Foundations of Knowledge Representation Uncertainty Problems

Problem 1. From the probability axioms, we can deduce several further rules for computing probabilities. Consider the following two:

$$R_1 \ P(\neg A) = 1 - P(A).$$

 R_2 P(A) = 0, if A is a contradiction.

Derive these from the Kolmogorov axioms.

Problem 2. Suppose that $W = \{w_1, w_2, w_3\}$. Define m as follows:

$$m(w_1) = 1/4$$

$$m(w_1, w_2) = 1/4$$

$$m(w_2, w_3) = 1/2$$

$$m(U) = 0 \text{ if } U \text{ is not one } \{w_1\}, \{w_1, w_2\}, \text{ or } \{w_2, w_3\}.$$

$$\text{Provide all values for:}$$

$$Bel_m(w_1), Bel_m(w_2), Bel_m(w_3), Bel_m(w_1, w_2),$$

$$Bel_m(w_1, w_3), Bel_m(w_2, w_3), Bel_m(w_1, w_2, w_3)$$
as well as

$$\begin{aligned} Plaus_m(w_1), Plaus_m(w_2), Plaus_m(w_3), Plaus_m(w_1, w_2), \\ Plaus_m(w_1, w_3), \ Plaus_m(w_2, w_3) Plaus_m(w_1, w_2, w_3) \end{aligned}$$

Problem 3. From the lecture (slide 33), recall the following result for combining the masses of two tests:

$$(m_1 \oplus m_2)(\{hep\}) = 0.8$$

 $(m_1 \oplus m_2)(\{hep, cirr\}) = 0.12$
 $(m_1 \oplus m_2)(W) = 0.08$

Illustrate each step of the computation to derive the above result.

Problem 4. In a multi-sensor system, we need to combine evidences from multiple sensors. Assume that we have two sensors and three observable events with W = A, B, C. From the sensors, we get the following pieces of information that indicate the likelihood of observing each event:

$$Sensor_1 \ m_1(A) = 0.95, m_1(B) = 0.05, m_1(C) = 0$$

Sensor₂
$$m_2(A) = 0, m_2(B) = 0.1, m_2(C) = 0.9$$

Do the following:

- (i) Compute $m_1 \oplus m_2(A)$, $m_1 \oplus m_2(B)$, $m_1 \oplus m_2(C)$,
- (ii) Argue whether or not your result poses a problem for the combination rule.

Problem 5. The sorites paradox can be seen as one of the most striking paradoxes for logical reasoning (Hájek and Novák: 2003). Consider this paradox in the following form:

- (1) 10^{100} is a huge number.
- (2) If n is a huge number, then n-1 is also huge.

From this, deduce:

(3) 0 is a huge number.

Do the following: (i) Describe the paradox. (ii) Argue how fuzzy logic could be helpful to resolve the paradox given the following intuition: It seems that (2) is not fully, but only almost true.