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Previously ...

Prolog Programs

* Prolog programs consist of facts and rules.
* We use Prolog by asking queries to programs.
* Answers to queries can be Boolean (yes/no)...

+ ...0r given by variable assignments.

* Prolog programs are declarative (to a certain extent).

direct(frankfurt, san_francisco).
direct(frankfurt, chicago).
direct(san_francisco, honolulu).
direct(honolulu,maui).

| ?- connection(frankfurt, maui).
yes

:- direct(X, Y).
:- direct(X, Z),
connection(Z, Y).

connection(X, Y)
connection(X, Y)

| ?- connection(frankfurt, X).
X = san_francisco
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The Need to Perform Unification
p(f(X),g(f(c),X)).

U
\%

f(f(w)),
f(c)

| ?- p(U,g(c,F(W))).
no

U= f(F(F(F(F(F(F(F(F(F(F(F(F(CE(F(F(F(F(F(F(F(F(RE(F(R(F(T. ..
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Ranked Alphabets and Terms
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Ranked Alphabets and Term Universes

+ Avariable is a first-order predicate logic variable

+ Aranked alphabet is a finite set 2 of symbols; to every symbol a natural
number n > O (its arity or rank) is assigned
(2 denotes the subset of X with symbols of arity n)

+ Parentheses, commas

« For V a set of variables, F a ranked alphabet of function symbols:
The term universe TUry (over F and V) is the smallest set with
1. VCTUry,
2. iff € FO, thenf € TUgy;
3. iffe FMwithn >1andty,...,ty € TUry, then f(ty, ..., tn) € TUgy.
The elements of TUgy are called terms.
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Ground Terms and Herbrand Universes

« Var(t) := setofvariablesint
« tgroundterm < \Var(t)=10

* Franked alphabet of function symbols:
Herbrand universe HUr (over F) <= TUgyg

* ssub-termoft < termsis sub-string of t (equivalently: sub-tree)
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Substitutions
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Substitutions

Definition
Let V be a set of variables, X C V be finite, and F be a ranked alphabet.
A substitution is a function 8 : X — TUgy with x # 0(x) for every x € X.

We use the notation 8 = {x;/t;, ..., Xxn/ty} to express that
1. X={x1,...,xn}, and
2. 6(x;) = t; for every x; € X.

* empty substitutione <= n=20

+ 0 ground substitution <= t;,...,t, ground terms

+ 0O pure variable substitution < t,...,t, variables
* Brenaming = {t1,...,th} = {x1,...,Xn}
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Substitutions (2)

Consider a substitution 8 = {x1/ty, ..., Xp/th}.

Dom(8) := {x1,...,Xn}
Range(0) := {t1, ..., tn}
Ran(0) := Var(Range(0))
Var(6) := Dom(6) U Ran(6)

Oly :={y/t|yltecBandy Y} forevery Y C {x1,...,xn}
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Applying Substitutions
Definition

Let t be a term and 6 be a substitution.

The application of 8 to t is the term t8 obtained as follows:
0 if Dom(6),

1. If t = x is a variable, then t8 = x0 := 0 ifxe f)m( )
X otherwise.

2. Ift = c € 5@ is a constant symbol, then t6 = ¢ := c.

3. Ift=f(ty,...,tn)foranf € I then td = f(t, ..., t2)0 := f(t10, ..., tp0).

* tisaninstance of s < thereis a substitution 8 with s6 =t
+ sismore general thant < tisaninstance of s
+ tisavariantofs < thereisarenaming 6 with s =t

Lemma 2.5
Term t is a variant of term s iff t is an instance of s and s is an instance of t.
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Composition

Definition

Let 8 and n be substitutions. The composition 6n is defined by setting
OnKx) := (xO)n

for each variable x.

Intuition: First apply 8, then apply n.

Lemma

Then 6n can be constructed from the sequence
X160, ..., Xn/ta, Y1/S1, ..., Ym/Sm
1. by removing all bindings x;/t;n where x; = tin
and all bindings y;/s; where y; € {x1,...,Xn}, and
2. then forming a substitution from the resulting sequence.
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Comparing Substitutions

Definition
Let 8 and t be substitutions.
0 is more general than t <= Tt = 6n for some substitution n.

Examples

6 = {x/y} is more general than t = {x/a, y/a} (with n = {y/a})
6 = {x/y} is not more general than T = {x/a}

(since for every n with t = 6n:

xla e {xly}ln = ylaen = y e Dom(6n)= Dom(t))

0 is more general than 6 for every 6, via 8 = B¢

8 = {x/y} is more general than t = {y/x} (with n = 1),

and tis more general than 8 (with n = 6), but 8 # t.

Logic = Group
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Unifiers and Most General Unifiers
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Unifiers

Definition

Let s and t be terms.

¢ Substitution 8 is a unifier of termssandt < sf = t6.

e Termss andt are unifiable < a unifier of s and t exists.

+ Substitution 6 is the most general unifier (Imgu) of sandt <«
@ is a unifier of s and t that is more general than all unifiers of s and t.

Definition

Letsq,...,Sn t1,...,ty be terms, lets; = t; denote the (ordered) pair (s;, t;) and
IetE: {S‘] = t'],...,Sn = tn}.

+ Substitution 8 is a unifier of £ <= s5;60 = t;0 for everyi € [1,n].

+ @ is the most general unifier (mgu) of £ «—
@ is a unifier of £ that is more general than all unifiers of E.
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Unifying Sets of Pairs of Terms
Definition

+ Sets E and E’ of pairs of terms are equivalent
<= E and E’ have the same set of unifiers.

* Theset {x; =tj,...,xn = ty} of pairs is solved

= X;,X; pairwise distinct variables (1 <7 +#j < n)

and no x; occurs int; (1 </,j < n).

Lemma
IfE={x; =t1,...,Xn = ty} is solved, then 6 = {x41/tq, ..., Xp/ty} is an mgu of E.
Proof.
1. x,0 =t =t6
2. for every unifier n of E: x;n = tin = x;0n for every i € [1,n] and xn = x6n

for every x ¢ {x1,...,xn}; thus n = 6n. O
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Quiz: Most General Unifiers

Consider the following set of pairs:

E={flay)=x gy) =g}
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Martelli-Montanari Algorithm

TECHNISCHE Unification (Lt . )
ato Slide 18 of 31 & Computational

UNIVERSITAT Comg Group // Han i
DRESDEN Foundations of Logic Programming, W =9 Logic = Group




Martelli-Montanari Algorithm

Let £ be a set of pairs of terms.
Martelli-Montanari Algorithm

As long as possible, nondeterministically choose a pair of a form below and

perform the associated action:

(1) f(s1,...,80) =f(tq,...,tn)
(2) f(s1,....5n)=g(ty,....tm)wheref £ g
3) x=x
(4) t=xwheretisnot a variable
(5) x =twherex ¢ Var(t) and
X occurs in some other pair
(6) x=twherex € Var(t)and x #t

replacebys; =ty,...,sp =ty

halt with failure

delete the pair

replace by x =t

perform substitution {x/t}
on all other pairs

halt with failure

Terminate with success when no action can be performed.

A u n
(2) = “clash
A ”n H
(6) = “occur check”-failure
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Martelli-Montanari (Theorem)

Theorem

If the original set E has a unifier, then the algorithm successfully terminates
and produces a solved set £’ that is equivalent to E;

otherwise the algorithm terminates with failure.

Corollary: In case of success, E’ determines an mgu of E.
Proof Steps

1. Prove that the algorithm terminates.
2. Prove that each action replaces the set of pairs by an equivalent one.

3. Prove that if the algorithm terminates successfully, then the final set of
pairs is solved.

4. Prove that if the algorithm terminates with failure, then the set of pairs at
the moment of failure does not have a unifier.
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Relations

Rrelationonaset A <= RCAxA
R reflexive < (a0,0) € Rforallaec A
Rirreflexive < (a0,a0) ¢ Rforallac A
R antisymmetric < (0,b) € Rand (b,a) € Rimpliesa=b
R transitive < (a,b) € Rand (b,c) € Rimplies (a,¢) € R
CNVERS AT Comr ot o oS e Coae o



Well-founded Order(ing)s

* (A, C) partial order

<= L reflexive, antisymmetric, and transitive relation on A
* (A, ) strict partial order

<= [ irreflexive and transitive relation on A
« strict partial order (A, =) well-founded

<= thereis no infinite descending chain

...CaxC o Cag
of elements ag,a1,05,... € A

* (N, <), (Z, <), (P({1,2,3}), ) partial orders;

* (N,<),(Z,<), (P({1,2,3}), Q) strict partial orders;
* (N,<), (P({1,2,3}), ) are well-founded,

* whereas (Z, <) is not.

TECHNISCHE Unification (Lecture 2) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 22 of 31 E:g;‘gg_“g';:‘:
DRESDEN Foundations of Logic Programming, WS 2023/24 [



Lexicographic Ordering

The lexicographic ordering <, (n > 1) is defined inductively on the set N"
of n-tuples of natural numbers:

(a1) <1 (b1) = a1 <by
and
(a1l~~-,an+1)‘<n+1 (b1,---,bn+1) = (01,--~:an) <n (b1,--~:bn)
or (ay,...,an) = (b1,...,bn)and ap+1 < bp+q

Forn = 3,we have (3,12,7) <3 (4,2,1) and (8,4, 2) <3 (8,4, 3).

For every n € N, the pair (N”, <,) is a well-founded strict partial order.
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Proof Step 1 (1)

The Martelli-Montanari Algorithm terminates.

Variable x is solved in £
= x =t € E, and this is the only occurrence of x in E.

uns(E) := number of variables in E that are unsolved
Ifun(E) number of occurrences of function symbols
in the first (left) components of pairs in £
card(E) := number of pairsin £

Consider £ = {f(x) = f(y),y = a}. Then uns(E) = 2, Ifun(E) = 1, card(E) = 2.
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Proof Step 1 (2)

The Martelli-Montanari Algorithm terminates.
Proof.

Each successful action reduces (uns(E), Ifun(E), card(E)) wrt. <s3.
For every u,/,c € N the reduction is as follows:

(1) (ulc)y >3 (u-kI=-1,c+n-1) forsomek [0,n]

3) (W, lc) >3 (u-klc=1) forsome k € {0, 1}
4) (u,l,c) >3 (WU-ki,I-ky,0) for some k; € {0,1} and k; > 1
5) (ulc) >3 (W=1,1+k ) for some k > 1
Termination is now a consequence of (N3, <3) being well-founded. O
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Proof Step 2

Each action replaces the set of pairs by an equivalent one.

Proof.
This is obviously true for actions (1), (3), and (4).
Regarding action (5), consider £ U {x = t} and E{x/t} U {x = t}. Then:
6 is a unifier of EU {x = t}
iff Bisaunifierof E and x8=1t6
iff @is aunifier of E{x/t} and x8=1t6

iff  @is aunifier of E{x/t} U {x =t} O
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Proof Step 3

If the algorithm successfully terminates, then the final set of pairs is solved.

Proof.

+ If the algorithm successfully terminates, then the actions (1), (2), and (4)
do not apply, so each pair in E is of the form x = t with x being a variable.

+ Moreover, actions (3), (5), and (6) do not apply, so the variables in the first
components of all pairs in E are pairwise disjoint and do not occur in the
second component of a pairin E. O
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Proof Step 4
R e

If the algorithm terminates with failure, then the set of pairs at the moment
of failure does not have a unifier.

Proof.

+ |f the failure results from action (2), then some

f(s1,....80) = gty ..., tm)

occurs in E (where f + g), and for no substitution 8 we have
f(s1,...,5n)8 =g(ty,...,tm)0.
+ If the failure results by action (6), then some x = t (where x is a proper

subterm of t) occurs in E, and for no substitution 8 we have x8 = t6. O
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Unifiers may be Exponential
Er = {f(x1) = f(g(x0, Xo))}
61 = {x1/8(x0, X0)}

E; = {f(x1,x2) = f(g(x0, X0), &(X1, X1))}
6, = 61 U {x2/g(g(x0, X0), &(X0. X0))}

E3 = {f(x1,X2,Xx3) = f(g(x0, X0), &(X1, X1), &(X2, X2)) }
03 = 6, U {x3/g(g(g(x0, X0), &(X0, X0)), &(&(X0, X0), &(X0, X0))) }

()
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MM Algorithm without Occur Check

* In most PROLOG systems the occur check does not apply, for the sake of
efficiency.

*+ As for the Martelli-Montanari algorithm this amounts to omitting the
occur check in action (5) and to drop action (6).

+ Then the algorithm terminates with success, e.g., for {x = f(x)}, despite x
and f(x) not being unifiable.

* Moreover, the algorithm may not terminate at all:

{x =fx), y = gx)}
{x =f(x), y = g(fx))}
{x =1, y = gf(fexM}

@
<

$

—
ul
~

$
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Conclusion
Summary

+ Asubstitution replaces variables by terms, and is applied to terms.
+ A unifier is a substitution that equates two terms when applied to them.

+ The Martelli-Montanari Algorithm decides if a set of pairs of terms has
a unifier and even outputs a (most general) unifier if one exists.

+ The algorithm is correct (i.e., sound and complete) and terminates.

Suggested action points:

+ Try out the Martelli-Montanari Algorithm on a few examples by hand.
+ Verify your results using a Prolog system (try to turn the occur check on).

+ Come up with examples how the different values for parameters k, ki,
and k; in proof step 1 could be realised.
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