TECHNISCHE S .
UNIVERSITAT %?’ Egn?gtfiglr%r:,al
DRESDEN d gic - P

Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Playing Games: Alpha-Beta Tree Search

Lecture 4, 6th May 2024 // Algorithmic Game Theory, SS 2024

https://iccl.inf.tu-dresden.de/web/Algorithmic_Game_Theory_(SS2024)

Previously ...

Game trees are used to represent sequential (extensive form) games.
Sequential games give rise to (different) strategic (normal form) games.
In a game tree, a strategy assigns a move to each decision node.
Backward induction can be used to solve sequential games.

The subgame perfect equilibrium of a sequential game coincides with
its backward induction solution.

Geography is a game on graphs for which deciding existence of winning

strategies is PSpace-complete.
g p p AggressV Gz (65'_1 0)
o hs (65,-10)
m (160, 0) Passive— (60, 20)
Restrain el T (160,0) Subgame perfect equilibrium

ho (160, 0) hg (85, 50)

Aggressive/
Pl
2 \ 1y —"s (100,60)
hy (100,60) ERPassivET—, (100, 60)

O (200,0)

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4)

‘Computational

H| C G
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 2 of 26 {"_lf.-—‘_} ic -
DRESDEN Algorithmic Game Theory, SS 2024 G- Logic = Group

Overview

Two-Player Zero-Sum Games

Alpha-Beta Pruning

Heuristics

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 3of 26 E:;?fg_kg::g

DRESDEN Algorithmic Game Theory, SS 2024 [

Two-Player Zero-Sum Games

TECHNISCHE pha-Beta Tree (Lecture 4) G Computational

BR"E‘Q%RES.JT” Compuitationa o annes St Slide 4 of 26 " M Logic -» Group

Zero-Sum Games

A game with players P is zero-sum iff for all outcomes z € Z,) ; ., ui(z) = 0.

Note: Every combinatorial game is zero-sum, but not vice versa.
Examples: Penalties, Rock-Paper-Scissors, Chess, Go

In what follows, we will focus on two-player zero-sum games.

For a two-player zero-sum game (with P = {1, 2}), the payoffs u = (uq, uy)
are fully specified by giving u,, as for every z € Z we have u,(z) = -u1(2).

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) . r'Y "
@ UNIVERSITAT Computational Logic Group // Hannes Strass Slide 5of 26 Eggg?‘g‘;ﬁ‘:

DRESDEN Algorithmic Game Theory, SS 2024

Two-Player Zero-Sum Sequential Games

We thus adapt our definition of sequential games with perfect information:
Definition
A two-player zero-sum sequential game with perfect information has:
1. The set P = {max,min} of two (named) players.
. Atuple (Myax, Mpi,) of sets of moves for each player; M := M., U Mpin.
. A set H of histories, sequences [my, ..., m;] of moves m; € M.
. Asubset Z C H of terminal histories.
. A player function p: H\Z — P (indicating whose turn it is).
. A utility function u.y: Z — R for player max.

Starting with the empty history [|, in each history h = [m,...,my] € H\Z,
player i = p(h) chooses a move m € M, leading to the history [my, ..., my, m].

o U A W N

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r'Y .
UNIVERSITAT Compuitational Logic Group // Hannes Strass Slide 6of 26 L E:ng_"g‘:)’;al
DRESDEN Algorithmic Game Theory, SS 2024 [9 P

Histories and States

Typically, it is more useful to describe a game other than through histories:

Definition

A state-based game model consists of the following:

A set S of states of the game, with initial state Sy € S, and functions:
TURN: S — P saying whose turn it is in a state.

MOVES : S — 2M yielding the legal moves in a state.

RESULT: S x M — S yielding the result of a move in a state (the next state).
IS-TERMINAL: S — {T, L} indicating whether a state is terminal.

UTILITY: S — R giving a terminal state’s payoff for max (else undefined).

Each history leads to exactly one state. ([] leads to So.)
One state may be reached through different histories.

Example: A state in Chess is given by the locations of the pieces on the board.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) :
UNIVERSITAT Comp!ulauona\ Logic Group // Hannes Strass Slide 7 of 26 % Egr?gl:_kg:;al
DRESDEN Algorithmic Game Theory, SS 2024 [9 P

State Spaces and Their Representation

Definition

The state space graph associated with a state-based game model is the
edge-labelled directed graph (V, E) with E C V x M x V, where

V C Sis the C-least set such that Sy € V, and:
if s € V.and m € MoVEs(s), then RESULT(s, m) € V;
(57, m,sy) € E iff RESULT(S1, m) = S>.

The state space contains all states that are reachable from the initial state
by sequences of legal moves.

The state space can be huge: for Chess, there are at least 10%° positions
(states).

We thus typically only search parts of the state space (game tree).

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) .
UNIVERSITAT Comp!ulauona\ Logic Group // Hannes Strass Slide 8of 26 (1’ Computational

DRESDEN Algorithmic Game Theory, SS 2024 [

Logic ~ Group

Representing Games for Search

We will assume that the game tree is not explicitly given, but implicitly
specified by a state-based game model that is parsimoniously represented
(e.g. using a game description language like Stanford University's GDL).

Assumption: Game Representation

A state-based game model can be represented such that:

+ The set S of states is described as an efficiently decidable formal
language.

* The functions TURN, MOVES, RESULT, IS-TERMINAL, and UTILITY can all be
computed efficiently.

+ The full description of the game model has a practical size.

This assumption is especially relevant for games like Chess and Go, whose
state-based models can be formalised (logically or through executable
code), but whose game trees are too large to be explicitly represented.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) :
UNIVERSITAT Comp!ulauona\ Logic Group // Hannes Strass Slide 9 of 26 & Egr?gl:_kg:;al
DRESDEN Algorithmic Game Theory, SS 2024 [9 P

http://ggp.stanford.edu/lectures/week_02.pdf

Search in Game Trees

Recall: For combinatorial games, we used backward induction to solve them.

For (general) zero-sum games, we also have to distinguish different
utilities for the same player: Winning with 9 is better than winning with 1.

This leads to a slightly more general algorithm: minimax search.
Player max maximises their payoff u.y (also called the value of the game).
Player min maximises their payoff u,in = —Unax, thus minimises uUpay.

Each player knows that the other player maximises/minimises and takes
this into account accordingly.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4)

‘Computational

UNIVERSITAT Computational Logic Group // Hannes Strass Slide 10 of 26 T_lf.-—‘_{ ic -
DRESDEN Algorithmic Game Theory, SS 2024 &- Logic = Group

Minimax Tree Search: Example

/A

3
min v
/(3 \ /(2 M K 2 w\
3 12 8 2 4 6 14 5 2
TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 11 of 26 E:r?flf'g&zal
DRESDEN Algorithmic Game Theory, SS 2024 [gic =~ P

Minimax Value of a Game

Definition
For a (state-based model of a) game, the minimax value of a states € S'is

UTILITY(S) if IS-TERMINAL(S),
minimax(s) := 1 max,cmoves(s) MiNiMax(RESULT(s, m)) if TURN(s) = max,
MiN,memovEs(s) MiNiMax(RESULT(s, m)) if TURN(S) = min.

The minimax value of the game is minimax(Sy) for Sp the initial state.

+ The minimax decision at each node is the move leading to the maximal
(resp. minimal) payoff in the next node.

+ This definition of the optimal game value yields optimal responses of
each player given that the respective other player also plays optimally.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) .
UNIVERSITAT Comp!ulauona\ Logic Group // Hannes Strass Slide 12 of 26 % Eg;?gg_kg:;%l

DRESDEN Algorithmic Game Theory, SS 2024 [

Minimax Tree Search: Algorithm

function minimax-search(s: state) { // allows to start search in an arbitrary state s
if TURN(S) = max then { (v, m) := max-value(s) } else { (v, m) := min-value(s) }
return m} // return best move in s

function max-value(s: state) {

if IS-TERMINAL(S) then return (UTILITY(S), null) // base case: terminal state
(v*, m*) := (-oco, null) // initialise current maximum
foreach m € moves(s) do { // try all moves
(v/, m’) := min-value(RESULT(s, m)) // simulate move
if v/ > v* then (v, m*) := (v/,m) } // update current maximum
return (v*, m*) } // return maximum

function min-value(s: state) {
if IS-TERMINAL(S) then return (UTILITY(S), null)
(v*, m*) := (+o0o, null)
foreach m € moves(s) do {
(v/, m") := max-value(RESULT(S, m))
if v/ <v* then (v, m*) := (v/,m) }
return (v*, m*) }

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 13 of 26 E:;?gg_kg&:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Minimax Tree Search: Complexity

For a branching factor of b (maximal number of moves) and a depth of d
(maximal length of histories), minimax search visits O(b?) terminal nodes.

~» Minimax tree search is impractical for complex games.

Chess has a branching factor of about 35 and average game length of about

80 ply (moves of a single player), so running minimax search to the leaves
would need to expand 358 ~ 10723 nodes.

There are at least two possible ways of reducing b

+ Reducing b: Do we really have to try out all possible moves?
~ alpha-beta pruning

* Reducing d: Do we really have to play the game until the end?
~ heuristic evaluation of states

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r'Y "
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 14 of 26 E:gggf‘g';z‘:
DRESDEN Algorithmic Game Theory, SS 2024 [

Alpha-Beta Pruning

TECHNISCHE pha- ree (Lecture 4) o) "
UNIVERSITAT : St Slide 15 of 26 Rt Computational

DRESDEN Algorithmic Ga 0 2. & W Logic = Group

Alpha-Beta Pruning: Example

- AN

3/ AD 2/

14 5 2

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) Q
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 16 of 26 E:nllfu“g:)nal
DRESDEN Algorithmic Game Theory, SS 2024 9! up

Alpha-Beta Tree Search: Algorithm

function alpha-beta-search(s: state) { if TURN(S) = max then
(v, m) := max-value(s, -oo, +o0) else (v, m) := min-value(s, -oco, +o0) ; return m}

function max-value(s: state, a: R, 8: Rioo) {

if IS-TERMINAL(S) then return (UTILITY(S), null) // base case: terminal state
(v*, m*) := (-oco, null) // initialise current maximum
foreach m € moves(s) do { // try all moves
(v/,m’) := min-value(RESULT(s, m), a, 3) // simulate move
if v/ > v* then { (v*, m*) := (V/,m); a:= max(a,Vv*)} // update maximum and a
if v* > B then return (v*, m*) } // prune irrelevant subtree
return (v*, m*) } // return maximum

function min-value(s: state, a: R, B: Raioo) {

if IS-TERMINAL(S) then return (UTILITY(S), null)

(v*, m*) := (+o0o, null)

foreach m € moves(s) do {
(v/, m’) := max-value(RESULT(s, m), a, B)
if v/ <v* then { (v*, m*) .= (V/,m); B:= min(B,v*)}
if v* < a then return (v, m*) }

return (v*, m*) }

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 17 of 26 E:;?gg_kg:’:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Alpha-Beta Tree Search: Complexity

The order in which nodes are expanded matters!
« In the worst case, O(b?) terminal nodes will be visited, even with pruning.

* In the best case, only O(b%) = O(\fbd) terminal nodes will be visited:

max

EEING

o

(Witnessing a winning strategy requires atleastb-1-...-b-1 = b? leaves.)
* However, finding a perfect move ordering amounts to solving the game.
+ In practice, earlier evaluations (history) or expert knowledge can be used.

3 2

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 26 E:;?gg_kg&:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Heuristics

(Lecture 4) ':zi',(:omputoﬁonal

Slide 19 of 26 ¥

TECHNISCHE

St i T FLfegt

Heuristic Evaluation

Recall: There are at least two possible ways of reducing b:

* Reducing b: Do we really have to try out all possible moves?
~ alpha-beta pruning

+ Reducing d: Do we really have to play the game until the end?
~ heuristic evaluation of states

Terminology

A heuristic aims at reducing the search space of a given problem, typically
trading this off for at least one of optimality, completeness, or computation.

Main Idea: Treat non-terminal states as if they were terminal, estimate value.
* Replace function IS-TERMINAL: S — {T, L} by Is-CcUTOFF: SxIN — {T, L},
IS-CUTOFF(S, d) ..."cut off search below state s in search depth d,”
« and function UTILITY: S - R by EVAL: S — R,
EVAL(S) ..."estimate the prospective utility of state s (for player max).”

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) :
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 20 of 26 (L:gnilgl:.f%l:;‘\l‘dl
DRESDEN Algorithmic Game Theory, SS 2024 [9 P

Restricting Depth: Heuristic Minimax Value

Heuristic Function EvAL: Technical Requirements

Foralls € S:
1. If IS-TERMINAL(S), then EVAL(S) = UTILITY(S), otherwise

2. Minses, UTILITY(S) < EVAL(S) < MaXscs, UTILITY(S)
for St := {s € S| IS-TERMINAL(S)}.

* In practice, the heuristic function evAL should be computable efficiently.
* EVAL(S) should strongly correlate with max’s “chances of winning” in s.

Definition
The heuristic minimax value of a state s € S (w.r.t. d, 1IS-CUTOFF, and EVAL) is
EVAL(S) if IS-CUTOFF(S, d),
hmm(s, d) := { maxcmoves) NMM(RESULT(s, m), d + 1) if TURN(S) = max,
MiNmemovess) hNMM(RESULT(s, m), d + 1) if TURN(S) = min.

Heuristic Evaluation Functions

+ Typically require experience with or expert knowledge about the game.
+ Often combine various features f; of the state into one numerical value:

EVAL(S) = w1 - f1(S) *+ ...+ Wp - fm(S)

* Possible features can be:

- Mobility: Measure the number of things a player can do (e.g. number of
moves, number of reachable states within the next n moves, ...).

- Goal proximity: How “close” (similar) is the current state to a final state?

- Material: Count number (or “strength”) of pieces (if applicable and variable).

* Further features may exploit game-specific properties,
e.g. persistence of markings in Tic-Tac-Toe or Connect-Four.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 22 of 26 E:;?gg_kg&:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Heuristic Evaluation Functions: Examples

* Add up “material values” of the player's remaining pieces:
pawn = 1, knight/bishop = 3, rook = 5, queen = 9.

+ Assess board control (centre is better than edges or corners).

* There are 9 possible first moves for X: 1 centre, 4 sides, 4 corners.
* We can e.g. estimate in how many winning final positions they occur:

centre: ﬂzﬁ ﬂz};
corner: ﬂi ﬂfﬁ ﬂz‘;
side: j:‘: X‘Z~X

XXX XX

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 23 of 26 E:g?gg_“g';:‘:
DRESDEN Algorithmic Game Theory, SS 2024 [

Heuristic Alpha-Beta Tree Search: Algorithm

Algorithm:
In the pseudocode on Slide 17, replace the lines mentioning IS-TERMINAL by:
if 1s-cuTOFF(s, d) then return (EVAL(s), null)

and keep track of the search depth d as for the heuristic minimax value.
When to cut off search?
+ At a fixed depth dmax.

+ After afixed time, using iterative deepening and keeping track of best
moves (to also improve move ordering in subsequent iterations).

When not to cut off search?

* Quiescence: Apply heuristic evaluation only to quiescent positions, those
not facing pending moves that would significantly affect the evaluation.

+ Horizon effect: An ultimately unavoidable opponent move is pushed
beyond the horizon by delay tactics and thus seemingly avoided.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 26 E:;?gg_kg&:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Improvements of Alpha-Beta Tree Search

* Move Ordering:
- Static: Use human (expert) knowledge about the game.
- Dynamic: Use iterative deepening and the history heuristic (moves that were
useful in previous search iterations will probably be useful in later ones).
+ Transposition Tables:
- The same game state can be reached by different histories.
- Recognising game states that have been visited before avoids re-searching.
* Variable Depth:
- Strong moves are worth searching more deeply, weak moves (e.g. those
expanded later with good move ordering) less so.
« Endgame Tables:

- Endgames can be completely solved (doing bottom-up search with reverse
moves) whenever the number of positions can be handled in practice.
- The resulting strategies can be put into lookup tables and consulted in search.

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 25 of 26 E:;?gg_kg&:ﬂ
DRESDEN Algorithmic Game Theory, SS 2024 [

Conclusion

Minimax Tree Search can be extended to more than two (say n) players:
« The uTiLITY function returns an n-tuple (v1, ..., vp) of utilities.
+ Every player i only maximises v; when it is their turn to move.

Summary

+ Game trees can be succinctly represented by state-based game models.

+ Minimax Tree Search can be used to solve sequential (two-player
zero-sum) games with perfect information.

+ Alpha-Beta Pruning allows to reduce the search space without
sacrificing solutions.

+ Heuristic Evaluation of states can be used to reduce search depth.
+ Further heuristics may reduce the search space (typically with sacrifices).

TECHNISCHE Playing Games: Alpha-Beta Tree Search (Lecture 4) r) .
UNIVERSITAT Comp!ulauona\ Logic Group // Hannes Strass Slide 26 of 26 ?E Egnilgl:.i%l:;al
DRESDEN Algorithmic Game Theory, SS 2024 [9 P

	Two-Player Zero-Sum Games
	Alpha-Beta Pruning
	Heuristics

