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Abstract

Due to their simple applicability score systems are in widespread use as a tool for
decision taking. Unfortunately, as we all feel, they are somehow not apt to take into
account interdependencies among the variables (symptoms/attributes) which are
input to them when trying to decide an actual case; a drawback which is overcome
by probabilistic systems.

In order to analyze which assumptions are inherent in score systems we translate
them into probabilistic systems thus making available their technical machinery for
this analysis task.

Keywords: Score Systems, Probabilistic Reasoning, Maximum Entropy, Automated Di-
agnosis, Independence

1 Introduction

Medicine, industry and economy abound with problems of diagnosis (and decision). Il-
lustrated by an example from medicine, such a problem consists of a knowledge base
of propositions about the problem domain (e.g. ‘Appendicitis is usually accompanied by
strong stomach aches’), the values of certain symptoms in an actual (diagnosis) case (e.g.
‘The patient has stomach aches’), a wanted diagnosis (e.g. ‘Does the patient suffer from
appendicitis?’), and finally, a decision (‘surgical intervention?’).

To solve such problems, Score Systems are frequently developed in research labs, e.g. in
medicine ([OYF95]), or are in wide-range use, e.g. in economics ([KR00]), whenever un-
certain knowledge plays an important role with the kind of problem to be solved.

A Score System is based on a set of attributes (or variables) which have each a
set of possible (attribute or variable) values.

For instance, in the medical domain, there may be the symptom/attribute ‘body
temperature’ with (discrete) values ‘low’, ‘normal’, ‘high’ and ‘very high’. To each
attribute value a numerical value — its weight or score— is assigned (see Table 1).

When applying a score system to a concrete case the scores corresponding to the
observed attribute values are added up. If the obtained sum falls in a certain score
interval, the decision associated to this interval is proposed.

Thus, for instance, a proposal for a medical treatment is established on the basis
of symptoms found with a patient and which are represented by a list of attribute
values.



symptom / attribute score, if yes

Example 1:
tenderness in RLQ * 4.5
rebound tenderness 2.5
no micturition 2.0
continuous type of pain 2.0
number of leucocytes > 10000 1.5
age < 50 years 1.5
relocation of pain to RLQ 1.0
rigidity 1.0

Table 1: ’Ohmann Score’ [OFY+95] for the diagnosis of appendicitis: In case of negative answers
the scores are zero. Patients are diagnosed as having appendicitis if score sum > 12, they are
interned in case of 6 — 12, and are sent home in case of < 6. (RLQ: right lower quadrant of
abdomen (as seen from the patient).)

When applying a score system to an actual case of decision finding, we feel intuitively that
a score system seems to make some kind of assumption about the unrelatedness of the
variables, because it provides no means to adapt the scores assigned to the values of one
variable in dependence of the selected values of other variables. This makes us feel uneasy,
because very often we are intuitively aware of influences between some of the variables,
but by using a score system we are bound to the use of a tool where these relationships
are not taken into account. Sometimes this feeling is expressed in the opinion that score
systems implicitly assume marginal independence of variables/attributes.

The aim of this paper is to analyze rigorously our intuitive feelings about score systems
and to explicit the hidden assumptions underlying them. To this end we translate scores
systems into probabilistic systems as faithfully as possible thus being able to exploit
the technical framework of probability theory for the investigation of independences and
indifferences. Being convinced of the faithfulness of our translation, we claim, that our
discoveries in the obtained probabilistic systems shed light on the nature of score systems.
Example 1 (continued):

As a preview of the outcome of the translation which we will develop in the following, we
give a brief sketch of the score system from Example 1 turned into a probabilistic system
according to the transdlation which will be given in section 5.1.

To each combination of observed symptoms we assign then probability defined by the
some of the respective score values divided by the maximally achievable score value. E.g.
if there are the symptoms ‘tenderness in RLQ’, ‘continuous type of pain’ and ‘rigidity’ —

Tn the "Handworterbuch der Wirtschaftswissenschaft” (handbook of economy) the keyword ” Produk-
tplanung” (product planing) contains the following contribution by Dietrich Adam: ”Die einfachste Form
der Synthese der Urteile {iber einzelne Kriterien besteht in der Addition der gewichteten Punktzahlen
aller Kriterien. Diese Art der Synthese hat jedoch unabhéngige Kriterien zur Voraussetzung, d.h. ein
positives Urteil bei einem Kriterium darf nicht mit dem Urteil bei anderen Kriterien korrelieren.” (The
simplest form of synthesizing the judgments of individual criteria consists in adding the weighted scores
of all criteria. However, independent criteria are a prerequisite for this kind of synthesis, i.e. a positive
judgment of one criterion must not correlate with the judgments of other criteria.)



and only those — then this probability would be 4.5+ 2.0 +1.0/16 = 7.5/16 = 15/32.
To the border values 6 and 12 would correspond the probabilities 6/16 = 3/8 and 12/16 =
3/4. (Note that 16 is the sum of all score values in Table 1.) =

The paper is organized as follows: In section 2 we give a formal definition of score systems.
In section 3 we present some general considerations on diagnosis systems and emphasize
the need to model explicitly the relationship between diagnoses and symptoms. This leads
naturally to the introduction of some terminology from probability theory, namely the
terminology of event spaces, and culminates in the definition of a probabilistic diagnosis
system in section 4. It will turn out that a score system is a little bit deficient in view of
these considerations, but some slight extensions turn it quite directly into a probabilistic
system. In section 5 this faithful translation is presented and analyzed. It is defined via
constraints on a probability measure, which are derived from a score system. In section 6
we introduce additional constraints in order to cope with missing attribute values.

Examples in this paper are often taken from the field of medical diagnosis. Often our
general explanations are tinged by medical language, which — in our opinion — better
adds to clarity, than a more neutral, but less suggestive language.

2 Score Systems

Formally, a Score System can be defined as follows:

It consists of a set of variables (attributes) S; (i = 1,...,m). Each S; can be identified
with its set of variable values {s;1,..., s} (ki > 1). We denote by § a tuple of values
<81, ceey 8m> with S; € Sl

Moreover, for each variable S; exists a set W; = {wyy, ..., wy,} of nonnegative weights

or scores and a bijective score function w;: S; — W;. We also have a (global) score
function w defined as w(3) := > 1, w;(s;).

Finally, there are score intervals given by a set of border values b; < --- < by,, a
decision variable T with values {¢i,...,%,} and a decision function ¢ which maps a
sum of scores w(3) to ¢; iff b;_; < w(5) < b; (with by := —00).

Since decision functions are not the topic of this paper, we will skip any explicit treatment
and just show that the border values can be adapted when translating score systems.
Basically, within score systems decision functions are a very simple add-on to the kernel
of a score system and consequently neglecting them in the sequel is no restriction. More
sophisticated decision methods which are available with probabilistic systems cannot be
adapted to score systems, because they require multiple diagnoses which score systems
are not able to provide.

Example 2: A simple example of a score system, which we will reuse in the following,
consists of 3 binary variables S; (i = 1,2,3) — whose values we denote as S; = {s;,5;} —
together with the 3 score functions w; which map S; to a respective (binary) set of values
W; = {i,0} with w;(s;) = i and w;(5;) = 0. "

For a further example including a decision function see Example 1 above.

When attempting to translate a formal system into another one, the crucial point is to
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obtain what might be called a homomorphic image, thus assuring faithfulness. For this
purpose the ‘source system’ should be investigated for formal properties which should be
conveyed into the ‘target system’ via the translation.

In score systems we only discovered the following contribution invariance property:
For arbitrary s;i, s;o € S; there exists a constant constg, s, such that

w(;) - w(§[si1—>si2]) = COnSty;; s, (1)

holds for all §in which s;; occurs. (We denote by §[s;1—s;»] the tuple obtained from §
when replacing s;; by s;.) From the easy proof of this property, it is clear, that in a more
‘axiomatic’ formulization the subtraction is the appropriate instance of the inverse of the
function which computes the overall score w(5) from the scores of the symptom values,
i.e. addition in the case of a score system.

3 Diagnosis Systems: Basic Considerations

Before we present a translation of score systems into probabilistic systems we will present
some general thoughts on modeling systems for diagnosis and establish some general
requirements.

3.1 Diagnosis-Attribute Relationship

Any diagnosis system must model the relationship between diagnoses (diseases) and at-
tributes (symptoms) relevant for these diagnoses. In order to express knowledge about
the evidence of a disease in view of certain symptoms as well as to express perhaps quite
different knowledge about the occurrence of symptoms in case of a disease, diagnoses must
be represented explicitly. This means that we have a finite set of variables — symptom
variables and, in addition, diagnosis variables — with each having a finite set of values.?
The symptom variables describe properties / symptoms / attributes relevant for the di-
agnosis task, e.g. examination results in the medical case.

As before, we denote symptom variables by S; (1 < i < m), and we identify them
with the set of their values: S; = {s;;|1 < j < k;}.
We sometimes refer to values of variable S; just by s;, . ...

The values of a diagnosis variable define a classification of the possible diagnostic
results, e.g. in kinds of diseases, based on the values of the symptom variables.

In the following we will only consider the case of a single diagnosis variable
D={d,...,dg,}?

The considerations presented above lead naturally to the view that a diagnosis system
must model a relation on the tuple space 2 :=5; x -+ x S, X D.

2Infinite numbers of symptoms or diagnoses cannot be taken into account in a real world application
and an infinite range of values can be made finite in practice through appropriate discretization.

3This constitutes no restriction, because the case of a set of diagnosis variables can always be coded
as a single one with values reflecting the possible combinations of the values from the set.
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This relation can be specified by a method of judgment. Depending on this method
we may either get a ‘classical’ relation or a somehow fuzzy one, i.e. we may have yes-no
judgments on tuples (sij,-- -, Smj.,dn) Or a more fine-grained judgment, e.g. scores or
probability measures.

3.2 Uncertain Findings

It may occur quite often that the value of a certain symptom, say Sy, cannot be observed.
This means that a method of judgment, which judges only individual tuples, is very
restricted in view of practical applications, as we might be interested in getting a judgment
of a set of tuples from €2 as, for instance,

k1

U <81j1; 52jay -« o3 Smjms dh>

Ji=1

which reflects ignorance of the value of S;. Of course, there may also be cases where some
values of S; can be excluded, while still not arriving at a single remaining variable value,
thus obtaining a smaller set than the one given above, while still not getting a single
tuple. Consequently, judgments on arbitrary subsets of {2 are desirable.

In the terminological tradition of probability theory, we say that we consider €2 as
an event space with its power set as set of events or event algebra.

For a subset S’i C S; of a symptom variable or a subset D C Dofa diagnosis
variable we denote (5}) =8 X -+ X S;_q x S; x Sip1 X +++ X Sy, x D resp. (D) =
Sy x oo x S, x D. By extension, we denote by (Sril, .. ,5;) with Suij C Si; the
intersection of the sets <5¥2J) We just write (s;) and (s;,, ..., s; ) instead of ({s;})

and ({sy,},-.-,{s,}) with s; € S; and s;; € S;;.

Consequently, an expression (s1,. .., Sm,dy) with s; € S; and dj, € D is an elemen-
tary event in (). (All general events are sets of elementary events.)

For a value s; € S; we call (s;) a simple event. We denote by § the event
(s1,...,8m) with s; € S;, which corresponds to the set {s1} x ... X {s,} x D,
and it will be called an elementary symptom event. In addition, we denote by
(8, dp) the elementary event (si, ..., Sm,ds) with d, € D.

We also write £ —> E' for the conditional event E’'|E due to some similarity
with common-sense implication. We make the convention to drop the parentheses
if simple events occur in conditional events.

In addition to the event space, we require a method of judgment to be given, e.g. a

judgment function on (all) the events.

3.3 Conditional Judgment

Let’s assume now, just for simplicity, that in an actual case, e.g. a particular patient to
be examined, we were able to determine our symptoms’ values uniquely, i.e. we are given



an event § and we want to get a judgment on whether this patient suffers from disease
d, € D. (In the general case of missing uniqueness we just get a tuple set instead of a
single tuple 3.)

In a concrete case where we face the need of a diagnosis of disease d,

e our interest will not focus on the judgment of the event (S, dj) in comparison to
all other (elementary) events in 2 — i.e. in comparison to events based on quite
different combinations of symptom values which are already excluded in the case of
the actual patient

e but our interest will focus on the judgment of the event (5, dj) in comparison to
other diseases in view of the same symptom values §.

This leads to our interest in the judgment of the conditional event § —> (3, d) in com-
parison to the judgment of a conditional event § — (5, d,) with another disease dy. As a
special case we consider dg:d_h where dj, means the absence of disease dj,. Note that in the
medical context the common reading of the desire to come to a judgment of § —> (5, dj)
is:

‘If T know a patient showing the symptom values &,
what can I say — in view of this knowledge —
about his risk of having the illness dp, 7’

Convention: For sake of simplicity we will just write § —> d, instead of § —> (&, dy,).

3.4 From Diagnosis to Decision

The distinction between diagnosis and decision is by no means trivial, since uncertainties
of the diagnosis as well as the desirable minimization of costs of the treatment have to
be taken into account. For instance the common decision ‘to keep the patient for further
observation’ would make no sense if the right and unique diagnosis were known to the
doctor. Only a diagnosis where neither illness nor sanity obtain a decisively high judgment
lead to this decision.

We skip the discussion of decision functions, because they lie out of focus of this paper
(see Table 1 for an example).

4 Probabilistic Diagnosis Systems

Probabilistic Diagnosis Systems — or Probabilistic Systems for short — are a special case
of the diagnosis systems just described.

e They use as method of judgment a function P, which assigns probabilities to events
in compliance with the laws of probability theory.

A P-measure P is a function on an event algebra which — in our finite case
— can be specified by mapping every elementary event to a nonnegative real
number such that the sum of function values over all elementary events is equal
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to 1. Since every event E is a (unique) union of elementary events ei, ..., e,
we define P(E) := )", P(e;). A set together with a P-measure is called a
P-space.

e In order to obtain a P-measure P, additional principles may be used to define it, if
only incomplete knowledge about P is available. To obtain a unique P-measure is
necessary in order to obtain unique probabilistic judgments.

Two very interesting such principles are indifference (on subspaces), inde-
pendence [SG95| and the more powerful principle of maximum entropy
[PV90].

e The probabilistic character of the obtained judgments allows their combination with
powerful decision procedures.

5 Probabilistic Reconstruction of Score Systems

Score systems don’t comply well with the considerations of section 3.

e They consider only a single disease which is not even explicitly represented, thus
restricting their ability to model the relationship between symptoms and a disease
(cf. sec. 3.1). They don’t not even incorporate the opposite case — absence of
disease — not to speak of comparisons with alternative diseases.

e Moreover, with D = {d} the difference between (5, d) and § vanishes, and conse-
quently, they loose the possibility to judge the conditional event § —> (3,d) (cf.
sec. 3.3).

e Finally, they just provide judgments of elementary symptom events and not of
arbitrary ones (cf. 3.2). (See section 6 for ways how to overcome this restriction.)

5.1 Faithful Translation

To overcome the mentioned deficiencies of a score system we embed it into slightly larger
probabilistic systems by deriving from score systems a set of constraints to be satisfied
by a respective P-measure.

(1) In order to achieve a distinction between (3, d) and §'we introduce apart from disease
d also the contrary diagnosis d — absence of disease d — and we extend the symptom
space ¥ =51 X -+ X Sp, to Q:= 5 X --- x Sy, x D with D = {d, d}.

(2) We define a set of P-measures on 2 by understanding the score value of a (complete)
tuple of symptom values § as a judgment of the conditional event § —> d. Together
with a normalization this leads to the constraint (indicated by ¢ )

p(5 —» d) = 215 2)



for all § € 3, where Wy, := max{w(5)|5 € X}. Since these constraints only make
sense if

°P(5) >0 (3)

we require this constraint for all s € X as well.

5.2 P-measure P': Consistency of our Translation

Of course, the constraints (2) and (3) don’t determine a unique P-measure. That they
are consistent can be seen with the P-measure P’ defined as follows:

1. We extend the score function w to a function @ on the tuples of Q2 by defining

= w(3) (4)

NEE
>) = T/Emaz_w(gj (5)

2. By normalizing the function @ with the sum @Wyo1a 1= ), W(e) we get for all e € Q

P'(e) :=

(6)

Wiotal

Obviously, P' is a P-measure since P'(e) > 0 foralle € Q and ) ., P'(e) = 1.
We get P'(5) = Wypee > 0 % and in addition

o Vo w(3)
poeg PEOD __ PUSD)  EE w(
TP TP +P(ED) | 20 See@ T Gy,

Wiotal Wiotal

(7)

This means that the P-measure P’ fulfills the constraints (2) and (3).

5.3 Preservation of decisions

From Constraint (2) follows that with our translation the probabilities of the diagnoses
are the old scores normed by W,,,,, which implies the additional constraint

w(8) > w(s') <= °P(§—>d) > °P(§' —>d) (8)

for arbitrary events § and §’ of symptom values. With ¢;/@W,., as new border values a
decision function of the score system can be easily adapted and we have equivalence of
the decisions proposed by the score system and those proposed by a probabilistic system
resulting from our translation.

*Recall that we excluded ‘degenerated’ score systems with W; = {0} for all i € {1,...,m}.



5.4 Properties of our Translation

Our translation preserves the contribution invariance property: For s;1,s;2 € S; and
V § € Q in which s;; occurs, follows with the contribution invariance (1) of score systems
the following additional constraint

5 [si i ts., —s:

~ ~
wmaz wma:c wmaz

i.e. we get again a constant difference depending on s;; and s;5 alone.

5.5 Independence Considerations

Since we translate score systems into probabilistic systems in a rather canonical way,
it is reasonable to assume that findings about the resulting probabilistic systems shed
considerable light on the nature of score systems.

An interesting topic which might be elucidated this way are the claims about existing
independences. This is a rather moot question open to speculation, as score systems
provide no properly defined (in)dependence concepts nor is there any general definition of
(in)dependence from which (in)dependence concepts for e.g. score systems can be derived
by specialization. On the other hand, probability theory offers appropriate concepts and
tools.

Of particular interest is the sometimes made affirmation that the symptoms must be
marginally independent. However, this can be refuted. Since the constraints (2) just
specify the ratio of events (d) and (d) under a condition 5, nothing is specified about the
probability of § apart from being positive (constraint (3)). Consequently, any P-measure
on ¥, which is positive on the elementary events, is compatible with constraints (2). (This
broad compatibility is also plausible, because the judgment of the likelihood of a certain
disease in view of occurred symptom values § is by no means related to the possibility of
§to occur.) Consequently, the necessary marginal independence of the symptoms cannot
be established.

The possible dependence of symptoms can be illustrated by the following experiment: Let
us assume that in a given score system a certain symptom S; has two values with scores
0 and 4 respectively. Now the developer of this score system splits this symptom into two
symptoms S} and S — both with two values and respective scores 0 and 2 — to which
equivalent meanings are ascribed. (For instance, assume that S; represented ‘fever’ and
that S; and S represent ‘fever’ measured in different ways.) This way we got a score
system with two completely dependent variables. Of course, the score system user will
not notice any different decision behavior. Perhaps he will notice the dependence between
S! and S

Having refuted that score systems necessarily imply marginal independence of symptoms,
we may ask whether this independence is at least a natural assumption in case of no
information to the contrary. (This is certainly not uncommon in practice as it is waste
of time and money to examine symptoms which depend on others — e.g. to measure
fever twice — however, we must not forget that dependences between symptoms may be
too intricate to compute or may be just insufficiently known for avoiding their separate
examination.)



Concretely spoken, we may ask what happens if we construct a P-measure based on
the constraints (2) and (3) with the principle of Maximum Entropy, i.e. constructing a
P-measure which contains minimal amount of additional information.

We take again Example 2 and construct® the Maximum Entropy P-measure P* (see
Table 2 (right)) which satisfies the constraints of our translation (constraints (2 are
in Table 2 (left)). Since P*((57)) = 0.5, P*({(s2)) = 0.5 and P*({s3)) = 0.5, but
P*((s1,52,53)) ~ 0.0774 the symptoms are not marginally independent.

The absence of marginal independence of symptoms even in case of a Maximum Entropy
P-measure shows that marginal independence is real additional information and can-
not be understood as information theoretic default in case of ignorance about the real
distribution of the .

‘P(5—>d) = (w(8))/Wmas | | P(5)

¢P((s1, 52, 53) —> d) 0 P*((s1,52,53)) =~ 0.0774
°P((s1, 352, 83) —> d) 1/2 P*((51,52,83)) =~ 0.1548
¢P((s1, 82,83) —> d) 1/3 P*((s1, s2,53)) ~ 0.1463
¢P((s1, 82, 53) —> d) 5/6 P*((s1, $2,83)) = 0.1215
¢P((s1,52,53) —> d) 1/6 P*({s1,52,53)) =~ 0.1215
¢P((s1, 352, 83) —> d) 2/3 P*({(s1,82,83)) =~ 0.1463
¢P((s1, S2,83) —> d) 1/2 P*({s1, 82,353)) 0.1548
°P((s1,892,83) —> d) = 1 P*({s1, $2, 53)) 0.0774

P

Table 2: The Maximum Entropy P-measure

6 Coping with Missing Symptom Values

In practical applications it may happen that for some (unforeseen) reason the value of
a certain symptom cannot be determined. The question of how to proceed in such a
situation is rarely answered in the literature on score systems.

This causes no troubles for probabilistic systems as they perform context-dependent
interpolation in such a situation. This means that the known symptom values constitute
an occurred event and the probability of diagnosis d is computed in this subspace. (Being
able to provide diagnoses also in case of partial supply of symptom values is one of the
strongest points in favor of probabilistic systems.) Of course, also for score systems the
best way to proceed would be to operate like probabilistic systems and to compute missing
symptom values context-dependently in view of the known ones. However, the probability
distribution of the symptoms will usually not be known to the score system user. (It may
even be unknown at all and a probabilistic system might work with a substitute as, for
instance, provided by Maximum Entropy). More severely, such computations would not

This construction has been carried out with the probabilistic reasoning tool PIT [PIT]
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be feasible by pencil and paper, and thus contradict the philosophy of simple applicability
which underlies score systems.

A simpler procedure is to interpolate with some weight function on the S;. (A special case
thereof is the use of mean values.) If the weights are all positive and sum up to 1, this
means that we can understand them as marginal distributions of the S; in a P-measure
on Y which is compatible with the constraints of our translation.

This prompts the following question: If we take marginal distributions as weight functions
and interpolate missing symptom values independently of known ones, does this way to
proceed imply marginal independence of the symptoms?

The answer is negative as can be seen with the following example. We have two ternary
symptom variables® S; = {s11, 812, 13} and Sy = {591, S99, 833} With w;(s;1) = 0, w;(s40) =
1, wi(s;3) =2 (1 = 1,2). This yields the constraints in Table 3.

‘P((s1p, 529) —> d) =

P({(s11, $21) —> d) 0.00 | Mean value constraints :
¢P({s11, S22) —> d) 0.25 | | eP((spg) —> d) =
“P((s11,523) —> d) 0.50 ¢ P({s11) —> d) 0.25
°P((512,821) —> d) 0.25 | | eP((s13) —>d) = 0.50
°P((s12, 522) —> d) 0.50 | | ¢P((s13) —>d) = 0.75
°P((s12, 523) —> d) 0.75 | | ¢P({sy) —>d) = 0.25
°P((513,521) —> d) 0.50 | | cP((s92) — d) 0.50
°P((513, 522) —> d) 0.75 | | ¢P({s93) —>d) = 0.75
¢P({s13,8023) —>d) = 1.00

Table 3: Constraints (2) and (9)

If we add to these constraints the following two additional ones — “P((sy3)) = 0.2 and
¢P((s11) — (S23)) = 0.3 — which preclude marginal independence, then still exists a
Maximum Entropy P-measure’, which is also positive on all the 3.

However, we get a positive answer in case of an interpolation procedure which is sufficiently
‘fine grained’, for instance, if we require interpolation also on subsets of symptoms. This
corresponds to the situation where a symptom value is neither known nor completely
unknown, i.e. it can be confined to a subset of the symptom. The case of interpolation
on S; \ {s;} (for an arbitrary s; € S;) is sufficient as is shown by the theorem below for
which we need the following notations and definitions.

We assume for each S; = {s;1,..., s} a positive normalized weight function y;, i.e.
vyi(si;) > 0 and Z?"zl yi(si;) = 1. Next we extend w; to a function on the power set of S;

by defining for all subsets S; = {s,, - --,58ij,} C Si (n < k;)

6Let us remark that marginal independence is implied in case of binary symptoms as a special case of
the theorem below. (335 is a singleton, and consequently, no interpolation on subsets is needed.)
"Constructed again with the probabilistic reasoning tool PIT [PIT]
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v

wi($) = (X, wilsig,) - wilsizy)) [/ Xy wilsig,)

We define for a subset I = {i1,...,9,} C {1,...,m} and for its complement I :=
{1,...,m} \ I the partial symptom event p; = (S“, .., S; ) (with S C Si;)-
We extend our global score function to

w(pr) = ey wilSH) + Dier wilSi)

and extend our translation by the following additional constraint

S er wi(Sh) + X er wi(S))

~
wmaz

‘P(pr —> d) :=

(9)
For a s;; € S;, we denote by 5;; the set of all values of S; besides s;;, i.e. S;\ {si;}. We
define a;; == w;(s;5) — w;i(S;) and b;; == w;(555) — wi(S;)-

Theorem: Given a P-measure P which satisfies the constraints (2), (3) and (9). With
the weight functions y; taken as the marginal distributions of the S; derived from P, then
holds that the S; are marginal independent if all a;; > 0.

Proof: We get for an arbitrary partial symptom event p; = (s;,, ..., s;,) and an arbitrary
symptom value s;; € S; = {S1, ..., Si, } with ¢ ¢ I the following general equation:

P(p; —> d) = P({p1, 5i5) —> d) - P(p; — si5) + P({p1,555) —> d) - P(p; —> 3y5)
P((p1, 515) —> d) - P57 —> s5i5) + P((57,55) — d) - (1= P57 —» si5))

- (P(< i, 5i3) — d) = P57, 55) —> d)) - P57 — s5) + P((57,55) — d)

S,
With P(p; —>d) = 2ter wé(sf) + 2 get we(Se) ’

P((p}, si;) —> d) = (D per we(se)) + wi(sz'j1)3+ (3" se7 we(Se)) — wi(S;) P d)t waij |
P((p},55) —>d) = (Xerwe(se)) + wil5ig) + gz we(Se) — wilSi) _ o Abij |

~
wmaz wmaz

we get in continuation from above

ij — bij bij
Y7 p(p — sij) + P(py —b d) + —2

Pp; —>d) =
wmaz wma:v
which y1€ldS _bij = P(p_} — Sij) . (aij — bl])
respectively  —w;(55;) + wi(S;) = P(pr —> sij) - (wi(si5) — wi(535))
S vi(sie) - wilsie) — vilsiy) - wilsyy) _ wilS) — vilsy) - wilsiy)
Ze:1 Yi(sie) — yi(sij) 1- yi(Szj)

8a;; > 0 excludes that the interpolated score in case of a (completely) unknown symptom value from

S; coincides with the score of one of the s; € S;.

Recall that — w;(53;) =
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and we get
~wi(Si) — yilsyy) - wisyj)
1 —yi(sij)

5P o) (i~ LSS
—w;(S;) + yi(ss5) - wi(siz) +wi(S) - (1 — wils45)) =
= P(5i — i) (wilsig) - (1= i(s57)) — wi(S) + i(s57) - wilsiy))
wi(S;) - (=141 = wi(sij)) + yi(si5) - wi(sij) = P(pr —> si5) - (wi(si5) — wi(Si))
Yi(si5) - (wilsij) — wi(Si)) = P(pr —> sij) - (wilsi5) — wi(S:))
We obtain y;(s;;) - a;j = P(pr — sij) - ai; and finally y;(s;;) = P(pr —> s45)). n

In connection with these findings the following thought is quite interesting:

Let us assume that we know the P-measure P® on ¥ = S x --- x S,,, which reflects the
frequency distribution of the symptom tuples in the real world. (Of course, this is rather
hypothetical as the necessary statistical investigations are not feasible in general.)

Given P* we obtain the marginal distributions P§ of the symptoms S;, which can be used
as weight functions for interpolation in case of unknown symptom values. The interesting
observation is now that with these additional constraints we obtain a P-measure P~ on
Q for which holds that P is the product measure P§ ® ---® P . (Note that the case
I =0 in the theorem above yields Py = P¥.)

In other words, a score system (with interpolation) dismantles a known distribution of
symptom values into its ‘single-symptom-parts’ — the marginal distributions of the S; —
which are then recombined independently.

On the other hand, a score system with interpolation further restrains the compatible P-
measures by introducing assumptions about the distribution on ¥ which are not justified
in general and thus increase the potential error of a score system application. Due to this
concomitant increase of error, interpolation in a score system can never be an acceptable
substitute for missing symptom values, but only play the role of an ad hoc solution in
case of emergency.

7 Conclusion

Let us come back to the issue of (in)dependence. Most people who work with score
systems sooner or later feel uneasy, because they perceive that score systems don’t allow
them to deal adequately with certain relationships they are aware of.

Since marginal independence of symptoms cannot be established for ordinary score sys-
tems, and consequently cannot be responsible for this uneasiness, we may ask what else
is the origin of the intuitive awareness of some kind of independence in score systems?
We believe that this feeling stems from property (1) — contribution invariance. It seems
that in part of the literature on score systems independence of symptoms has commonly
been confused with some kind of independence of judgments about them.

Contribution invariance implies that, for instance, the number of leucocytes cannot be
‘scored’ differently in dependence of the age of a patient despite the fact that elder people
have ordinarily higher leucocyte numbers than younger ones. Independent ‘scoring’ of
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leucocyte numbers leads to their overestimation as indication of a disease with elder
patients and to underestimation with younger ones. (Note as well that leucocyte number
and age are not independent.)

Additional light is shed on this issue when considering diagnosis as a classifications task.
An overall score can be understood as a linear combination of criteria and we know from
Machine Learning that good classification can only be achieved if the data, we want to
learn from, can be separated by hyperplanes. However, with many problems of diagnosis
this setting is too simple: The criteria should either be combined in a non-linear way or
non-linear separating surfaces should be modeled. Probability theory is an excellent tool
for pursuing these directions.

Although the purpose of this paper is analytical, we want to ask in the end whether there
lies also any practical benefit in the proposed translation. (The large size of the generated
constraint set is certainly a limitation which can only overcome by some method which
builds P-measures on the basis of a constraint generator.)

Since the first translation fixes completely the relationship between symptoms and dis-
ease, only additional knowledge about the distribution of symptoms may be added. Doing
that, the resulting probabilistic system automatically provides context-dependent inter-
polation for missing symptom values, a problem which is not solved satisfactorily with
score systems.
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