Exercise 3: Complexity of First-Order Queries

Database Theory
2023-04-25
Maximilian Marx, Markus Krötzsch

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does $c \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = ig\{ \langle I, q
angle \, ig| \, q \; \mathsf{a} \; \mathsf{BQ} \; \mathsf{with} \; I \models q ig\}$$

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \langle I,q \rangle \,\middle|\, q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \langle I,q[\mathbf{x}],\mathbf{c} \rangle \,\middle|\, \mathbf{c} \in \mathit{M}[q](I) \right\}$$

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does $c \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

We restate the problems as decision problems:

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

▶ Note that a BQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- ▶ Note that a BQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.
- ▶ We show that using a TM deciding BQE, we can construct a TM deciding QA, and

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- Note that a BQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.
- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

▶ We restate the problems as decision problems:

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

▶ We show that using a TM deciding BQE, we can construct a TM deciding QA:

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- ▶ We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let M be a TM deciding BQE.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let M be a TM deciding BQE.
- Construct the TM \mathcal{M}' that, on input $\langle \mathcal{I}, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and $\mathbf{c} = \langle c_1, \dots, c_n \rangle$:

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let M be a TM deciding BQE.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and $\mathbf{c} = \langle c_1, \dots, c_n \rangle$:
 - 1. transforms $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ into $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$,

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let M be a TM deciding BQE.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and $\mathbf{c} = \langle c_1, \dots, c_n \rangle$:
 - 1. transforms $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ into $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$,
 - 2. simulates \mathcal{M} on input $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$, and

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- ▶ Let M be a TM deciding BQE.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and $\mathbf{c} = \langle c_1, \dots, c_n \rangle$:
 - 1. transforms $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ into $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$,
 - 2. simulates \mathcal{M} on input $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$, and
 - 3. accepts iff M accepts.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- ▶ Let M be a TM deciding BQE.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and $\mathbf{c} = \langle c_1, \dots, c_n \rangle$:
 - 1. transforms $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ into $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$,
 - 2. simulates \mathcal{M} on input $\langle I, q[x_1/c_1, \dots, x_n/c_n] \rangle$, and
 - accepts iff M accepts.
- ► Then M' decides QA.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- ▶ We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- ▶ Let M be a TM deciding QA.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let M be a TM deciding QA.
- ► Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}] \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$:

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let M be a TM deciding QA.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}] \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$:
 - 1. If n=0, then \mathcal{M}' simulates \mathcal{M} on input $\langle I,q,\langle \rangle \rangle$ and accept iff the simulation accepts.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let M be a TM deciding QA.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}] \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$:
 - 1. If n = 0, then \mathcal{M}' simulates \mathcal{M} on input $\langle \mathcal{I}, q, \langle \rangle \rangle$ and accept iff the simulation accepts.
 - 2. Otherwise, \mathcal{M}' simulates \mathcal{M} on all inputs $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{c} \in \mathbf{adom}(I, q)^n$ and accepts if any simulation accepts.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an *n*-ary query q, a database instance I, and an *n*-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let M be a TM deciding QA.
- Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}] \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$:
 - 1. If n = 0, then \mathcal{M}' simulates \mathcal{M} on input $\langle I, q, \langle \rangle \rangle$ and accept iff the simulation accepts.
 - 2. Otherwise, \mathcal{M}' simulates \mathcal{M} on all inputs $\langle I, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{c} \in \mathbf{adom}(I, q)^n$ and accepts if any simulation accepts.
 - 3. If no simulation accepts, \mathcal{M}' rejects.

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c} , does $\mathbf{c} \in M[q](I)$ hold?

Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

$$\mathsf{BQE} = \left\{ \left\langle I, q \right\rangle \middle| \ q \text{ a BQ with } I \models q \right\} \quad \mathsf{QA} = \left\{ \left\langle I, q[\mathbf{x}], \mathbf{c} \right\rangle \middle| \mathbf{c} \in M[q](I) \right\} \quad \mathsf{QE} = \left\{ \left\langle I, q[\mathbf{x}] \right\rangle \middle| M[q](I) \neq \emptyset \right\}$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let M be a TM deciding QA.
- ► Construct the TM \mathcal{M}' that, on input $\langle I, q[\mathbf{x}] \rangle$ with $\mathbf{x} = \langle x_1, \dots, x_n \rangle$:
 - 1. If n = 0, then \mathcal{M}' simulates \mathcal{M} on input $\langle I, q, \langle \rangle \rangle$ and accept iff the simulation accepts.
 - 2. Otherwise, \mathcal{M}' simulates \mathcal{M} on all inputs $\langle \mathcal{I}, q[\mathbf{x}], \mathbf{c} \rangle$ with $\mathbf{c} \in \mathbf{adom}(\mathcal{I}, q)^n$ and accepts if any simulation accepts.
 - 3. If no simulation accepts, \mathcal{M}' rejects.
- ► Then M' decides QE.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Solution.

▶ We describe a LogSpace transducer M that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $a_i, a_j \in \{a_1, \ldots, a_n\}$, computes $\sigma_{a_i = a_j}(R)$:

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, ..., a_n]$ and some $a_i, a_i \in \{a_1, ..., a_n\}$, computes $\sigma_{a_i = a_i}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- 1. We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1, ..., c_n#.
 - 2. We use three pointers p_r , p_i , and p_j .

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.
 - 2. We use three pointers p_r , p_i , and p_j .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- 1. We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1, ..., c_n#.
 - 2. We use three pointers p_r , p_i , and p_i .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:
 - 3.1 point p_i at the beginning of the *i*-th constant of the row;

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.
 - 2. We use three pointers p_r , p_i , and p_i .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:
 - 3.1 point p_i at the beginning of the *i*-th constant of the row:
 - 3.2 point p_j at the beginning of the *j*-th constant of the row;

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.
 - 2. We use three pointers p_r , p_i , and p_i .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:
 - 3.1 point p_i at the beginning of the *i*-th constant of the row;
 - 3.2 point p_i at the beginning of the *j*-th constant of the row;
 - 3.3 using p_i and p_j compare the two constants.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.
 - 2. We use three pointers p_r , p_i , and p_i .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:
 - 3.1 point p_i at the beginning of the i-th constant of the row;
 - 3.2 point p_i at the beginning of the *j*-th constant of the row;
 - 3.3 using p_i and p_j compare the two constants.
 - 3.4 if the constants are equal, copy the row to the output tape (using p_r); and

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- We describe a LogSPACE transducer M that, given a table R with schema R[a₁,..., a_n] and some a_i, a_i ∈ {a₁,...,a_n}, computes σ_{a_i=a_i}(R):
- We use the unnamed perspective, encoding attributes a_i and a_j as numbers i and j, and storing the table R as a sequence of rows of the form \$c_1,...,c_n#.
 - 2. We use three pointers p_r , p_i , and p_i .
 - 3. Initially, p_r points to the first \$ symbol, and we repeat:
 - 3.1 point p_i at the beginning of the *i*-th constant of the row;
 - 3.2 point p_i at the beginning of the *j*-th constant of the row;
 - 3.3 using p_i and p_i compare the two constants.
 - 3.4 if the constants are equal, copy the row to the output tape (using p_r); and
 - 3.5 point p_r to the next \$, if there is any, otherwise halt.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $a_i, a_i \in \{a_1, \ldots, a_n\}$, computes $\sigma_{a_i = a_i}(R)$.
- ▶ We describe a LogSPACE transducer \mathcal{M} that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $\{a'_1, \ldots, a'_\ell\} \subseteq \{a_1, \ldots, a_n\}$, computes $\pi_{a'_1, \ldots, a'_\ell}(R)$:

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, ..., a_n]$ and some $a_i, a_i \in \{a_1, ..., a_n\}$, computes $\sigma_{a_i = a_i}(R)$.
- ▶ We describe a LogSPACE transducer \mathcal{M} that, given a table \mathcal{R} with schema $\mathcal{R}[a_1,\ldots,a_n]$ and some $\{a'_1,\ldots,a'_\ell\}\subseteq \{a_1,\ldots,a_n\}$, computes $\pi_{a'_1,\ldots,a'_\ell}(\mathcal{R})$:
- ▶ 1. We use the named perspective, encoding the set of attributes $\{a'_1, \ldots, a'_\ell\}$ as $\#a'_1, \ldots, a'_\ell\#$ at the start of the input, and then encoding R as $\$a_1 \mapsto c_n^l, \ldots, a_n \mapsto c_n^l\$$.
 - 2. We point a pointer p_c to the first attribute a'_1 , and, for every row of the input, proceed:

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, ..., a_n]$ and some $a_i, a_i \in \{a_1, ..., a_n\}$, computes $\sigma_{a_i = a_i}(R)$.
- ▶ We describe a LogSPACE transducer \mathcal{M} that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $\{a'_1, \ldots, a'_\ell\} \subseteq \{a_1, \ldots, a_n\}$, computes $\pi_{a'_1, \ldots, a'_\ell}(R)$:
- 1. We use the named perspective, encoding the set of attributes { a'₁,..., a'_ℓ} as #a'₁,..., a'_ℓ# at the start of the input, and then encoding R as \$a₁ → c'₁,..., a_n → c'_n\$.
 - 2. We point a pointer p_c to the first attribute a_1 , and, for every row of the input, proceed:
 - 2.1 write \$ to the output.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, ..., a_n]$ and some $a_i, a_i \in \{a_1, ..., a_n\}$, computes $\sigma_{a_i = a_i}(R)$.
- ▶ We describe a LogSPACE transducer \mathcal{M} that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $\{a'_1, \ldots, a'_\ell\} \subseteq \{a_1, \ldots, a_n\}$, computes $\pi_{a'_1, \ldots, a'_\ell}(R)$:
- 1. We use the named perspective, encoding the set of attributes { a'₁,..., a'_ℓ} as #a'₁,..., a'_ℓ# at the start of the input, and then encoding R as \$a₁ → c'₁,..., a_n ↦ c'_n\$.
 - 2. We point a pointer p_c to the first attribute a_1 , and, for every row of the input, proceed:
 - 2.1 write \$ to the output.
 - 2.2 for every pair $a_j\mapsto c_j^i$, check whether a_j occurs in $\{a_1',\ldots,a_n'\}$ and write $a_j\mapsto c_j^i$ if that is the case.

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement *selection*, and *projection* in logarithmic space.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ We describe a LogSPACE transducer M that, given a table R with schema $R[a_1, ..., a_n]$ and some $a_i, a_i \in \{a_1, ..., a_n\}$, computes $\sigma_{a_i = a_i}(R)$.
- ▶ We describe a LogSPACE transducer \mathcal{M} that, given a table R with schema $R[a_1, \ldots, a_n]$ and some $\{a'_1, \ldots, a'_\ell\} \subseteq \{a_1, \ldots, a_n\}$, computes $\pi_{a'_1, \ldots, a'_\ell}(R)$:
- ▶ 1. We use the named perspective, encoding the set of attributes $\{a'_1, \ldots, a'_\ell\}$ as $\#a'_1, \ldots, a'_\ell\#$ at the start of the input, and then encoding R as $\$a_1 \mapsto c^i_1, \ldots, a_n \mapsto c^i_n\$$.
 - 2. We point a pointer p_c to the first attribute a_1 , and, for every row of the input, proceed:
 - 2.1 write \$ to the output.
 - 2.2 for every pair $a_j \mapsto c_i^j$, check whether a_j occurs in $\{a_1^i, \ldots, a_n^i\}$ and write $a_j \mapsto c_i^j$ if that is the case.
 - 2.3 write \$ to the output.

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_a	$_{1,,a_{\ell} ightarrow b_{1},,b_{\ell}}(R)$	R-S	
	$R \cup S$	$R\cap S$	

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

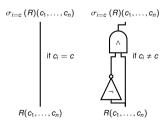
$\sigma_{i=j}(R)$	(j an attribute)
$R \bowtie S$	
R-S	
$R\cap S$	
	R ⋈ S R − S

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_{a}	$a_1,,a_\ell o b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:



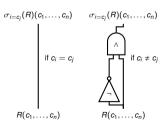
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R \bowtie S$	
δ_a	$_{1,,a_{\ell} ightarrow b_{1},,b_{\ell}}(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=i}(R)$$
 analogous.



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

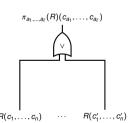
$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_{a}	$a_1,,a_\ell o b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=i}(R)$$
 analogous.

$$\pi_{a_1,\ldots,a_\ell}(R)$$
 for all tuples $\langle c_1,\ldots,c_n\rangle,\ldots,\langle c'_1,\ldots,c'_n\rangle$ in R with $c_{a_1}=c'_{a_1},\ldots,c_{a_\ell}=c'_{a_\ell}$, we add the circuit:



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_{s}	$a_1,,a_\ell o b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

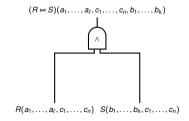
Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=i}(R)$$
 analogous.

$$\pi_{a_1,\dots,a_\ell}(R)$$
 for all tuples $\langle c_1,\dots,c_n\rangle,\dots,\langle c_1',\dots,c_n'\rangle$ in R with $c_{a_1}=c_{a_2}',\dots,c_{a_\ell}=c_{a_\ell}'$, we add the circuit:

 $R \bowtie S$ for each tuple $\langle a_1, \dots, a_\ell, c_1, \dots, c_n \rangle$ in R and each tuple $\langle b_1, \dots, b_k, c_1, \dots, c_n \rangle$ in S, we add the circuit:



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$ (c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
$\delta_{a_1,,a_\ell o b_1,,b_\ell}(R)$	R-S	
$R \cup S$	$R\cap S$	

Solution.

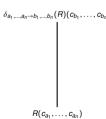
 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=i}(R)$$
 analogous.

$$\pi_{a_1,\ldots,a_\ell}(R)$$
 for all tuples $\langle c_1,\ldots,c_n\rangle,\ldots,\langle c'_1,\ldots,c'_n\rangle$ in R with $c_{a_1}=c'_{a_2},\ldots,c_{a_\ell}=c'_{a_\ell}$, we add the circuit:

 $R \bowtie S$ for each tuple $\langle a_1, \dots, a_\ell, c_1, \dots, c_n \rangle$ in R and each tuple $\langle b_1, \dots, b_k, c_1, \dots, c_n \rangle$ in S, we add the circuit:

 $\delta_{a_1,\dots,a_n\to b_1,\dots,b_n}(R)$ for each tuple $\langle c_{a_1},\dots,c_{a_n}\rangle$ in R, we add the circuit:



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_{ϵ}	$a_1,,a_\ell o b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

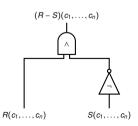
$$\sigma_{i=i}(R)$$
 analogous.

$$\pi_{a_1,\ldots,a_\ell}(R)$$
 for all tuples $\langle c_1,\ldots,c_n\rangle,\ldots,\langle c'_1,\ldots,c'_n\rangle$ in R with $c_{a_1}=c'_{a_2},\ldots,c_{a_\ell}=c'_{a_\ell}$, we add the circuit:

 $R \bowtie S$ for each tuple $\langle a_1, \dots, a_\ell, c_1, \dots, c_n \rangle$ in R and each tuple $\langle b_1, \dots, b_k, c_1, \dots, c_n \rangle$ in S, we add the circuit:

 $\delta_{a_1,\dots a_n\to b_1,\dots b_n}(R)$ for each tuple $\langle c_{a_1},\dots,c_{a_n}\rangle$ in R, we add the circuit:

R-S for each tuple $\langle c_1,\ldots,c_n\rangle$ in R, we add the circuit:



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R\bowtie S$	
δ_{ϵ}	$a_1,,a_\ell ightarrow b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=i}(R)$$
 analogous.

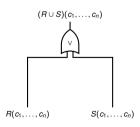
$$\pi_{a_1,\ldots,a_\ell}(R)$$
 for all tuples $\langle c_1,\ldots,c_n\rangle,\ldots,\langle c'_1,\ldots,c'_n\rangle$ in R with $c_{a_1}=c'_{a_2},\ldots,c_{a_\ell}=c'_{a_\ell}$, we add the circuit:

 $R \bowtie S$ for each tuple $\langle a_1, \dots, a_\ell, c_1, \dots, c_n \rangle$ in R and each tuple $\langle b_1, \dots, b_k, c_1, \dots, c_n \rangle$ in S, we add the circuit:

 $\delta_{a_1,\dots a_n\to b_1,\dots,b_n}(R)$ for each tuple $\langle c_{a_1},\dots,c_{a_n}\rangle$ in R, we add the circuit:

$$R-S$$
 for each tuple $\langle c_1,\ldots,c_n\rangle$ in R , we add the circuit:

 $R \cup S$ for each tuple $\langle c_1, \dots, c_n \rangle$ in R, we add the circuit:



Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$\sigma_{i=c}(R)$	(c a constant)	$\sigma_{i=j}(R)$	(j an attribute)
	$\pi_{a_1,,a_\ell}(R)$	$R \bowtie S$	
δ_{s}	$a_1,,a_\ell o b_1,,b_\ell(R)$	R-S	
	$R \cup S$	$R\cap S$	

Solution.

 $\sigma_{i=c}(R)$ for each tuple $\langle c_1, \ldots, c_n \rangle$ in R, we add one of these two circuits:

$$\sigma_{i=j}(R)$$
 analogous.

$$\pi_{a_1,\ldots,a_\ell}(R)$$
 for all tuples $\langle c_1,\ldots,c_n\rangle,\ldots,\langle c'_1,\ldots,c'_n\rangle$ in R with $c_{a_1}=c'_{a_1},\ldots,c_{a_\ell}=c'_{a_\ell}$, we add the circuit:

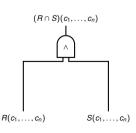
 $R \bowtie S$ for each tuple $\langle a_1, \dots, a_\ell, c_1, \dots, c_n \rangle$ in R and each tuple $\langle b_1, \dots, b_k, c_1, \dots, c_n \rangle$ in S, we add the circuit:

 $\delta_{a_1,\dots a_n \to b_1,\dots,b_n}(R)$ for each tuple $\langle c_{a_1},\dots,c_{a_n} \rangle$ in R, we add the circuit:

$$R-S$$
 for each tuple $\langle c_1,\ldots,c_n\rangle$ in R , we add the circuit:

 $R \cup S$ for each tuple $\langle c_1, \dots, c_n \rangle$ in R, we add the circuit:

$$R \cap S$$
 analogous to $R \bowtie S$.



Exercise. Decide whether the following statements are true or false:

- 1. The combined complexity of a query language is at least as high as its data complexity.
- 2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Exercise. Decide whether the following statements are true or false:

- 1. The combined complexity of a query language is at least as high as its data complexity.
- 2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BQ q and database instance I does $I \models q$ hold?

Data complexity given database instance I, does $I \models q$ hold for a *fixed* BQ q?

Query complexity given BQ q, does $I \models q$ hold for a *fixed* database instance I?

Exercise. Decide whether the following statements are true or false:

- 1. The combined complexity of a query language is at least as high as its data complexity.
- 2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BQ q and database instance I does $I \models q$ hold?

Data complexity given database instance I, does $I \models q$ hold for a *fixed* BQ q?

Query complexity given BQ q, does $I \models q$ hold for a *fixed* database instance I?

Exercise. Decide whether the following statements are true or false:

- 1. The combined complexity of a query language is at least as high as its data complexity.
- 2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BQ q and database instance I does $I \models q$ hold?

Data complexity given database instance I, does $I \models q$ hold for a *fixed* BQ q?

Query complexity given BQ q, does $I \models q$ hold for a *fixed* database instance I?

Solution.

1. True (why?).

Exercise. Decide whether the following statements are true or false:

- 1. The combined complexity of a query language is at least as high as its data complexity.
- 2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BQ q and database instance I does $I \models q$ hold?

Data complexity given database instance I, does $I \models q$ hold for a *fixed* BQ q?

Query complexity given BQ q, does $I \models q$ hold for a *fixed* database instance I?

- 1. True (why?).
- 2. False: Consider $L = \{q\}$ with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and \mathcal{J} with $I \models q$ and $\mathcal{J} \not\models q$. Then the query complexity is constant, yet the data complexity of L is still in AC^0 .

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

Solution.

▶ Let $f, g : \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ► a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g : \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ightharpoonup We show that $f \circ g$ is also $\operatorname{LogSpace}$ computable by constructing a $\operatorname{LogSpace}$ transducer $\mathcal M$ computing $f \circ g$:

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer M computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_g to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- ► a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_a to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_{a} that computes the k-th symbol of g(w):

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_a to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_{a} that computes the *k*-th symbol of g(w):
 - 2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size O(log n)
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g : \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_g to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_a that computes the k-th symbol of g(w):
 - 2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).
 - 2.2 On input k#w, \mathcal{M}'_g computes the k-th symbol of g(w).

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ▶ a read/write working tape of size O(log n)
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_a to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_a that computes the k-th symbol of g(w):
 - 2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).
 - 2.2 On input k # w, \mathcal{M}'_q computes the k-th symbol of g(w).
 - 3. Then $\mathcal M$ computes $f\circ g$ on input w by simulating $\mathcal M_f$.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size O(log n)
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_a to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_a that computes the k-th symbol of g(w):
 - 2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).
 - 2.2 On input k#w, \mathcal{M}'_g computes the k-th symbol of g(w).
 - 3. Then \mathcal{M} computes $f \circ g$ on input w by simulating \mathcal{M}_f .
 - 4. Each time the simulation of M_l tries to read the k-th symbol of g(w), we simulate M'_g , reading w from the input tape and k from the working tape, respectively, storing the result in a single cell of the working tape.

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- ightharpoonup a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^* \to \Sigma^*$.

- ▶ Let $f, g: \Sigma^* \to \Sigma^*$ be LogSpace-computable functions.
- ▶ Let \mathcal{M}_f and \mathcal{M}_g be LogSpace transducers computing f and g, respectively.
- ▶ We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:
 - 1. We can't just simulate \mathcal{M}_a to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since $L \subseteq P$).
 - 2. But we can construct \mathcal{M}'_a that computes the k-th symbol of g(w):
 - 2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).
 - 2.2 On input k # w, \mathcal{M}'_q computes the k-th symbol of g(w).
 - 3. Then \mathcal{M} computes $f \circ g$ on input w by simulating \mathcal{M}_f .
 - 4. Each time the simulation of M_t tries to read the k-th symbol of g(w), we simulate M_g , reading w from the input tape and k from the working tape, respectively, storing the result in a single cell of the working tape.
 - 5. Both simulations can be performed in logarithmic space, and thus, ${\cal M}$ runs in logarithmic space.

Exercise. Is the question "P = NP?" decidable?

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem $\mathcal L$ if it halts on all inputs and accepts exactly the words in $\mathcal L$.

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem $\mathcal L$ if it halts on all inputs and accepts exactly the words in $\mathcal L$.

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L} .

Solution.

▶ Let \mathcal{L} be the decision problem for "P = NP?", i.e., let $\mathcal{L} = \Sigma^*$ if P = NP, and let $\mathcal{L} = \emptyset$ otherwise.

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L} .

- Let \mathcal{L} be the decision problem for "P = NP?", i.e., let $\mathcal{L} = \Sigma^*$ if P = NP, and let $\mathcal{L} = \emptyset$ otherwise.
- ▶ Let \mathcal{M}_A and \mathcal{M}_B be two terminating TMs that accept and reject every input, respectively.

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L} .

- Let \mathcal{L} be the decision problem for "P = NP?", i.e., let $\mathcal{L} = \Sigma^*$ if P = NP, and let $\mathcal{L} = \emptyset$ otherwise.
- Let \mathcal{M}_A and \mathcal{M}_R be two terminating TMs that accept and reject every input, respectively.
- One of these two TMs decides £.

Exercise. Is the question "P = NP?" decidable?

Definition (Lecture 3, slide 10)

A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L} .

- Let \mathcal{L} be the decision problem for "P = NP?", i.e., let $\mathcal{L} = \Sigma^*$ if P = NP, and let $\mathcal{L} = \emptyset$ otherwise.
- Let \mathcal{M}_A and \mathcal{M}_B be two terminating TMs that accept and reject every input, respectively.
- ▶ One of these two TMs decides £.
- ▶ Thus, \mathcal{L} is decidable, and hence, so is "P = NP?".