
A New Context-Basedθ-Subsumption Algorithm

Olga Skvortsova

International Center for Computational Logic, Technische Universität Dresden,
skvortsova@iccl.tu-dresden.de

1 Introduction

θ-subsumption is a decidable but incomplete approximation of logical implication, im-
portant to inductive logic programming, theorem proving, and most surprisingly, to AI
planning. This work is motivated by the area of AI planning which currently lacks the
efficient symbolic inference algorithms. These algorithms perform computations of suc-
cessor and predecessor states of a given state wrt. a given action, where both states and
actions are first-order entities [1]. In AI planning, theθ-subsumption problem for states
Z1 andZ2 is a problem of whether there exists a substitutionθ such thatZ1θ ⊆ Z2,
where statesZ1 andZ2 are sets of literals.θ-subsumption is used as a consequence
relation for the decision of whether a state covers the preconditions of an action as well
as a redundancy test for detecting which states can be removed from the state space.

In general,θ-subsumption isNP-complete [2]. One approach to cope with theNP-
completeness ofθ-subsumption is deterministic subsumption. A clause is said to be
determinate if there is an ordering of literals, such that in each step there is a literal
which has exactly one match that is consistent with the previously matched literals [3].
However, in practice, there may be only few literals, or none at all, that can be matched
deterministically. Recently, in [3], it was developed another approach, which we refer
to as literal context, LITCON, for short, to cope with the complexity ofθ-subsumption.
The authors propose to reduce the number of matching candidates for each literal by
using the contextual information. The method is based on the idea that literals may only
be matched to those literals that possess the same relations up to an arbitrary depth in a
clause. As result, a certain superset of determinate clauses can be tested for subsumption
in polynomial time.

Unfortunately, as it was shown in [4], LITCON does not scale very well up to large
depth. Because in some planning problems, the size of state descriptions can be rel-
atively large, it might be necessary to compute the contextual information for large
values of the depth parameter. Therefore, we are strongly interested in a technique that
scales better than LITCON. In this paper, we present an approach, referred to as object
context, OBJCON, for short, which demonstrates better computational behaviour than
L ITCON. Based on the idea of OBJCON, we develop a newθ-subsumption algorithm
and implement it in our planning system FLUCAP [1].

2 Object Context

In general, a literall in a stateZ1 can be matched with several literals in a stateZ2, that
are referred to as matching candidates ofl. L ITCON is based on the idea that literals in



Z1 can be only matched to those literals inZ2, the context of which include the context
of the literals inZ1 [3]. The context is given by occurrences of identical objects (vari-
ablesVars(Z) and constantsConst(Z)) or chains of such occurrences and is defined up
to some fixed depth. In effect, matching candidates that do not meet the above context
condition can be effortlessly pruned. In most cases, such pruning results in deterministic
subsumption, thereby considerably extending the tractable class of states.

The computation of the context itself is dramatically affected by the depth parame-
ter: The larger the depth is, the longer the chains of objects’ occurrences are, and thus,
more effort should be devoted to build them. Unfortunately, LITCON does not scale very
well up to large depth [4]. For example, consider a stateZ = {on(X, Y ), on(Y, table),
r(X), b(Y ), h(X), h(Y ), w(X), d(Y ), f(X)} that can be informally read as: A block
X is on the blockY which is on the table, and both blocks enjoy various properties,
like e.g., color (redr, blue b) or weight (heavyh). Z contains nine literals and only
three objects. In LITCON, the context should be computed for each of nine literals in
order to keep track of all occurrences of identical objects. What if we were to compute
the context for each object instead? In our running example, we would need to perform
computations only three times, in this case.

In this paper, we propose a more efficient approach, referred to as OBJCON, for
computing the contextual information and incorporate it into a new context-basedθ-
subsumption algorithm. More formally, we build the object occurrence graphGZ =
(V,E, `) for a stateZ, where vertices are objects ofZ, denoted asObj(Z) and edges
E = {(o1, π1, l, π2, o2)|l(t1, . . . , tn) ∈ Z ∧ o1 = tπ1 ∧ o2 = tπ2} with o1, o2 ∈
Obj(Z), l(t1, . . . , tn) being a literal andπ1, π2 being positions of objectso1, o2 in l.
The labeling functioǹ(o) = {l|l(o) ∈ Z} associates each objecto with a unary literal
namel this object belongs to. The object occurrence graph for the stateZ from our
running example will contain three verticesX, Y and table with labels{r, h, w, f},
{b, h, d} and{}, resp., and two edges(X, 1, on, 2, Y ) and(Y, 1, on, 2, table).

The object context OBJCON(o, Z, d) of depthd > 0 is defined for each objecto

of a stateZ as a chain of labels:̀(o)
π1
1 ·f1·π1

2−→ `(o1)
π2
1 ·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ `(od) ∈

OBJCON(o, Z, d) iff o
π1
1 ·f1·π1

2−→ o1
π2
1 ·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ od is a path inGZ of lengthd
starting ato. In our running example, OBJCON(X, Z, 1) of depth 1 of the variableX in

Z contains one chain{{r, h, w, f} 1·on·2−→ {b, h, d}}.
Following the ideas of [3], we define the embedding of object contexts for statesZ1

andZ2, which serves as a pruning condition for reducing the space of matching candi-
dates forZ1 andZ2. Briefly, letOC1 =OBJCON(o1, Z1, d), OC2 =OBJCON(o2, Z2, d).
ThenOC1 is embedded inOC2, writtenOC1 4 OC2, iff for every chain of labels in
OC1 there exists a chain of labels inOC2 which preserves the positions of objects in
literals and the labels for each object inOC1 are included in the respective labels in
OC2 up to the depthd. Finally, if OBJCON(X, Z1, d) 64 OBJCON(o, Z2, d) then there
exists noθ such thatZ1µθ ⊆ Z2, whereµ = {X 7→ o}. In other words, a variableX in
Z1 cannot be matched against an objecto in Z2 within a globally consistent match, if
the variable’s context cannot be embedded in the object’s context. Therefore, the substi-
tutions that meet the above condition can be effortlessly pruned from the search space.
Due to the lack of space, further formal results are omitted here.



algorithm BW100BW125BW150BW175BW200BW250BW300BW350BW400BW450

ALLTHETA

d=2 2085 2951 4745 3921 – – – – – –
d=3 365 611 1285 834 1815 3513 – – – –
d=4 117 162 320 172 597 1264 5791 – – –
d=5 589 713 1015 1050 3421 5182 2783 3914 – –

FLUCAP
d=2 54 490 – – – – – – – –
d=3 13 15 5391 3718 – – – – – –
d=4 4 83 1768 972 4236 5017 – – – –
d=5 3 5 362 11 981 1249 3769 5351 – –
d=6 3 6 19 10 28 713 1115 2018 2517 –
d=7 5 7 22 14 37 59 553 942 102 –
d=8 12 15 40 25 78 115 94 71 163 –
d=9 35 40 99 69 255 395 145 186 605 618
d=10 148 124 365 254 1053 – 516 770 3445 4529

Table 1.Comparison between ALLTHETA and FLUCAP. Average timing results in milliseconds
for one subsumption test for several instancesBWXof Blocksworld problems, whereX stands for
the number of blocks in a problem. A dash means that the algorithm did not finish within 100
minutes. The best results are marked in bold.

Table 1 depicts the comparison timing results between the LITCON-based subsump-
tion reasoner, referred to as ALLTHETA, and its OBJCON-based opponent, referred to
as FLUCAP. The results were obtained using RedHat Linux running on a 2.4GHz Pen-
tium IV machine with 2GB of RAM. We demonstrate the advantages of exploiting the
object-based context information on problems that stem from the extended version of
the classical Blocksworld planning scenario. For each problem, there have been done
1000 subsumption tests. The time limit of 100 minutes has been allocated. The results
show that FLUCAP scales better than ALLTHETA on large problems. E.g., ALLTHETA

could solve problems of size up to 350 blocks only. Whereas FLUCAP easily scales fur-
ther. We believe that it happens because FLUCAP is less sensitive to the growth of the
depth parameter. Under the condition that the number of objects in a state is strictly less
than the number of literals and other parameters are fixed, the amount of object-based
context information is strictly less than the amount of the literal-based context informa-
tion. Moreover, FLUCAP requires two orders of magnitude less time than ALLTHETA.

References

1. Hölldobler, S., Karabaev, E., Skvortsova, O.: FLUCAP: A heuristic search planner for first-
order MDPs. JAIR (2006) To appear.

2. Kapur, D., Narendran, P.: NP-completeness of the set unification and matching problems. In:
CADE. (1986)

3. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficientθ-subsumption based on graph algorithms.
In: ILP Workshop. (1996)

4. Karabaev, E., Ramḿe, G., Skvortsova, O.: Efficient symbolic reasoning for first-order MDPs.
In: ECAI’2006 Workshop. (2006)


