

<u>Thomas Feller</u>, Tim Lyon, Piotr Ostropolski-Nalewaja, Sebastian Rudolph Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Finite-Cliquewidth Sets of Existential Rules

Toward a General Criterion for Decidable yet Highly Expressive Querying // ICDT 2023, Ioannina, 29.03.2023

Existential Rules are sentences of first-order logic of a particular shape:

 $\forall x. \mathsf{Person}(x) \to \exists y. \mathsf{Person}(y) \land \mathsf{MotherOf}(y, x)$

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body head

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body head

$$\forall x. \mathsf{Person}(x) \to \exists y. \mathsf{Person}(y) \land \mathsf{MotherOf}(y, x)$$
body
head

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body single-head

Existential Rules are sentences of first-order logic of a particular shape:

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body single-head

A **ruleset** \Re is a finite set of existential rules.

Existential Rules are sentences of first-order logic of a particular shape:

$$\forall x. \text{Person}(x) \rightarrow \exists y. \text{Person}(y) \land \text{MotherOf}(y, x)$$
body single-head

A **ruleset** \Re is a finite set of existential rules.

An **ontology** $(\mathcal{D}, \mathcal{R})$ consists of a database \mathcal{D} and a set of rules \mathcal{R} .

 $\mathfrak U$ is a **universal model** if it maps into any model of the ontology.

 $\mathfrak U$ is a **universal model** if it maps into any model of the ontology.

Problem: Ontology Mediated Query Entailment

Input: Database \mathcal{D} , ruleset \mathcal{R} and a boolean query q.

Question: Does q hold in every model of $(\mathcal{D}, \mathcal{R})$?

 $\mathcal U$ is a **universal model** if it maps into any model of the ontology.

Problem: Ontology Mediated Query Entailment

Input: Database \mathcal{D} , ruleset \mathcal{R} and a boolean query q.

Question: Does q hold in every model of $(\mathfrak{D}, \mathfrak{R})$?

Problem: Undecidable!

 $\mathcal U$ is a **universal model** if it maps into any model of the ontology.

Problem: Ontology Mediated Query Entailment

Input: Database \mathcal{D} , ruleset \mathcal{R} and a boolean query q.

Question: Does q hold in every model of $(\mathfrak{D}, \mathfrak{R})$?

Problem: Undecidable!

Solution: Restricting rulesets.

$$\forall x, y. A(x) \land E(x, y) \rightarrow A(y)$$
 $\forall x. A(x) \rightarrow \exists y. E(x, y)$

$$\forall x, y. A(x) \land E(x, y) \rightarrow A(y) \qquad \forall x. A(x) \rightarrow \exists y. E(x, y)$$

$$\bullet$$

$$A$$

Example: Concept Products, fus but not fts

$$A(x) \wedge B(y) \rightarrow E(x,y)$$

Example: Concept Products, fus but not fts

Example: Concept Products, fus but not fts

Example: Transitivity, neither fus nor fts!

Cliquewidth

Cliquewidth is a width notion based on tree encodings.

Cliquewidth

Cliquewidth is a width notion based on tree encodings.

Those tree encodings are strongly connected to Monadic Second-Order Logic (MSO).

Cliquewidth

Cliquewidth is a width notion based on tree encodings.

Those tree encodings are strongly connected to Monadic Second-Order Logic (MSO).

Established by Courcelle for finite/infinite graphs and finite hypergraphs.

Cliquewidth

Cliquewidth is a width notion based on tree encodings.

Those tree encodings are strongly connected to Monadic Second-Order Logic (MSO).

Established by Courcelle for finite/infinite graphs and finite hypergraphs.

In this talk: Will be introduced by example for finite and infinite instances in the binary and in the higher arity setting.

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

We show that fcs **generalises** fts (with a detour: **Reification**)

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

We show that fcs **generalises** fts (with a detour: **Reification**)

We prove that fcs **subsumes** binary single-head fus

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

This talk!

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

Take a peek into the paper!

We show that fcs **generalises** fts (with a detour: **Reification**)

We prove that fcs **subsumes** binary single-head fus

A finite, binary, and non-optimal example

A finite, binary, and optimal example

A finite, binary, and optimal example

What about the infinite case?

What about the infinite case?

What about the infinite case?

Reminder: Transitivity, neither fus nor fts!

Transitive chain

Reminder: Ontology Mediated Query Entailment

Problem: Ontology Mediated Query Entailment

Input: Database \mathfrak{D} , ruleset \mathfrak{R} and a boolean query q.

Question: Does q hold in every model of $(\mathcal{D}, \mathcal{R})$?

Reminder: Ontology Mediated Query Entailment

Problem: Ontology Mediated Query Entailment

Input: Database \mathfrak{D} , ruleset \mathfrak{R} and a boolean query q.

Question: Does q hold in every model of $(\mathfrak{D}, \mathfrak{R})$?

Generally an undecidable problem.

Reminder: Ontology Mediated Query Entailment

Problem: Ontology Mediated Query Entailment

Input: Database \mathfrak{D} , ruleset \mathfrak{R} and a boolean query q.

Question: Does q hold in every model of $(\mathfrak{D}, \mathfrak{R})$?

Generally an undecidable problem.

Idea: Constrain universal models by demanding finite cliquewidth.

Reminder: Zoo of Decidable Existential Rules

Finite cliquewidth and Monadic Second Order Logic

Instances of finite cliquewidth have a treelike encoding.

Finite cliquewidth and Monadic Second Order Logic

Instances of finite cliquewidth have a treelike encoding.

So through clever use of Rabin's Tree Theorem we get:

Finite cliquewidth and Monadic Second Order Logic

Instances of finite cliquewidth have a treelike encoding.

So through clever use of Rabin's Tree Theorem we get:

Theorem

Determining if a given MSO-formula Φ has a model \mathfrak{I} with cliquewidth $\leq n$ is decidable for a fixed $n \in \mathbb{N}$.

Deciding query entailment

Definition (fcs)

A ruleset \Re is a **finite-cliquewidth set** (or *is fcs*), if for any database \Re there exists a universal model \Re for (\Re) , \Re) of finite cliquewidth.

Deciding query entailment

Definition (fcs)

A ruleset \Re is a **finite-cliquewidth set** (or *is fcs*), if for any database \Re there exists a universal model \Re for (\Re) , \Re) of finite cliquewidth.

Corollary

For arbitrary databases \mathcal{D} , if \mathcal{R} is fcs and q a query expressible in MSO and Datalog, then query entailment is decidable.

Results: Binary single-head fus is fcs

Theorem

Any fus ruleset of single-headed rules over a binary signature is fcs.

Summary

Summary: The higher arity case

Summary: The higher arity case

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

This talk!

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

Take a peek into the paper!

We show that fcs **generalises** fts (with a detour: **Reification**)

We prove that fcs **subsumes** binary single-head fus

We adapt cliquewidth for **infinite** instances in the **higher arity** setting.

This talk!

Based on cliquewidth, we define **fcs** as a class of **decidable** existential rules.

Take a peek into the paper!

We show that fcs **generalises** fts (with a detour: **Reification**)

We prove that fcs **subsumes** binary single-head fus

Thank you for your attention!

