can be detected comparatively
reliably under changing illumination conditions. As world model, we use a
wire-frame model of the operating environment, represented in VRML. The
design of a suitable similarity measure is far more difficult.

In principle, the error function is based on the differences in orientation be-
tween corresponding line segments in image and model, their distance and
difference in length, in order of decreasing importance, in consideration of
all feature pairs present. This has been established in the following three
common measures [10]. esp is defined by the sum of distances between
model line endpoints and the corresponding plane given by camera origin
and image line. This measure strongly depends on the distance to the cam-
era due to back-projection. esp 1, referred to as infinite image lines, is the
sum over the perpendicular distances of projected model line endpoints to
corresponding, infinitely extended lines in the image plane. The dual mea-
sure, eap 2, referred to as infinite model lines, is the sum over all distances
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Fig. 1. Processing steps of the visual-sensor model.

of image line endpoints to corresponding, infinitely extended model lines in
the image plane.

To restrict the search space in the matching step, [10] proposed to constrain
the number of possible correspondences for a given pose estimate by com-
bining line features into perceptual, quasi-invariant structures beforehand.
Since these initial correspondences are evaluated by esp 1 and eap o, high
demands are imposed on the accuracy of the initial pose estimate and the
image processing operations, including the removal of distortions and noise
and the feature extraction. It is assumed to obtain all visible model lines at
full length. [12, 9] demonstrated that a few outliers already can severely af-
fect the initial correspondences in Lowe’s original approach due to frequent
truncation of lines caused by bad contrast, occlusion, or clutter.

3 Sensor Model

Our approach was motivated by the question whether a solution to the
correspondence problem can be avoided in the estimation of the camera
pose. Instead, we propose to perform a relatively simple, direct matching of
image and model features. We want to investigate the level of accuracy and
robustness one can achieve this way.

The processing steps involved in our approach are depicted in Figure 1.
After removing the distortion from the camera image, we use the Canny
operator to extract edges. This operator is relatively tolerant to changing
illumination conditions. From the edges, line segments are identified. Each
line is represented as a single point (p,#) in the 2D Hough space given by
p = zcosh + ysinfh. The coordinates of the end points are neglected. In
this representation, truncated or split lines will have similar coordinates in



the Hough space. Likewise, the lines in the 3D map are projected onto the
image plane using an estimate of the camera pose and taking into account the
visibility constraints, and are represented as coordinates in the Hough space
as well. We have designed several error functions to be used as similarity
measure in the matching step. They are described in the following.

Centred match count (CMC)

The first similarity measure is based on the distance of line segments in the
Hough space. We consider only those image features as possible matches that
lie within a rectangular cell in the Hough space centred around the model
feature. The matches are counted and the resulting sum is normalised. The
mapping from the expectation (model features) to the measurement (image
features) accounts for the fact that the measure should be invariant with
respect to objects not modelled in the 3D map or unexpected changes in
the operating environment. Invariance of the number of visible features is
obtained by normalisation. Specifically, the centred match count measure
scmc is defined by:

sove = (1 [Hel) #125 wmin (1,423 p(he, hun,)
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where the predicate p defines a valid match using the distance parameters
(tp,tg) and the operator # counts the number of matches. Generally speak-
ing, this similarity measure computes the proportion of expected model
Hough points h.;, € H, that are confirmed by at least one measured image
Hough point h,; € Hy, falling within tolerance (t,,t5). Note that neither
endpoint coordinates nor lengths are considered here.

Grid length match (GLM)

The second similarity measure is based on a comparison of the total length
values of groupes of lines. Split lines in the image are grouped together using
a uniform discretisation of the Hough space. This method is similar to the
Hough transform for straight lines. The same is performed for line segments
obtained from the 3D model. Let [,,, . be the sum of lengths of measured
lines in the image falling into grid cell (z J), likewise [, . for expected lines
according to the model, then the grid length match measure sgy is defined

as:
SGLM = min ”>
#I#J(e”>0 Z Z < l




For all grid cells containing model features, this measure computes the ratio
of the total line length of measured and expected lines. Again, the mapping
is directional, i.e., the model is used as reference, to obtain invariance of
noise, clutter, and dynamic objects.

Nearest neighbour and Hausdorff distance

In addition, we experimented with two generic methods for the comparison
of two sets of geometric entities: the nearest neighbour and the Hausdorff
distance. For details see [7]. Both rely on the definition of a distance func-
tion, which we based on the coordinates in the Hough space, i.e., the line
parameter p and 6, and optionally the length, in a linear and exponential
manner. See [5] for a complete description.

Common error functions

For comparisons, we also implemented the commonly used error functions
esp, €2n,1, and esp 2. As they are defined in the Cartesian space, we repre-
sent lines in the Hessian notation, xsin¢ — ycos¢ = d. Using the generic
error function f, we defined the similarity measure as:

s=1/ <1+|1Mn%/[<leréigf(m,e))> (1)

where M is the set of measured lines and F is the set of expected lines.

In case of egp 1, f is defined by the perpendicular distances between both
model line endpoints, ey, e2, and the infinitely extended image line m:

fopa(m,e) = fopi(m,er) + fop1(m,ea)
fopa(m,p) = | prsin(¢) — pycos(p) —d |

Likewise, the dual similarity measure, using esp 2, is based on the perpendic-
ular distances between the image line endpoints and the infinitely extended
model line.

Recalling that the error function esp is proportional to the distances of model
line endpoints to the view plane through an image line and the camera origin,
we can instantiate Equation 1 using fsp(m,e) defined as:

—0 — —0 —
fsp(m,e) = [dig.er |+ 7é |

T_im = ﬁil X Tﬁg

where 7,, denotes the normal vector of the view plane given by the image
endpoints 17; = [mg, my, w]T in camera coordinates.



Obtaining probabilities

Ideally, we want the similarity measure to return monotonically decreasing
values as the pose estimate used for projecting the model features departs
from the actual camera pose. As we aim at a generally valid yet simple
visual-sensor model, the idea is to abstract from specific poses and environ-
mental conditions by averaging over a large number of different, independent
situations. For commensurability, we want to express the model in terms of
relative robot coordinates instead of absolute world coordinates. In other
words, we assume

p(m | b, le, w) = p(m | Al,w) (2)

to hold, i.e., the probability for the measurement m, given the pose [,, this
image has been taken at, the pose estimate l., and the world model w, is
equal to the probability of this measurement given a three-dimensional pose
deviation Al and the world model w.

The probability returned by the visual-sensor model is obtained by simple
scaling:

pmltow) = ( [ st Al,w)d(Al)>_1 s(m, 1, w)

4 Experimental Results

We have evaluated the proposed sensor model and similarity measures in
a series of experiments. Starting with artificially created images using ide-
alised conditions, we have then added distortions and noise to the tested
images. Subsequently, we have used real images from the robot’s camera
obtained in a hallway. Finally, we have used the sensor model to track the
position of the robot while it was travelling through the hallway. In all these
cases, a three-dimensional visualisation of the model was obtained, which
was then used to assess the solutions.

Simulations using artificially created images

As a first kind of evaluation, we generated synthetic image features by gener-
ating a view at the model from a certain camera pose. Generally speaking,
we duplicated the right-hand branch of Figure 1 onto the left-hand side.
By introducing a pose deviation Al, we can directly demonstrate its influ-
ence on the similarity values. For visualisation purposes, the translational
deviations Az and Ay are combined into a single spatial deviation At. Ini-
tial experiments have shown only insignificant differences when they were
considered independently.
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Fig. 2: Performance of CMC on artificially created images.

For each similarity measure given above, at least 15 million random camera
poses were coupled with a random pose deviation within the range of At <
440cm and A6 < 90° yielding a model pose.

The results obtained for the CMC measure are depicted in Figure 2. The
surface of the 3D plot was obtained using GNUPLOT’s smoothing operator
dgrid3d. We notice a unique, distinctive peak at zero deviation with mono-
tonically decreasing similarity values as the error increases. Please note that
this simple measure considers neither endpoint coordinates nor lengths of
lines. Nevertheless, we obtain already a decent result.

While the resulting curve for the GLM measure resembles that of CMC,
the peak is considerably more distinctive. This conforms to our anticipa-
tion since taking the length of image and model lines into account is very
significant here. In contrast to the CMC measure, incidental false matches
are penalised in this method, due to the differing lengths.

The nearest neighbour measure turned out to be not of use. Although linear
and exponential weighting schemes were tried, even taking the length of line
segments into account, no distinctive peak was obtained, which caused its
exclusion from further considerations.

The measure based on the Hausdorff distance performed not as good as the
first two, CMC and GLM, though it behaved in the desired manner. But
its moderate performance does not pay off the longest computation time
consumed among all presented measures and is subsequently disregarded.



So far, we have shown how our own similarity measures perform. Next, we
demonstrate how the commonly used error functions behave in this frame-
work. The function esp 1 performed very well in our setting. The resulting
curve closely resembles that of the GLM measure. Both methods exhibit
a unique, distinctive peak at the correct location of zero pose deviation.
Note that the length of line segments has a direct effect on the similarity
value returned by measure GLM, while this attribute implicitly contributes
to the measure eap 1, though both linearly. Surprisingly, the other two error
functions esp 2 and e3p performed poorly.

Toward more realistic conditions

In order to learn the effect of distorted and noisy image data on our sensor
model, we conducted another set of experiments described here. To this end,
we applied the following error model to all synthetically generated image
features before they are matched against model features. Each original line
is duplicated with a small probability (p =0.2) and shifted in space. Any
line longer than 30 pixel is split with probability p=0.3. A small distortion
is applied to the parameters (p, 6,1) of each line according to a random, zero-
mean Gaussian. Furthermore, features not present in the model and noise
are simulated by adding random lines uniformly distributed in the image.
Hereof, the orientation is drawn according to the current distribution of
angles to yield fairly ‘typical’ features.

The results obtained in these simulations do not differ significantly from
the first set of experiments. While the maximum similarity value at zero
deviation decreased, the shape and characteristics of all similarity measures
still under consideration remained the same.

Using real images from the hallway

Since the results obtained in the simulations above might be questionable
with respect to real-world conditions, we conducted another set of experi-
ments replacing the synthetic feature measurements by real camera images.

To compare the results for various parameter settings, we gathered images
with a Pioneer 2 robot in the hallway off-line and recorded the line features.
For two different locations in the hallway exemplifying typical views, the
three-dimensional space of the robot poses (x,y, §) was virtually discretized.
After placing the robot manually at each vertex (z,y,0), it performed a full
turn on the spot stepwise recording images. This ensures a maximum accu-
racy of pose coordinates associated with each image. That way, more than
3200 images have been collected from 64 different (z,y) locations. Similarly
to the simulations above, pairs of poses (l¢,[,,) were systematically chosen
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Fig. 3: Performance of GLM on real images from the hallway.

from with the range covered by the measurements. The values computed by
the sensor model referring to the same discretized value of pose deviation
Al were averaged according to the assumption in Equation 2.

The resulting visualisation of the similarity measure over spatial (x and
y combined) and rotational deviations from the correct camera pose for
the CMC measure exhibits a unique peak at approximately zero deviation.
Of course, due to a much smaller number of data samples compared to
the simulations using synthetic data, the shape of the curve is much more
bumpy, but this is in accordance with our expectation.

The result of employing the GLM measure in this setting is shown in Fig-
ure 3. As it reveals a more distinctive peak compared to the curve for the
CMC measure, it demonstrates the increased discrimination between more
and less similar feature maps when taking the lengths of lines into account.

Monte Carlo Localisation using the visual-sensor model

Recalling that our aim is to devise a probabilistic sensor model for a camera
mounted on a mobile robot, we continue with presenting the results for an
application to mobile robot localisation.

The generic interface of the sensor model allows it to be used in the cor-
rection step of Bayesian localisation methods, for example, the standard

10



Fig. 4: Image and projected models during localisation.

version of the Monte Carlo localisation (MCL) algorithm. Since statistical
independence among sensor readings renders one of the underlying assump-
tions of MCL, our hope is to gain improved accuracy and robustness using
the camera instead of or in addition to commonly used distance sensors like
sonars or laser.

In the experiment, the mobile robot equipped with a fixed-mounted CCD
camera had to follow a pre-programmed route in the shape of a double loop
in the corridor. On its way, it had to stop at eight pre-defined positions,
turn to a nearby corner or open view, take an image, turn back and proceed.
Each image capture initiated the so-called correction step of MCL and the
weights of all samples were recomputed according to the visual-sensor model,
yielding the highest density of samples at the potentially correct pose coor-
dinates in the following resampling step. In the prediction step, the whole
sample set is shifted in space according to the robot’s motion model and the
current odometry sensor readings.

Our preliminary results look very promising. During the position tracking
experiments, i.e., the robot was given an estimate of its starting position,
the best hypothesis for the robot’s pose was approximately at the correct
pose most of the time. In this experiment, we have used the CMC measure.
In Figure 4, a typical camera view is shown while the the robots follows the
requested path. The grey-level image depicts the visual input for feature ex-
traction after distortion removal and pre-processing. Also the extracted line
features are displayed. Furthermore, the world model is projected accord-
ing to two poses, the odometry-tracked pose and the estimate computed by
MCL which approximately corresponds to the correct pose, between which
we observe translational and rotational error.

The picture also shows that rotational error has a strong influence on the
degree of coincidental feature pairs. This effect corresponds to the results
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presented above, where the figures exhibit a much higher gradient along the
axis of rotational deviation than along that of translational deviation. The
finding can be explained by the effect of motion on features in the Hough
space. Hence, the strength of our camera sensor model lays at detecting rota-
tional disagreement. This property makes it especially suitable for two-wheel
driven robots like our Pioneer bearing a much higher rotational odometry
error than translational error.

5 Conclusions and Future Work

We have presented a probabilistic visual-sensor model for camera-pose esti-
mation. Its generic design makes it suitable for sensor fusion with distance
measurements perceived from other sensors. We have shown extensive sim-
ulations under ideal and realistic conditions and identified appropriate sim-
ilarity measures. The application of the sensor model in a localisation task
for a mobile robot met our anticipations. Within the paper we highlighted
much scope for improvements.

We are working on suitable techniques to quantitatively evaluate the per-
formance of the devised sensor model in a localisation algorithm for mobile
robots. This will enable us to experiment with cluttered environments and
dynamic objects. Combining the camera sensor model with distance sensor
information using sensor fusion renders the next step toward robust naviga-
tion. Because the number of useful features varies significantly as the robots
traverses an indoor environment, the idea to steer the camera toward richer
views (active vision) offers a promising research path to robust navigation.
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