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Previously . . .
• Game trees are used to represent sequential (extensive form) games.• Sequential games give rise to (different) strategic (normal form) games.• In a game tree, a strategy assigns a move to each decision node.• Backward induction can be used to solve sequential games.• The subgame perfect equilibrium of a sequential game coincides withits backward induction solution.• Geography is a game on graphs for which deciding existence of winningstrategies is PSpace-complete.
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Two-Player Zero-Sum Games

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 4 of 26 Computational
Logic ∴ Group



Zero-Sum Games

Definition
A game with players P is zero-sum iff for all outcomes z ∈ Z, ∑

i∈P ui(z) = 0.
Note: Every combinatorial game is zero-sum, but not vice versa.
Examples: Penalties, Rock-Paper-Scissors, Chess, Go

In what follows, we will focus on two-player zero-sum games.
Observation
For a two-player zero-sum game (with P = {1, 2}), the payoffs u = (u1,u2)are fully specified by giving u1, as for every z ∈ Z we have u2(z) = –u1(z).
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Two-Player Zero-Sum Sequential Games
We thus adapt our definition of sequential games with perfect information:
Definition
A two-player zero-sum sequential game with perfect information has:
1. The set P = {max, min} of two (named) players.
2. A tuple (Mmax,Mmin) of sets of moves for each player; M := Mmax ∪Mmin.3. A set H of histories, sequences [m1, . . . ,mk] of movesmj ∈ M.
4. A subset Z ⊆ H of terminal histories.
5. A player function p : H \ Z → P (indicating whose turn it is).
6. A utility function umax : Z → R for player max.
Starting with the empty history [], in each history h = [m1, . . . ,mk] ∈ H \ Z,player i = p(h) chooses a movem ∈ Mi, leading to the history [m1, . . . ,mk,m].
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Histories and States
Typically, it is more useful to describe a game other than through histories:
Definition
A state-based game model consists of the following:
• A set S of states of the game, with initial state S0 ∈ S, and functions:
• TURN : S → P saying whose turn it is in a state.
• MOVES : S → 2M yielding the legal moves in a state.
• RESULT : S×M → S yielding the result of a move in a state (the next state).
• IS-TERMINAL : S → {⊤,⊥} indicating whether a state is terminal.
• UTILITY : S → R giving a terminal state’s payoff for max (else undefined).
• Each history leads to exactly one state. ([] leads to S0.)• One state may be reached through different histories.
Example: A state in Chess is given by the locations of the pieces on the board.
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State Spaces and Their Representation

Definition
The state space graph associated with a state-based game model is theedge-labelled directed graph (V , E) with E ⊆ V ×M× V , where
• V ⊆ S is the ⊆-least set such that S0 ∈ V , and:

if s ∈ V andm ∈ MOVES(s), then RESULT(s,m) ∈ V ;
• (s1,m, s2) ∈ E iff RESULT(s1,m) = s2.
• The state space contains all states that are reachable from the initial stateby sequences of legal moves.
• The state space can be huge: for Chess, there are at least 1040 positions(states).
• We thus typically only search parts of the state space (game tree).
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Representing Games for Search
We will assume that the game tree is not explicitly given, but implicitlyspecified by a state-based game model that is parsimoniously represented(e.g. using a game description language like Stanford University’s GDL).
Assumption: Game Representation
A state-based game model can be represented such that:
• The set S of states is described as an efficiently decidable formallanguage.
• The functions TURN, MOVES, RESULT, IS-TERMINAL, and UTILITY can all becomputed efficiently.
• The full description of the game model has a practical size.
This assumption is especially relevant for games like Chess and Go, whosestate-based models can be formalised (logically or through executablecode), but whose game trees are too large to be explicitly represented.
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Search in Game Trees

Recall: For combinatorial games, we used backward induction to solve them.
• For (general) zero-sum games, we also have to distinguish differentutilities for the same player: Winning with 9 is better than winning with 1.
• This leads to a slightly more general algorithm: minimax search.
• Player maxmaximises their payoff umax (also called the value of the game).
• Player minmaximises their payoff umin = –umax, thus minimises umax.• Each player knows that the other player maximises/minimises and takesthis into account accordingly.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 10 of 26 Computational
Logic ∴ Group



Minimax Tree Search: Example

max A

min B
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Minimax Value of a Game
Definition
For a (state-based model of a) game, theminimax value of a state s ∈ S is

minimax(s) :=

UTILITY(s) if IS-TERMINAL(s),
maxm∈MOVES(s)minimax(RESULT(s,m)) if TURN(s) = max,
minm∈MOVES(s)minimax(RESULT(s,m)) if TURN(s) = min.

Theminimax value of the game isminimax(S0) for S0 the initial state.
• Theminimax decision at each node is the move leading to the maximal(resp. minimal) payoff in the next node.
• This definition of the optimal game value yields optimal responses ofeach player given that the respective other player also plays optimally.
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Minimax Tree Search: Algorithm
function minimax-search(s : state) { // allows to start search in an arbitrary state s

if TURN(s) = max then { (v,m) := max-value(s) } else { (v,m) := min-value(s) }
returnm } // return best move in s

function max-value(s : state) {
if IS-TERMINAL(s) then return (UTILITY(s), null) // base case: terminal state(v∗,m∗) := (–∞,null) // initialise current maximum
foreachm ∈ MOVES(s) do { // try all moves(v ′,m′) := min-value(RESULT(s,m)) // simulate move

if v ′ > v∗ then (v∗,m∗) := (v ′,m) } // update current maximum
return (v∗,m∗) } // return maximum

function min-value(s : state) {
if IS-TERMINAL(s) then return (UTILITY(s), null)(v∗,m∗) := (+∞,null)
foreachm ∈ MOVES(s) do {(v ′,m′) := max-value(RESULT(s,m))

if v ′ < v∗ then (v∗,m∗) := (v ′,m) }
return (v∗,m∗) }
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Minimax Tree Search: Complexity
Proposition
For a branching factor of b (maximal number of moves) and a depth of d(maximal length of histories), minimax search visits O(bd) terminal nodes.
⇝Minimax tree search is impractical for complex games.
Example
Chess has a branching factor of about 35 and average game length of about80 ply (moves of a single player), so running minimax search to the leaveswould need to expand 3580 ≈ 10123 nodes.
There are at least two possible ways of reducing bd:• Reducing b: Do we really have to try out all possible moves?
⇝ alpha-beta pruning• Reducing d: Do we really have to play the game until the end?
⇝ heuristic evaluation of states
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Alpha-Beta Pruning
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Alpha-Beta Pruning: Example

max A[–∞, +∞][3, +∞][3, 3]
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Alpha-Beta Tree Search: Algorithm
function alpha-beta-search(s : state) { if TURN(s) = max then(v,m) := max-value(s, –∞, +∞) else (v,m) := min-value(s, –∞, +∞) ; returnm }
function max-value(s : state,α : R±∞,β : R±∞) {

if IS-TERMINAL(s) then return (UTILITY(s), null) // base case: terminal state(v∗,m∗) := (–∞,null) // initialise current maximum
foreachm ∈ MOVES(s) do { // try all moves(v ′,m′) := min-value(RESULT(s,m),α,β) // simulate move

if v ′ > v∗ then { (v∗,m∗) := (v ′,m) ; α := max(α, v∗) } // update maximum and α
if v∗ ≥ β then return (v∗,m∗) } // prune irrelevant subtree

return (v∗,m∗) } // return maximum
function min-value(s : state,α : R±∞,β : R±∞) {

if IS-TERMINAL(s) then return (UTILITY(s), null)(v∗,m∗) := (+∞,null)
foreachm ∈ MOVES(s) do {(v ′,m′) := max-value(RESULT(s,m),α,β)

if v ′ < v∗ then { (v∗,m∗) := (v ′,m) ; β := min(β, v∗) }
if v∗ ≤ α then return (v∗,m∗) }

return (v∗,m∗) }
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Alpha-Beta Tree Search: Complexity
The order in which nodes are expanded matters!• In the worst case, O(bd) terminal nodes will be visited, even with pruning.
• In the best case, only O(b d2 ) = O

(√
b
d
) terminal nodes will be visited:

max

min

A[3, 3]

B

3

[–∞, 3] C

2

[3, 2] D

2

[3, 2]

(Witnessing a winning strategy requires at least b · 1 · . . . · b · 1 = b
d2 leaves.)• However, finding a perfect move ordering amounts to solving the game.• In practice, earlier evaluations (history) or expert knowledge can be used.
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Heuristics

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 19 of 26 Computational
Logic ∴ Group



Heuristic Evaluation
Recall: There are at least two possible ways of reducing bd:
• Reducing b: Do we really have to try out all possible moves?
⇝ alpha-beta pruning

• Reducing d: Do we really have to play the game until the end?
⇝ heuristic evaluation of states

Terminology
A heuristic aims at reducing the search space of a given problem, typicallytrading this off for at least one of optimality, completeness, or computation.
Main Idea: Treat non-terminal states as if they were terminal, estimate value.
• Replace function IS-TERMINAL : S → {⊤,⊥} by IS-CUTOFF : S× N → {⊤,⊥},

IS-CUTOFF(s,d) . . . “cut off search below state s in search depth d,”
• and function UTILITY : S → R by EVAL : S → R,

EVAL(s) . . . “estimate the prospective utility of state s (for player max).”
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Restricting Depth: Heuristic Minimax Value
Heuristic Function EVAL: Technical Requirements
For all s ∈ S:
1. If IS-TERMINAL(s), then EVAL(s) = UTILITY(s), otherwise
2. mins∈ST UTILITY(s) ≤ EVAL(s) ≤ maxs∈ST UTILITY(s)for ST := {s ∈ S | IS-TERMINAL(s)}.
• In practice, the heuristic function EVAL should be computable efficiently.• EVAL(s) should strongly correlate with max’s “chances of winning” in s.
Definition
The heuristic minimax value of a state s ∈ S (w.r.t. d, IS-CUTOFF, and EVAL) is
hmm(s,d) :=


EVAL(s) if IS-CUTOFF(s,d),
maxm∈MOVES(s) hmm(RESULT(s,m),d + 1) if TURN(s) = max,
minm∈MOVES(s) hmm(RESULT(s,m),d + 1) if TURN(s) = min.
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Heuristic Evaluation Functions

• Typically require experience with or expert knowledge about the game.
• Often combine various features fi of the state into one numerical value:

EVAL(s) = w1 · f1(s) + . . . +wm · fm(s)
• Possible features can be:

– Mobility: Measure the number of things a player can do (e.g. number ofmoves, number of reachable states within the next nmoves, . . . ).– Goal proximity: How “close” (similar) is the current state to a final state?– Material: Count number (or “strength”) of pieces (if applicable and variable).
• Further features may exploit game-specific properties,e.g. persistence of markings in Tic-Tac-Toe or Connect-Four.
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Heuristic Evaluation Functions: Examples
Example: Chess
• Add up “material values” of the player’s remaining pieces:pawn =̂ 1, knight/bishop =̂ 3, rook =̂ 5, queen =̂ 9.
• Assess board control (centre is better than edges or corners).
Example: Tic-Tac-Toe, Goal proximity
• There are 9 possible first moves for X: 1 centre, 4 sides, 4 corners.
• We can e.g. estimate in how many winning final positions they occur:

centre: X
X
X

X X X
X

X
X

X
X
X

corner: X
X
X X X X

X
X

X

side: X
X
X

X X X
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Heuristic Alpha-Beta Tree Search: Algorithm
Algorithm:
In the pseudocode on Slide 17, replace the lines mentioning IS-TERMINAL by:
if IS-CUTOFF(s, d) then return (EVAL(s),null)
and keep track of the search depth d as for the heuristic minimax value.
When to cut off search?
• At a fixed depth dmax.
• After a fixed time, using iterative deepening and keeping track of bestmoves (to also improve move ordering in subsequent iterations).
When not to cut off search?
• Quiescence: Apply heuristic evaluation only to quiescent positions, thosenot facing pending moves that would significantly affect the evaluation.
• Horizon effect: An ultimately unavoidable opponent move is pushedbeyond the horizon by delay tactics and thus seemingly avoided.
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Improvements of Alpha-Beta Tree Search
• Move Ordering:

– Static: Use human (expert) knowledge about the game.– Dynamic: Use iterative deepening and the history heuristic (moves that wereuseful in previous search iterations will probably be useful in later ones).
• Transposition Tables:

– The same game state can be reached by different histories.– Recognising game states that have been visited before avoids re-searching.
• Variable Depth:

– Strong moves are worth searching more deeply, weak moves (e.g. thoseexpanded later with good move ordering) less so.
• Endgame Tables:

– Endgames can be completely solved (doing bottom-up search with reversemoves) whenever the number of positions can be handled in practice.– The resulting strategies can be put into lookup tables and consulted in search.
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Conclusion
Minimax Tree Search can be extended to more than two (say n) players:
• The UTILITY function returns an n-tuple (v1, . . . , vn) of utilities.
• Every player i only maximises vi when it is their turn to move.
Summary
• Game trees can be succinctly represented by state-based game models.
• Minimax Tree Search can be used to solve sequential (two-playerzero-sum) games with perfect information.
• Alpha-Beta Pruning allows to reduce the search space withoutsacrificing solutions.
• Heuristic Evaluation of states can be used to reduce search depth.
• Further heuristics may reduce the search space (typically with sacrifices).
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