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Abstract

Recently, the field of knowledge representation is drawing a
lot of inspiration from database theory. In particular, in the
area of description logics and ontology languages, interest has
shifted from satisfiability checking to query answering, with
various query notions adopted from databases, like (unions
of) conjunctive queries or different kinds of path queries.
Likewise, the finite model semantics is being established as
a viable and interesting alternative to the traditional seman-
tics based on unrestricted models.

In this paper, we investigate diverse database-inspired reason-
ing problems for very expressive description logics (all fea-
turing the worrisome trias of inverses, counting, and nomi-
nals) which have in common that role paths of unbounded
length can be described (in the knowledge base or of the
query), leading to a certain non-locality of the reasoning
problem. We show that for all the cases considered, unde-
cidability can be established by very similar means.

Most notably, we show undecidability of finite entailment of
unions of conjunctive queries for a fragment of SHOZQ (the
logic underlying the OWL DL ontology language), and un-
decidability of finite entailment of conjunctive queries for a
fragment of SROZQ (the logical basis of the more recent
and popular OWL 2 DL standard).

Introduction

Logic-based knowledge representation and reasoning is a
prospering discipline that currently sees a lot of practi-
cal uptake in areas where intelligent information process-
ing is key. One of the major transition paths to practice
is through ontological specifications, using well-established
and widely accepted standardized ontology languages like
OWL (McGuinness and van Harmelen 10 February 2004)
or its newer, refined version OWL 2 (OWL Working Group
27 October 2009). Logically, these languages are based on
very expressive members of the family of description log-
ics (DLs) (Baader et al. 2007; Rudolph 2011; Krotzsch,
Simancik, and Horrocks 2012).

In the spirit of mathematical logic, the central reasoning
problem traditionally considered in DL research was satisfi-
ability of knowledge bases (and other problems straightfor-
wardly reducible to it — so called standard reasoning tasks),
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employing the common model-theoretic semantics adopted
from first-order logic. Over the past two decades, fostered by
the growing practical impact of DL research, the scope of in-
terest has widened to include new types of reasoning prob-
lems. Thereby, not very surprisingly, the area of databases
has been an important source of inspiration. In fact, the fields
of logic-based knowledge representation and reasoning have
been significantly converging over the past years and seen a
lot of cross-fertilization (cf. Rudolph 2014).

On the formal side, two major conceptual contributions
of database theory can be identified: First, instead of focus-
ing on satisfiability checks, the central reasoning problem
in databases is query answering. Thereby the formalism to
express queries may be different from the language used to
specify the queried knowledge, such that an immediate re-
duction to satisfiability checking is not possible. Second,
since databases are necessarily finite, the semantics com-
monly employed in database theory is based on finite models
only. As we will see, this change of semantics may make a
big difference regarding satisfiability and query answering.

Query Answering As opposed to satisfiability checking,
evaluating queries in the presence of a background knowl-
edge base (referred to as ontology-based query answering)
allows us to express more complex information needs. A
very basic, yet prominent query formalism often encoun-
tered in databases and nowadays in description logics is that
of conjunctive queries (CQs) corresponding to the SELECT-
PROJECT-JOIN fragment of SQL (Chandra and Merlin
1977) and unions of conjunctive queries (UCQs). Answering
conjunctive queries over DL knowledge bases has first been
mentioned as a topic in the 1990s (Levy and Rousset 1996)
and since then investigated for a great variety of description
logic languages. The most expressive DLs with inverses,
counting, and nominals where CQ and UCQ entailment!
are known to be decidable are ALCHOZQb (Rudolph
and Glimm 2010) and Horn-SROZQ (Ortiz, Rudolph, and
Simkus 2011).

In the context of semi-structured databases, other query
formalisms have been developed which allow to express
information needs related to reachability, so-called path

'The computation problem of query answering is polynomially
reducible to the decision problem of (Boolean) query entailment,
so we focus on the latter in the following.



queries or navigational queries (Buneman 1997). Beyond
expressing more elaborate information needs, such queries
can also be used to internalize ontological knowledge into
the query to a certain degree (Bischoff et al. 2014). Over
the past decade, a variety of results regarding answering
of (diverse variants of) path queries over DL knowledge
bases have been established (Calvanese, Eiter, and Ortiz
2007; 2009; Bienvenu et al. 2014) the most popular classes
of queries currently considered are two-way regular path
queries (2RPQs) and (unions of) conjunctive two-way reg-
ular path queries ((U)C2RPQs). The most expressive DL
fragment with inverses, counting, and nominals combined
where a UC2RPQs answering is known to be decidable is
again Horn-SROZQ (Ortiz, Rudolph, and Simkus 2011).

Current research progresses to even more expressive
query languages most of which can be seen as fragments
of Datalog (Rudolph and Krétzsch 2013; Bourhis, Krotzsch,
and Rudolph 2014).

Finite Satisfiability As stated above, the finite model se-
mantics, while very popular in the database domain, has his-
torically received little attention from DL researchers. This
may be partially due to the fact, that many of the less ex-
pressive DLs (up to SROZ) have the finite model property,
where the two satisfiability notions (for finite vs. arbitrary
models) coincide. This property, however is lost as soon as
inverses and counting are involved. First investigations into
finite satisfiability of such DLs go back to the last millenium
(Calvanese 1996) but spawned only little follow-up work
(Lutz, Sattler, and Tendera 2005; Ibanez-Garcia, Lutz, and
Schneider 2014). It was only in 2008 when finite satisfia-
bility for SROZQ (and all its sublogics) was shown to be
decidable (Kazakov 2008), exploiting a result on the finite
satisfiability for the counting two-variable fragment of first-
order logic (Pratt-Hartmann 2005).

Finite Query Entailment Query entailment under the fi-
nite model semantics (short: finite query entailment) has so
far received very little attention from the DL community.
Note that the finite model property does not help here. The
equivalent notion, holding when query entailment and fi-
nite query entailment coincide, is called finite controllabil-
ity. Luckily, very recent results on the guarded fragment of
first order logic (Bardny, Gottlob, and Otto 2014) which ex-
tend previous work on finite controllability in databases un-
der the open-world assumption (Rosati 2011) entail that for
DLs up to ALCHOLb, answering CQs and UCQs is finitely
controllable, therefore for all those logics, decidability of fi-
nite (U)CQ entailment follows from decidability of (U)CQ
entailment of the more expressive ALCHOZQb (Rudolph
and Glimm 2010). For the case where the underlying logic
has counting, or role chains can be described in the knowl-
edge base or the query, results on finite query entailment are
very scarce, the only DL not subsumed by ALCHOZb for
which finite UCQ entailment is known to be decidable is
Horn-ALC FT (Ibanez-Garcia, Lutz, and Schneider 2014).

The contribution of this paper consists in a sequence of
undecidability results regarding database-inspired reasoning
problems which are established by very similar construc-

tions encoding the classical undecidable Post Correspon-
dence Problem. In particular, we prove undecidability of

1. finite UCQ entailment from SHOZF KBs,
finite CQ entailment from SROZF~ KBs,
finite 2RPQ entailment from ALCOZF KBs,
2RPQ entailment from ALCOZF,; KBs,
satisfiability of ALCOZF ,req KBs, and
2wRPQ entailment from ALCOZF KBs.

The last two reasoning problems feature two-way w-
regular path expressions (in the logic vs. in the query lan-
guage) used to describe infinite paths. We will draw connec-
tions from this novel descriptive feature to existing logics.

We will treat the first reasoning problem in great detail,
with necessary preliminaries, examples and full proofs. For
the later problems, we will introduce preliminaries in the
place needed and sketch the necessary changes that need to
be made to the construction.

AN

Preliminaries
The Description Logic SHOZF

We now introduce the description logic SHOZF, a sublogic
of the prominent description logics SHOZQ (Horrocks
and Sattler 2007) and SROZQ (Horrocks, Kutz, and Sat-
tler 2006) underlying the OWL DL and the OWL 2 DL
standards, respectively (McGuinness and van Harmelen 10
February 2004; OWL Working Group 27 October 2009).

As signature of SHOZJF we have countably infinite dis-
joint sets N¢o, Nr and Ny of concept names, role names
and individual names respectively. Further the set Np is
partitioned into two sets namely, Ry and R, of simple and
non-simple roles respectively. The set R of SHOZF roles
contains r and 7~ (the inverse of r) for every » € Npg.

Further, we define a function Inv on roles such that
Inv(r) = r— if r is a role name and Inv(r) = sif r = s™.

The set of SHOZF concepts (or simply concepts) is the
smallest set satisfying the following properties:

e every concept name A € N¢ is a concept;

e if C, D are concepts, r is arole, a1, . . ., a,, are individual
names and n is a non-negative integer, then the following
are concepts:

T (top concept)
1 (bottom concept)
-C (negation)
cnbD (intersection)
cub (union)
vr.C (universal quantification)
Ir.C (existential quantification)
{a1,...,a,} (nominals / one-of)

A SHOILF axiom is an expression of one the following
forms:

1. C C D, where C and D are SHOZF concepts,

2. s C r, where s and r are SHOZF roles, and if s € R,
then also r € R,



| Axiom o | 7 = o, if

cchD |ctcp?

sCr st Crl

Fun(s) (8,01), (9,02) € sT implies 61 = 65
for all 6, 81,9, € AT

Trans(r) ((51, (52), (62, (53) ert implies ((517 (53) ert
for all 81, 02, 05 € AT

Table 1: Semantics of SHOZF axioms

3. Fun(s) (functionality) for some s € Ry,
4. Trans(r) (transitivity) for some r € Ry.

Axioms of the first form are called general concept inclusion
axioms (GCls), axioms of the second form are called role
inclusions, axioms of the third type are called functionality
axioms, and axioms of the third form are called transitivity
axioms. As usual, we write C' = D to assert both C' C D and
D C C. A SHOLF knowledge base is a set of SHOZF
axioms.?

The semantics of SHOZF is defined in the stan-
dard model-theoretic way. A SHOZF interpretation Z =
(AT, .T) is composed of a non-empty set AZ, called the do-
main of T and a mapping function -~ such that:

e AT C A7 for every concept name A;
o 1 C AT x AZ for every role name r € Ng;
e a € AZ for every individual name a.

The mapping -Z is extended to roles and concepts as follows:
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N
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= {(5’ 6/) ‘ (6/’6) € TI}
TI — AI
0
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N
|

(-O)F = AT\ C?

= CcTnD*

(CuD)t = ctuD*
(vr.0)t = {6 € AT |V§.(5,0") et — y € CT}
@r.C)E = {5 € AT|35.(5,6") e rT Ay € CT}

{al,...,an}I = {a%,...,a%

Q
]
-l

<

\

where C, D are concepts and r is a role.

Given an axiom «, we say the an interpretation Z satisfies
a, written Z = «, if it satisfies the corresponding condition
given in Table 1. Similarly, Z satisfies a SHOZJF knowledge
base I, written Z |= K, if it satisfies all the axioms in C; we
then call Z a model of K. A knowledge base is said to be
consistent or satisfiable if it has a model.

(Unions of) Conjunctive Queries

We next formally introduce (unions of) conjunctive queries.
Assume a SHOLF signature as above and let Ny be a
countably infinite set of variables disjoint from N¢, Ny, and

2We omit the typical subdivision of knowledge bases into
ABox, TBox, and RBox, as it is not needed for our line of argu-
mentation.

Ny. A termtis an element from Ny U Ny7. Let A € N be a
concept name, r € Ny arole name, and ¢, ¢’ terms. An atom
is an expression A(t) or r(t,t') and we refer to these two
types of atoms as concept atoms and role atoms respectively.
A conjunctive query (CQ) is a non-empty set of atoms.

Let T = (A%, -T) be an interpretation. A total function 7
from the terms of a CQ ¢ to A is an evaluation if w(a) = a*
for each individual name a occurring in g. For A(t),r(¢,t")
atoms, we write
o T =" A(t)if m(t) € AT,

o T E"r(t,t')if (n(t),n(t)) € rL.

If, for an evaluation w, Z =" At for all atoms At € ¢, we
write Z =" q. We say that Z satisfies q and write Z |= ¢ if
there exists an evaluation 7 such that Z =" ¢. We call such
am amatch for ¢ in Z.

Let K be a knowledge base and ¢ a conjunctive query. If
7T | K implies 7 = ¢, we say that K entails q and write
K Eq.

The query entailment problem is defined as follows: given
a knowledge base K and a query ¢, decide whether K = g.

A union of conjunctive queries (UCQ) is a finite set
Q={q,-.-,qn} of CQs. Some interpretation Z satisfies @)
(written: Z = Q) if Z it satisfies one of ¢y, . .., g,. We say
that some knowledge base K entails () and write K |= Q if
7 = K implies 7 = Q.

Finite Model Reasoning

Above we introduced the standard semantics for satisfiabil-
ity and entailment of (unions of) conjunctive queries in de-
scription logic. This paper, however, also addresses reason-
ing under the finite-model semantics, which is a prominent
(or even the standard) setting in database theory. Given the
current convergence of the fields of knowledge representa-
tion and database theory, research into finite-model reason-
ing in description logics has intensified lately.

Definition 1 (Finite Model Semantics). A knowledge base
IC is said to be finitely satisfiable if it has a finite model, i.e.,
there exists an interpretation T = (AT, ) with T = K
and AT finite. Likewise we say K finitely entails a con-
Jjunctive query q (or a union of conjunctive queries QQ) and
write IC fﬁn q (K Ean Q) if for every interpretation
T = (A%, D) with T |= K and finite AT holds T = q
TEQ):

It is obvious that finite satisfiability implies satisfiability,
while the other direction holds only if the underlying logic
has the finite model property. Likewise, entailment implies
finite entailment but not vice versa.

Example 2. Consider the knowledge base K1 consisting of
the following axioms:

Fun(r™)
T C T
{a} T =3r.T.

We find that K1 is satisfiable (witnessed by the interpretation
(N,{a — 0,7 +— succ}) ) but not finitely satisfiable (since
the sum of r-indegrees and the sum of r-outdegrees cannot
match in a finite model).
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Figure 1: Solution model for the PCP instance and solution sequence described in Example 4.

In a similar way, the SHOZLF knowledge base Ko con-
taining the axioms

T C T
r &
Trans(r’)

does not entail the CQ {r'(x, z)} (witnessed by the interpre-
tation (N, {r — sucec,v’ — <}) ), but Ky =qn {r'(z,2)}.

The Post Correspondence Problem

We will establish our undecidability result by a reduction
from the well-known Post Correspondence Problem (Post
1946) defined as follows:

Definition 3 (Post Correspondence Problem). Ler P
{(91,91)s -, (gu> g,,) } be an arbitrary finite set of pairs of
non-empty strings over the alphabet {a,b}. A nonempty fi-
nite sequence iy, . . . , iy of natural numbers from {1, ... u}
is called a solution sequence of P if g;, -+~ gi,, = gi, =~ 9, -
The Post Correspondence Problem (short: PCP) requires to
determine if there exists a solution sequence for a given P.

Example 4. Let P = {(91,91), (92, 95), (g3, g5)} with

e g =0b and g} = bbb,

e go =ab and g = a,

e g3 =0bbba and g}=a.

Then 2,1, 1,3 is a solution sequence since

92 91 91 g3

= (ab)(b)(b)(bbba)
= abbbbbba
= (a)(bbb)(bbb)(a)

95 91 91 953
Therefore the answer to the PCP instance P is “yes”.

Theorem 5 (Post, 1946). The Post Correspondence Prob-
lem is undecidable.

Undecidability of finite UCQ Entailment in
SHOLF

We are now ready to establish our first undecidability result.
To this end, we will for a given instance of the PCP estab-
lish a SHOZF knowledge base and a union of conjunctive
queries such that every model of the knowledge base not
satisfying the UCQ (also called a counter-model) encodes
a solution to the problem instance, and, conversely, every
solution to the problem instance gives rise to such a counter-
model.

Solution Models

We first formally define in which way the counter-models
are supposed to encode solutions to the provided PCP in-
stance.

Definition 6 (Solution Model). Given a PCP instance P =

{(91,91): - (9u,9,)}, an interpretation T = (AT, .T) is

called a solution model for P if there is a solution sequence

i1,...,0n of P such that for w = g;, -~ gi, = 9i, -G >

the following hold:

AT = Prefixes(w) = {v | w = vv’,v’" € {a,b}*}

start? =€

endt = w

Lt = {v|va € AT}

LI ={v|vbe AT}

New” = {e} U{gi, ---9;, | 1L <€ <n}

. Neu/Iz{e}U{ggl-“gg/Z |1 <2< n}

d NewkI = {gh o Gigg | ig=Fk1<(< TL}

o New," ={g} g, , |ie=k1<t<n}

e next? = {(v,vc) | ¢ € {a,b},v,vc € AT}

o corr’ ={(e,)} U{(9i, - 9irr 9}, - 9i,) | 1 S €<}
Thereby, start and end are two individual names, L, Ly,

Vi ! /
New, New', Newi, New, ... New,, Newu, are concept
names and next and corr are role names.

Figure 1 displays a solution model for the PCP instance P
and solution sequence presented in Example 4.

Axiomatization of Solution Models

The purpose of the subsequently defined knowledge base Kp
is to enforce that all its finite models that do not satisfy a
certain UCQ must be isomorphic to some solution model of
P. We now introduce the axioms bit by bit and explain their
purpose. First, we stipulate that the starting and the ending
element do not coincide (and thereby the word encoded by
the solution model is nonempty).

{start} M{end} C L (1)

Next, we enforce that every but the ending element has an
outgoing nezt role, and that every but the starting element
has an incoming such role.

—{end}
—{start}

dnext. T
dnext™. T

2
3)



Also, we make sure that there is no more than one out-
going and no more than one incoming next role for every
element.

Fun(next) “
Fun(next™) )

Now we ensure that every domain element except end?” is
labeled with exactly one of L, or Ly.

—{end} = L,UL, (6)
L,NL, C 1 (N

Next, we describe “marker concepts” for the elements
at the boundaries of the concatenated words (two versions
for the two different concatenations). Also, we make sure
that at each such boundary that is not the ending element,
a choice is made regarding which of the u possible words
comes next, and we implement this choice. Thereby, for a
word g = ¢1---c¢ we let Iy := L., M 3next.(-New N
L, M3next.(-New... L., M3nexrt. New ...)) and I} :=
L, M 3next.(~New' M L., N Inext.(~New' M ... L, I
Inext.New' . ..)).

{start} T New N New' (8)
Newn—{end} = New;U...U New, ©)
New; M New; C L 1<i<i<p (10)
New'M—{end} = New)U...U New, (11)
New; M New;, T L 1<i<j<up (12
New, C I, 1<k<upu (13)

New), T I 1<k<p (14

We now turn to the corr role which is supposed to help
synchronizing the two concatenation schemes. To this end,
corr is supposed to connect corresponding word boundaries
of one scheme with those of the other. We let corr connect
exactly the New elements with New’ elements and make
sure that this connection is a bijection.

New = dcorr.T (15)
New' = ZFecorr™.T (16)
Fun(corr) (17)
Fun(corr™) (18)

Also, we require that at corresponding word boundaries of

the two schemes, the corresponding words are to be chosen.

Newy, T Jcorr.New), (19)

New), T Jcorr™.Newy, (20)

Last, we use a role inclusion and a transitivity axiom to

introduce and describe an auxiliary role: the word role spans
over chains of consecutive next roles.

next C  word 21

Trans(word) (22)

Lastly but importantly, we define conjunctive queries

which are supposed to detect “errors” in a model of the
knowledge base defined so far. The CQ q; = {word(x,x)}

is supposed to detect looping next-chains (which
must not exist in a solution model) and the CQ q» =
{corr(z1,xa), word(xq, x3), corr(xy, x3), word(xs,x1)}
intuitively encodes the phenomenon of two “crossing” corr
relationships, which also are not allowed to occur in a
solution model.

Correctness of the Reduction

After presenting the knowledge base and the queries, we will
now formally prove the correspondence between the PCS
and non-entailment. Thereby, the introduced notion of solu-
tion models will come in handy.

Lemma 7. Let P be a PCP instance, and let T be a cor-
responding solution model. Then I can be extended into a

model T' of Kp such that T' = {q1, q2}-

Proof. Let 7' be defined by extending Z from Defini-
tion 6 by letting word® = {(v,v') | v = w’ v €
{a,b}*,v,v" € AT} Thenitis straightforward to check that
T’ is a model of Kp and does not satisfy q; nor qs. O

Lemma 8. Let P be a PCP. Then every finite model T of Kp
with T [~ {q1, q2} is isomorphic to a solution model of P.

Proof. Let T = (AT, .T) with A7 finite as well as Z = Kp
and Z }~ {q1,9q2}-

We first show that every such model must be a finite chain
of elements connected by next roles starting with start?
and ending with end?”.

First we label some of the elements of AZ by natural num-
bers as follows: we label start® with 0, the (thanks to Ax-
iom 2 existing and thanks to Axiom 4 uniquely determined)
next-successor of start? with 1. In case the 1-labelled ele-
ment is not end”, we label the (again existing and uniquely
determined) next-successor of 1 by 2 and so forth. Due to
Axiom 5, no element can get assigned two different num-
bers. The only way the labeling procedure can stop is when
end” is labeled. The procedure has to stop since the label-
ing is injective and the domain finite. Therefore there must
be a chain of next roles connecting start’ with end”. We
now show that no elements outside this chain exists. Toward
a contradiction, let Z~ be obtained from Z by removing all
labeled elements. If we see Z~ as finite directed graph with
edge relation next”, we find that every vertex has indegree
and outdegree 1. Therefore every element § of Z— must lie
on a directed circle, causing q; to be satisfied, contradicting
our assumption.

Moreover, every element on that chain except end? is ei-
therin LZ orin LE.

This finding allows us to rename the elements of the in-
terpretation into words from {a,b}*: to find the word for
some domain element § we start from start” and follow the
next chain and concatenate all letters ¢ found in the L. la-
bels of the traversed elements for all elements before & (but
excluding ¢ itself). After this renaming, the considered in-
terpretation is identical to a solution model, as we continue
to show now.
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Figure 2: Model for the knowledge base Kps derived from the PCP instance P’ described in Example 9. For better readability,
the word role has not been drawn, it is defined to hold between any two individuals connected by a directed chain of next
roles. Note that this model is not a solution model. The provided evaluation 7 witnesses that the query qo = {corr(xy,z2),
word(xa, x3), corr(ry, x3), word(ry,x1)} is satisfied in that model.

The prefix-order on the elements induces a linear order on
both New” and New”. Moreover New” \ {end®} is parti-
tioned into the sets NewqZ, ..., New#I due to Axioms 9
and 10 and New'” \ {end®} is partitioned into the sets
,New;LI due to Axioms 11 and 12. Thanks to

Axioms 15 — 18, corr is a bijection between New? and

New'Z. Moreover, Axioms 19 and 20 make sure that corr
only connects corresponding partitions.

/I
New| ...

Furthermore, Axiom 13 ensures that every element
marked with some Newy, starts a chain of nezts encoding
the word g, such that New holds for the last element of that
chain but for none of the intermediate elements. Similarly,
due to Axiom 13, every New?C element starts such a chain
corresponding to g;..

Thereby, we have established that the word encoded by
the chain from start” to end” can be represented as con-
catenation of words from g1, ..., g, but also of words from
g1s- - -» g, With corr being a partition-faithful bijection, we
even know that the numbers of words used for the two con-
catenation schemes must be the same, and, more specifically
that for every ¢ € {1,... u} the number of occurrences of g;
in the first concatenation must be equal to the number of oc-
currences of g/ in the second concatenation.

To really ensure that the concatenations are synchronous
in the sense required to constitute a solution model, we fi-
nally need to show that the corr role indeed connects the first
New-element (regarding the order introduced above) with
the first New’-element, the second with the second, and so
forth. Toward a contradiction, suppose it does not, i.e., there
are Kk # k' such that corr connects the kth New-element
(let us call it d;) with the x'th New'-element (denoted &/).
Since corr is a bijection between New?® and New'” , there
must be numbers ¢ # ' where corr connects the tth New-
element (denoted 65) with the +/th New’-element (denoted

%) such that one of the two holds: ether ¢ >  and v/ < &’
ort < k and ¢/ > k'. W.lLo.g., we assume the first case
(otherwise just swap d; with d and 7 with d5). Then there
exists a path of next and next roles from d; to o and
likewise another such path from &} to ¢7. This means that
(81,02), (65,81) € word®. On the other hand, we already

know that (81,8}), (J2,65) € corr®. But then, T |= g2, wit-
nessed by the match 7 = {x1 — da, 20 — 85,23 — 7,
x4 — 01}, contradicting our assumption. O

To illustrate the idea behind the construction and the
proof, we will provide an example with an “out of sync”
pseudo-solution and show how the query g9 catches this
problem.

Example 9. Consider ' = {(g1,9}), (92,9%), (93,95),
(94, 94)} with

e gy =abb and g} =ab

e go=ab and g, = bbb,

) and g5 = ba,

e gy=ba and gj=a.

Then, the interpretation depicted in Fig. 2 is a model of Kp
but not a solution model, as witnessed by qo being satisfied.

The two lemmas together now give rise to the follow-
ing theorem linking the PCP with finite UCQ entailment in
SHOLF.

Theorem 10. Let P be a PCP instance and let Kp be the
SHOLF knowledge base consisting of Axioms 1-22. Then
the answer to P is “yes” if and only if Kp ~an {41, q2}-

Proof. For the “only if” direction, we can invoke Lemma 7
to show that every solution sequence for P gives rise to a
solution model which is a model of Kp but does not satisfy
{q1, q2}. For the “if” direction, Lemma 8 ensures that every
model witnessing the finite non-entailment is isomorphic to
a solution model, from which, by definition, a solution se-
quence can be extracted. O

Corollary 11. Finite entailment of unions of conjunctive
queries from SHOZLF knowledge bases is undecidable.

Related Undecidability Results

The construction used to establish the above undecidabil-
ity result can be modified to show undecidability of other
reasoning problems where nominals, counting, inverses and
path expressions are involved. In the following we will in-
troduce the logics and queries considered and describe how
the reasoning problem needs to be adapted



Finite CQ Entailment in SROZF~

The description logic SROZF ™ is obtained from SHOZF
by allowing so called complex role inclusion axioms® of the
formryo...0or, C r for rq,...,r,,7 € R. Semanti-
cally, such an axiom is satisfied in an interpretation 7 if
rFo...orl C rT, where o denotes the relational product (or,
in database terms: join). Obviously, role inclusions known
from SHOZF are a special form of such axioms (forn = 1)
and also transitivity axioms can be expressed (Trans(r) can
be written as » o C 7). As complex role inclusions are
very powerful constructs that immediately lead to undecid-
ability when used freely, one has to control their usage by
imposing so-called global restrictions, known as simplicity
and regularity constraints. The simplicity constraint requires
that, given a role inclusion axiom r; o...or, C 7, r must be
from Ry, if n > lorif n = 1 and ; € R,,. The regularity
constraint requires that there be a strict (irreflexive) partial
order < on R such that

o forr € {s,Inv(s)}, we have that s < r iff Inv(s) < r and

e cvery role incusion axiom is of the form r o r T 1,
Inv(r) T r,ri0...t, Cr,70or;0---0or, C ror
rio---orpor Crwherer,ry...,7, € Randr; < r
forl <i<n.

We now show how the added expressive power of com-
plex role inclusions can be used to incorporate the error de-
tection previously carried out by two CQs into just one CQ.
The basic idea is that both CQs are supposed to detect cycles
of a certain kind. So we can define a new role badcycle that
spans role chains which, if we identified their first and their
last elements would lead to q; or g9 being satisfied.

word T badcycle (23)
corr owordo corr” oword LT badcycle (24)

Note that these axioms are in accordance with the men-
tioned global constraints. Obviously, in order to ensure that
an interpretation matches neither q; nor g2, we just have to
forbid badcycle-loops, i.e., we must require that the one-
atom CQ {badcycle(x,x)} is not satisfied.

Theorem 12. Let P be a PCP instance and let K}, be the

SROLF~ KB consisting of Axioms 1-24. Then the answer
to P is “yes” if and only if K, gy {badcycle(z, x)}.

Corollary 13. Finite conjunctive query entailment from
SROLF~ knowledge bases is undecidable.

Finite 2RPQ Entailment from ALCOZF KBs

We next show undecidability of a problem involving two-
way regular path queries, which we first will formally define.

Definition 14 (Two-way Regular Path Queries). A two-
way regular path expression (2RPE) is a regular expression
over the alphabet R consisting of role names and their in-
verses. Given an interpretation L, the semantics of a 2RPE

3We denote this description logic by SROZF ™, since accord-
ing to the common nomenclature, SROZF would contain more
modeling features such as self-loops, the universal role, and role
disjointness.

exp is a binary relation such that exp® contains all pairs
(6,0") € AT x AT for which there is a word 71 .. .7, of
roles matching exp such that there exist domain elements
8o.. .0y with &g = 8 and 8, = &' and (6;-1,6;) € r¥ for
1 <1 < n. A 2-way regular path query (2RPQ) is one atom
exp(t,t’) where exp is a 2RPE and t,t' are terms. Evalua-
tion, satisfaction and entailment for 2RPQs are then defined
in the same way as for conjunctive queries.

Furthermore, we recall that an ALCOZF knowledge base
is a SHOZF knowledge base that does not have role inclu-
sions nor transitivity axioms.

It has been established that the problem of CQ entail-
ment from SROZQ KBs can be reduced to the prob-
lem of conjunctive 2RPQ entailment from ALCHOZQ
KBs using automata-theoretic methods for modifying the
knowledge base and rewriting the query (Kazakov 2008;
Demri and Nivelle 2005; Ortiz, Rudolph, and Simkus 2011).
As this technique is modular with respect to most used mod-
eling features and preserves (cardinality of) models, it can
be used to transform the problem of (finite) entailment of
one-atom-CQ from SROZF~ KBs to the problem of (fi-
nite) 2RPQ entailment from ALCOZF KBs. In particular,
this reduction can be used to establish the following result.

Theorem 15. Let P be a PCP instance and let K be the
ALCOLF knowledge base consisting of Axioms 1-20. Then
the answer to P is “yes” if and only if K} ~an (next)™ U
corr-(next)™-corr™-(next) ™ (x, x).

Note that, instead of employing the transformation
sketched above, this theorem can also be directly proven
very much along the lines of the previous proof with only
very minor modifications.

Corollary 16. Finite entailment of two-way regular path
queries from ALCOTLF knowledge bases is undecidable.

2RPQ Entailment from ALCOTF ., KBs

The description logic ALCOZF,e, is obtained from
ALCOZF by allowing concept expressions of the form
Jexp.C where exp is a 2RPE and C' is a concept expres-
sion. The semantics of such concept expressions is defined
in the straightforward way, based on semantics of 2RPEs in-
troduced above.

Note that progressing from ALCOZF to ALCOLF o
is quite a significant extension. Most notably, unlike most
mainstream description logics, ALCOZF,, is not a frag-
ment of first-order logic, as it for instance allows for express-
ing reachability.

In our case, we can use the new type of expressions to
axiomatically enforce that each model must be a finite chain
of neats leading from start” to end” without “externally”
imposing the finite model assumption. We simply state that
every domain element starts a path of nexts ending in end”?
and a path of next~s ending in start”.

T £ dnext*.{end} (25)
T C J(next™)*{start} (26)

With this additional axioms at hand, we can now easily
establish the next theorem.



Theorem 17. Let P be a PCP instance and let KCfJ' be the
ALCOLF,eg knowledge base consisting of Axioms 1-20
and Axioms 25 and 26. Then the answer to P is “yes” if
and only if K} ¥~ corr-(next)t-corr™-(next)™ (z, z).

Note that here, the query does not need to detect loop-
ing next chains since their existence is already prevented by
Axioms 25 and 26 together with Axioms 1-5.

Corollary 18. Entailment of two-way regular path queries
from ALCOZLF e knowledge bases is undecidable.

It might be worth noting that dropping one of the three
constructs inverses, functionality or nominals from the logic
makes the problem decidable again, even if further mod-
eling features are added and positive 2RPQs (i.e., arbi-
trary Boolean combinations of 2RPQs) are considered (Cal-
vanese, Eiter, and Ortiz 2009).

Note that the above finding can be turned into a slight gen-
eralization of an already known result: Let ALCOZF™ be
the restriction of the description logic ALCOZF .., Where
all regular expressions are of the form r* for r € R. A
transitive closure-enhanced conjunctive query (TC-CQ) is a
conjunctive query allowing for atoms of the form r*(¢1,¢2)
for r € R. Satisfaction and entailment of such queries
are defined in the straightforward way. It was shown that
entailment of unions of TC-CQs from ALCOZF* knowl-
edge bases is undecidable (Ortiz, Rudolph, and Simkus
2010). By using the above construction and noting that
the 2RPQ corr-(next)™-corr™-(next) ™ (z,z) is (with re-
spect to entailment) equivalent to the TC-CQ {corr(x1, z2),
next(xq,x3), next*(xs,x4), corr(xs,xs), next(xs,s),
next*(xg,x1)}, we can establish the following corollary
slightly strengthening the previous result.

Corollary 19. Entailment of TC-CQs from ALCOLF*
knowledge bases is undecidable.

Satisfiability of ACCOZF ;e KBs

The DL ALCOZF,., introduced in the previous section
featured the possibility to describe unbounded, yet finite
chains of roles. Opposed to this, it might also be desirable
to describe infinite chains of roles. In fact, this is a feature
not uncommon in temporal variants of modal logics and can,
e.g., be used to express liveness properties. While regular ex-
pressions are used to characterize finite role chains, the ap-
propriate notion for infinite role chains would be w-regular
expressions.

Definition 20 (w-Regular Expressions, 2wRPQs). Given an
alphabet A, an w-regular expression is defined as follows:

e if exp is a regular expression not matching ¢, then exp”
is an w-regular expression,

e if expy and exps are two w-regular expressions, then
expy U exps is an w-regular expression,

e for every regular expression exp and every w-regular ex-
pressions exp’, exp - exp’ is an w-regular expression.

We associate with each w-regular expression exp over A
a set of infinite words over A, denoted by [exp), inductively
as follows:

e if exp is a regular expression not matching e, then

lexp®] = {vivy - - - | Vi € N : v; matches exp},
e if expy and exps are two w-regular expressions, then
[expr U exps] = [exp1] U [expa],

o for every regular expression exp and every w-regular ex-
pressions exp, [exp-exp’] = {vv' | v matches exp, v' €
[exp']}.

If for an w-regular expression exp, an infinite word v sat-
isfies v € [exp), we also say v matches exp.
Given a set R of roles (i.e., role names and their in-

verses), a two-way w-regular path expression (2wRPE) is a

w-regular expression over the alphabet R.

We now let ALCOZF,,cs denote the description logic
ALCOILF extended by concept expressions of the form
Jexp.oco with exp an 2wRPE. The semantics of these ex-
pressions, which we call w-concepts, is defined as follows
(Jexp.co)T consists of those § € AT for which there ex-
ist an infinite word 7175 - -- over role names and their in-
verses matching exp and an infinite sequence dg, d1, . . . of
elements from AZ such that § = &, and for every i € N
holds ((52, (57;+1) € ’I"iI.

Intuitively, we will use the new expressivity provided by
w-concepts to prevent the existence of infinite paths of cer-
tain shapes. In particular, we prevent infinite next-paths as
well as paths of infinitely repeated corr - next™ - corr™ -
next-sequences.

Jnext“.co T L (27)
I(corr - mext™ - corr™ - mextt)¥.00 T L (28)

Theorem 21. Let P be a PCP instance and let Kfj"" be the
ALCOIF,ex knowledge base consisting of Axioms 1-20
and Axioms 27 and 28. Then the answer to P is “yes” if
and only if K" is satisfiable.

Proof. The proof is very similar to that of Theorem 10,
in turn referring to Lemmas 7 and 8, with the following
notable modifications: First, Axiom 27 is the one to en-
sure that every model of K" is a finite next-chain start-
ing from start’ and ending in end”. Second, if corr con-
nects non-corresponding word boundaries, we find a looping
corr -next™ - corr™ - next™-chain as argued in the proof of
Lemma 8, therefore (3(corr-next™-corr™-nextT)*.00)t is
non-empty; a contradiction. Third, it is easy to check that in
any solution model, (3(corr - next™ - corr™ - next )~ .00)®
is necessarily empty.

Corollary 22. Satisfiability of ALCOZLF ,reg knowledge

bases is undecidable.

The description logic ALCOZF e, might seem a bit
contrived at the first glance. It should however be noted that
it constitutes a fragment of the so-called fully enriched yi-
calculus and its description logic version pn ALCZOs (Bon-
atti 2003; Bonatti and Peron 2004; Bonatti et al. 2008). We
will not go into details about this logic here, we just note
that in particular, Inext“.co can be expressed in uALCIOy
as vX.3next. X and I(corr - next™ - corr™ - next™)¥.co
can be expressed by vX.Jcorr.Inext.nY.((Inext.Y) U

J.corr™ Inext.pZ.(Inext.Z) U X).



We note that these concept expressions correspond to the
so-called aconjunctive fragment of the p-calculus (Kozen
1983) which, roughly speaking, only allows one to describe
situations which are essentially linear. We let p ALCZOF*"
denote uALCIO¢ where fixpoint expressions must be in
aconjunctive form. Then the following corollary improves
on a previous undecidability result for . ALCZO; (Bon-
atti 2003) (the proof of which hinges upon the use of non-
aconjunctive fixpoint expressions).

Corollary 23. Satisfiability of pALCIZOF" knowledge
bases is undecidable.

Again it is noteworthy that removing any of the three
modeling features inverses, functionality, or nominals (in p-
calculus terminology: the features of being full, graded, or
hybrid), makes the problem decidable again (Bonatti et al.
2008).

w2RPQ Entailment from ALCOZF KBs

The last reasoning problem considered here is very close
to the previous one, the difference being that we allow w-
regular expressions in the query language rather than in the
logic itself.

Definition 24 (Two-way w-Regular Path Queries). A two-
way w-regular path query (2wRPQ) is an atom of the shape
exp(t) where exp is a 2wRPE and t is a term. For an inter-
pretation T and an evaluation m, we define that T |=, exp(t)
holds iff there exist an infinite word r17ro - - - over role names
and their inverses matching exp and an infinite sequence
80,01, - .. of elements from AT such that w(t) = &y and for
every i € N holds (6;,08;+1) € rl. Entailment of 20RPQs
from knowledge bases is defined in the straightforward way.

Note that the query atom must be of unary arity, since
an infinite chain of roles has only a defined starting but no
ending point. As it turns out, the previous undecidability
result concerning satisfiability of ALCOZF ;e KBs can
be directly transformed into one regarding w2RPQ entail-
ment from ALCOZF KBs, since in the former, w-concepts
were only used to detect and exclude problematic situations.
This allows us to effortlessly rephrase the construction into
a query entailment problem.

Theorem 25. Let P be a PCP instance and, as before,
let ICf be the ALCOLF knowledge base consisting of Ax-
ioms 1-20. Then the answer to P is “yes” if and only if
K§ ¥ next” U (corr - next™ - corr™ - next™)* ().

Corollary 26. Entailment of two-way w-regular path
queries from ALCOTLF knowledge bases is undecidable.

Conclusion and Future Work

In this paper, we have approached the decidability bound-
ary from above for database-inspired reasoning problems for
very expressive description logics that allow for inverses,
counting and nominals, a combination that is known for
causing complications when it comes to reasoning tasks,
in particular when coupled with expressive means for de-
scribing role chains of unbounded or even infinite length.
We have focused on query answering and the finite model

semantics and showed that for a bunch of reasoning prob-
lems from that realm, a reduction of the Post Correspon-
dence Problem can be achieved through slight modifications
of one generic construction.

These findings clarify the decidability status of interesting
reasoning problems around very expressive DLs, some of
which are complemented by decidability results for sublog-
ics with just one modeling feature removed. Still, there are
numerous related reasoning problems whose decidability
status remains open. In particular, decidability is unknown
for the following problems (with some dependencies be-
tween them as stated below):

P1 (U)CQ entailment from SHOZF KBs. A version of
the long-standing open problem. For UCQs, the finite-
model version has been settled (negatively) in this pa-
per, but there is little hope that this will provide insights
toward a solution of the unrestricted model case.

P2 Finite CQ entailment from SHOZF KBs.

P3 (U)CQ entailment from SROZF KBs. Decidability of
this problem would entail decidability of P1 and essen-
tially boil down to decidability of conjunctive query an-
swering in OWL 2 DL.

P4 2RPQ entailment from ALCOZF KBs. Note that the
case is open only for “looping” 2RPQs, where the two
terms in the atom are the same variable. For all other
2RPQs, the problem is decidable by a reduction to
(un)satisfiability of ALCOZF. The finite entailment
case was settled (negatively) in this paper.

P5 (Unions of) Conjunctive 2RPQ entailment from
ALCOLF KBs. This problem is equivalent to P3 and
its decidability would entail decidability of P4 and P1.

P6 Finite satisfiability of ALCOZFc; KBs

P7 Satisfiability of ALCOZF,.; KBs. Decidability of
this problem entails decidability of P6, since model-
finiteness can be axiomatized in ALCOZ Fcq.

P8 Finite CQ entailment from ALCOZF .y KBs. Clearly,
decidability of this problem entails decidability of P6.

P9 CQ entailment from ALCOZLF ¢z KBs. For the afore-
mentioned reasons, decidability of this problem would
entail decidability of all P8, P7, and P6.

It should be noted that for many of the problems, remov-
ing one of the features inverses, nominals, or functionality
would make the problem decidable. This is the case for P1,
P3, P4, PS5, P7, and P9 as can be inferred from decidability
of positive two-way relational path query (P2RPQ) entail-
ment from the extremely expressive DLs Z7Q, Z0Q, and
ZOT knowledge bases (Calvanese, Eiter, and Ortiz 2009).

On another note, the same subset of the problems are
known to be decidable when just the Horn fragment of
the underlying description logic is considered, following
from the decidability of entailment of unions of conjunc-
tive 2RPQs from Horn-SROZQ KBs (Ortiz, Rudolph, and
Simkus 2011).4

“Regarding P7 and P9, to be fair, one should state that going to
the Horn fragment essentially disables the interesting uses of reg-
ular expressions, i.e., Horn-ALCOZ Frg is not more expressive
than Horn-ALCOZF.
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