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Ouitline

Goal

Show some example where either rules or related ideas were crucial to achieve the
state of the art

e PLP
e Data integration

e Stream reasoning

Take-home message
1. Rules can be used also in scenarios where not everything is definite
2. A declarative approach is (often) intuitive and decreases the development time

3. Developing robust tools is fundamental
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1" Scenario: Probabilistic Logic Programming
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PLP

How can we perform logic-based reasoning in an uncertain domain?

PLP

Probabilistic Logic Programming (PLP): Formalisms to combine logic and probability for
reasoning in uncertain domains.

Basic idea: Reason over facts which may be true with a certain probability
State of the art

Several PLP formalisms exist. ProbLog (Raedt, Kimmig, and Toivonen 2007) is one of
the most popular ones
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ProbLog

Definition
A ProbLog program ? is a triple (R, ¥, ) where R is set of (function-free) rules, ¥ is a
set of facts and 7 : ¥ — [0, 1] is the function that labels facts with probabilities.

Key problem
Given # and query ¢ as input, what is Pr(q) (the probability of ¢)?

General Approach

It has been shown that computing Pr(g) can be expressed using Weighted Model
Counting (WMC) over weighted logical formulas (Vlasselaer et al. 2016)
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The Grounding Problem

ProbLog?2, a state-of-the-art engine, proceeds as follows:
1. Find relevant ground program for ¢ with backward chaining
2. Execute a custom implementation of fixpoint operator Tp:

— Tp proceeds bottom-up, akin to chase procedures
— Tp incrementally computes, for each inferred fact f, a propositional formula Ay
which “remembers” all the possible ways f can be inferred

3. Atfter Ty has finished, it computes WMC for 4,

Problem
Grounding can be a major performance bottleneck with large knowledge bases
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Datalog to the rescue

Some ideas developed for Datalog are useful here (Tsamoura, Gutiérrez-Basulto, and
Kimmig 2020)
First idea

Don’t ground # with backward chaining. Rewrite it with magic sets (Bancilhon et al.
1985)

Second idea

Apply semi-naive evaluation (Abiteboul, Hull, and Vianu 1995) while computing T to
reduce the number of duplicates
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Magic sets

Consider database 7 and program P. Our goal is to answer query Q

ldea
The main idea is to rewrite P into P’ where additional magic relations restrict the
derivations to facts relevant for answering Q
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Magic sets

Consider database I and program P. Our goal is to answer query Q

Example 1
Consider the rules below and assume we want to answer Q = lives(linda, X)

married(X,Y), lives(X,Z) — lives(Y,Z) (r1)
married(X,Y) — married(Y ,X) (r2)

The rewriting procedure produces the program

mgc(Y), married(X,Y), lives(X,Z) — lives(Y,Z) (r3)
mgci(X) — mgea(X) (r4)
mgco(Y), married(X,Y) — married(Y, X) (rs)

Then, we can reason on I U {mgc(linda)}
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Semi naive evaluation

Semi naive evaluation is a well-known technique to avoid the recomputation of duplicate
derivation during the materialization

Naive Evaluation
Input: Facts 7, program P
1 while true do

Semi Naive Evaluation
Input: Facts 7, program P

1 A=1;
2 J=1I 2 while true do
3 forre Pdo 3 J =1,
4 LetrbeB— H 4 forre Pdo
5 J:=JU{Ho | Bo CI}; 5 Letrbe B — H;
6 if J =1 then returnJ ; 6 J=JU{Ho|Bo CIANBoNA#
0};
7 if J = I then return J;
8 A=J\I,
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New approach

Tsamoura et al. (2020) proposed a new procedure:

. Use Magic Set to

obtain a non-ground program

2. Exeeuteacustom-implementation-eHixpeint-eperatorI» Offload the computation

to a chase engine (VLog):

— Leverage semi-naive evaluation
— Introduce some rules to compute formulas (called A—transformation)

3. After Ty has finished, compute WMC for 4,
Impact

The new procedure removes the need for grounding, which was a performance
bottleneck
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Performance improvement

Some key results from (Tsamoura, Gutiérrez-Basulto, and Kimmig 2020)

e The runtime of query answering was two order of magnitude and 25% faster than
ProbLog?2 in the best and worst cases, respectively

e VLog enabled the computation on much larger DBs than what was possible before

Lesson learned

Well-known ideas developed for rule-based query answering can be re-used as-is for
other problems as well
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274 Scenario: Entity Resolution
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Problem

Scientific advancement requires an extensive analysis of prior knowledge in the
literature, but this is time consuming

Al can help!
Long-term vision: Develop an accurate and large-scale KB of scientific knowledge
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A KB of Scientific Knowledge

valuable experimental knowledge

Type Example Words
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Advantages
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Potential use cases:

e Retrieve experimental results with
entity-based search

e Exploit co-authorship networks

e |dentify potential inconsistencies
across papers
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Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He,
and Urbani 2020)
Key features:

e Heuristic-based methods to recognize and extract tables from PDFs

e Machine learning models to predict the type of tables and columns

e Weak supervision with SPARQL queries to counter the problem of lack of training
data

e (Focus of today) logic-based reasoning for entity resolution
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Tab2Know: General pipeline

From (Kruit, He, and Urbani 2020)

TABLE L. RANKING OF SUBMITTED METHODS TO TASK 1.1
Method Name Recall (%) Precision (%)  F-score’ Method Name Recall (%) | Precision (%) |  F-score
'USTB_TexStar 83 87.74 82. 93.83
‘TH-TextLoc 75.85 86.82 80.96 75! 32
I2R_NUS_FAR 7142 84.17 77.27 12R_NUS_FAR 71 7
Baseline 21 8494 7627 Faselne T
Text Detection [15], [16] 7318 78.62 75.81 Text Detection [15], [16]
I2R_NUS 67.52 85.19 75.34 " 12R_NUS
BDTD_CASIA 67.05 7898 7253 Table BDID _CASIA
OTCYMIST [7] 7485 67.69 7109 GTCYMIST (7]
Inkam 5221 58.12 55.00 Inkam 5 55.(
Input: PDF Figure ) \Q L
Naive KB
APIs Ontology Table type classification Header detection
N ]
Y semantic schotar m o Method Name Recall (%) Precision (%) F-score
™ ™ USTB_Texstar 23 9m 8774
=] m [] TH-Textloc 75.85 86.82 80.96
L+ i ne  wn
N Baseline 621 49 7627
SPARQL Queries ) Text Detection [15}(16] 7318 7862 7581
12R_NUS 67.52 85.19 7534
EPARgL g”e"/ 2 - oTCYMIST [7) 785 6769 71.09
PARQL Query 3 Lo N Inkam 5221 5812 55.00
L= | 2, Table Interpretation
Q Column type classification
Rules ~
Rule 1 &
Rule 2 [:> ViLog [:>
Rule 3 =

Assets
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Entity Resolution

Entity resolution is the task of recognizing and linking entities across different tables.
It is a well-known task in database literature (96+ papers between 2009-2014,
see (Papadakis, loannou, and Palpanas 2020))

e Magellan (Konda et al. 2016)

e Deep Learning (Mudgal et al. 2018)

e Crowd-sourcing (Das et al. 2017)

e Embeddings (Cappuzzo, Papotti, and Thirumuruganathan 2020)
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A declarative approach

Tab2Know’s approach: Use (existential) rules!

TGDs EGDs
Used to create new entities from the cells Used to infer equality among the entities
Output

After reasoning is completed, entities are used to populate a KB
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A declarative approach: TGDs

Two TGDs are used:

type(X, Column) — Y .colEntity(X,Y) (r1)
type(X, Cell) — Y .cellEntity(X, Y) (r2)

e Two types of entities are introduced. One describes columns, the other describes
cells;

e Every cell is assigned to a entity; it is likely that the same entity is represented with
multiple labeled nulls!
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A declarative approach: EGDs

EGDs determines whether multiple cells refer to the same entity

ceNoTypLabel(X, L) A ceNoTypLabel(Y,L) - X =~ Y (r3)
eNoTypLabel(X, C, L), eNoTypLabel(Y,C,L) > X = Y (r4)
eTableLabel(X, T, L), eTableLabel(Y,T,L) > X = Y (rs)

eTypLabel(X, S, L), eTypLabel(Y,S,M),STR_EQ(L,M) > X =Y (re)
eAuthLabel(X, A, L), eAuthLabel(Y ,A,M),STR_EQ(L,M) > X~ Y (r7)

e Special built-in predicates (STR_EQ) encode string similarities
e Other predicates include authors of the paper
e Program can be easily extended with other rules — rapid KB construction
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Preliminary results

Input

Approach was tested on a collection with 142k CS open-access papers and 73k tables
(IUCAI, ECAI, etc.)

Key results

Table interpretation superior than previous state-of-the-art approach (Yu et al.
2020)

EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%

Every rule contributed by linking some entities

On a sample of 541 entities, average precision was 97%
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Lessons learned

—_

. A declarative approach is ideal for non-CS domain experts
Rules can be easily changed or adapted depending on the performance

. VLog was scalable enough to perform rapid prototyping with large KGs

A W N

. Support to built-in predicates was crucial
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37 Scenario: Stream Reasoning

A few of slides are a modified version of Harald Beck’s ISWC17 presentation, used with permission
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Motivation

Stream reasoning: add reasoning on top of stream processing. Central question: “What
is true now?” (Margara et al. 2014)

e E.g. public transport: What are the current expected arrival times?

e |s there currently a good connection between two lines?

Semantic Web: RDF Stream Processing - SPARQL extensions: C-SPARQL, CQELS,
SPARQLstream, - - - Typical: Window operators select snapshots of recent data

e Window examples: [RANGE 3m], [TRIPLES 2]
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Goals & Challenges

e Goal: expressive stream reasoning solutions

(1) based on model-based semantics
(2) high performance

e Central challenge: throughput vs. expressiveness
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LARS: A Logic for Analytic Reasoning over Streams

LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on
streams

a a b,c a
0 1 2 3 4

e Stream S = (T, v)

— Timeline T closed interval in N, ¢ e T time point
— Evaluation function v : T — 27 (sets of atoms)

e Window function w yields window w(S, ) C S

e Formulas ¢: evaluated on S at ¢

v holdsin Satriffeholds... | Ex:S,4Ey ?

B | inw(S, ) att
O¢ | at some time point# € T Boa v

O¢ | atalltime points ' € T B’0a x
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Plain LARS

Observations
e Many practical problems do not need a multiple model semantics
e Time-based and tuple-based windows often suffice
e Sliding windows can be exploited for incremental reasoning

Plain LARS (Bazoobandi, Beck, and Urbani 2017)

Focus on positive LARS programs where for each rule  «@ « By,...,8, we have:

e head a: atomaor @, a
e body elements: B; i=a| @,a |8'@,a|B'Ca| B 0a

Consider non-ground programs, using substitutions due to available ground atoms, as
usual
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From LARS to Datalog

Observation
LARS rules can be rewritten into Datalog rules
e How do we represent time?
— Increase arity of the relations, e.g., P(X) —» P(X,T)
e How can we translate LARS rules?

- @gP(X) as P(X, S)
- B2OP(X) — Q(X) as P(X, T) —» O(X) and P(X, T — 1) — Q(X)

Semi-naive evaluation (SNE)

One key novelty of (Bazoobandi, Beck, and Urbani 2017) is to show how to replicate
SNE in a stream
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From LARS to Datalog

e For formula ¢ = @,B; inany rule @ < By,...,B,, consider annotated ground
formulas o, where

— @o is the ground instance of ¢ due to substitution o
— [e, h] is an annotation stating that ¢o holds from consideration time ¢ to
horizon time

e Horizon time can be extended in the future, e.g., at time point ¢, B3>Op(a) can be
annotated as &> Op(a),r+3]

e When computing substitution o for instantiating rule By A B, A ...B, — H at time
point ¢, at least one B;o ., has ¢ = t, i.e., has been derived at the current time point
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Laser: Implementation & Evaluation

Evaluation: Time per triple
e Compare to C-SPARQL, CQELS, and Ticker

e Micro benchmarks to test (1) g(A, B) « &"Op(A, B) (resp. O); elementary data join; multiple
rules; (2) small show case example requiring LARS features.

e Window sizes: 1s to 80s; stream rate: 200 to 800 triples/second

C-SPARQL WCQELS MLaser ™ Ticker W Laser
15
0.7

Time (ms)
P‘rime (ms)
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Lesson learned

e A good idea remains a good idea (even if is old)

e .. but it might need to be properly implemented

To conclude
We have described cases where rules turned out to be very useful

e |n some scenarios, existential quantification was necessary (data integration). In
others, Datalog rules were enough (PLP, stream reasoning)

e Sometimes, the tools could be directly used (data integration). In other cases,
some modifications are required (PLP)

e Finally, we have seen how sometimes ideas rather than technology can make the
difference
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