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Abstract. Concept lattices with symmetries may be simplified by “folding”
them along the orbits of their automorphism group. The resulting diagram
is often more intuitive than the full lattice diagram, but well defined annota-
tions are required to make the folded diagram as informative as the original
one. The folding procedure can be extended to formal contexts.
A typical situation where such lattice foldings are useful is when hierarchies
of structures are considered “up to isomorphisms”.

1 Introduction

Much effort has been made to develop techniques for handling large and complex
concept lattices. For lattices built from real-word data, methods allowing for aspects
and views of the lattice are often a good choice. In more mathematical situations, a
different strategy is promising: using symmetry. The lattice of, say, all quasi-orders
on a fixed base set, or the lattice of all subgroups of a given group, are structures
with rich automorphism groups, and it is advisable to use these for simplification.

The basic elements of theory for such investigations do already exist. They were
invented in Monika Zickwolff’s thesis of 1991 [8], and were tailored for applications
in rule exploration, a generalisation of attribute exploration to first order predicate
logic. First algorithmic results were also obtained at that time [5]. Since then, little
progress has been made, presumably because the methods tend to be difficult.

In recent years we have often met situations in which the application of symmetry
techniques would have been appropriate. We see a growing demand for a solid and
intuitive theory. In the present paper, we give an introduction to the basic ideas,
mainly by means of an example. Most of the results presented here are already
contained in Zickwolff’s work, but in a very condensed form. Our aim is to make
them better accessible to the FCA community.

Any lattice or ordered set with automorphisms (in fact, any relational structure)
can be “folded” in such a manner that the orbits of the group become the elements
of a new structure. However, in order not to loose information, this “orbifold” needs
to be carefully annotated, so that the original structure can be reconstructed.

Formal contexts can be folded as well, and it is possible to compute concept
lattice orbifolds from context orbifolds. Such computations require a combination
of lattice and group algorithms and are not easy to handle.

The present paper concentrates on folding orders and lattices. In Section 5 we
sketch a first example of a context orbifold. The details are to be treated in a
subsequent paper.

2 Group annotated ordered sets

Definition 1 (Group annotated ordered set): Let P := (P,≤) be an ordered set
and let G := (G, ◦) be some group. A mapping

λ : P × P → P(G)

is called a G-annotation of P iff



1. λ(a, b) 6= ∅ if and only if a ≤ b in P ,
2. each set λ(a, a), a ∈ P , is a subgroup Ga of G, and
3. λ(a, b) ◦ λ(b, c) ⊆ λ(a, c) for all a ≤ b ≤ c in P .

(P,≤, λ) is then called a G-annotated ordered set. ♦

The following example, though small, seems complicated at first. In the sequel we
shall introduce techniques easing readability. Moreover, it will be shown where the
example comes from.

a b c

d e

f

Fig. 1. A small ordered set

Example 1 Let P := ({a, b, c, d, e, f},≤) be the six-element ordered set depicted
in Figure 1. Let G be the alternating group on the four element set {1, 2, 3, 4}, i.e.,
the group of all even permutations of these elements. Table 1 gives an annotation
map.

Giving an annotation for an ordered set by means of a full table, as it was done in
Table 1, is informative but unpleasant to read. We therefore introduce a simplified
notation based on double cosets of subgroups.

It is immediate from the definition that for each pair a ≤ b in an annotated
ordered set the set λ(a, b) is a union of double cosets of the “stabiliser” subgroups
Ga := λ(a, a) and Gb := λ(b, b), i.e., that

λ(a, a) ◦ λ(a, b) ◦ λ(b, b) = λ(a, b).

Since the double cosets of any subgroup pair partition the group, it suffices to give
a system of representatives of these double cosets. Moreover, since

λ(a, c) ◦ λ(c, b)

also is a union of double cosets, we may simplify further and and define as follows:

Definition 2 Let λ be a G-annotation of an ordered set P . A simplified anno-
tation λ• corresponding to λ gives for every pair a ≤ b in P a set of double coset
representatives of

λ(a, b) \
⋃

a<c<b

λ(a, c) ◦ λ(c, b).

♦



λ(a, a)= {id, (12)(34)}
λ(b, b) = {id, (12)(34)}
λ(c, c) = {id, (234), (243)}
λ(d, d)= {id, (12)(34), (13)(24), (14)(23)}
λ(e, e) = {id}
λ(f, f)= {id, (13)(24)}
λ(a, d)= {(124), (132), (143), (234)}
λ(a, e)= {(132), (143)}
λ(a, f)= {(234), (243), (123), (132), (124), (143)}
λ(b, d) = {id, (12)(34), (13)(24), (14)(23)}
λ(b, e) = {(134), (142)}
λ(b, f)={id, (12)(34), (13)(24), (14)(23), (123), (243)}
λ(c, e) = {(12)(34), (132), (142)}
λ(c, f)= {id, (243), (234), (123), (13)(24), (143)}
λ(d, f)= {id, (12)(34), (13)(24), (14)(23)}
λ(e, f)= {(12)(34), (14)(23), (124), (132)}

Table 1. An A4-annotation of the ordered set in Figure 1.

Note that λ•(a, b) may be empty. As a convention, such pairs will be omitted in our
listings of λ•. Similarly, we shall not list neighbouring pairs a ≺ b for which λ•(a, b)
consists only of the neutral element of G. Following this, Table 1 simplifies to, e.g.,
the data displayed in Table 2.

λ•(a, a)= {id, (12)(34)}
λ•(b, b) = {id, (12)(34)}
λ•(c, c) = {id, (234), (243)}
λ•(d, d)={id, (12)(34), (13)(24), (14)(23)}
λ•(e, e) = {id}
λ•(f, f)= {id, (13)(24)}
λ•(a, d)= {(234)}
λ•(a, e)= {(132)}
λ•(b, e) = {(134)}
λ•(c, e) = {(12)(34)}
λ•(e, f)= {(12)(34), (124)}

Table 2. The simplified annotation to Table 1.

The ordered set in Figure 1 can be interpreted as a set of graphs on four vertices
{1, 2, 3, 4}, ordered by embeddability, see Figure 2. Each connected graph with four
vertices, with the exception of the complete graph, occurs exactly once up to even
isomorphism, which means that each such graph occurs exactly once, except for the
path, which occurs twice. The four-element path has only even automorphisms and
is for this reason listed with two copies.

The small graphs in Figure 2 are all labelled in the manner indicated for the top
element: counterclockwise, starting with the upper right vertex. The annotation
listed in Table 1 can now be read off from this diagram. Then recall that the
group under consideration is the alternating group, acting on these vertices. The
annotation is obtained as follows:

1. For each p ∈ P , the annotation λ(p, p) is simply the automorphism group of
the labelling graph, allowing only permutations from the alternating group, i.e.,
only even permutations.



12

3 4

Fig. 2. The ordered set from Figure 1, labelled by graphs.

2. For p < q in P , the set λ(p, q) consists of all even permutations γ for which γ−1

is an embedding from p into q. (In other words: for which p is a subset of γq.)

Note that the second condition includes the first one if we allow p = q.

In small examples the simplified annotation can be written directly to the di-
agram, in particular when the stabiliser groups λ(p, p) can be read off from the
labelling. This is shown in Figure 3.

On the example of the pair c ≺ e we explain how to read the diagram in Figure 3:

– Point c is labelled by the graph , point e by .

– The graph at c is embeddable into the graph at e, but the given diagram is not
a subdiagram. The graph at c is a subgraph of several isomorphic copies of the
graph at e.

– There are precisely three isomorphic copies (all obtained by even permutations)
of the graph at e that contain the diagram at point c, these are:

, , and .

– These copies are obtained from the original label by the even permutations
(12)(34), (132), and (142). These constitute the annotation λ(c, e), cf. Table 1.

– The simplified annotation lists only (12)(34), because the other two permuta-
tions can be obtained from (12)(34) using automorphisms from the stabiliser
groups. For example

(132) = (234) ◦ (12)(34) ◦ id,

where (132) ∈ λ(c, c), (12)(34) ∈ λ•(c, e), and id ∈ λ(e, e).

3 Folding orders and lattices

Figure 3 gives a clue what annotation maps are used for. The six-element ordered
set shown there represents a much larger order, having 37 elements. These are the
connected graphs on {1, 2, 3, 4} (K4 omitted). The smaller ordered set is obtained
through folding the larger one: Isomorphic graphs are identified. The induced folding
of the order relation is expressed by the annotation map. A general formulation is
provided by the next definition.
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(234)

(132)

(134)

(12)(34)

(124)
(12)(34),

Fig. 3. Simplified annotation of the diagram. The labels are double coset representatives.
The stabiliser λ(p, p) is the automorphism group of the graph labelling p, restricted to
the alternating group A4. Non-neighbouring pairs are not drawn because their simplified
labels are empty (in this example).

Definition 3 Let P := (P,≤P ) be an ordered set and let Γ ≤ Aut(P ) be a
subgroup of its automorphism group. A Γ -orbifold of P (also called an order
transversal) is a triple

(P \\ Γ,≤, λ),

where

– P \\ Γ := {pΓ | p ∈ P} is the set of orbits of Γ on P ,
– ≤ is the order relation defined on P \\ Γ by

pΓ ≤ qΓ :⇐⇒ ∃γ∈Γ p ≤P γq,

– and the mapping

λ : (P \\ Γ )× (P \\ Γ )→ P(Γ )

is defined using some fixed system Y of representatives of P \\ Γ by

λ(aΓ , bΓ ) := {γ ∈ Γ | a ≤p γb},

where a, b ∈ Y .

If P is a lattice, we speak of a lattice orbifold. ♦

Some details of this definition require justification. For example, it must be
argued that ≤ is well defined and indeed an order. We include this in the proof of
the following lemma.

Lemma 1 Let P := (P,≤P ) be an ordered set and let Γ ≤ Aut(P ) be a subgroup
of its automorphism group. Then every orbifold of P is a Γ -annotated ordered set.

Proof We first show that ≤, defined by

pΓ ≤ qΓ :⇐⇒ ∃γ∈Γ p ≤P γq,



is well defined, i.e., independent of the choice of the representatives p, q. For repre-
sentatives

p1 ∈ pΓ , q1 ∈ qΓ

of the same orbits we find automorphisms α, β ∈ Γ such that p1 = αp and q1 = βq.
Then

p ≤P γq ⇐⇒ αp ≤P αγq
⇐⇒ αp ≤P αγβ−1βq
⇐⇒ p1 ≤P γ1q1, where γ1 = αγβ−1.

Thus ∃γ p ≤P γq ⇐⇒ ∃γ1 p1 ≤P q1, as desired.
The rest of the proof is straightforward: ≤ obviously is an order on P \\ Γ and

λ is an annotation map. That λ(a, b) is nonempty for a ≤ b is immediate from the
definition of ≤. Clearly

λ(a, a) = {γ | a ≤ γa} = {γ | a = γa}

is a subgroup of Γ , it is the stabiliser Γa of a in Γ . For the third condition we obtain

λ(a, b) ◦ λ(b, c) = {α | a ≤P αb} ◦ {β | b ≤P βc}
= {α ◦ β | a ≤P αb, b ≤P βc}
⊆ {γ | a ≤P γc}
= λ(a, c).

�

Now that we are able to fold ordered sets we also would like to unfold them in
a way that reconstructs the original order. This is provided by the next definition.

Definition 4 Let (P,≤, λ) be a G-annotated ordered set, and let Gp := λ(p, p) for
all p ∈ P . The unfolding (or reconstruction) of (P,≤, λ) is defined as

rec(P,≤, λ) := (∪̇p∈P G/Gp,≤r),

with

gGp ≤r hGq :⇐⇒ g−1h ∈ λ(p, q).

♦

Proposition 1 The unfolding rec(P,≤, λ) of a G-annotated ordered set (P,≤, λ)
is an ordered set having a group of automorphisms isomorphic to G.

Proof Let

N :=∪̇p∈P G/Gp =∪̇ {gGp | g ∈ G}

be the set of all stabiliser cosets. Proving that ≤r is an order on N is easy: Clearly
≤r is reflexive, since id ∈ λ(p, p). Antisymmetry follows from the fact that for p 6= q
at least one of the sets λ(p, q) must be empty, and transitivity follows from the
multiplicativity condition for annotation maps.

G operates on its power set as a permutation group Γ of left multiplications.
Let φ : G→ Γ denote the canonical isomorphism. Each φ(h) ∈ Γ maps N to N by

gGp
φ(h)7→ hgGp,



and

g1Gp ≤r g2Gq ⇐⇒ g−11 g2 ∈ λ(p, q)

⇐⇒ g−11 h−1hg2 ∈ λ(p, q)

⇐⇒ (hg1)−1hg2 ∈ λ(p, q)

⇐⇒ hg1Gp ≤r hg2Gq.

Therefore each φ(h) ∈ Γ acts as an automorphism on (N,≤r), and Γ is a subgroup
of Aut(N,≤r). �

4 Isomorphisms of annotated ordered sets

The annotation we have studied above depends on the choice of representatives for
the isomorphism classes of graphs. If we choose other representatives, we obtain
another annotation map. If we are lucky, the new annotation may be considerably
simpler. An example is shown in Figure 4.

12

3 4

(243)

id, (243)

Fig. 4. An alternative simplified annotation obtained by using isomorphic graph diagrams.

The two diagrams in Figures 3 and 4 represent the same situation, and should
be called isomorphic. They however differ considerably. It is not surprising that a
rather complicated notion of isomorphy is needed.

Definition 5 [Isomorphy of group-annotated ordered sets]
Let Γ1 and Γ2 be groups, and let P 1 = (P1,≤1, λ1) be a Γ1-annotated ordered set
and P 2 = (P2,≤2, λ2) a Γ2-annotated ordered set. Then P 1 and P 2 are said to be
isomorphic if the following conditions hold:

– there exists an order isomorphism α : (P1,≤1) −→ (P2,≤2) and
– there exists a group isomorphism δ : Γ1 −→ Γ2 and
– there exists a mapping φ : P1 −→ Γ2



such that

δ[λ1(a, b)] = φ(a)−1λ2(αa, αb)φ(b)

holds for all a ≤ b in P1. ♦

The two annotations in Figures 3 and 4 are indeed isomorphic according to
this definition. The two groups are identical, so that we may choose δ to be the
identity map. Two orders are canonically isomorphic and isomorphic to the order in
Figure 1, so that we can omit α and simply use the letters from Figure 1 as element
names for both. It remains to find a mapping φ : P → A4 such that

λ1(a, b) = φ(a)−1λ2(a, b)φ(b)

holds for all a ≤ b in P . For this, we may take

x a b c d e f
φ(x) (132) id id id (142) id

.

For example, according to Table 1 we have λ1(c, e) = {(12)(34), (132), (142)},
and from Figure 4 we read off that

λ2(c, e) = λ2(c, c) ◦ {id} ◦ λ2(e, e)

(recall that a missing edge label stand for {id}). We conclude that

λ2(c, e) = λ2(c, c) ◦ {id} ◦ λ2(e, e)

= {id, (234), (243)} ◦ {id}
= {id, (234), (243)}.

Therefore

φ(c)−1 ◦ λ2(c, e) ◦ φ(e) = id ◦ λ2(c, e) ◦ (142)

= {id, (234), (243)} ◦ (142)

= {(142), (12)(34), (132)},

which is indeed λ1(c, e), as can be seen from Table 1.

Our first theorem states that the two structure necessarily are isomorphic.

Theorem 1 Any two Γ -orbifolds of an ordered set P are isomorphic. More gener-
ally, if P1 and P2 are isomorphic ordered sets, α : P1 → P2 is an isomorphism and
Γ1 ≤ Aut(P1) and Γ2 ≤ Aut(P2) are groups of automorphisms such that

Γ2 = α ◦ Γ1 ◦ α−1,

then each Γ1-orbifold of P1 is isomorphic to each Γ2-orbifold of P2.

Proof We only prove the special case. A proof of the general statement can be
found in [8]. Let

(P \\ Γ,≤, λ1) and (P \\ Γ,≤, λ2)

be two Γ -orbifolds of P and let Y1 and Y2 be the two orbit transversals used to
define the annotation maps λ1 and λ2. For each y ∈ Y1 there exists an automorphism
φy ∈ Γ such that

φy(y) ∈ Y2.



We get for a, b ∈ Y1 that

λ1(a, b) = {γ | a ≤ γb}
= {γ | φ−1a φaa ≤ γφ−1b φbb}
= {γ | φaa ≤ φaγφ−1b φbb}
= {γ | φaγφ−1b ∈ λ2(a, b)}
= φ−1a λ2(a, b)φb.

The mapping y 7→ φy therefore has the properties required by Definition 5. �

5 An example of a concept lattice orbifold

The ordered set in Figures 1–4 is part of a lattice orbifold. The lattice to be folded
is the boolean lattice of all graphs with vertex set V := {1, 2, 3, 4}. There are 64
such graphs, and 11 up to isomorphism. This lattice can naturally be written as the
concept lattice of the ×6–formal context (

(
V
2

)
,
(
V
2

)
, 6=), see Figure 5.

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Fig. 5. The standard context for the lattice of all graphs on four points.

(A,B) is a formal concept of this context iff A is (the edge set of) some graph
on V and B is (the edge set of) its complement.

When folding this lattice, we have several groups to choose between. The full
automorphism group is, of course, isomorphic to the symmetric group S6. The S6-
orbifold of this lattice is simply a chain of length four, with trivial annotation. Two
formal concepts are in the same orbit iff their extents have equal cardinality.

More interesting in the sense of graph theory is the subgroup Γ4 isomorphic
to S4, that is induced by the action of the vertex permutation on the edges. Two
concepts are in the same orbit of this group iff their extents are isomorphic as
graphs.

In Figures 1–4 the group Γ of our choice was the alternating group A4, consisting
of the 12 even permutations of V , in its induced action on the two-element subsets.
The Γ -orbifold of the lattice of all graphs on V is shown in Figure 6. Obviously, it
is not a lattice. The orbifold diagram has a dual automorphism because the lattice
it was generated from has one.

Since Γ is a subgroup of the group S4, the Γ -orbifold in Figure 6 can itself be
folded to obtain the diagram in Figure 7.



(124) id, (124)

id, (243)

(234)

(243)

(12)(34)

Fig. 6. An A4– orbifold of the lattice of all graphs on four points.



(243)

(23)

(243)

Fig. 7. An S4– orbifold of the lattice of all graphs on four points.



6 Context orbifolds and a lattice of lattices

The symmetry group Γ may also be used to fold the formal context. The resulting
context orbifold is

(G \\ Γ,M \\ Γ, λ),

where
λ : (G \\ Γ )× (M \\ Γ )→ P(Γ )

is the mapping defined by

λ(gΓ ,mΓ ) := {γ ∈ Γ | g I γm}.

In practical computations we use the group structure for simplification. The orbits
are replaced by orbit representatives, and since the values of the λ-mapping are
unions of double cosets of the respective stabiliser groups (of g and m), they may be
given by double coset representatives. However, a context orbifold may have many
different such representations, and a theorem similar to Theorem 1 is required (and
can be given) to guarantee representation invariance.

In the case of our example (in Figure 5) the context orbifold is a 1 × 1–table,
since Γ is transitive both on objects and on attributes. The annotation gives the
set A4 \ {id, (12)(34)}.

As a more instructive example we give an orbifold representation of the “lattice
of all concept lattices” with attribute set {a, b, c}. Recall that a closure system
on a set M is a set C ⊆ P(M) of subsets of M which contains M and is closed
under arbitrary intersections. The family of concept intents of any formal context
is a closure system (as well as the family of concept extents). Any closure system is
the system of intents of some formal context, and this context is determined by its
intents up to clarifying, reducing and renaming objects.

The intersection of closure systems on M yields a closure system. The family of
all closure systems on M therefore is itself a closure system, on the power set P(M)
of M , and therefore forms a complete lattice. The mathematical properties of these
lattices have been studied by Caspard and Monjardet [2]. It is well known that this
is encoded by the formal context

(P(M), Imp(M), |=),

where P(M) is the set of all subsets of M , Imp(M) is the set of all implications on
M , and the relation |= is defined as

S |= A→ B :⇐⇒ A 6⊆ S or B ⊆ S.

The extents of this formal context are precisely the closure systems on M , and the
intents are the corresponding implicational theories. The extent lattice therefore is
indeed the lattice of all closure systems on M .

The formal context given above is not reduced, and for computations it is con-
venient to use the standard context

(P(M) \ {M}, Impr(M), |=),

where
Impr(M) := {A→ {b} | A ⊆M, b /∈ A}.

For M := {a, b, c} this yields the formal context in Figure 8. This formal context has
61 concepts, corresponding to the 61 closure systems on {a, b, c}. The cardinalities
of these lattices are known up to |M | = 6 (see Habib and Nourine[3]). The values
can be verified using the standard algorithm for generating concept lattices. Note,



∅
→
a

∅
→
b

∅
→
c

a
→
b

a
→
c

b
→
a

b
→
c

c
→
a

c
→
b

a, b
→
c

a, c
→
b

b, c
→
a

∅ × × × × × × × × ×
{a} × × × × × × × ×
{b} × × × × × × × ×
{a, b} × × × × × × × ×
{c} × × × × × × × ×
{a, c} × × × × × × × ×
{b, c} × × × × × × × ×

.

Fig. 8. The reduced formal context for the lattice of closure systems on {a, b, c}. Each
permutation of {a, b, c, } induces an automorphism.

however, that the numbers grow rapidly. For n = 1, . . . , 6 the numbers of closure
systems on an n-element set are 2, 7, 61, 2480, 1385552, 75973751474 [7]. Up to
isomorphism, there are 1, 2, 5, 19, 184, 14664, 108295846 closure systems. Note
that there is a misprint in the sixth term of Sloane’s sequence A108799 [7], as was
noticed by Mike Behrisch [1].

The formal context in Figure 8 obviously has six automorphisms induced by
the permutations of {a, b, c}. Folding the context by the induced action Γ of this
symmetric group yield the context orbifold displayed in Figure 9. The concept lat-

∅ → c a→ c a, b→ c

∅ ∅ id id

{a} id (ab), (abc) id, (abc)

{a, b} id id, (acb) (bc)

Fig. 9. An orbifold of the formal context in Figure 8. Objects and attributes are given by
coset representatives. The cells of the table contain sets of double coset representatives, in
analogy to Definition 2.

tice of the formal context in Figure 8 has 61 elements. Its lattice orbifold has 19
elements. It is displayed in Figure 10. Note that the diagram in Figure 10 is very
intuitive, because it represents the closure systems “up to isomorphism”. However,
the containment order “up to isomorphism” does not give a lattice, it is actually
not a mathematically precise notion right away. The annotated diagram, together
with the definitions on which the annotation is built, make the idea of a hierarchy
of structures “up to isomorphism” precise and mathematically accessible.

7 Outlook

A detailed theoretical framework and a good algorithmic basis are needed to make
context and lattice orbifolds applicable. Algorithms must be given to compute the
lattice orbifold directly from the context orbifold, and, even more interestingly, to
compute the folded stem base. A package based on the GAP system [4] has been
implemented and is available upon request. Some of these questions will be treated
in a subsequent paper, but many are still open.
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Fig. 10. The lattice orbifold for the lattice of the 61 closure systems on the set {a, b, c}.
Each closure system is the system of intents of a unique row-reduced formal context with
attribute set {a, b, c}. These contexts are given up to permutations of {a, b, c}. The context
at the least element has empty object set.



8 Conclusion

The interplay between concept lattice orbifolds and context orbifolds offers a power-
ful technique for the investigation of lattices with symmetries. Although the neces-
sary foundations were provided by Zickwolff [8] in a very general setting, it requires
some effort to adapt them to the case of contexts and lattices. We have shown here
how this can be done and that interesting results can be obtained.
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