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Abstract. We show how the pure logic of GK can be embedded into
disjunctive logic programming. The translation we present is polyno-
mial, but not modular, and introduces new variables. The result can
then be used to compute the extension/expansion semantics of de-
fault and autoepistemic logics using disjunctive ASP solvers.

1 Introduction

Lin and Shoham [6] proposed a logic with two modal operators K
and A, standing for knowledge and assumption, respectively. The
idea is that one starts with a set of assumptions (those true under
the modal operator A), computes the minimal knowledge under this
set of assumptions, and then checks to see if the assumptions were
justified in that they agree with the resulting minimal knowledge.

In this paper, for the first time, we consider computing models of
GK theories by disjunctive logic programs. We shall propose a poly-
nomial translation from a (pure) GK theory to a disjunctive logic
program such that there is a one-to-one correspondence between GK
models of the GK theory and answer sets of the resulting disjunc-
tive logic program. The result can then be used to compute the ex-
tension/expansion semantics of default logic [9] and autoepistemic
logic [8]. To substantiate this claim, we have implemented the trans-
lation into a working prototype gk2dlp.®> A longer version of this
paper with more details is available as a workshop paper [5].

2 Main Result: From Pure GK to Disjunctive ASP

Syntactically, the logic of GK is a propositional modal language with
modalities A and K; pure GK formulas contain no nested modalities.
For space reasons, we cannot present background and refer to [6, 2].

Before presenting the translation, we introduce some notations.
Let F be a pure GK formula, we use tr,(F) to denote the propo-
sitional formula obtained from F' by replacing each occurrence of
a formula K¢ (called a K-atom) by k4 and each occurrence of a
formula A1) (an A-atom) by a., where kg and a are new atoms
with respect to ¢ and 1 respectively. For a pure GK theory 7' (a set
of pure GK formulas), we define tr,(T) = Apep trp(F). Intu-
itively, the new atom kg will be used to encode ¢ € K(M) for a
GK (Kripke) model M for T', that is, ¢ is known in M. Likewise, a¢
encodes ¢ € A(M), which means that ¢ is assumed in M. Given
a propositional formula ¢ and an atom a, we use ¢* to denote the
propositional formula obtained from ¢ by replacing each occurrence
of an atom p with a new atom p® with respect to a. Intuitively, such
new atoms will be used to guarantee the existence of certain interpre-
tations witnessing various technical properties.
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We now stepwise work our way towards the main result. We start
out with a result that relates a pure GK theory 7" to a propositional
formula. In what follows, Atomk (T') and Atoma (T) denote the sets
of K-atoms and A -atoms occurring in 7', respectively.

Proposition 1 Let T' be a pure GK theory. A Kripke interpretation
M is a model of T if and only if there exists a model I of the propo-
sitional formula ®7 = trp(T) A ®na A DK, A O, with

k a

Pa= N (keD¢")A N (as Do)
pEAtom (T) pEAtomp (T)

o= N\ —ky D (A N\ (ke D)
Y EAtom (T) dEAtom (T)

A ay, ay,

Dy = /\ Ty D U /\ (a<f> D¢ d)

P EAtoma (T) pEAtoma (T)

o K(M)NAtomk(T) ={¢ | ¢ € Atomk(T) and I" = kg };
o AM)NAtoma(T)={¢| ¢ € Atoma(T) and I = ay}.

The proposition examines the relationship between models of
a pure GK theory and particular models of the propositional for-
mula ®7. The first conjunct ¢r,(T) of the formula ® indicates
that the k-atoms and a-atoms in it can be interpreted in accordance
with K(M) and A(M) such that I* | tr,(T) iff M is a model
of T The soundness formula @, achieves that the sets {¢ | ¢ €
Atomk (T) and I" |= ke } and {¢ | ¢ € Atoma(T) and I |= ay}
are consistent. The witness formulas ®.,;; indicate that, if I'* |= —ky,
for some 1) € Atomx (T') (resp. ¢ € Atoma (T")) then there exists a
model I’ of K(M) (resp. A(M)) such that I’ |= —p, where I’ is
explicitly indicated by newly introduced p** (resp. p®*) atoms.

While Proposition 1 aligns Krikpe models and propositional mod-
els of the translation, there is yet no mention of GK’s typical mini-
mization step. This is the task of the next result, which extends the
above relationship to GK models.

Proposition 2 Let T' be a pure GK theory. A Kripke interpretation
M is a GK model of T' if and only if there exists a model I* of the
propositional formula 1 such that

e KIM)=AM)=Th({¢| ¢ € Atomk (T') and I |= kg});
o foreach € Atoma(T),

I ay iffv € Th({e | 6 € Atomuc(T) and I' = ky})
o there does not exist another model I*' such that
- I*’ﬁ{aq; ‘ ¢ € AtomA(T)} = [*ﬁ{CLd) | ¢ € AtomA(T)},
- I"'N{ky | ¢ € Atom(T)} € I*N{ky | ¢ € Atomx (T)}.
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In Proposition 2, we only need to consider Kripke interpretations
M such that A (M) U K (M) is consistent. This means that formula
® 7 can be modified to U = trp(T) A Wypg A Wy with

Voa= N ReDO)A N\ (a6 D)
pEAtom (T) p€Atomp (T)
boim N\ (ﬁkw 5 \Pff) A <w . wﬁ)
Y EAtom (T) P EAtomp (T)
U=t A N (ke De")A N (ap D 6™)
pEAtomy (T) pEAtoma (T)
vi=wta N ke De)A A\ (a0 6™)
pEAtomy (T') peAtomp (T)

Using this new formula, the result of Proposition 2 can be restated.

Proposition 3 Ler T' be a pure GK theory. A Kripke interpretation
M is a GK model of T if and only if there exists a model 1™ of the
propositional formula Vr such that

e KIM)=AM)=Th({¢| ¢ € Atomx(T) and I" |= ks});
e foreachy € Atoma(T),

ifI" |= ay theny € Th({¢ | ¢ € Atomk (T) and I" |= ke })
e there does not exist another model I'**' of ®r such that

- I""'n{ay | ¢ € Atoma(T)} = I"N{ay | ¢ € Atoma(T)},

- I""'n{ky | ¢ € Atomx (T)} C I"N{ky | ¢ € Atomk (T)}.

We are now ready for our main result, translating a pure GK theory
to a disjunctive logic program. First, we introduce some notations.
Let T be a pure GK theory, we use tr,e (V1) to denote the nested ex-
pression obtained from WU by first converting it to negation normal
form, then replacing “A” by “,” and “V” by “;”. For a propositional
formula ¢, we use ¢r.(¢) to denote the set of rules obtained from the
conjunctive normal form of ¢ (possibly containing new variables) by
replacing each clause (p1 V -+ -V p; V =pi41 V- -+ V —pm ) by arule
D1 ;DL < Ditl,---,Dm. We use a; to denote the propositional
formula obtained from ¢ by replacing each occurrence of an atom
p by a new atom p. We use @7 to denote the propositional formula
obtained from @7 by replacing each occurrence of an atom p (except
atoms of the form a4 for some ¢ € Atoma (T')) by a new atom p*.

Intuitively, by Proposition 3, trn.(¥r) is used to restrict inter-
pretations for introduced k-atoms and a-atoms so that these in-
terpretations serve as candidates M for GK models. By Proposi-
tion 1, ® constructs possible models M’ of the GK theory (with
A(M') = A(M)) that are used to test whether M is a GK model.

Inspired by the linear translation from parallel circumscription into
disjunctive logic programs in [3], we have the following theorem.

Theorem 1 Let T be a pure GK theory. A Kripke interpretation M
is a GK model of T if and only if there exists an answer set S of the
logic program try,(T):

(1) L <+ not trp.(¥r)

(2) p';—p' < T  (for each atom p’ occurring in tr,.(¥r))
(3) u; A<+ B (for each rule A < B in tr.(®71))
(4) wicpyiiChy < T (o1,...,m} = Atomk (T))
(5) U 4 Cg,not kg (for each ¢ € Atomx (1))
(6) u  kj,not kg (for each ¢ € Atomx (T))
(7) u 4 Cg, ki, not —ky (for each ¢ € Atomi (T))
(8)  w;ce; ky < not kg (for each ¢ € Atomx (T'))

(9) pr—u (for each new atom p* in tr.(®7))
(10) Cop U (for each ¢ € Atomk (T))
(11) L+ notu
(12) v; A<+ B

(for each rule A < B in the tr.(-) translation of

N DA~ N (aeD9)
peAtomyk (T) peAtomp (T)
(13) P

(for each atom p except k-atoms and a-atoms in trc(-) of

AN DA~ N (aeD9)

peAtomy (T) peAtomp (T)
(14) 1« notv

where u, v, and cg (for each ¢ € Atomx (T)) are new atoms, such
that K(M) = A(M) =Th({¢ | ¢ € Atomk(T) and ky € S}).

Intuitively, rules (1) and (2) in ¢ry, (T) guarantee that each answer
set is a model of the formula . Rules (3) to (8) then create model
candidates that violate the minimal knowledge condition; rules (9) to
(11) eliminate answer sets for which such models exist. Finally, rules
(12) to (14) check whether assumptions and knowledge coincide.

Due to the results of Eiter and Gottlob [2] and Lin and Zhou [7],
our Theorem 1 yields a complexity result for the pure logic of GK.

Proposition 4 Let T' be a pure GK theory. The problem of deciding
whether T has a GK model is ©£ -complete.

3 Discussion

We have presented the first translation of pure formulas of the logic of
GK to disjunctive answer set programming. Among other things, this
directly leads to implementations of default and autoepistemic logics
under different semantics. The translation presented in this paper is
a generalization of the one presented for Turner’s logic of universal
causation by Ji and Lin [4]. In recent related work, Chen et al. [1]
presented the dl2asp system that implements propositional default
logic by translating default theories to (non-disjunctive) ASPs. For
their translation, the size of the translated logic program might grow
exponentially in the size of the input default theory. In contrast, the
size increase of our translation via the logic of GK is polynomial.
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