
Computational
Logic ∴ Group

Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Playing Games: Alpha-Beta Tree Search
Lecture 4, 6th May 2024 // Algorithmic Game Theory, SS 2024

https://iccl.inf.tu-dresden.de/web/Algorithmic_Game_Theory_(SS2024)


Previously . . .
• Game trees are used to represent sequential (extensive form) games.• Sequential games give rise to (different) strategic (normal form) games.• In a game tree, a strategy assigns a move to each decision node.• Backward induction can be used to solve sequential games.• The subgame perfect equilibrium of a sequential game coincides withits backward induction solution.• Geography is a game on graphs for which deciding existence of winningstrategies is PSpace-complete.

h0
Plum

h1
SeeTVRestrain

h2
SeeTV

Open

(160, 0)

h3
Plum

In

h4 (160, 0)Out

(160, 0)
Subgame perfect equilibrium

h7 (65, –10)

h8 (60, 20)Passive

Aggressive

h5
Plum

(65, –10)

In

h6 (200, 0)Out

(100, 60)

h9 (85, 50)Aggressive

h10 (100, 60)Passive

(100, 60)

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 2 of 26 Computational
Logic ∴ Group



Overview

Two-Player Zero-Sum Games

Alpha-Beta Pruning

Heuristics

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 3 of 26 Computational
Logic ∴ Group



Two-Player Zero-Sum Games

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 4 of 26 Computational
Logic ∴ Group



Zero-Sum Games

Definition
A game with players P is zero-sum iff for all outcomes z ∈ Z, ∑

i∈P ui(z) = 0.
Note: Every combinatorial game is zero-sum, but not vice versa.
Examples: Penalties, Rock-Paper-Scissors, Chess, Go

In what follows, we will focus on two-player zero-sum games.
Observation
For a two-player zero-sum game (with P = {1, 2}), the payoffs u = (u1,u2)are fully specified by giving u1, as for every z ∈ Z we have u2(z) = –u1(z).

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 5 of 26 Computational
Logic ∴ Group



Two-Player Zero-Sum Sequential Games
We thus adapt our definition of sequential games with perfect information:
Definition
A two-player zero-sum sequential game with perfect information has:
1. The set P = {max, min} of two (named) players.
2. A tuple (Mmax,Mmin) of sets of moves for each player; M := Mmax ∪Mmin.3. A set H of histories, sequences [m1, . . . ,mk] of movesmj ∈ M.
4. A subset Z ⊆ H of terminal histories.
5. A player function p : H \ Z → P (indicating whose turn it is).
6. A utility function umax : Z → R for player max.
Starting with the empty history [], in each history h = [m1, . . . ,mk] ∈ H \ Z,player i = p(h) chooses a movem ∈ Mi, leading to the history [m1, . . . ,mk,m].

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 6 of 26 Computational
Logic ∴ Group



Histories and States
Typically, it is more useful to describe a game other than through histories:
Definition
A state-based game model consists of the following:
• A set S of states of the game, with initial state S0 ∈ S, and functions:
• TURN : S → P saying whose turn it is in a state.
• MOVES : S → 2M yielding the legal moves in a state.
• RESULT : S×M → S yielding the result of a move in a state (the next state).
• IS-TERMINAL : S → {⊤,⊥} indicating whether a state is terminal.
• UTILITY : S → R giving a terminal state’s payoff for max (else undefined).
• Each history leads to exactly one state. ([] leads to S0.)• One state may be reached through different histories.
Example: A state in Chess is given by the locations of the pieces on the board.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 7 of 26 Computational
Logic ∴ Group



State Spaces and Their Representation

Definition
The state space graph associated with a state-based game model is theedge-labelled directed graph (V , E) with E ⊆ V ×M× V , where
• V ⊆ S is the ⊆-least set such that S0 ∈ V , and:

if s ∈ V andm ∈ MOVES(s), then RESULT(s,m) ∈ V ;
• (s1,m, s2) ∈ E iff RESULT(s1,m) = s2.
• The state space contains all states that are reachable from the initial stateby sequences of legal moves.
• The state space can be huge: for Chess, there are at least 1040 positions(states).
• We thus typically only search parts of the state space (game tree).

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 8 of 26 Computational
Logic ∴ Group



Representing Games for Search
We will assume that the game tree is not explicitly given, but implicitlyspecified by a state-based game model that is parsimoniously represented(e.g. using a game description language like Stanford University’s GDL).
Assumption: Game Representation
A state-based game model can be represented such that:
• The set S of states is described as an efficiently decidable formallanguage.
• The functions TURN, MOVES, RESULT, IS-TERMINAL, and UTILITY can all becomputed efficiently.
• The full description of the game model has a practical size.
This assumption is especially relevant for games like Chess and Go, whosestate-based models can be formalised (logically or through executablecode), but whose game trees are too large to be explicitly represented.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 9 of 26 Computational
Logic ∴ Group

http://ggp.stanford.edu/lectures/week_02.pdf


Search in Game Trees

Recall: For combinatorial games, we used backward induction to solve them.
• For (general) zero-sum games, we also have to distinguish differentutilities for the same player: Winning with 9 is better than winning with 1.
• This leads to a slightly more general algorithm: minimax search.
• Player maxmaximises their payoff umax (also called the value of the game).
• Player minmaximises their payoff umin = –umax, thus minimises umax.• Each player knows that the other player maximises/minimises and takesthis into account accordingly.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 10 of 26 Computational
Logic ∴ Group



Minimax Tree Search: Example

max A

min B

3 12 8

C

2 4 6

D

14 5 2

3 2 2

3

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 11 of 26 Computational
Logic ∴ Group



Minimax Value of a Game
Definition
For a (state-based model of a) game, theminimax value of a state s ∈ S is

minimax(s) :=

UTILITY(s) if IS-TERMINAL(s),
maxm∈MOVES(s)minimax(RESULT(s,m)) if TURN(s) = max,
minm∈MOVES(s)minimax(RESULT(s,m)) if TURN(s) = min.

Theminimax value of the game isminimax(S0) for S0 the initial state.
• Theminimax decision at each node is the move leading to the maximal(resp. minimal) payoff in the next node.
• This definition of the optimal game value yields optimal responses ofeach player given that the respective other player also plays optimally.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 12 of 26 Computational
Logic ∴ Group



Minimax Tree Search: Algorithm
function minimax-search(s : state) { // allows to start search in an arbitrary state s

if TURN(s) = max then { (v,m) := max-value(s) } else { (v,m) := min-value(s) }
returnm } // return best move in s

function max-value(s : state) {
if IS-TERMINAL(s) then return (UTILITY(s), null) // base case: terminal state(v∗,m∗) := (–∞,null) // initialise current maximum
foreachm ∈ MOVES(s) do { // try all moves(v ′,m′) := min-value(RESULT(s,m)) // simulate move

if v ′ > v∗ then (v∗,m∗) := (v ′,m) } // update current maximum
return (v∗,m∗) } // return maximum

function min-value(s : state) {
if IS-TERMINAL(s) then return (UTILITY(s), null)(v∗,m∗) := (+∞,null)
foreachm ∈ MOVES(s) do {(v ′,m′) := max-value(RESULT(s,m))

if v ′ < v∗ then (v∗,m∗) := (v ′,m) }
return (v∗,m∗) }

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 13 of 26 Computational
Logic ∴ Group



Minimax Tree Search: Complexity
Proposition
For a branching factor of b (maximal number of moves) and a depth of d(maximal length of histories), minimax search visits O(bd) terminal nodes.
⇝Minimax tree search is impractical for complex games.
Example
Chess has a branching factor of about 35 and average game length of about80 ply (moves of a single player), so running minimax search to the leaveswould need to expand 3580 ≈ 10123 nodes.
There are at least two possible ways of reducing bd:• Reducing b: Do we really have to try out all possible moves?
⇝ alpha-beta pruning• Reducing d: Do we really have to play the game until the end?
⇝ heuristic evaluation of states

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 14 of 26 Computational
Logic ∴ Group



Alpha-Beta Pruning

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 15 of 26 Computational
Logic ∴ Group



Alpha-Beta Pruning: Example

max A[–∞, +∞][3, +∞][3, 3]

min B[–∞, +∞]

3

[–∞, 3]

12 8

C[3, +∞]

2

[3, 2]
2

D[3, +∞]

14

[3, 14]

5

[3, 5]

2

2
[3, 2]

3

3

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 16 of 26 Computational
Logic ∴ Group



Alpha-Beta Tree Search: Algorithm
function alpha-beta-search(s : state) { if TURN(s) = max then(v,m) := max-value(s, –∞, +∞) else (v,m) := min-value(s, –∞, +∞) ; returnm }
function max-value(s : state,α : R±∞,β : R±∞) {

if IS-TERMINAL(s) then return (UTILITY(s), null) // base case: terminal state(v∗,m∗) := (–∞,null) // initialise current maximum
foreachm ∈ MOVES(s) do { // try all moves(v ′,m′) := min-value(RESULT(s,m),α,β) // simulate move

if v ′ > v∗ then { (v∗,m∗) := (v ′,m) ; α := max(α, v∗) } // update maximum and α
if v∗ ≥ β then return (v∗,m∗) } // prune irrelevant subtree

return (v∗,m∗) } // return maximum
function min-value(s : state,α : R±∞,β : R±∞) {

if IS-TERMINAL(s) then return (UTILITY(s), null)(v∗,m∗) := (+∞,null)
foreachm ∈ MOVES(s) do {(v ′,m′) := max-value(RESULT(s,m),α,β)

if v ′ < v∗ then { (v∗,m∗) := (v ′,m) ; β := min(β, v∗) }
if v∗ ≤ α then return (v∗,m∗) }

return (v∗,m∗) }
Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 17 of 26 Computational

Logic ∴ Group



Alpha-Beta Tree Search: Complexity
The order in which nodes are expanded matters!• In the worst case, O(bd) terminal nodes will be visited, even with pruning.
• In the best case, only O(b d2 ) = O

(√
b
d
) terminal nodes will be visited:

max

min

A[3, 3]

B

3

[–∞, 3] C

2

[3, 2] D

2

[3, 2]

(Witnessing a winning strategy requires at least b · 1 · . . . · b · 1 = b
d2 leaves.)• However, finding a perfect move ordering amounts to solving the game.• In practice, earlier evaluations (history) or expert knowledge can be used.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 18 of 26 Computational
Logic ∴ Group



Heuristics

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 19 of 26 Computational
Logic ∴ Group



Heuristic Evaluation
Recall: There are at least two possible ways of reducing bd:
• Reducing b: Do we really have to try out all possible moves?
⇝ alpha-beta pruning

• Reducing d: Do we really have to play the game until the end?
⇝ heuristic evaluation of states

Terminology
A heuristic aims at reducing the search space of a given problem, typicallytrading this off for at least one of optimality, completeness, or computation.
Main Idea: Treat non-terminal states as if they were terminal, estimate value.
• Replace function IS-TERMINAL : S → {⊤,⊥} by IS-CUTOFF : S× N → {⊤,⊥},

IS-CUTOFF(s,d) . . . “cut off search below state s in search depth d,”
• and function UTILITY : S → R by EVAL : S → R,

EVAL(s) . . . “estimate the prospective utility of state s (for player max).”
Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 20 of 26 Computational

Logic ∴ Group



Restricting Depth: Heuristic Minimax Value
Heuristic Function EVAL: Technical Requirements
For all s ∈ S:
1. If IS-TERMINAL(s), then EVAL(s) = UTILITY(s), otherwise
2. mins∈ST UTILITY(s) ≤ EVAL(s) ≤ maxs∈ST UTILITY(s)for ST := {s ∈ S | IS-TERMINAL(s)}.
• In practice, the heuristic function EVAL should be computable efficiently.• EVAL(s) should strongly correlate with max’s “chances of winning” in s.
Definition
The heuristic minimax value of a state s ∈ S (w.r.t. d, IS-CUTOFF, and EVAL) is
hmm(s,d) :=


EVAL(s) if IS-CUTOFF(s,d),
maxm∈MOVES(s) hmm(RESULT(s,m),d + 1) if TURN(s) = max,
minm∈MOVES(s) hmm(RESULT(s,m),d + 1) if TURN(s) = min.
Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 21 of 26 Computational

Logic ∴ Group



Heuristic Evaluation Functions

• Typically require experience with or expert knowledge about the game.
• Often combine various features fi of the state into one numerical value:

EVAL(s) = w1 · f1(s) + . . . +wm · fm(s)
• Possible features can be:

– Mobility: Measure the number of things a player can do (e.g. number ofmoves, number of reachable states within the next nmoves, . . . ).– Goal proximity: How “close” (similar) is the current state to a final state?– Material: Count number (or “strength”) of pieces (if applicable and variable).
• Further features may exploit game-specific properties,e.g. persistence of markings in Tic-Tac-Toe or Connect-Four.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 22 of 26 Computational
Logic ∴ Group



Heuristic Evaluation Functions: Examples
Example: Chess
• Add up “material values” of the player’s remaining pieces:pawn =̂ 1, knight/bishop =̂ 3, rook =̂ 5, queen =̂ 9.
• Assess board control (centre is better than edges or corners).
Example: Tic-Tac-Toe, Goal proximity
• There are 9 possible first moves for X: 1 centre, 4 sides, 4 corners.
• We can e.g. estimate in how many winning final positions they occur:

centre: X
X
X

X X X
X

X
X

X
X
X

corner: X
X
X X X X

X
X

X

side: X
X
X

X X X

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 23 of 26 Computational
Logic ∴ Group



Heuristic Alpha-Beta Tree Search: Algorithm
Algorithm:
In the pseudocode on Slide 17, replace the lines mentioning IS-TERMINAL by:
if IS-CUTOFF(s, d) then return (EVAL(s),null)
and keep track of the search depth d as for the heuristic minimax value.
When to cut off search?
• At a fixed depth dmax.
• After a fixed time, using iterative deepening and keeping track of bestmoves (to also improve move ordering in subsequent iterations).
When not to cut off search?
• Quiescence: Apply heuristic evaluation only to quiescent positions, thosenot facing pending moves that would significantly affect the evaluation.
• Horizon effect: An ultimately unavoidable opponent move is pushedbeyond the horizon by delay tactics and thus seemingly avoided.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 24 of 26 Computational
Logic ∴ Group



Improvements of Alpha-Beta Tree Search
• Move Ordering:

– Static: Use human (expert) knowledge about the game.– Dynamic: Use iterative deepening and the history heuristic (moves that wereuseful in previous search iterations will probably be useful in later ones).
• Transposition Tables:

– The same game state can be reached by different histories.– Recognising game states that have been visited before avoids re-searching.
• Variable Depth:

– Strong moves are worth searching more deeply, weak moves (e.g. thoseexpanded later with good move ordering) less so.
• Endgame Tables:

– Endgames can be completely solved (doing bottom-up search with reversemoves) whenever the number of positions can be handled in practice.– The resulting strategies can be put into lookup tables and consulted in search.

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 25 of 26 Computational
Logic ∴ Group



Conclusion
Minimax Tree Search can be extended to more than two (say n) players:
• The UTILITY function returns an n-tuple (v1, . . . , vn) of utilities.
• Every player i only maximises vi when it is their turn to move.
Summary
• Game trees can be succinctly represented by state-based game models.
• Minimax Tree Search can be used to solve sequential (two-playerzero-sum) games with perfect information.
• Alpha-Beta Pruning allows to reduce the search space withoutsacrificing solutions.
• Heuristic Evaluation of states can be used to reduce search depth.
• Further heuristics may reduce the search space (typically with sacrifices).

Playing Games: Alpha-Beta Tree Search (Lecture 4)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 26 of 26 Computational
Logic ∴ Group


	Two-Player Zero-Sum Games
	Alpha-Beta Pruning
	Heuristics

