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A Note on Interaction and
Incompleteness

DAMJAN BOJADŽIEV, Institute Jožef Stefan, Jamova 39, 1000

Ljubljana, Slovenia. E-mail: damjan.bojadziev@ijs.si

Abstract

The notion of interaction and interaction machines, developed by Peter Wegner, includes the com-
parison between incompleteness of interaction machines and Gödel incompleteness. However, this
comparison is not adequate, because it combines different notions and different sources of incom-
pleteness. In particular, it merges syntactic with two senses of semantic completeness, and results
about truth (Tarski) with results about provability and their consequences (Gödel). The compari-
son also overlooks structural differences in the way diagonalization produces incompleteness. More
generally, the comparison is unlikely because interaction incompleteness is supposed to come from
a system’s involvement with its environment, whereas Gödel incompleteness comes from a system’s
involvement with itself.

Keywords: interaction, incompleteness, Wegner, Gödel, Tarski, diagonalization

1 Introduction

In a series of papers, notably in [15] and [16], Peter Wegner has championed the
paradigm of interaction (symbolic interaction). He typically begins by observing that
interaction is not expressible by a finite initial input string [16, p. 315], and then
introduces what he calls interaction machines, which

extend Turing machines by adding dynamic input/output (read/write) actions
that interact directly with an external environment [16, p. 316, definition 1].

Instead of ’finite initial input strings’, these machines are supposed to have dynami-
cally generated input streams, ’mathematically modeled by infinite sequences’ [15, p.
89]. This characterization is the basis for what Wegner calls incompleteness of inter-
action machines, the most precise sense of which is that ’the set of computations of an
interaction machine cannot be enumerated’ [15, p. 89]. Wegner compares interaction
incompleteness in this sense with Gödel’s incompleteness result for formal arithmetic:

Gödel’s discovery that the integers cannot be described completely through
logic [. . . ] may be adapted to show that interaction machines cannot be com-
pletely described by first-order logic [15, p. 83].

This comparison has been previously examined by Ekdahl [3], who showed that it
depends on confusing two different senses of completeness, and pointed out a certain
contradiction in Wegner’s treatment of completeness [3, p. 4]. The present note
amplifies Ekdahl’s conclusions by adding a third sense of completeness, present in
Wegner’s comparison. The main addition of the note to what Ekdahl has already
noticed is the finding that the comparison between interaction incompleteness and
Gödel incompleteness is also inadequate at the level of the sources of these sorts
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514 A Note on Interaction and Incompleteness

of incompleteness. Even before looking closer into them, it may be noted that the
comparison seems strange, because interaction incompleteness is supposed to come
from a system’s involvement with its environment, whereas Gödel incompleteness
comes from a system’s involvement with itself.

The note first revisits briefly the incompleteness ambiguity noted by Ekdahl, as a
way of introducing two basic concepts of completeness (section 2.1), and then points
out a further, third sense of completeness in Wegner’s comparison (section 2.2). Next,
moving to the level of the sources of incompleteness (section 3), the note shows that
Wegner does not present correctly the way in which Gödel incompleteness is obtained
(section 3.1). The most detailed argument of the note, close to the actual technical
level invoked in the comparison, then points out inadequacies in Wegner’s treatment
of the role of the specific mechanism of incompleteness (diagonalization) in his concept
of interaction incompleteness (section 3.2.1) and its supposed connection with Gödel
incompleteness (section 3.2.2). The discussion that follows (section 4) returns to more
general questions about interaction, computation and incompleteness, attempting to
address the intuitions which might have motivated Wegner’s comparison.

2 Senses of completeness

One reason for the inadequacy of the comparison between interaction incomplete-
ness and Gödel incompleteness is that, in the treatment of Gödel incompleteness, it
conflates various senses of completeness. Ekdahl [3] has already noted two of them,
which will be revisited here, using different textual examples, as a way of refreshing
two basic concepts of completeness before drawing attention to a third one.

2.1 Semantic and syntactic completeness

In one of his more representative publications [16], Wegner introduces the notion of
completeness by stating that ’a logic is complete if all tautologies [formulae true in all
interpretations] are provable’ [16, p. 343, definition 17] and then, without changing
the definition, states that ’Gödel proved incompleteness [. . . ]’ [16, p. 344]. However,
the sense of completeness in which Gödel proved incompleteness is different from the
completeness which Wegner refers to. The completeness in his definition is basically a
relation between a theory and what it can be about; more precisely, it is a property of
the theory whose definition involves the interpretations of the theory, which is why it
is called semantic completeness. By contrast, the completeness in Gödel’s incomplete-
ness result is a property of the theory alone, namely the provability or refutability of
any statement (syntactic completeness). Moreover, and somewhat ironically, not only
did Gödel not prove incompleteness in Wegner’s sense, but he proved completeness
in that sense [8, p. 67]. That is, Gödel did not prove what Wegner’s statement im-
plies, namely that some formulae true in all interpretations are not provable (semantic
incompleteness); on the contrary, he proved that all such formulae are provable (se-
mantic completeness). Gödel also proved, quite independently, that some statements
are neither provable nor refutable in a sufficiently consistent system of arithmetic,
and related theories (syntactic incompleteness), but that is a very different story. It
might be added that this ’misunderstanding of the completeness and incompleteness
results’ noted by Ekdahl [3, p. 4] is frequent enough, and that textbooks rarely bother



3. SOURCES OF INCOMPLETENESS 515

to ’decrease the likelihood that the reader will assume that Gödel’s incompleteness
theorem has something to do with semantic completeness’, as McCawley’s does [7,
pp. 74–6].

2.2 A third sense of completeness

A further, third sense of completeness, present in Wegner’s comparison, completes
the confusion about completeness noted by Ekdahl [3]. He also mentioned this sense
of completeness as a third possibility, but it was not actually present in the paper
he examined [16]. The third sense of completeness concerns the relation between
what is provable in a theory and what is true in a particular model. This sense of
completeness is explicit in the following definition, from a later paper: ’a logic is
[. . . ] complete if all true assertions of the modeled domain are theorems’ [17, p. 64].
Apart from the unusual choice of the term defined (logic does not model domains,
theories do), the definition is unexceptional, but it does not capture the notion of
completeness involved in Gödel’s incompleteness. It might be added that Wegner
also uses the notion of (in)completeness in a colloquial, non-technical way: ’Gödel
showed incompleteness of the integers [. . . ]’ [15, p. 89]. Here, incompleteness is a
property of the ”integers” (natural numbers, more likely), not of a theory about them
(or a logic). Disregarding this further sort of (in)completeness, the three basic senses
of completeness between which Wegner moves concern

• the relation between provability and truth in all models (Gödel’s completeness)

• the relation between provability and truth in a particular model

• the provability or refutability of all statements (Gödel’s incompleteness)

The confusion noted by Ekdahl involves the first and the third sense of completeness,
while the additional confusion in the definition above involves the last two senses.
The first sense of completeness is involved in Gödel’s completeness result, which is
related to logic; the third sense of completeness is involved in Gödel’s incompleteness
result, which is related to arithmetic.

3 Sources of incompleteness

The misunderstanding about the nature of Gödel incompleteness, presented above, is
accompanied by a misunderstanding of the sources of incompleteness, both of Gödel
incompleteness and interaction incompleteness. This misunderstanding, at the level
of reasons for incompleteness, is central to the comparison between the two sorts of
incompleteness, and is also interesting enough in itself to reconstruct in some detail.

3.1 Sources of Gödel incompleteness

Wegner says that

if the logic is both sound and complete, [. . . ] the number of true assertions
expressible by theorems is recursively enumerable [. . . ]
Gödel proved incompleteness using a diagonalization argument to show that
true statements were not recursively enumerable [16, p. 343–4].
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In order to understand and evaluate this passage, it is not actually necessary to know
what ”recursively enumerable” means, and what a diagonalization argument is. These
will be explained when they come up again later, but what matters here is only the
top structure of Wegner’s statements. If the first one is abbreviated as

sound and complete → truths are RE

the second can be written as

Gödel proved incompleteness using D to show that truths are not RE

Wegner thus suggests that Gödel showed that the right-hand side of the implication
above is false, so the left-hand side must be false too; assuming soundness (truth of the-
orems), this would indeed establish incompleteness. This interpretation of Wegner’s
idea of Gödel’s proof is rather accommodating, because Wegner talks of ’the num-
ber of true assertions expressible by theorems ’, not the ”number” (set, more likely)
of true assertions. Thus, strictly speaking, the right-hand side of the implication
above should be ’provable truths are RE’, which does not need the condition provided
by the implication. But the point is that even if Wegner’s statements are sympa-
thetically interpreted to constitute a valid argument, this argument does not present
correctly Gödel’s proof of incompleteness. Gödel did not prove incompleteness in the
way suggested, in the first place because this would be the wrong, semantic sort of
incompleteness. This can be seen if the first deleted part of the quotation above is
restored:

if the logic is both sound and complete, then there is a one-to-one correspon-
dence between syntactic theorems and semantically true assertions for all mod-
els, and the number of true assertions expressible by theorems is recursively
enumerable [. . . ] (emphasis mine)

The part restored here was initially deleted in order to bring out Wegner’s idea of
the basic logical (propositional) structure of Gödel’s proof. However, the sense of
completeness present in this part (semantic completeness) is not appropriate for the
whole passage, since Gödel proved a different sort of incompleteness. This was al-
ready explained in section 2, but what should be added here is that Gödel proved
incompleteness independently of the implication above. Gödel proved incompleteness
directly, by constructing a statement which is neither provable nor refutable in a
(sufficiently) consistent system (of arithmetic).

Similar objections apply to an earlier, somewhat more precise version of the claim
quoted above:

The set of true statements of a sound and complete logic can be enumerated
as a set of theorems and is therefore recursively enumerable. Gödel showed
incompleteness of the integers by showing that the set of true statements about
integers was not recursively enumerable [15, p. 89].

The fact that truths about ”integers” (natural numbers) are not recursively enumer-
able means that they cannot be listed using certain well-behaved combinations of
simple ways of specifying things. Again, knowing precisely what these ways and com-
binations are is not necessary to understand and evaluate the claim that Gödel showed
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incompleteness of the integers by showing that truths about them are not enumer-
able in these ways and combinations. Incidentally, the previously quoted version of
the claim shows that the claim itself is not an excessively literal reading of Wegner’s
statement. In any case, the fact that truths about ”integers” are not enumerable in
certain ways and combinations was not instrumental in Gödel’s incompleteness proof.
In that proof, Gödel actually avoided the concept of truth; as Feferman says, Gödel
’took pains to eliminate the concept of truth from the main results of 1931’ [4, p. 106]
(it is present only in his introductory sketch of these results, which will be used in
the next section).

In his (first) incompleteness theorem, Gödel proved that a particular statement of
arithmetic is not provable if the theory is consistent. He constructed this statement
to be readable as a meta-theoretical statement too, saying precisely that about itself,
namely that it is not provable. Assuming that arithmetic is consistent, the statement
is true. This formulation is a little too simple (there are models of arithmetic in which
the statement is false), but the point is that this is the path to the conclusion that
some arithmetical truth is not a theorem. This conclusion can indeed also be reached
in the way Wegner suggests:

Theorems are recursively enumerable
Arithmetical truths are not recursively enumerable
Therefore, some arithmetical truth is not a theorem

However, this argument only establishes a consequence of Gödel’s incompleteness the-
orem, not the theorem itself. Perhaps more importantly, not only does the argument
fall short of establishing Gödel’s incompleteness result, but it also goes the wrong
way about it, so to speak. The reason is that the argument raises the question of its
second premise: where did that premise come from? The result that truths about nat-
ural numbers are not recursively enumerable was actually established after Gödel’s
incompleteness theorem, and is better associated with Tarski. It follows from two
other results: the fact that recursively enumerable sets are definable by arithmetical
formulas [10, p. 126], and the result that the set of true statements about natural
numbers is not so definable [10, p. 122], which is closely related to Tarski’s result
proper. Both express the idea that the property of being a true sentence of arithmetic
is not expressible in it (Tarski’s theorem says, roughly, that if arithmetic is consis-
tent, it does not have a truth predicate). The error in Wegner’s idea of the source
of Gödel incompleteness is now clear, and can be restated briefly: the logical path
goes, not from Wegner’s pseudo-Tarski to Gödel, but from Gödel to Tarski (Tarski’s
theorem can be proved from Gödel’s (first) incompleteness theorem, by way of two
other theorems).

3.2 Diagonalization

Interestingly, Wegner’s misunderstanding of the reasons for Gödel incompleteness is
matched by a misunderstanding of the reasons for what he calls interaction incom-
pleteness. To refresh the notions involved, interaction machines

extend Turing machines by adding dynamic input/output (read/write) actions
that interact directly with an external environment [16, p. 316, definition 1].
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These machines are supposed to be incomplete in the sense that ’the set of computa-
tions of an interaction machine cannot be enumerated’ [15, p. 89]. Wegner compares
this sort of incompleteness with Gödel’s incompleteness and claims that

the incompleteness proof for interaction machines is actually simpler than
Gödel’s, following directly from non-enumerability of infinite sequences [16,
p. 344].

An earlier version of this claim was more explicit:

interaction machine incompleteness follows from nonenumerability of infinite
sequences over a finite alphabet and does not require diagonalization [15, p.
89] (emphasis mine)

This remark about diagonalization is worth going into a little deeper because Wegner’s
statements about it are the most precise of all his statements, closest to the level of
formal proofs which should ground the comparison between interaction incompleteness
and Gödel incompleteness. Wegner says that interaction incompleteness is ’a form of
Gödel incompleteness’ [16, p. 315], and that

Gödel’s discovery that the integers cannot be described completely through
logic, [. . . ] may be adapted to show that interaction machines cannot be
completely described by first order logic [15, p. 83].

These claims are another reason for looking closer at the background of proofs which
Wegner’s comparison invokes.

3.2.1 Diagonalization in interaction incompleteness
Interaction machine incompleteness as non-enumerability of computations indeed fol-
lows from non-enumerability of infinite input sequences. What is more problematic
is the claim that interaction incompleteness does not require diagonalization, because
non-enumerability of infinite sequences seems to require it. That is, diagonalization
is precisely the method used to prove that infinite sequences over a finite alphabet
are not enumerable [2, p. 17]. This is established by taking the sequences of any
proposed enumeration to be the rows of a matrix such as

a b c . . .
b c a . . .
a c d . . .
. . . . . . . . . . . .

and constructing a new sequence by going down the diagonal and stringing together
elements different from the diagonal ones, producing a sequence such as

b a c . . .

Since each element of this sequence was chosen to differ from the corresponding ele-
ment in one of the sequences, this sequence is different from all the sequences in the
proposed enumeration, so it could not have been included in it.

Returning now to the claim that ’interaction machine incompleteness [. . . ] does
not require diagonalization’ [15, p. 89]: Wegner does not explain this claim, or offer
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an alternative proof that infinite sequences over a finite alphabet are not enumerable.
As a matter of fact, such proofs which do not use diagonalization can be constructed,
for example by what might be called parabolization: the sequence which falls outside
any given enumeration can be defined by taking its first element to be different from
the first element of the first sequence, its fourth element different from the fourth
element of the second sequence, its ninth element different from the ninth element of
the third sequence, and so on. No matter how the intervening elements are chosen,
the resulting sequence will differ from all the sequences in the enumeration: from
sequence number i in element number i2. That is, instead of going down the diagonal
of the matrix above, some other path such as a parabola can be taken. So, it should be
conceded that ”interaction machine incompleteness does not require diagonalization”,
even though alternative proofs are needlessly more complex, which is why they don’t
appear in the literature. However, what is more important is that the remark about
diagonalization also holds for Gödel’s incompleteness, to an even greater extent, so
the remark looses its point.

Diagonalization and what was called parabolization use the same proof idea, namely
the systematic construction of a sequence which differs from each of the enumerated
sequences in a prescribed position, prescribed by a certain function (identity in the
case of diagonalization, a quadratic function in the case of ”parabolization”). On
this basis, it might be said that diagonalization and ”parabolization” are really the
same thing, and should not be distinguished. However, this objection would provide
no support for the claim that interaction machine incompleteness does not require
diagonalization. On the contrary: the claim is true if diagonalization is understood
in the usual, literal sense, referring to the diagonal in the matrix above. The case of
”parabolization” supported the claim, and the objection would remove this support.

3.2.2 Diagonalization in Gödel incompleteness

In Gödel’s introductory sketch of the incompleteness proof [5, pp. 7-8], the starting
point is the matrix of statements:

P0(0) P0(1) P0(2) . . .
P1(0) P1(1) P1(2) . . .
P2(0) P2(1) P2(2) . . .
. . . . . . . . . . . .

where Pi(x) is the i-th property of natural numbers in some enumeration of such
properties. If the diagonal procedure in the proof of non-enumerability of infinite
sequences is described by the term

¬ di (3.1)

(abusing notation a little in order to bring out similarities), the procedure in Gödel’s
proof is described by the term

¬ provable(di) (3.2)

That is, non-provability of the statements along the diagonal in the matrix above
defines a certain property of natural numbers: a number i has this property if the
statement Pi(i) is not provable. This property has a certain number g in the enu-
meration of properties, and the incompleteness result follows from considering what
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happens at the corresponding place on the diagonal, with the statement Pg(g). This
statement says that the number g has the property Pg(x), which means that the state-
ment Pg(g) is unprovable, by the definition of that property. The statement Pg(g)
is thus the statement mentioned in the previous section, namely the statement that
says of itself that it is not provable. A short reflection on the definition of Pg(x) then
shows that Pg(g) is neither provable nor refutable; the interested reader can find this
reflection in the appendix.

Comparing the two incompleteness proofs, it is obvious that there are major struc-
tural differences in their use of diagonalization. In the proof of non-enumerability of
infinite sequences, a new sequence was constructed for any enumeration of sequences;
in Gödel’s proof, the property constructed from a given enumeration of properties
is a special member of that enumeration. This goes directly against Wegner’s and
Goldin’s claim that

Gödel proved his theorem by showing that arithmetic over the integers could
not be expressed by an enumerable number of formulae, using diagonalization
to prove nonenumerability [18, p. 14].

Another difference between the proofs is that the first one uses elements satisfying a
certain property (that of being different from the diagonal element), whereas the sec-
ond proof uses such a property itself (that of having an unprovable diagonal element).
The first proof only walks down the diagonal to define a new row; the second proof
walks down the diagonal to single out a certain row whose diagonal element is itself
part of the walk. The term (3.1) describes a procedure, or the resulting new row of
the matrix, at the meta-level, whereas (3.2) describes a special row, and does so in
the same theory in which the other properties are formulated. This difference will be
clearer if what it takes to describe the special row is indicated in some more detail:

¬ provable( subst(Pi(x), num(i)) ) (3.2)

This formula indicates the basic structure of the special property Pg(x); the term
subst(Pi(x), num(i)) describes the result of substituting, into the i-th property Pi(x),
the numeral of its number i for the free variable. This procedure, whose description
is part of Pg(x), is then used on Pg(x) itself to produce Pg(g). This should make
obvious the considerable difference between the proofs of interaction incompleteness
and Gödel incompleteness: the first proof only performs a procedure, whereas the
second formalizes a procedure and then applies it to its own formalization. It should
thus be clear that there is no basis for saying that interaction incompleteness is ’a form
of Gödel incompleteness’ [16, p. 315], or that ’Gödel’s discovery [. . . ] may be adapted
to show that interaction machines cannot be completely described [. . . ]’ [15, p. 83].
The double use of diagonalization in Gödel’s proof is a sophisticated elaboration of
the use of diagonalization in interaction incompleteness, so it makes little sense to say
that it can be ”adapted” for such simple use.

Finally, taking up again Wegner’s remark that interaction incompleteness does not
require diagonalization [15, p. 89]: the same applies to Gödel incompleteness, only
more so, so to speak. That is, more variations that do not use diagonalization are pos-
sible in Gödel incompleteness, because of its greater complexity. First, diagonalization
as the special substitution of the numeral of a formula’s Gödel number ”back” into
the formula, in place of the free variable, can be replaced by some other substitution,
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corresponding to a different path through the rows of the matrix above, for example
along lines parallel to the diagonal [1], or along other paths that can be described
in the formal system, such as the parabola in the interaction incompleteness exam-
ple. The condition that the alternative path can be described in the formal system
is necessary in order to replace the term subst(Pi(x), num(i)), which describes the
diagonal substitution in (3.2), with a description of the alternative path. A further
variation that does not use diagonalization is the use of some other operation instead
of substitution, such as concatenation [11]. Finally, it is also possible to eliminate di-
agonalization from the surface of the proof and push it down into its presupposition,
namely into the system of numbering properties of natural numbers (non-standard or
Kripke codes) [12, p. 628]. Such ”pre-diagonalization” makes it possible to construct
sentences that refer to themselves directly, through the numeral of their own number,
instead of using operations such as substitution or concatenation.

4 Discussion

The claim that there is a connection between interaction incompleteness and Gödel
incompleteness seems implausible even without going into the details of their proofs
and the role of diagonalization in these proofs. The two kinds of incompleteness
have basically different sources: Gödel incompleteness comes, so to speak, from a
system’s involvement with itself, not from involvement, ’interaction with an exter-
nal environment’, because it depends on reflecting the relation of provability for a
system within the system itself. Simplifying considerably in order to address the in-
tuition which might motivate Wegner’s comparison, it could be said that interaction
incompleteness is computation overwhelmed by input, whereas Gödel incompleteness
is computation overwhelmed by becoming its own input. It might even be said that
Gödel incompleteness comes from self-interaction, which would at least explain why
Wegner calls diagonalization an interactive process [16, p. 318]. However, this would
invert Wegner’s statement of the relation between interaction incompleteness and
Gödel incompleteness. If self-interaction is a form of interaction, it could only be the
case that Gödel incompleteness is a form of interaction incompleteness, not the other
way around. But saying this would amount to little more than stretching meanings
in order to meet Wegner’s intuitions and correct them. It is much better to say that
the two forms of incompleteness are independent, and only share, in a general way, a
certain method of proof.

More generally, interaction itself, human or otherwise, does not seem to have any
feature of Gödel incompleteness, though some kinds of interaction might recall a
Gödel-type situation. A conceivable sort of example might be social situations whose
framework, not to say consistency, is defined by obvious but unspeakable or unutter-
able truth (”elephant in the room” or ”naked emperor” phenomena). A likely place
to look for better connections between interaction and Gödel incompleteness might
be the field of pragmatic paradoxes (”paradoxical interaction”) [13].

If incompleteness is supposed to be the basic feature of interaction, ’the essen-
tial ingredient distinguishing interactive from algorithmic models of computing’ [15,
p. 88], this is not Gödel incompleteness. A better case can actually be made for
connecting Gödel incompleteness not to interaction machines but to classical Turing
machines. Webb [14] has indicated in some detail how Gödel incompleteness brings
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the richness of behavior and unpredictability, supposedly characteristic of interaction
machines, to classical Turing machines [14, ch. IV, esp. p. 193]. Other aspects of
the significance of Wegner’s notion of interaction for the theory of computation have
been examined elsewhere [9], but what can be added here is that this significance is
limited, in Wegner’s own papers and in some collaborative efforts [18], by the fact
that the characterization of interaction machines mainly concerns the input side of
computations. More precise implications for computational architectures servicing
such input may be drawn in papers inspired by Wegner’s emphasis on interaction [6],
but these papers don’t suggest connections with Gödel’s incompleteness.

A Appendix

The proof of Gödel incompleteness from the statement Pg(g) in section 3.2.2 goes as follows: if the
statement were provable, this would mean that the number g has the property Pg(x), which would in
turn mean that Pg(g) would not be provable, by the definition of that property. Since the assumption
that Pg(g) is provable would thus lead to contradiction, the statement cannot be provable. On the
other hand, if the statement Pg(g) was refutable, this would mean that the number g does not have
the property Pg(x), which would in turn mean that Pg(g) is provable, by the definition of that
property; since the assumption that Pg(g) is refutable would lead to contradiction, it cannot be
refutable either.
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Abstract

I show two simple limitations of sequent systems with multiplicative context treatment: contraction
can be restricted neither to atoms nor to the bottom of a proof tree.

Keywords: sequent calculus, contraction, deep inference

1 Motivation

The motivation for the present work is to find out whether there is a sequent system
that possesses certain properties of system SKS, a set of rules for classical propositional
logic introduced in [1]. System SKS is not a sequent system, but is presented in a
more general formalism, the calculus of structures [2]. In this formalism, an inference
rule has only one premise: derivations are sequences of rule instances, not trees as
in the sequent calculus. While the sequent calculus restricts the application of rules
to the main connective of a formula, the calculus of structures is more expressive by
admitting deep inference, meaning that rules can be applied anywhere inside formulae.

Similarly to sequent systems, system SKS has a contraction rule which, when seen
bottom-up, duplicates a formula. This contraction rule can be restricted 1) to atoms
and 2) to the bottom of a proof. Apart from contraction, no other rule duplicates
formulae. The two restrictions on contraction thus respectively entail the following
two interesting properties [1]:

1. Applying a rule may involve duplicating atoms, but not duplicating arbitrarily
large non-atomic formulae.

2. Proofs can be separated into two phases (seen bottom-up): The lower phase only
contains instances of contraction. The upper phase contains instances of the other
rules, but no contraction. No formulae are duplicated in the upper phase.

The question is whether the extra expressive power of the calculus of structures is
needed for these properties, or whether they can be obtained in sequent systems as
well. In system G3cp [3], for example, contraction is admissible and can thus trivially
be restricted to atoms or to the bottom of a proof. However, G3cp has an additive
(or context-sharing) R∧-rule, so these restrictions on contraction do not entail the
above mentioned interesting properties. Contraction is admissible, but additive rules
such as R∧ implicitly duplicate formulae which may be non-atomic. Of course, R∧ is
not eliminable. To obtain a proof separation similar to the one for system SKS, one
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would have to restrict contraction and R∧ to the bottom of a proof tree, which is not
possible. Other sequent systems with an additive R∧-rule share these problems.

To answer the question whether there is a sequent system with the properties of
system SKS, I thus consider systems with a multiplicative (or context-splitting) R∧-
rule, exemplified by system GS1p with multiplicative context treatment [3], shown in
Fig. 1.

Ax
` A, Ā

` Γ, A,A
RC

` Γ, A

` Γ
RW

` Γ, A

` Γ, A,B
R∨

` Γ, A ∨B

` Γ, A ` ∆, B
R∧

` Γ,∆, A ∧ B

Fig. 1. GS1p with multiplicative context treatment

The rules Ax,RC and RW are respectively called axiom, contraction and weakening.
Propositional variables p and their negations p̄ are atoms, with the negation of the
atom p̄ defined to be p. Atoms are denoted by a, b, . . .. Formulae, denoted by A,B, . . .,
are in negation normal form, meaning that they contain negation only on atoms. Ā
denotes the negation normal form of the negation of formula A. A derivation (also
called partial proof) is a tree of rule instances. A proof is a derivation where all
leaves are axioms. In a derivation, all contractions are at the bottom if no contraction
is applied above a rule different from contraction. An application of the contraction
rule is said to be atomic if its principal formula is an atom. The endsequent of a
derivation is the sequent at the root. The system GS1p with atomic axiom is GS1p

with the formulas A and Ā in the axiom required to be atoms.

2 Restricting Contraction in the Sequent Calculus is Impossible

In the following, I will show that GS1p does not possess the properties of SKS.

Proposition 2.1 There is a valid sequent that has no proof in multiplicative GS1p in
which all contractions are atomic.

Proof. Consider the following sequent:

` a ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄) . (2.1)

There are no single atoms, so contraction cannot be applied. Each applicable rule
leads to a premise that is not valid.

Proposition 2.2 There is a valid sequent that has no proof in multiplicative GS1p in
which all contractions are at the bottom.
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Proof. Consider the following sequent:

` a ∧ a, ā ∧ ā . (2.2)

It suffices to show that, for any number of occurrences of the formulae a ∧ a and ā ∧ ā,
the sequent

` a ∧ a, . . . , a ∧ a, ā ∧ ā, . . . , ā ∧ ā (2.3)

is not provable in GS1p without contraction. Since the connective ∨ does not occur
in this sequent, the only rules that can appear in contraction-free derivations with
this endsequent are Ax,R∧ and RW. The only formulae that can appear in such
derivations are a∧ a, ā∧ ā, a and ā. Consequently, the only formulae that can appear
in an axiom are the atoms a and ā. A leaf can thus be closed with an axiom only if
it contains exactly two single atoms (as opposed to two non-atomic formulae).

We prove by induction on the size of the derivation that each such derivation has a leaf
which contains at most one single atom. The base case is trivial. For the inductive
case, consider a derivation D. Remove a rule instance ρ from the top of D, to obtain
a derivation D′. Let l be the leaf with the conclusion of ρ. By inductive hypothesis,
D′ has a leaf with at most one single atom. Assume that this leaf is l, otherwise the
inductive step is trivial. The rule instance ρ can not be an axiom, because there is at
most one single atom in l. If ρ is a weakening then the premise of ρ contains at most
one single atom. If ρ is an instance of R∧ then the only single atom that may occur
in the conclusion goes to one premise. The other premise contains at most one (i.e.
exactly one) single atom.

A referee found a simpler proof of Proposition 2.2 by using the following fact:

Fact 2.3 If a sequent has a contraction-free proof in GS1p then it has a contraction-free
proof in GS1p with atomic axiom.

This proof is as follows: consider proofs in GS1p with atomic axiom. By a trivial
induction on the structure of the proof it follows that every contraction-free proof
has an endsequent with at least two single atoms or at least one occurence of the
connective ∨. Thus, sequent (2.3) has no contraction-free proof in GS1p with atomic
axiom. By contrapositive of the above fact, it has no contraction-free proof in GS1p.

The reason for presenting the more complex proof is that it is more general: it applies
to systems for which the above fact does not hold, e.g. GS1p with multiplicative
R∧ and additive R∨. In fact, the proofs of Propositions 2.1 and 2.2 rely on the
multiplicative context treatment in the R∧-rule, but work regardless of whether the
system in question is for propositional or for first-order predicate logic, whether it
is two- or one-sided, whether or not rules for implication are in the system, whether
it is related to G1 (explicit weakening) or G2 (weakening built into the axiom) and
whether a multiplicative or additive version of the R∨-rule is used. In those sequent
systems, contraction can thus neither be restricted to atoms nor to the bottom of a
proof. Consequently, those systems do not have the interesting properties of system
SKS.
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` a, ā ` b, b̄
R∧

` a ∧ b, ā, b̄
R∨

` a ∧ b, ā ∨ b̄

` a, ā ` b, b̄
R∧

` a ∧ b, ā, b̄
R∨

` a ∧ b, ā ∨ b̄
R∧

` a ∧ b, a ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄)
m

` (a ∨ a) ∧ (b ∨ b), (ā ∨ b̄) ∧ (ā ∨ b̄)
c

` (a ∨ a) ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄)
c

` a ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄)

` a, ā ` a, ā
R∧

` a, a, ā ∧ ā
R∨

` a ∨ a, ā ∧ ā

` a, ā ` a, ā
R∧

` a, a, ā ∧ ā
R∨

` a ∨ a, ā ∧ ā
R∧

` (a ∨ a) ∧ (a ∨ a), ā ∧ ā, ā ∧ ā
m

` (a ∨ a) ∧ (a ∨ a), (ā ∨ ā) ∧ (ā ∨ ā)
c

` (a ∨ a) ∧ (a ∨ a), (ā ∨ ā) ∧ ā
c

` (a ∨ a) ∧ (a ∨ a), ā ∧ ā
c

` (a ∨ a) ∧ a, ā ∧ ā
c

` a ∧ a, ā ∧ ā

Fig. 2. Proofs using deep inference and medial

3 Restricting Contraction by Using Deep Inference

To complete this exposition, I want to give an idea on how the sequents (2.1) and (2.2)
are proved in SKS. Contraction can be restricted to the bottom of a proof, because
it applies anywhere deep inside a formula. A corresponding rule in sequent calculus
notation might look like

` Γ, F{A ∨ A}
c ,

` Γ, F{A}

where F{ } is a formula context. Contraction can be restricted to atoms because
of deep inference and a rule which is called medial. A corresponding rule in sequent
calculus notation might look like

` Γ, A ∧ C,B ∧D
m .

` Γ, (A ∨ B) ∧ (C ∨D)

I do not want to suggest that those rules should be added to sequent systems, I just
present them as sequent calculus rules to avoid going into technical details of system
SKS, which can be found in [1]. Using deep inference and medial, we can prove the
sequents (2.1) and (2.2) as shown in Fig. 2. Note that in both proofs all contractions
are atomic and at the bottom.
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Abstract

Tolerance spaces are sets equipped with a reflexive, symmetric, but not necessarily transitive, relation
of indistinguishability, and are useful for describing vagueness based on error-prone measurements.
We show that any tolerance space can be embedded in one generated by comparisons using pro-
totypical objects. As a result propositions, definable on a tolerance space can be translated into
propositions behaving classically.

Keywords: distinguishability, discriminability, tolerance space, orthologic, prototypes, measurement

1 Introduction

The part of human knowledge that builds on observation employs the concept of
similarity to organize itself. The reason is twofold. First, similarity allows catego-
rization by grouping objects that share the same attributes. Second, similarity allows
compactness of knowledge, for we need neither examine nor memorize the particular
details of individual objects, as long as we have experienced similar ones.

In [8], we argued that similarity is not a primitive concept, but rather it is based
on the notion of indistinguishability. According to our view: two objects are similar
if they cannot be distinguished under a certain tolerance. By tolerance we mean
the power of discrimination. For example, although two similar houses might appear
different in various details when we stand in front of them, they might appear identical
if we observe them from an appropriate distance x. Thus, indistinguishability at
distance x implies similarity. The smaller the distance x, the more similar the objects
are.1

The aim of this paper is to explore mathematically the relation of indistinguisha-
bility as it arises from measurements, or simply comparisons, prone to error. In the
next section, we argue that each indistinguishability criterion based on measurement
gives rise to an exact reflexive and symmetric indistinguishability relation whose logic
is orthologic. In Section 3 we show the converse, namely, for each reflexive and sym-
metric indistinguishability relation there is a criterion for it based on a measurement
valuation. In Section 4, we explore indistinguishability relations whose criterion is
a comparison with a chosen set of prototypical objects. The logic of those relations
is classical, and every indistinguishability relation can be embedded in one of them,

1Although this example depends on an explicit distance function, such a function might not be available. Power of

discrimination depends on the information available. For instance, two houses are indistinguishable, and therefore

similar, if we know only that they are in they same neighborhood, have the same number of rooms, and are both

near public transportation.
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translating in essence, orthologic to classical logic.

2 The Indistinguishability Relation

We begin by giving the definition of the mathematical structure where this paper is
based, and which formalizes the notion of the indistinguishability that we assume:

Definition 2.1 A tolerance space is a pair

(X,∼)

where X is a set of objects, and ∼ is a binary relation between members of X called
the indistinguishability relation. We shall assume the following properties for ∼:

1. x ∼ x (Reflexivity)

2. x ∼ y implies y ∼ x (Symmetry)

for all x, y ∈ X . The complement of the indistinguishability relation will be called
distinguishability and denoted by 6∼.

Neither the concept of tolerance space nor the idea of using a reflexive and sym-
metric relation in order to express indistinguishability is new. Although many au-
thors have argued that indistinguishability is better expressed through equivalence
([1, 12, 7]), many have also dropped transitivity as early as [17] (see also [10] for
similarity), while others have weakened transitivity, the most notable example being
the t-norm transitivity of the similarity relation in Fuzzy sets ([22]). A set equipped
with a reflexive symmetric relation has been called a tolerance space in [23], proximity
space in [3] and resolution space in [8]. In the framework of Rough Sets [16], a reflex-
ive, symmetric, and transitive relation of indistinguishability is called indiscernibility,
and if it is only reflexive and symmetric, it is called a tolerance relation ([23],[13]).

The class of tolerance spaces is a very general and intuitive framework for studying
vagueness, for it makes the fewest assumptions possible. Examples are easily mod-
eled by a tolerance space, as the indistinguishability relation needs no quantitative
information. Metrics are perhaps the easiest way to generate distinguishability, for
example, let x 6∼ y if and only if d(x, y) ≥ ε for some appropriate fixed metric d and
non-negative real number ε. Other examples follow:

Example 2.2 Let X be the set {a, b, c, d} with the smallest indistinguishability re-
lation containing a ∼ b, b ∼ c, c ∼ d, and d ∼ a (see Figure 1 where double arrows
denote the indistinguishability relation among distinct elements).

Example 2.3 Let S be the set of finite binary strings of finite length n. We can say
that two strings are indistinguishable when they have the same length and differ in
at most one digit. Otherwise, they are distinguishable.

Example 2.4 Let D be a set of documents (sets of terms) and n a positive integer.
Two documents d1 and d2 are indistinguishable when they have at least n common
terms. That is,

d1 ∼ d2 iff |d1 ∩ d2| ≥ n.
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Fig. 1. The tolerance space of Example 2.2.

Example 2.5 Suppose we are given an instrument that can measure the velocity of
passing cars. The instrument is digital; therefore, our visual ability to discriminate
between measurements is irrelevant. Let us suppose that the instrument displays
integers of some velocity measure and the manufacturer of the instrument guarantees
an error of less than 0.6.

What is the tolerance space that corresponds to the above example? Let us denote
the physical state of the car at a certain moment with s and the result of measurement
of its velocity with v(s). If we measure a passing car and read 60, then we are sure
that its velocity is not 59. However, if we measure a second car and read 59, then the
velocities of the two cars might be the same, for they could both assume the same
value in the interval (59.4, 59.6). To ensure distinctness of the two car states with
respect to their velocity on the basis of the manufacturer’s guarantee on error, we
need to have two measurements that differ at least by a number greater than 1.2. So
the tolerance space is (S,∼) where S is the set of car states we measured and the
indistinguishability relation is si ∼ sj if and only if |v(si) − v(sj)| < 1.2.

The above examples illustrate how a reflexive, symmetric but not necessarily tran-
sitive, indistinguishability relation is generated by simple, widely practiced indistin-
guishability criteria. It is worth pointing out that the above examples also impose
the law of the excluded middle to indistinguishability. Indistinguishability arises as
failure to distinguish. This is akin to negation as failure in common sense reasoning.
Applications need criteria that give rise to decisions, and as a consequence, the ex-
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cluded middle is the natural choice. It is important to note that the classification
of two objects as indistinguishable must be considered defeasible. A more stringent
indistinguishability criterion may distinguish two objects that were previously con-
sidered indistinguishable. In example 2.5, a new measuring device with smaller error
will distinguish more car states with respect to velocity.

Indistinguishability by no means confines itself to contexts where measuring device
criteria impose exactness or exclude transitivity (see [14] and [11]).

We will now state some well-known results (up to Theorem 2.10) on tolerance spaces
and propositions that can be defined on them ([4],[9]).

The study of a space equipped with a reflexive and symmetric relation gives rise to
a Galois Connection that in turn generates a complete ortholattice of subsets (see [4]).

Definition 2.6 Let X ⊆ D. The discriminant operator a : ℘(D) → ℘(D) is defined
by

Xa = {y|∀x ∈ X, x 6∼ y}.

The complement of Xa is

X∼ = {y|∃x ∈ X, x ∼ y}.

We have the following

Proposition 2.7 1. X ⊆ Y implies Y a ⊆ Xa (that is the discriminant operator is
antitone).

2. X ⊆ Xaa, Xa = Xaaa

3. aa : ℘(D) → ℘(D) is a closure operator.

In fact, it is well known that an antitone operator on a lattice induces a pair of
Galois connections (see [5]) (here the lattice is the lattice of the powerset of D).
Closure operators in this case can be generated as a composition of the maps that
form the Galois connection.

The closed subsets of the closure operator will be called stable. Stable subsets have
the form Xaa.

The proposition below follows from a more general result about the closed subsets
of a closure operator (see [4]).

Proposition 2.8 The stable subsets of D form a complete lattice under ⊆. If {Ai}i∈I

is a family of stable sets then
∧

i∈I

Ai =
⋂

i∈I

Ai

∨

i∈I

Ai = (
⋃

i∈I

Ai)
aa.

The algebra of stable propositions on a tolerance space forms an ortholattice ([8]).
The proof of the completeness runs along the lines of Goldblatt’s representation of
ortholattice with its filters ([9]). The equational theory of ortholattices appears in
Table 1.

Theorem 2.9 (Soundness) The set of stable propositions on a tolerance space forms
an ortholattice.

Theorem 2.10 (Completeness) For every ortholattice T there is a tolerance space
RT such that T can embedded in the complete ortholattice of stable subsets of RT .
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Table 1. Ortholattice Theory

x ∧ x = x x ∨ x = x (Idempotence)

x ∧ y = y ∧ x x ∨ y = y ∨ x (Commutativity)

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z (Associativity)

x ∧ (x ∨ y) = x ∨ (x ∧ y) = x (Absorption)

x ∧ xa = ⊥ x ∨ xa = >

(x ∧ y)a = xa ∨ ya (x ∨ y)a = xa ∧ ya (de Morgan)

(xa)a = x (Involution)

x ` y is equivalent to either x ∧ y = x or x ∨ y = y

Stable subsets determine distinguishability in the following sense:

Proposition 2.11 Let (X,∼) be a tolerance space and x, y ∈ X . Then, x and y are
distinguishable if and only if there exists a stable subset A of X such that x ∈ A and
y ∈ Aa.

Proof. If there exists a stable subset A of X , such that x ∈ A and y ∈ Aa, we have
that x 6∼ z for all z ∈ Aa and in particular x 6∼ y. For the other direction it suffices
to notice that if x 6∼ y then y ∈ {x}a.

The space of stable subsets characterize a natural notion of specificity among the
objects of a tolerance space. Suppose x and y are two elements of a tolerance space
(X,∼) such that, for all z in X , if z is indistinguishable from x then z is indistin-
guishable from y. In this case, x carries more information as it is able to isolate more
elements through comparison than y. Let us call x more specific than y and denote
this relation with ≤, that is x ≤ y. It turns out that specificity can also be expressed
in terms of the stable subsets.

Proposition 2.12 Let (X,∼) be a tolerance space and x, y ∈ X . Then, for all stable
subsets A of (X,∼), y ∈ A implies x ∈ A if and only if x ≤ y.

Proof. Suppose, towards a contradiction, that there exists z ∈ R such that z 6∼ y
but z ∼ x. Then y ∈ {z}a but x 6∈ {z}a and {z}a is stable. For the other direction,
suppose there exists a stable subset A of X such that y ∈ A but x 6∈ A. Since x 6∈ A,
there exists z ∈ Aa such that z ∼ x. But z 6∼ y.

It is straightforward to show that the specificity is a preorder relation, i.e. reflexive
and transitive. Let us define a new relation ≈ with x ≈ y if x ≤ y and y ≤ x. This
relation is an equivalence relation, also known as indirect indiscriminability (page 238
in [21]). Indirect indiscriminability was used by Dummett ([6]) to show that an indis-
tinguishability relation that is exact, reflexive, and transitive is paradoxical: Suppose
we observe a minute-hand at five different moments, as it continuously revolves. Con-
tinuity of the movement is not necessary as long as the positions of the minute hand
at each instant are close enough so that we cannot tell whether the minute-hand has
moved in the first four instants. At the fifth instant, we are sure that the minute
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hand is no longer in the first instant, but we cannot tell the difference between the
positions at the fourth and fifth instant. What we have constructed are three differ-
ent positions n1, n4, and n5 such that n1 ∼ n4, n4 ∼ n5 but n1 6∼ n5. So positions
n4 and n1 are distinguishable when compared with n5, i.e. positions n4 and n1 are
distinguished in an indirect manner. This way, Dummett argues, starting with a set
of distinguishability assertions there is a possibility of generating more such assertions
by employing indirect discriminability. In the next section, we will see that we may
always develop a criterion for indistinguishability which indirect discriminability does
not satisfy.

3 Measurements with Error

In this section, we will show how a reflexive symmetric indistinguishability relation
can be generated simply by a set-theoretic intersection.

We will first give a simple formalization of what we mean by measurement with
error.

Definition 3.1 A measurement system is a triple (X,V,m) where X is a domain of
objects, V is a set of values and m : X → ℘(V ) \ ∅ is the assignment map.

A measurement system not only records the outcome of the measurement, but also
the context under which it is achieved. The assignment map should account for any
error introduced during measurement. Therefore, m assigns to each x ∈ X a subset
of values from V . Note that our definition of measurement is more permissive than
the standard one, where values are real numbers or belong to some partially or totally
ordered set ([19],[18]).

Also a measurement system is not assumed to be objective. A different context or a
different method of measurement is meant to induce different measurement systems.

Example 3.2 Suppose that a voting machine is counting votes automatically in an
election and the manufacturer guarantees an error of 0.01%. Let P be the set of
candidate parties and vp be the number of votes that the voting machine reports for
each party p ∈ P . Then the measurement system is (P,N,m) where m(p) = {n ∈
N | vp − dvp × 10−4e ≤ n ≤ vp + dvp × 10−4e}.

Now we will show that there is a unique tolerance space corresponding to a mea-
surement system. For this, we need to answer first what distinguishability relation we
should employ. Indirect indistinguishability, as defined in the previous section, will
distinguish two objects x and y when one of them, say x, is assigned a value v that
y is not. This form of indistinguishability is akin to the T0-separability in topolog-
ical spaces but it is too weak for our purposes. We shall impose a stronger form of
indirect distinguishability that takes into account all values. Call two objects x and
y M -distinguishable if there is no value that is assigned to both. Formally, x ∼M y if
and only if m(x) ∩m(y) 6= ∅. Then it easily follows that

Proposition 3.3 Let M = (X,P,m) be a measurement system. Then (X,∼M ),
where ∼M is defined as above, is a tolerance space.

For the other direction, i.e to construct a measurement system out of a tolerance
space, we need a set of values. We will follow a procedure reminiscent of the con-
struction of equivalence classes in a set equipped with an equivalence relation.



3. MEASUREMENTS WITH ERROR 537

Definition 3.4 Let R = (X,∼) be a tolerance space. A cluster C for R is a subset
of X such that x ∼ y for all x, y ∈ C. An indistinguishability class is a cluster which
is maximal, i.e. is not a proper subset of another cluster.

Note that every singleton is a cluster and, therefore, there is a cluster C such that
x ∈ C, for every x ∈ X . The existence of indistinguishability classes is guaranteed
by Zorn’s Lemma. This has been showed in [20]. All tolerance spaces can be induced
by a measurement system, as the next theorem shows. In other words, a reflexive
symmetric relation can be simulated by non-empty intersection on a set of subsets.

Theorem 3.5 Given a tolerance space R = (X,∼) there is a measurement system
such that

R = (X,∼MR
).

Proof. Let VR be the set of indistinguishability classes of R and mR a map from X to
VR such that mR(x) = {D | x ∈ D,D ∈ VR}, for all x ∈ X . Note that mR(x) 6= ∅ for
all x ∈ X . That is, the map mR assigns to every x ∈ X the set of all maximal clusters
containing it. Now let MR be the measurement system (X,VR,mR). Suppose that
x ∼MR

y. Then mR(x) ∩mR(y) 6= ∅, so there exists a cluster D in mR(x) ∩mR(y).
This implies that both x and y must belong to D and therefore x ∼ y. For the other
direction, if x ∼ y then {x, y} can be extended to a maximal cluster D and therefore
D ∈ mR(x) ∩mR(y). So x ∼MR

y.

The above theorem can be applied as follows to Dummett’s paradox mentioned
in the previous section. Recall that three positions n1, n4, and n5 were constructed
with n1 ∼ n4, n4 ∼ n5 but n1 6∼ n5. Assuming that ∼ is exact, reflexive and
symmetric, then, by Theorem 3.5, there is a set of values and an assignment map
such that those assertions are generated by a measurement system. There exist values
that are assigned to both n1 and n4 and, similarly, to n4 and n5. Positions n1

and n5 are assigned no common values. Two objects cannot be compared directly
but only through their assigned values. So this setup does not render n1 and n4

indistinguishable, as they could both be assigned to a common value. Dummett’s
argument rests on visual inspection, so the above explanation may at best be limited
if an explicit measurement is not involved. On the other hand, the human perceptual
system according to sensory science is a measuring instrument ([2]).

Due to Theorem 3.5, indistinguishability assertions forming a tolerance space reduce
to consistency assertions. Two objects are indistinguishable when there is a value
that is assigned to both, much like two state descriptions that are consistent when
there is a state that fits both. Therefore, indirect discriminability does not imply
distinguishability because relative inconsistency does not imply inconsistency, i.e. if
a is inconsistent with c and b is consistent with c then a and b are not necessarily
inconsistent. This reading may help us to better understand vague predicates on a
tolerance space. However, it cannot offer a comprehensive approach to vagueness and
the reason is twofold. First, indistinguishability is one of many causes for vagueness.
For example, two objects could be equally characterized as red although their color is
distinguishable. Hence, apart from distinguishability we may rely on other factors for
the application of vague predicates. Secondly, if a predicate F is true for an object a,
and b is indistinguishable from a then one may infer that F (b) is plausible but not that
F (b) is true. However, if b is distinguishable from the objects that are distinguishable
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from the objects where F is known to be true, then b will be included in the stable
closure of F . In this sense, stable extensions are amenable to revision and therefore
orthologic may not account for all vagueness phenomena in tolerance spaces.

4 Prototype Completeness

We will now investigate a class of tolerance spaces which incorporate the values of
measurements. Then a measurement can be seen as an embedding of a sets of objects
in an appropriate tolerance space rather than in a powerset of values. The upshot
is that a measurement must be the result of a comparison, and measurement values
must be of the same nature as the objects we want to measure. Tolerance spaces can
be generated by a set of values P in the following sense:

Definition 4.1 Given a tolerance space R = (X,∼) and P ⊂ X then call x and y
P -indistinguishable (x ∼P y) if there is p ∈ P such that x ∼ p and y ∼ p . In case,
∼P≡∼ we will say that R is generated by P .

Note that P ⊆ P ′ implies ∼P⊆∼P ′ . The proof of Theorem 3.5 makes use of
indistinguishability classes to construct values so we will seek representatives of those
within the tolerance space.

Definition 4.2 Given a tolerance space R = (X,∼), an element p of X will be called
a prototype for R if it belongs to exactly one indistinguishability class (that is, it
belongs to no other indistinguishability class).

Proposition 4.3 Let R = (X,∼) be a tolerance space. Then,

1. p is a prototype for R if and only if for all x, y ∈ X , x ∼ p and y ∼ p implies
x ∼ y,

2. if P ⊆ X is a set of prototypes for R, then ∼P⊆∼,

3. if p and p′ are prototypes for R, then p ∼ p′, p ∼ x and p ∼ y implies p′ ∼ x and
p′ ∼ y, i.e. indistinguishability is an equivalence relation on prototypes.

Proof. For the right to left direction of 1, suppose that p belongs to two clusters C1

and C2 such that C1 6= C2. This implies that there exist x ∈ C1 and y ∈ C2 such
that x 6∼ y. However, p ∼ x and p ∼ y so using the hypothesis x ∼ y, a contradiction.
The other direction is similar.

For 2, let x ∼P y. Then there exists p ∈ P such that x ∼ p and y ∼ p. From 1, it
follows that x ∼ y.

In case a tolerance space R is generated by a set of prototypes P (see Definition 4.1),
then R will be called prototype complete and P a complete set of prototypes. Note that
not all tolerance spaces are prototype complete (see Example 2.2). By Proposition
4.3.3, the existence of a complete set of prototypes implies the existence of a complete
set of pairwise distinguishable prototypes which is minimal.

Proposition 4.3.2 shows that one can use the prototypes available in a tolerance
space to approximate the indistinguishability relation from below. Again, the proof
of Theorem 3.5 indicates that in order to construct a complete set, it would be enough
to add a prototype for each indistinguishability class.
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Fig. 2. Prototypes added in Figure 1.

Example 4.4 Consider the tolerance space of Example 2.2. If 1 is the prototype
for the indistinguishability class {a, b} then we have that a ∼ 1, b ∼ 1 and 1 is
distinguishable from all other elements, including the rest of the prototypes. We add
four prototypes {1, 2, 3, 4} one for each indistinguishability class as shown in Figure 2.

However, we do not need a prototype from each indistinguishability class to generate
the indistinguishability relation, as the following example shows.

Example 4.5 In the tolerance space of Figure 3, the indistinguishability class {a, b, c}
lacks a prototype, yet the set of prototypes {1, 2, 3} is complete.

A prototype complete tolerance space has the following important property:

Theorem 4.6 The algebra of stable sets of a prototype complete space is a Boolean
algebra.

To prove the above theorem, we will show the following three lemmas.

Lemma 4.7 Let R = (X,∼) be a prototype complete tolerance space. Then every
stable subset of X has the form Sa for some S ⊆ P , where P is a complete set of
pairwise distinguishable prototypes for R.

Proof. Let A be a subset of X and S = A∼ ∩ P . We will show that Aa = Sa.
To show that Aa ⊆ Sa, suppose there exists y ∈ Aa such that y 6∈ Sa towards a

contradiction. This implies that there is s ∈ S such that y ∼ s. Now s ∈ A∼ by the
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definition of S, so there is x ∈ A such that s ∼ x. So we now have a prototype s
which is indistinguishable from both x and y. This makes x and y indistinguishable
which is a contradiction because x ∈ A and y ∈ Aa.

For the other direction, suppose there exists y ∈ Sa such that y 6∈ Aa towards a
contradiction. This implies that there is x ∈ A such that x is indistinguishable from
y. This in turn implies that they have a common indistinguishable prototype, say p.
Since y ∈ Sa, p must belong to P −S. On the other hand, x ∈ A implies that p ∈ A∼

and therefore p ∈ S, which is a contradiction.

Lemma 4.8 Let R = (X,∼) be a prototype complete tolerance space. If P is a
complete set of pairwise distinguishable prototypes for R, then Saa = (P − S)a, for
all S ⊆ P .

Proof. Observe that (P −S)∼∩P = P −S and (P −S)a∩P = S. Then the lemma
follows from Lemma 4.7.

Lemma 4.9 Let R = (X,∼) be a prototype complete tolerance space. If P is a
complete set of pairwise distinguishable prototypes for R, then (Sa∨Ta) = (S ∩T )a,
for all S, T ⊆ P .

Proof. Observe that,
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(Sa ∨ Ra)a = (Saa ∧ Raa) (ortholattice identity)
= (P − S)a ∧ (P −R)a (Lemma 4.8)
= (P − S)a ∩ (P −R)a (∧ ≡ ∩ for stable subsets)
= ((P − S) ∪ (P −R))a

= (P − (S ∩ R))a

= (S ∩R)aa (Lemma 4.8)

so (Sa ∨ Ra)aa = (S ∩ R)aaa which implies Sa ∨ Ra = (S ∩ R)a.

Proof. [Proof of Theorem 4.6] Instead of verifying the Boolean algebra identities,
we will construct an isomorphism from the lattice of the stable subsets of R to the
boolean algebra of the subsets of a complete set P of prototypes. In particular, we
will show that the map F (Sa) = P − S is an isomorphism. It is easy to see that F is
well defined, injective and surjective because of Lemma 4.7. We will show that F is
a homomorphism. Note the use of Lemma 4.9 in Case ∨.

Case a:

F (Saa) = F ((P − S)a)
= P − (P − S)
= P − f(Sa)

Case ∧:

F (Sa ∧ Ta) = F ((S ∪ T )a)
= P − (S ∪ T )
= (P − S) ∩ (P − T )
= F (Sa) ∩ F (Ta)

Case ∨:

F (Sa ∨ Ta) = F ((S ∩ T )a)
= P − (S ∩ T )
= (P − S) ∪ (P − T )
= F (Sa) ∪ F (Ta)

Prototype complete tolerance spaces can be easily generated as follows. Given a set
P , the canonical tolerance space generated by P is the pair (℘(P )\∅,∼), where A ∼ B
if and only if A ∩ B 6= ∅. It is easy to see that the set Dp = {S | S ⊆ P and p ∈ S},
for each p ∈ P , is an indistinguishability class and {p} ⊆ S is a prototype. In fact it is
straightforward to show that the set of all singletons is a complete set of prototypes.
So we have the following

Proposition 4.10 Every canonical tolerance space generated by a set P is prototype
complete with the set of singletons as a complete set of prototypes.

We will now show that prototype complete spaces are an appropriate candidate
for measurement values. A measurement can be thought as an embedding of a set
of objects in a prototype complete space. Given two tolerance spaces R1 = (X1,∼1)
and R2 = (X2,∼2) then a map f : X1 → X2 will be called an embedding if for all
x, y ∈ X1 we have x ∼1 y if and only if f(x) ∼2 f(y). If there is such an embedding
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then we will say that R1 embeds in R2. Therefore an embedding retains the original
tolerance in the new space. Now we may use Theorem 3.5 of the previous section to
show the following:

Corollary 4.11 Each tolerance space embeds in the canonical tolerance space gen-
erated by the set of its indistinguishability classes.

Therefore, a tolerance space might not have a complete set of prototypes, but
embeds in one that has.

Using Corollary 4.11 and Theorem 4.6, we can embed the ortholattice of stable
subsets of a tolerance space in a Boolean algebra. However, this embedding is not
a homomorphism. This can be seen with the tolerance space of Example 2.2 whose
ortholattice of stable subsets appears in Figure 4. This ortholattice is the well-known
non-distributive lattice M02 that cannot be homomorphically embedded in a Boolean
algebra which is distributive.

The above mismatch is illustrated with the prototype complete tolerance space
generated by the indistinguishability classes of Example 2.5. We can define a mea-
surement system as in Section 3, where S are the car states measured, P is the set
of all pairs of consecutive integers, and the assignment function maps states to those
pairs:

m(s) = {(n n+ 1)|v(s) = n or v(s) = n+ 1}.
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Now we have

s1 ∼ s2 if and only if m(s1) ∩m(s2) 6= ∅.

Each such pair of consecutive integers corresponds to those states which may be
measured to be any of those two integers, i.e. the states whose actual velocity belongs
to the interval (n + 0.4, n + 0.6) (= (n + 0.4, (n + 1) − 0.4)). The choice of integer
values as measurement values is not significant. What matters is the criterion we
use to distinguish between those values. For example, if we assume that states are
measured to any real number we can generate the same indistinguishability relation
with

s1 ∼ s2 if and only if min
0≤ε<0.6

{dv(s1) − εe} − max
0≤ε<0.6

{bv(s2) + εc} ≤ 1,

where v(s1) ≤ v(s2) is assumed. Observe that the underlying function of the criterion
is no longer a metric on the larger set of real values. This example illustrates the
difference between the stable subset ortholattice of the given tolerance space and the
stable subset boolean algebra of the tolerance space generated by its indistinguisha-
bility classes. The reader may easily verify that the subset N of states that give a
reading of some integer n, i.e. N = {s | v(s) = n} is stable. Similarly, the subset
N ′ = {s | v(s) = n+ 1} is stable. Their conjunction N ∧N ′ is the empty set. This is
because we have no way to detect values on the interval (n+0.4, n+0.6). For example,
if v(s1) = n and v(s2) = n + 1, then s1 and s2 are indistinguishable because their
actual velocities could lie in the interval (n + 0.4, n+ 0.6). What makes them indis-
tinguishable is the possibility of the velocities lying in this interval. In fact, s1 and s2
could be much farther apart, for example, their actual velocities could be n− 0.5 and
n + 1.5, i.e. they could differ by 2. So measurement observations cannot guarantee
that a certain value lies in the interval of any of the indistinguishability classes. The
same sets are stable in the boolean algebra of the tolerance space generated by its
indistinguishability classes. This time, however, the conjunction equals the singleton
containing the indistinguishability class (n n+ 1), i.e. the interval (n+ 0.4, n+ 0.6).
This shows that the price for embedding the ortholattice into a boolean algebra is that
propositions could be unobservable through measurement. Nevertheless, such unob-
servables could be observed in theory or in practice in some other tolerance space.
For example, if we knew that s1 = s2 because we measured the same state with two
identical devices simultaneously, then we can indeed detect values in the interval of
an indistinguishability class. This, however, can only happen with a combination of
two different devices and the tolerance space and its associated measurement system
corresponding to this setting is significantly different from the one we assumed.

5 Conclusion

Prototypes form a necessary and simple part of the process of communicating and
interpreting vague statements. This paper has shown that a mathematical formu-
lation of prototypes is possible based on indistinguishability assertions as they arise
in error-prone measurements that are not necessarily quantitative and may represent
subjective judgements. In such cases, indistinguishability may be safely assumed to
be reflexive, symmetric and exact, if interpreted as failure to distinguish. We showed
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that such indistinguishability assertions may be better understood as consistency as-
sertions and this reading evades the pitfalls of relative indistinguishability. Moreover,
each set of indistinguishability assertions can be grounded in measurements with a
set of prototypes. Such a set can be canonically constructed although it might be
unobservable in practice. Finally, whenever such prototypes can be identified or con-
structed, the logic of indistinguishability assertions may be embedded into classical
logic.

Indistinguishability is just one of the causes of vagueness and does not account
for all vagueness phenomena. In particular, indistinguishability does not account
for vagueness observed in social contexts, which is of the utmost importance ([15]).
Interaction among individuals depends on prototype formation, and the above study
should contribute to a more comprehensive analysis of vagueness.
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Abstract

An inference is standardly said to be sound just in case it is deductively valid and it has only true
assumptions. The importance of a coherent concept of soundness to proof theory is obvious, in that
it is only sound derivations, and not merely deductively valid arguments, that advance knowledge by
providing proofs of theorems in logic and mathematics. The soundness paradox is informally albeit
impredicatively formulated as argument (S): Argument (S) is unsound, therefore, argument (S) is
unsound. This paper introduces and explains the importance of the soundness paradox, formally
demonstrates how to avoid superficial impredication via Gödelization, and compares it with the
similar but significantly different liar and validity or Pseudo-Scotus paradoxes. Although there are
similarities in this family of semantic diagonalizations, the soundness paradox is not just a hybrid of
the liar and validity paradoxes, but is more fundamental, belonging to a special category that resists
the most powerful received solutions to the liar and validity paradoxes.

Keywords: Gödel arithmetization, impredicative definition, liar paradox, Ramsey disquotational

analysis of truth, relevant reduction of paradox to another paradox, self-reference, soundness, sound-

ness paradox, validity (Pseudo-Scotus) paradox.

1 Soundness

We are accustomed to regard any inference of the form ϕ `ϕ as deductively valid, and
as sound just in case ϕ is true. There is, however, an apparent counterexample to
these innocent-appearing assumptions, which I propose to call the soundness paradox.
My purpose here is only to present the paradox, and not to entertain solutions or even
a diagnosis.

Consider as an instantiation of the above schema the following argument:

(S) 1. Argument (S) is unsound.

2. Argument (S) is unsound.

If (S) is valid, as seems hard to deny, then a paradox arises when we ask whether
or not the argument is also sound.

Assume as an application of excluded middle that, like any other argument, (S)
is either sound or unsound. Suppose first that (S) is sound. Sound arguments by
definition are deductively valid and have only true assumptions, and therefore only
true conclusions. But the conclusion of argument (S) is that argument (S) is unsound.
So, if argument (S) is sound, then argument (S) is unsound.

Alternatively, suppose that (S) is unsound. Then either (S) is deductively invalid, or
it has at least one false assumption. An argument is deductively invalid if and only if it
is logically possible for its assumptions to be true and its conclusions false. Argument
(S) has only one assumption, which its conclusion restates. If the assumption and
conclusion of (S) are the identical proposition, that argument (S) is unsound, then it

547L. J. of the IGPL, Vol. 11 No. 5, pp. 547–556 c©Oxford University Press 2003, all rights reserved
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is logically impossible for the assumption of (S) to be true and the conclusion of (S)
to be false. If (S) is unsound, therefore, it cannot be because it is deductively invalid,
but only because it has at least one false assumption. But the only assumption of (S)
is that (S) is unsound. If the assumption is false, then it is false that argument (S) is
unsound, which is to say that argument (S) is sound. So, if argument (S) is unsound,
then it is sound.

Hence, argument (S), if deductively valid, is sound if and only if it is unsound,
while if argument (S) is not deductively valid, then not all inferences of the logical
form ϕ `ϕ are deductively valid.

2 Gödelizing Impredication Away

The paradox as presented is impredicative, where argument (S) is defined by an
assumption and conclusion in which argument (S) is explicitly mentioned.1 Impred-
icative reference, in this extreme case, the literal syntactical replication of the argu-
ment’s external name or label ‘(S)’ in its assumption and conclusion, can nevertheless
be syntactically avoided by Gödel-arithmetizing the argument’s syntax and inferential
structure.

To symbolize the paradox requires a metalinguistic vocabulary to formally rep-
resent specific logical and semantic properties of propositions and inferences. We
assume Truth, T , as a primitive bivalent relation of positive correspondence between
a proposition and an existent state of affairs that the proposition describes or other-
wise linguistically represents. If the state of affairs the proposition represents does not
exist, then the proposition is false. A state of affairs is the possession of a property
by or involvement in a relation of the objects in a well-defined semantic domain; a
state of affairs Fa exists when an object a actually possesses a property or is involved
in a relation F , and fails to exist when a does not actually possess or is not actually
involved in relation F .2 Ramsey Reduction states that for any proposition ϕ, ϕ is
true if and only if ϕ. It allows us to move freely back and forth from true propo-
sitions to true metalinguistic propositions that state that the propositions are true.
For convenience, we consider only inferences consisting of finitely many assumptions
and finitely many conclusions, but the method is easly extendible to inferences of
indefinite length. Validity, V , is defined as a relation among the truth conditions of
the assumptions and conclusions of an inference, such that it is logically impossible
for the assumptions to be true and the conclusions false. Soundness, S, is then stan-
dardly defined in terms of validity and truth. The metatheoretical relational property
of being an assumption, A, (effectively) of an inference, and metatheoretical relational
property of being a conclusion, C, (effectively) of an inference, reflect the presupposi-
tion that only inferences have assumptions or conclusions. The weakest alethic modal

1The concept of impredicative definition originates with Bertrand Russell, “Mathematical Logic as Based on the

Theory of Types”, American Journal of Mathematics, 30, 1908. See especially pp. 239–241, where Russell defines

predicative functions, and speaks of his set theoretical paradox as arising through the definition of sets by ‘non-

predicative’ functions. The discussion is replicated in connection with the ‘vicious circle principle’ in A.N. Whitehead

and Russell, Principia Mathematica, second edition (Cambridge: Cambridge University Press, 1925–1927), Vol. I,

Introduction, Chapter II. Charles S. Chihara, Ontology and the Vicious-Circle Principle (Ithaca: Cornell University

Press, 1973), pp. 7–11, 138–144, offers an insightful account of Henri Poincaré’s rejection of impredicative definitions

in light of Richard’s paradox.

2F.P. Ramsey, “Facts and Propositions”, Foundations: Essays in Philosophy, Logic, Mathematics and Economics,

edited by D.H. Mellor (Atlantic Highlands: Humanities Press, 1978), pp. 40–57.
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logic, with appropriate standard set theoretical semantics, interprets the necessity
symbol, �.

A Gödel substitution function, subg , substitutes for any whole number to which it
is applied the unique syntax string, if any, that the Gödel number encodes. We define
Gödel number, g, of the Gödelized soundness paradox inference, S̄[subg(n)]`S̄[subg(n)],
as identical to n. Angle quotes, p, q, are used conventionally to indicate that the
Gödel-numbering context is intensional; a distinct Gödel number obtains for every
distinct syntax combination, including logical equivalents, like ϕ ∨ ψ, and ¬ϕ→ψ,
where gpϕ ∨ ψq 6= gp¬ϕ→ψq, even though [ϕ ∨ ψ]↔[¬ϕ→ψ]. The paradox is
complete when we conclude that the inference recovered by applying Gödel number
substitution function subg to Gödel number n is sound or has metatheoretical prop-
erty S if and only if it is unsound, or if and only if it has metatheoretical property S̄.
Impredication is avoided in the Gödelized formulation of the soundness paradox. It
circumvents the need to designate the inference externally as in the original impred-
icative formulation by means of a term that is also required to designate the inference
internally within the paradox assumption and conclusion. The self-reference of the
Gödelized soundness paradox, unlike the original impredicative version, assumes no
external labeling of the paradox inference, but achieves self-reference instead by means
of its internal Gödel coding and executed by means of Gödel function subg, to recover
an externally unlabeled form of the soundness paradox.3

Ramsey Reduction

∀ϕ[Tϕ↔ϕ]

Validity

∀x[V x↔∀y1 . . . ∀yn∀z1 . . . ∀zn[[Ay1x ∧ · · · ∧ Aynx∧
¬∃wAwx ∧ w 6= x1 ∧ · · · ∧ w 6= xn ∧ Cz1x ∧ · · · ∧ Cznx ∧ ¬∃wCwx ∧ w 6= y1

∧ · · · ∧ w 6= yn]→�[Ty1 ∧ · · · ∧ Tyn→Tz1 ∧ · · · ∧ Tzn]]]

3The Gödel number of the argument is determined by assigning natural numbers to each syntax item in the expres-

sion to be arithmetized, each of which is then made the exponent of a corresponding prime number base taken in

sequence in the same order of increasing magnitude as the syntax (standardly left-to-right) in the expression to be

coded. The Gödel number of the expression is the product of these primes raised to the powers of the corresponding

syntax item code numbers.

S̄ [ subg ( ) ] ` S̄ [ subg ( ) ]

| | | | | | | | | | | | | | |

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

The Gödel number of the soundness paradox argument on this assignment of Gödel numbers to syntax items in

the formula is: 21×32×53×74×115×136×177×198×231×292×313×374×415×436×477 = n. This enormous

number is substituted for blank spaces (alternatively, free variables) to which the number 5 is here assigned in the

open sentence above to complete the Gödel arithmetization in gpS̄[subg(n)]`S̄[subg(n)]q = n, where by stipulation,

subg(n) = pS̄[subg(n)]`S̄[subg(n)]q. The Fundamental Theorem of Arithmetic guarantees that every number can

be decomposed into a unique factorization of prime number bases raised to particular natural number powers. When

this is done to n and the factors put in ascending order, the expression mapped into Gödel-numbered space can be

read directly from the exponents of each prime, and translated back into logical syntax by the glossary of natural

number assignments.
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Soundness

∀x[Sx↔[V x ∧ ∀y[Ayx→Ty]]]

Inference

∀x[Ix↔∃y∃z[Ayz ∧ Czx]]

Excluded Middle for Soundness of Inferences

∀x[Ix↔[Sx ∨ S̄x]]

Gödelization of Soundness Paradox

(GS) gpS̄[subg(n)]`S̄[subg(n)]q = n ∧ subg(n) = pS̄[subg(n)]`S̄[subg(n)]q
∧[S[subg(n)]↔S̄[subg(n)]]

Proof.

(1) gpS̄[subg(n)]`S̄[subg(n)]q = n∧ Gödelization of
subg(n) = pS̄[subg(n)]`S̄[subg(n)]q Soundness Paradox

(2) V [subg(n)] Validity
(3) S[subg(n)]→T [S̄[subg(n)]] (1 Soundness)
(4) T [S̄[subg(n)]]→S̄[subg(n)] (3 Ramsey Reduction)
(5) S[subg(n)]→S̄[subg(n)] (3–4)
(6) S̄[subg(n)]→T̄ [S̄[subg(n)]] (1,2 Soundness)
(7) T̄ [S̄[subg(n)]]→S[subg(n)] (6 Bivalence of Truth)
(8) S̄[subg(n)]→S[subg(n)] (6–7)
(9) S[subg(n)]↔S̄[subg(n)] (5,8)

The dilemma to prove the second conjunct formally in the Gödelization adheres
closely to the informal reasoning. The dilemma horns are justified by Excluded Middle
for Soundness of Inferences. We assume that the inference is sound, and then that it
is unsound, in order to derive the two parts of the biconditional. The first conjunct
in each formula assigns a Gödel number to the soundness paradox inference, and the
derivation of the paradox is achieved directly by applying the definitions of Ramsey
Reduction and Soundness.

3 Soundness, Validity, and the Liar

The soundness paradox is evidently related to the liar and to the so-called validity
or Pseudo-Scotus paradox.4 When the liar and the validity paradox are informally

4The validity paradox is also known as the Pseudo-Scotus paradox. For a detailed scholarly comparison of Pseudo-

Scotus’ theory of consequentiae with contemporary symbolic logic, see A. Charlene Senape McDermott, “Notes

on the Assertoric and Modal Propositional Logic of the Pseudo-Scotus”, Journal of the History of Philosophy, 10,

1972, pp. 273–306. Pseudo-Scotus, In Librum Primum Priorum Analyticorum Aristotelis Quaestiones, Question 10,

Duns Scotus, Ioannis Duns Scoti Opera Omnia, edited by Luke Wadding [1639] (Paris: Vives, 1891–1895), Vol. II,

p. 104. Translations of relevant passages are given in McDermott, pp. 288–291. See also G.B. Keene, “Self-

Referent Inference and the Liar Paradox”, Mind, 92, 1983, pp. 430–433. Benson Mates, “Pseudo-Scotus on the
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considered, it is easy to see at least their superficial grammatical differences from the
soundness paradox. The liar sentence says, in effect:

(L) Sentence (L) is false.

The validity paradox in its most streamlined impredicative formulation states:

(V) 1. Argument (V) is deductively valid.

2. Argument (V) is deductively invalid.

What is striking about these paradoxes in comparison with the soundness paradox
is that the soundness paradox is not as obviously diagonal. Liar sentence (L) cate-
gorically declares its own falsehood. Soundness paradox (S), by contrast, says only
conditionally that if it is assumed to be unsound, then it follows as a conclusion that it
is unsound, which at first seems logically unproblematic. In validity paradox (V), the
conclusion denies what the assumption asserts, whereas the conclusion of (S) merely
repeats its assumption. The soundness paradox, despite its inferential form, is unlike
the validity paradox, because the soundness paradox does not try to deduce the denial
of a semantic predication from the predication itself. It is not possible to reformulate
the liar sentence in inferential form modeled directly on the validity paradox. We
can try to do so in only two ways, seeking to combine the liar and validity paradoxes
so as to produce a version of the soundness paradox. An attempt to construct an
inferential version of the liar paradox might take these forms:

(P) 1. Argument (P) is sound.

2. Argument (P) is unsound.

(Q) 1. Argument (Q) is unsound.

2. Argument (Q) is sound.

There is evidently no paradox in either case. Neither inference, for different reasons,
is deductively valid, hence neither is sound. The soundness paradox gets its juice from
the fact that it is only when we consider the soundness or unsoundness of argument
(S) as an inference that is formally deductively valid that we run into contradiction.
Then we find that an argument that declares its own unsoundness in assumption and
conclusion proves to be sound if and only if it is unsound. Otherwise, as arguments
(P) and (Q) indicate, there is nothing antithetical about an inference containing an

Soundness of Consequentiae”, Contributions to Logic and Methodology in Honor of J.M. Bocheński, edited by A.T.

Tymieniecka (Amsterdam: North-Holland Publishing Company, 1965), especially pp. 139–140. J.M. Bocheński,

“De Consequentiis Scholasticorum Earumque Origine”, Angelicum, 15, 1938, pp. 92–109, and “Notes Historiques

sur les Propositiones Modales”, Revue des Sciences Philosophiques et Théologiques, 26, 1937, pp. 673–699. Johannes

Bendiek, “Die Lehre von den Konsequenzen bei Pseudo-Scotus”, Franziskanische Studien, 34, 1952, pp. 205–234.

Stephen Read, “Self-Reference and Validity”, Synthese, 42, 1979, pp. 265–274. Roy A. Sorensen, Blindspots (Oxford:

The Clarendon Press, 1988), pp. 301–303. Dale Jacquette, “The Validity Paradox in Modal S5”, Synthese, 109,

1996, pp. 47–62.
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assumption or conclusion that declares the unsoundness of the inference to which it
belongs.

The liar paradox, as we have seen, is reducible to the soundness paradox, but the
soundness paradox is not reducible to the liar. A reduction of a paradox is the truth-
preserving logical transformation of one paradox into another. The mode of paradox
reduction is the deployment of a preferred logic to validly deduce the assumptions
and conclusions of a target paradox P2 from the assumptions and conclusions of a
given paradox P1. A relevant reduction of a paradox that is not merely based on
the fact that in a classical validity semantics any proposition whatsoever is validly
deducible from any contradiction, whereby any paradox is logically reducible to any
other. A relevant reduction involves a connection of the concepts by which each of
the paradoxes is defined, thereby revealing something interesting about the content
of the ideas each of the paradoxes expresses. As such, paradox reduction is a special
case of a general method for logically reducing any inference to another by validly
deducing the assumptions and conclusions of one to the other. Consider the following
equivalence principle:

(E) For any proposition ϕ, ϕ is true if and only if the inference
ϕ `ϕ is sound.

The equivalence principle is unattractive for several reasons. It is blatantly circular
if soundness is defined as above in terms of truth. In the present context, it may also
be problematic to define truth in terms of soundness, because the ordinary concept
of soundness is potentially jeopardized by the paradox. If these reservations are set
aside, however, there is a relevant reduction of the liar to the soundness paradox
effected by equivalence principle (E).

An inferential reformulation of the liar paradox can be given as a substitution
instance of equivalence (E), which provides a relevant (and, incidentally, nonimpred-
icative) reduction of the liar to the soundness paradox, where (L*) is sound if and
only if it is unsound:

(L*) 1. Sentence (L) is false.

2. Sentence (L) is false.

To reduce the soundness paradox to the liar via equivalence principle (E), we require
that argument (S) is sound if and only if the assumption (or conclusion) of (S) is true.5

The assumption of argument (S), call it (S*), states that:

(S*) Argument (S) is unsound.

5We can equally construe the soundness paradox as an inferential version of the liar without supposing that the

soundness paradox is reducible to the liar by the following transformtion. Begin with the inference:

(S) 1. Argument (S) is unsound.

2. Argument (S) is unsound.

According to the definition of soundness, this is equivalent to:
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This sentence, like any other as we now classically suppose, is either true or false.
We must ask whether (S*) is true if and only if it is false, in order to reduce the
soundness paradox to the liar. If sentence (S*) is true, then argument (S) is unsound.
But since (S) has a deductively valid structure, it can only be unsound if at least one
of its assumptions, in this case only (S*), is false. So, if sentence (S*) is true, then (S*)
is false. If (S*) is false, then argument (S) is sound. But a sound argument has only
true assumptions, from which it follows that sentence (S*) as the only assumption of
argument (S) is true. Thus, sentence (S*) is true if and only if (S*) is false — but
not merely because in classical logic any proposition whatsoever is validly deducible
from a contradiction. As a result, (S*) represents a single sentence equivalent of
the liar paradox to which the soundness paradox can be relevantly reduced. The
reduction may seem convincing, but it camouflages an essential distinction between
paradoxes like the liar that can be written as individual sentences and paradoxes like
the soundness paradox that are irreducibly inferential.

A relevant reduction of the soundness paradox to the liar must be formulated as
a single sentence without internal inferential structure that is true if and only if it
is false. There is no particular problem in using equivalence (E) to expand the liar
sentence into an inferential equivalent that is sound if and only if it is unsound. The
liar, as we have seen, by applying (E), can be relevantly reduced to the soundness
paradox. To carry the reduction in the opposite direction, however, would require
condensing the soundness paradox inference into a single paradoxical sentence, which
turns out to be impossible. It may appear that sentence (S*) obtained by applying
equivalence (E) to the soundness paradox (S) is exactly what is needed. But sentence
(S*) is true if and only if it is false only by virtue of referring to the uncondensed
inferential form of inference (S). The best we can do in that case is to reduce the
soundness paradox to a single sentence of the form:

(S**) The argument whose assumption is (S*) and whose
conclusion is (S*) is unsound.

But (S**) is not a reduction of the soundness paradox to the liar, because (S**)
has an internal inferential structure that refers to an argument’s assumption and
conclusion.

There is a difference in the nature of the self-reference and self-non-attribution of
semantic properties in the soundness paradox by contrast with the liar. The way

(S’) 1. Argument (S’) is deductively invalid OR

argument (S’) has a false assumption.

2. Argument (S’) is deductively invalid OR

argument (S’) has a false assumption.

Then, since (S’) is evidently deductively valid, the inference in effect reduces to:

(S”) 1. Argument (S”) has a false assumption.

2. Argument (S”) has a false assumption.

This version of the soundness paradox remains an impredicative variation of (L*), and for the same reasons is

not further reducible from inferential form to the single sentence form required of the liar paradox.
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in which diagonalization is achieved in the two paradoxes, despite superficial simi-
larities, is inherently different, marking a significant disanalogy between the liar and
the soundness paradox. We can appreciate the distinct modes of self-reference in the
two paradoxes by considering their intuitive indexical formulations. When we expand
the liar sentence (L) via equivalence (E) in the indexical inferential version (iL*), we
obtain:

(iL*) 1. This sentence is false.

2. This sentence is false

Here the question, ‘Which sentence is supposed to be false?’, has a correct answer,
intrinsically contained in both the assumption and conclusion of the inferentially
expanded liar paradox. It is the very sentence (type or token in alternative inter-
pretations of the inferential version of the liar) that indexically declares itself to be
false — first in the assumption, and secondly in the conclusion. If we try to reduce
the soundness paradox as above, by condensing it into a single liar type sentence in
the indexical sentential version (iS*), we arrive only at something that does not ex-
press a self-contained paradox: ‘(iS*) This argument is unsound.’ If we similarly ask,
‘Which argument is supposed to be unsound?’, there is no correct answer intrinsically
contained within (iS*). As a single sentence condensation of the soundness paradox,
(iS*) by itself does not make sense and has no truth value. We can only recover the
soundness paradox from (iS*) by referring back to the original inferential expression
of (S), in order to know which argument is supposed to declare itself unsound.

The difference is reinforced when we go beyond eliminable indexical formulations
to consider the proposed reduction of the soundness paradox to the liar in Gödel
notation. The liar sentence is Gödelized as: gpT̄ [subg(m)]q = m ∧ subg(m) =
pT̄ [subg(m)]q. Then the Gödelized liar paradox states: T [subg(m)]↔T̄ [subg(m)].
The reduction of the liar to the soundness paradox is preserved when we reformulate
it by expanding the liar sentence into an inference by equivalence (E). We distin-
guish between the liar sentence subg(m) and the Gödel number n of the inferential
expansion of the liar paradox in subg(n), and we presuppose the following combined
definition:

Propositionhood and Excluded Middle for Truth of Propositions

∀ϕ[Tϕ ∨ T̄ϕ]

We first prove a Gödelized version of the liar paradox, and then show how to reduce
the liar to the soundness paradox.

Proof.
(1) gpT̄ [subg(n)] = m ∧ subg(m) = Liar Gödelization

pT̄ [subg(m)]q
(2) T [subg(m)]→T [T̄ [subg(m)]] (1)
(3) T [T̄ [subg(m)]]→T̄ [subg(m)] (2 Ramsey Reduction)
(4) T [subg(m)]→T̄ [subg(m)] (2–3)
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(5) T̄ [subg(m)]→T̄ [T [subg(m)]] (1)
(6) T̄ [T̄ [subg(m)]]→T̄ [subg(m)] (5 Bivalence of Truth)
(7) T̄ [subg(m)]→T [subg(m)] (5–6)
(8) T [subg(m)]↔T̄ [subg(m)] (4,7)

We then have the following relevant reduction of the sentential liar paradox to the
inferential soundness paradox:

Proof.

(1) gpT̄ [subg(n)] = m ∧ subg(m) = Liar Gödelization
pT̄ [subg(m)]q

(2) gpT̄ [subg(m)]`T̄ [subg(m)]q = n∧ Gödelization of
subg(n) = pT̄ [subg(m)]`T̄ [subg(m)]q Soundness Paradox

(3) T [subg(m)]↔T̄ [subg(m)] Liar
(4) V [subg(n)] (2 Validity)
(5) S[subg(n)]→T [T [subg(m)] (1,2 Soundness)
(6) S[subg(m)]→T̄ [subg(m)] (3,5)
(7) T̄ [subg(m)]→S̄[subg(n)] (1,2 Soundness)
(8) S[subg(n)]→S̄[subg(n)] (3–7)
(9) S̄[subg(n)]→T̄ [subg(m)] (1,2 Soundness)
(10) S̄[subg(n)]→T [subg(m)] (3,9)
(11) T [subg(m)]→T [T̄ [subg(m)]] (1,3 Ramsey Reduction)
(12) T [T̄ [subg(m)]]→S[subg(n)] (1,2,4 Soundness)
(13) S̄[subg(n)]→S[subg(n)] (9–12)
(14) S[subg(n)]↔S̄[subg(n)] (8,13)

The paradox so derived remains intelligible as a diagonalization because a single
noninferential sentence is true or false, and because there is a definite relation between
the soundness of an inference containing a single noninferential sentence as assumption
or conclusion and the sentence’s truth value. But since the counterpart Excluded
Middle for Soundness of Inferences does not apply to individual sentences lacking
internal inferential structure (which may be true or false, but by themselves are neither
sound nor unsound), there is no relevant reduction of the soundness paradox to an
equivalent liar sentence formulation.

Although we can Gödelize sentence (S*) merely as a syntactical exercise in gpS̄
[subg(n)]q = n, there is no valid inference from counterpart dilemma assumptions
S̄[subg(n)] or S[subg(n)]. The reason is that, where subg(n) = pS̄[subg(n)]q, S̄[subg(n)]
by Excluded Middle for Soundness of Propositions is undefined and altogether lacking
in truth value. All this is a formally fancy way of saying that while we can get truth
out of soundness, we cannot get soundness out of truth alone. We can discover the
properties of individual sentences by themselves or as they occur in expanded infer-
ences. But we cannot discover the properties of inferences in individual sentences,
when by themselves they do not even implicitly colloquially express inferential rela-
tions between the assumptions and conclusion of an argument. Principle (E) implies
that if an inference of the form ϕ `ϕ is sound, then proposition ϕ is true, and con-
versely. But it does not require that proposition ϕ be the liar sentence. If ϕ is
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stipulated to be the liar sentence, then the inference ϕ `ϕ is not the soundness para-
dox, but is instead argument (L*), which states that: ‘Sentence (L) is false ` Sentence
(L) is false.’ We cannot generally infer ϕ from the deductive validity of ϕ `ϕ, unless
ϕ is true — which is a sticking point, to say the least, when ϕ is the liar sentence.
Despite the interdefinability of truth and soundness, we can relevantly reduce the liar
paradox to the soundness paradox, but not the soundness paradox to the liar. The
soundness paradox on the basis of this logical distinction is evidently a different and
arguably more fundamental paradox than the liar.

There are further implications of the reduction disparity for how the soundness
paradox might be solved by contrast with standard solutions to the liar. As an
indication of what is at stake in the irreducibility of the soundness paradox to the liar,
consider how the shift from sentential to inferential paradoxes complicates Tarski’s
approach to forestalling the liar paradox for the concept of truth in a hierarchy of
formal object- and metalanguages.6 Although it seems useful in avoiding the liar
to hold that no sentence can assert its own truth or falsehood, the corresponding
prohibition for inferences does not appear as unproblematic. Since validity is not
at issue in the soundness paradox, we can focus on the question of whether we can
invoke a Tarskian restriction on inferences affirming or denying the truth of their own
assumptions and conclusions. The difficulty is that in a way every inference asserts
(and does not merely imply) the truth of its own assumptions and conclusions, while
the conclusions of an argumentum reductio ad absurdum, on the strength of a validly
derived contradiction, asserts (and does not merely imply) the falsehood of one of its
assumptions. As a consequence, it is by no means obvious that the Tarskian solution
to the sentential liar paradox can be successfully applied to the inferential soundness
paradox.7
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Abstract

Although first-order Kripke semantics has become a well established branch of modal logic, very
little - almost nothing - is written about logics with a weaker modal fragment. We try to help the
situation by isolating principles determining the interaction between quantifiers and modalities in
minimal semantics. First, we let the standard-model properties of monotonic and anti-monotonic
domains clue us in on how to do this – i. e. we try to articulate, in terms of the inclusiveness of the
domains of a certain set of worlds, a set of semantical restrictions that will validate the Barcan and
converse Barcan formulae respectively. As it turns out, this can indeed by done, but only by adding
assumptions strong enough to make the models virtually normal. Since the whole point of switching
to a minimal framework would be to generalise the logic, we therefore abandon the worlds-objects
thinking altogether, and switch to a much simpler and more direct validation strategy in which the
propositions we are after are simply picked out as such.

Keywords: First-order modal logic, minimal semantics, permutation principles.

1 Introduction

It was a common feeling among our philosophical predecessors that there is precisely
one correct system of logic, and that this system can be used to impose clarity and
rigour on all significant contexts of thought. Kant, for instance says:

Since Aristotle [logic] has not required to retrace a single step, unless, indeed, we care to
count as improvements the removal of certain needless subtleties or the clearer exposition
of its recognised teaching, features which concern the elegance rather than the certainty of
science. It is remarkable also that to the present day logic has not been able to advance a
single step, and is thus to all appearances a closed and completed body of doctrine.

Not many logicians today share Kant’s view. There is presently a general consensus
about the reasonableness of a multiplicity of logical systems. It is being recognised
that which logic is the appropriate one for a certain task is to a large extent deter-
mined by the nature of that task. The discipline of logic has thus assumed a certain
character of design. Logic is no longer seen first and foremost as the activity of digging
up deeply veiled, but, once uncovered, self-evident truths, but rather as the enterprise
of devising formal systems to meet specific needs or to capture essentially problematic
views in a clear form. Logic construed as such – i. e. as conceptual engineering – has
benefited enormously from the development of ever more rudimentary and general
languages, languages from which the logic best cut to the relevant measure can be
built, condition by condition.

For some reason, this process seems to have come to a temporary halt in the field
of quantified modal logic. This is surprising, considering the virtually undisputed
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usefulness – for purposes of conceptual analysis and design – of first-order intensional
languages. The sceptic reader may want to consider the following examples,

Sustenance: A ∧ Ea¬(∃x)Ex¬A ∧ ((∃y)Ey¬A ∨ A)

Distribution of responsibility: O¬(∃x)ExA→ (∀y)OEy¬EyA

The Ex notation denotes indexed agency operators usually given the reading “agent x
sees to it that ...”, whereas O is an ideality operator of the kind familiar from deontic
logic. Thus, the first of the concepts above consists of three conjuncts specifying a
context, an action and a counter-factual condition respectively. The action is of type
prevention, and the counter-factual condition says of it that if it did not occur then
the context would have been different. Hence, the concept belongs to the sustenance
variety. The second concept, assuming the form of a conditional, says that if a certain
action A is in general forbidden then everyone is obliged to refrain from performing
that action. Hence, the concept may be seen as a principle linking a set of individual
duties to a general prohibition.

Note, that each of the concepts above involves an essential reference to a quantifier.
The concept of sustenance is predicated on the denial of the existence of a certain kind
of agency – expressible only as the external negation of an existential quantifier. The
distribution of responsibility-principle, on the other hand, relies on the distinction
between de re and de dicto necessity – it is due to this distinction that the formula
is able to capture a relationship between a general prohibition and a set of individual
duties.

According to current research in modal logic, both of the modalities above – obliga-
toriness and agency – are non-normal in the sense of not being closed under logical
consequence. 1 Such modalities cannot be adequately described in standard seman-
tics, but require a move to the more flexible framework of minimal models (familiar to
some as neighbourhood semantics or Scott/Montague semantics). Alas, whereas the
literature on first-order standard semantics is abundant, there is at present virtually
no literature on the relation between worlds and objects in minimal models. 2

Quantified modal logic, we know, is delimited and defined syntactically by a pair of
principles expressing the possibilities of permutation between the quantifiers and the
modal operators:

BF : (∀x)�φ(x) → �(∀x)φ(x)

CBF : �(∀x)φ(x) → (∀x)�φ(x)

These principles are usually referred to as, respectively, the Barcan and the converse
Barcan formula (after Ruth Barcan Marcus), and have been extensively discussed in
the philosophical literature. In a standard model setting, the permutation principles
can be interpreted as making rather substantial philosophical claims (a good account

1They are generally considered to be concepts of the EC variety. I. e. they are closed under classical equivalence

and have a variant of the schema (�A ∧ �B) → �(A ∧ B)

2With a notable exception for [7] and [3]
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may be found in [2]). This is due to the structuring they reflect of the standard model
relation of accessibility along a scale of inclusiveness of domains: The Barcan formula
thus corresponds to the following restriction on the relation R:

Monotonicity : if αRβ then D (α) ⊆ D (β),

whereas the converse Barcan formula corresponds to:

Anti-monotonicity : if αRβ then D (β) ⊆ D (α),

To the extent we wish to utilise minimal models we should know whether the permu-
tation principles mirror a similar – or, at least a vaguely analogous – ordering also
minimally, and, if not, what other means we have of controlling the language. Hence,
the central question of this paper becomes: What semantical restrictions must be
imposed on a minimal model in order to validate the Barcan and converse Barcan
formulae?

The paper is organised as follows: In section 2, we fix our notation, and introduce the
basic semantical and syntactical notions. In section 3 we develop a validation strategy
based, in analogy to the standard model case, on the contraction and expansion of
certain domains. As we shall see, the resulting logics will turn out to be quite strong
– so strong, in fact, as to verge on the brink of normality. This will lead us to
consider, in section 4, the relationship between first-order minimal semantics and
first-order standard semantics in a bit more detail. As a result we end up with a
second validation strategy which is far more general than the first. In section 5 we
prove the completeness of the systems discussed with regard to the latter classes of
models.

2 Syntax and semantics essentials

2.1 Models, satisfaction and truth

The language takes as primitive a denumerably infinite set of n-place predicate letters
P, a denumerably infinite set of individual variables Var, and the six symbols ¬, �, ∨

and ∀. Its syntax is defined from these as follows:

• if P ∈ P, x1, x2, ... , xn ∈ Var, and P has arity n then P(x1, x2, ... , xn) is a wff.

• if φ is a wff then so are ¬φ and �φ.

• if φ and ψ are wff then so is (φ ∨ ψ).

• if φ(x) is a wff and x ∈ Var, then (∀x)φ(x) is a wff.

Note that there are no terms other than variables, and no identity sign in the lan-
guage. Hence, the entire subject of rigid vs. non-rigid designation and necessary
vs. contingent identity is cut away – the interaction between the quantifiers and the
modal operators is this paper’s only concern.

Our language is interpreted in models in which the domains are allowed to vary from
world to world. Such a model M = 〈M, N , D, V , v〉 is specified as follows:

• W is a set of possible worlds.
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• N : W → P(P(W)) is a function from worlds to propositions. Intuitively N picks
out for each world α the set of necessary propositions at that world.

• D is a domain function assigning to each world α ∈ W a set of objects D (α).

• V is an interpretation function assigning to each n-place relation symbol φ, and to
each possible world α ∈ W a set of ordered n-tuples from

S

{D(α): α ∈ W} written
V(α, φ).

• v is a set of valuation functions each of which assigns to each variable x an object
from

S

{D(α): α ∈ W}.

Generally we will assume familiarity with notions such as the scope of a quantifier
and the notion of an x -variant 3 of a valuation of the free variables of a formula. The
reader should keep in mind though, with regard to the range of the quantifiers, that
varying domain QMML 4 – being varying domain – is a species of free logic. The
characteristic feature of this particular brand of quantificational logic consists in the
fact that terms need not refer to objects in the domain of quantification. The truth
of a closed formula, therefore, requires, in addition to the truth of the relevant open
sentences, the existence in the domain of reference of the objects designated by the
terms of the open formulae:

Definition 2.1 Let wi be any assignment from wi be any assignment from
S

{D(α): α

∈ W} of values to the variables. Then:

A) M �wi (∀x)φ(x) iff for any x -variant wj of wi s.t. wj(x) ∈ D(α) : M �wj φ(x)

B) M �wi (∃x)φ(x) iff for some x -variant wj of wi s.t. wj(x) ∈ D(α) : M �wj φ(x) 5

In other words a closed sentence such as ”some x is φ” is true at α precisely when the
predicate φ is true of x and x exists at α.

Note, however, that since terms need not refer to objects in the domain of quantifi-
cation, we must deal with a complication before we can define the truth in M of the
atomic sentences on which the closure of a formula depends: A term can designate
an existing as well as a non-existing object. Therefore, satisfaction and truth can be
defined in several ways. The different possibilities are summarised below:

For satisfaction : We may decide that,

1. predicates are satisfied at a world α only by tuples from D(α), or we may
2. allow predicates to be satisfied by any suitable tuple from

S

{D(α) : α ∈ W} .

Following the former course we would in effect deny that non-existent objects can
have properties.6The latter course is less restrictive, and does not require the exis-

3Or, as it is often called, a bound alphabetic variant.

4which will henceforth be our official term for quantified minimal modal logic as opposed to QML which we use to

refer to quantified modal logics of the normal variety.
5It is a well established result of first-order logic that if a closed sentence is true in a world with regard to a specific

valuation, then it is true in that world with regard to any valuation. In what follows we will therefore drop the

reference to a valuation when speaking about closed sentences

6Such a position has been fiercely defended by no lesser men than Leibniz and Kant. Thus Leibniz says “Nihile

nullae prorietas sunt” – i.e. what is not has no properties – whereas Kant, speaking of non-existents says “Non-entis

nulla sunt predicata”– i. e. all that is predicated of the object, whether affirmatively or negatively is erroneous (cf.

[2]).
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tence of the subject of predication. Intuitively speaking, therefore, it captures the
view that, even though an object x might not exist in the domain associated with α

it does exist under other circumstances we are willing to consider as possible, and so
it is meaningful to speak about it [2]. Now,

For truth : We may either

1. choose the former of the above strategies making the concepts of truth and
satisfaction coincide, or, we may, if we adopt the liberal view on satisfaction,

2. choose to regard satisfaction as the general case comprising every tuple that V

returns from
S

{D(α): α ∈ W}, while reserving the concept of truth for the special
case in which the members of the satisfying tuple exist.

The choices made in the present paper is reflected by the fact that the interpretation
function V is a totally defined function which ranges over the union of the individual
domains. Hence, we allow existent as well as non-existent objects to have properties.
As far as the concept of truth is concerned we shall make it synonymous with the
concept of satisfaction, and we offer the following piece of reasoning (from [2]) as
justification for this: Suppose that truth and satisfaction are distinct concepts and
suppose that the formula �(φ(x) ∨ ¬φ(x)) is true in some possible world α under some
valuation v that assigns the object c to x . If � is to be understood as a sentential
operator from W to P(P(W)) then for any world β ∈ ‖φ(x) ∨¬φ(x)‖ we should have the
truth of φ(x) ∨ ¬φ(x). Now, V is not a partial function as we have defined it, so we
know that φ is either satisfied or not satisfied by the object c at β. But we don’t
know that c exists at β, and since existence is assumed to be the difference between
satisfaction and truth, we therefore don’t know whether or not the φ(c)∨¬φ(c) - which
is a tautology of PL - is true at β. As we wish to exclude these cases, and to keep our
proof procedures nice and simple, we shall treat satisfaction and truth as equivalent
concepts. Thus, φ is either true or false of c at β, and in any event φ(x)∨¬φ(x) comes
out true. In a more compressed idiom:

Definition 2.2 M, α �wi φ(x1, ..., xn) iff 〈wi(x1), ...,wi(xn)〉 ∈ V(α,φ)

2.2 Neologisms

Minimal semantics is not a relational semantics and hence the language in which it is
formulated is not predicate logic but set-theory. In other words semantical restrictions
in QMML will be formulated in terms of the membership of truth-sets in certain
other sets, rather than in terms of accessibility relations between possible worlds.
The problem is, however, that an atomic formula φ(x) of first-order logic is not really
a proposition it is a pronominal construction for which no grammatical antecedent is
expressed. Therefore it makes no sense to talk about the truth simpliciter, � φ(x), of
φ(x), nor does it make sense to talk about the truth-set, ‖φ(x)‖, of an open formula as
such. Instead we must state the truth of φ(x) with reference to a specific assignment
wi of an object to the variable x , and, analogously, we must talk about the set of
worlds ‖φ(x)‖wi in which φ is true of the object assigned to x by this valuation. Hence,

Definition 2.3 M, α �wi φ(x) iff wi(x) ∈ V(α, φ)
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and

Definition 2.4 ‖φ(x)‖wi =df {α ∈ W: M, α �wi φ(x)}

Now, among the truth-sets we will be particularly interested in – since this is what is
required to have the universal closure of a formula – are those in which a predicate
is satisfied by every object from some domain. To denote such a set we shall use the
notation

Tn

m∈D(α)
‖φ(x)‖wi . This set will be called the α-closure set for φ(x), and it is

defined as follows:

Definition 2.5
Tn

m∈D(α)
‖φ(x)‖wi =df ‖φ(x)‖wm∩ , . . . ,∩‖φ(x)‖wn where {wm(x), . . . , wn(x)}

= D (α)

Expressed in terms of truth at a world the set
Tn

m∈D(α)
‖φ(x)‖wi is equal to the set

{β ∈ W : M, β �{wi ∈ v : wi(x)∈D (α)} φ(x)}, where M, α �{wi ∈v : wi(x)∈D (α)} φ(x) is defined
as:

Definition 2.6 M, α �{wi ∈v : wi(x)∈D (α)} φ(x) =df M, α �wm φ(x) &, . . . ,& M, α �wn

φ(x) where {wm(x),

. . . , wn(x)} = D (α)

Intuitively speaking, therefore, the α-closure set for φ(x) is the set of worlds where a
predicate φ is true of all objects from the domain of α.

Definition 2.6 is, quite obviously, a link between the notion of the truth of a closed
formula and the notion of the truth of a relevant set of open sentences, in the sense
that it allows us to derive the following lemma (the proof of which is trivial and
therefore omitted):

Lemma 2.7 M, α � (∀x)φ(x) iff M, α �{wi ∈v: wi(x)∈D (α)} φ(x)

The lemma expresses exactly the same as definition 2.1, but in our more compressed
set-theoretical idiom. Together with definition 2.5 it thus enables us to formulate
the truth of a sentence (∀x)φ(x) in a world α set-theoretically by saying that α ∈
Tn

m∈D(α)
‖φ(x)‖wi . Since this equivalence will be appealed to in proofs we single it out

as a separate lemma:

Lemma 2.8 α ∈ ‖(∀x)φ(x)‖ iff α ∈
Tn

m∈D(α)
‖φ(x)‖wi

Proof. : Left-to-right: By the standard definition of a truth set α ∈ ‖(∀x)φ(x)‖ iff
M, α � (∀x)φ(x). By definition 2.1, then, we have that M, α �wi φ(x) for any wi such
that wi(x) ∈ D(α). It follows, by definition 2.4, that α ∈ ‖φ(x)‖wm , . . . α ∈ ‖φ(x)‖wn

where {wm(x), . . . wn(x)} = D(α). By the laws of elementary set-theory, then, α ∈

‖φ(x)‖wm ∩, . . . , ∩‖φ(x)‖wn , which means, by definition 2.5, that α ∈
Tn

m∈D(α)
‖φ(x)‖wi .

Right-to-left: By definition 2.5 α ∈
Tn

m∈D(α)
‖φ(x)‖wi iff α ∈ ‖φ(x)‖wm∩ , . . . , ∩‖φ(x)‖wn ,

where {wm(x), . . . , wn(x)} = D(α). By the standard definition of a truth set M, α �wm

φ(x) &, . . . ,&M, α �wn φ(x). By definition 2.6 it follows that M, α �{wi ∈v : wi(x)∈D (α)}

φ(x), and hence we have, by lemma 2.7, that M, α � (∀x)φ(x)

Taken together definition 2.3 - 2.6 gives us the following very useful chain of equiva-
lences:
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Corollary 2.9 M, α � (∀x)φ(x) iff α ∈ ‖(∀x)φ(x)‖ iff α ∈
Tn

m∈D(α)
‖φ(x)‖wi

iff M, α �{wi ∈ : wi(x)∈D (α)} φ(x)

Although they bring with them nothing novel, these definitions thus facilitate sim-
plicity and compactness of expression – virtues the value of which will shortly become
apparent.

Now, as QMML is about the interaction between quantifiers and modalities we need to
relate the neologisms above to the notions of de re and de dicto necessity respectively.
The following pair of lemmata take care of that.

Lemma 2.10 M, α � �(∀x)φ(x) iff {β : β ∈
Tn

m∈D(β)
‖φ(x)‖wi} ∈ N (α)

The proof is immediate. It suffices to argue that {β : β ∈
Tn

m∈D(β)
‖φ(x)‖wi } = ‖(∀x)φ(x)‖

which is clearly implied by definition 2.5.

Lemma 2.11 M, α � (∀x)�φ(x) iff ‖φ(x)‖wi∈ N (α) for any wi such that wi(x) ∈ D (α)

Proof. We prove only the left-to-right direction: By definition 2.1 M, α � (∀x)�φ(x)

iff M, α �w �φ(x) for any wi s.t. wi(x) ∈ D(α). By definition 2.4, then, α ∈ ‖�φ(x)‖wi .
Now, from the definition of � we have that α ∈ ‖�φ(x)‖wi if and only if ‖φ(x)‖wi ∈ N (α)

– which completes the argument.

These last two results should come as no surprise to anyone. It is apparent, for
instance, that what’s stated by lemma 2.10 could equivalently be expressed by saying
that M, α � �(∀x)φ(x) iff ‖(∀x)φ(x)‖ ∈ N (α). We shall use them interchangeably in what
follows.

3 Validating the permutation principles

3.1 The general case: Varying domains

A standard model validates the Barcan formulae by contracting or expanding (as the
case may be) the domains of a certain set of worlds, namely the set of worlds that is
picked out by the necessity operator in the antecedent of the relevant Barcan formula.
The domain of the world we start from either includes or is included in the domain
of these worlds thus creating the effect of moving the necessity operator either into
or out of a quantified formula. A minimal model does not have a relation predicate
telling us which worlds are related to which others. Instead it has a function N picking
out, for every world α, a set of necessary propositions. However, constraining N in
an analogous way, imposing

[Minimal Contraction]: If ‖φ(x)‖wi ∈ N (α), for any wi such that wi(x) ∈ D (α), then
every β s.t. β ∈ ‖φ(x)‖wi is such that D (β) ⊆ D(α)

will not produce the same result in a minimal model. As it stands Minimal Con-
traction does not validate the Barcan formula. To see why, consider the following
“dummy” model.
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fig. 1

M N (α)

‖φ(a)‖ ‖φ(b)‖

‖φ(c)‖

D(α) = {a, b, c}

Since every atomic sentence formed from the predicate φ and an object from D(α) is
necessary at α itself, (∀x)�φ(x) is true at α. However �(∀x)φ(x) is not, since (∀x)φ(x) is
not in N (α), so the Barcan formula fails.

This argument can obviously be made quite independently of whether or not each
‖φ(x)‖wi

7 is minimally contracting. Minimal contraction simply does not come into
play here, and may thus seem to be totally irrelevant to the truth of the Barcan
formula.

However, this is not entirely true either. Minimal contraction can be brought into
play by manipulating the following restrictions:

[m] if X ∩ Y, then X ∈ N (α) and Y ∈ N (α)

[c] if X ∈ N (α) and Y ∈ N (α), then X ∩ Y ∈ N (α)

[n] W ∈ N (α)

Following the terminology from [1] we shall say that a model satisfying [m] is sup-
plemented, that a model satisfying [c] is closed under intersections and that a model
satisfying [n] contains the unit. A model that is both supplemented and closed under
intersections is a quasi-filter. If it also contains the unit it is a filter. Now, consider
first the effect of intersection closure:

fig. 2

M N (α)

‖φ(a)‖ ‖φ(b)‖

‖φ(c)‖

X ∈ N (α) =
Tn

m∈D(α)
‖φ(x)‖wi-

7As in this case, we shall omit the reference to the domain when this is clear from context
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The effect is to bring an α-closure set into N (α): The α-closure set for φ(x) is the
intersection of all the atomic formulae formed from φ and the elements of D(α). All
the corresponding propositions are, by assumption, in N (α). Condition [c] above says
that the intersection of any finite collection of sets from N (α) is itself in N (α) – the
α-closure set for φ(x) is obviously one of these.

Thus, minimal contraction does have an effect on intersection closures: If the domain
of each member β of any ‖φ(x)‖wi (such that wi(x) ∈ D(α)) is included in the domain
of α, and the α-closure set for φ(x) equals the intersection of all the ‖φ(x)‖wi , then
the domain of each member γ of

Tn

m∈D(α)
‖φ(x)‖wi is obviously included in the domain

of α too. The technical significance of this parallels, exactly, the significance of anti-
monotonicity in the standard model case: If a predicate φ is true in a world γ of every
object from the domain of α, and D(γ) ⊆ D(α) then it is also true of every object from
the domain of γ itself – i. e. M, γ � (∀x)φ(x). Now, since in this case γ is any member
of

Tn

m∈D(α)
‖φ(x)‖wi it follows that

Tn

m∈D(α)
‖φ(x)‖wi ⊆ ‖(∀x)φ(x)‖. These latter sets do

not necessarily coincide, though, as the following elaboration on figure 2 shows:

W = {α, β, γ, δ}

D(α) = {a, b, c} D(β) = {a, b}
D(γ) = {a, b} D(δ) = {d}

‖φ(a)‖ = {α, β} ‖φ(b)‖ = {α, β, γ}

‖φ(c)‖ = {α, β} ‖φ(d)‖ = {δ}

N (α) = {{α, β}, {α, β, γ}, {β, γ}, {β}}

fig. 3

M N (α)

‖φ(a)‖ ‖φ(b)‖

‖φ(c)‖

This model is closed under intersections and minimally contracting. Moreover,
(∀x)�φ(x) is true at α. However, �(∀x)φ(x) is not since ‖(∀x)φ(x)‖ = {α, β, δ}, and this
set is not in N (α). The reason is this: Since M is varying domain there may be a
world, e.g. δ, at which a predicate, e.g. φ, is true of every object, say d, existing at
that world, without being true of any object existing at any other world – for instance
α. Thus, δ will be in ‖(∀x)φ(x)‖ but not in

Tn

m∈D(α)
‖φ(x)‖wi .

This is easily changed though: The joint pull of intersection closure and minimal
contraction makes

Tn

m∈D(α)
‖φ(x)‖wi a subset of ‖(∀x)φ(x)‖. Hence, to have the truth of

the Barcan formula in M it will suffice to supplement the model. Indeed, supplemen-
tation, intersection closure and minimal contraction will drive the Barcan formula
through in any model:

Theorem 3.1 The Barcan formula is valid in the class of minimally contracting quasi-
filters.

Proof. Let the model M be a minimally contracting quasi-filter and assume that
M, α � (∀x)�φ(x). By the definition of ∀ and �, we have that ‖φ(x)‖wi ∈ N (α) for
any valuation wi such that wi(x) ∈ D(α). Since M is closed under intersection it



566 QMML: Quantified Minimal Modal Logic and Its Applications

follows that
Tn

m∈D(α)
‖φ(x)‖wi ∈ N (α). Now, every β ∈

Tn

m∈D(α)
‖φ(x)‖wi is such that

M, β �{wi ∈ v : wi(x)∈D (α)} φ(x) (cf. corollary 2.9) and minimal contraction guarantees
that D(β) ⊆ D(α). Hence, every world β such that β ∈

Tn

m∈D(α)
‖φ(x)‖wi is such that

M, β �{wi ∈v : wi(x)∈D (β)} φ(x) In other words; the α-closure set for φ(x) is also a β-
closure set for φ(x). It follows by corollary 2.9 that M, β � (∀x)φ(x). Consequently we
have that

Tn

m∈D(α)
‖φ(x)‖wi coincides with

Tn

m∈D(α)
‖φ(x)‖wi ∩‖(∀x)φ(x)‖, and since the

former set is in N (α) the latter set is quite obviously in N (α) too. Now, M is, by
assumption, supplemented. Thus, since

Tn

m∈D(α)
‖φ(x)‖wi ∩‖(∀x)φ(x)‖ is in N (α), then

so is ‖(∀x)φ(x)‖. It follows by the definition of � that M, α � �(∀x)φ(x).

Now for the converse Barcan formula: If we stick to the procedure outlined above,
giving the elements of the necessitated proposition in the antecedent of the relevant
Barcan formula the adequate domain property – which in this case is the property of
being a superset of the domain of the world we start from – we obtain the following
minimal analogue to the standard model monotonicity property:

[Minimal Expansion]: If ‖(∀x)φ(x)‖ ∈ N (α) then every β ∈ ‖(∀x)φ(x)‖ is such that
D (α) ⊆ D (β)

Too see how this principle effects our semantics recall that ‖(∀x)φ(x)‖ = {β ∈ W : β ∈
Tn

m∈D(β)
‖φ(x)‖wi } – i.e. the universal closure of φ(x) is the set of worlds β that are

members of their own closure sets for φ(x). Now, minimal expansion tells us that β is
such that D(α) ⊆ D(β). Hence, the β-closure set for φ(x) is also an α-closure set for φ(x).
It follows from this that ‖(∀x)φ(x)‖⊆

Tn

m∈D(α)
‖φ(x)‖wi and since the former is in N (α)

supplementation sees to it that the latter is in N (α) too. The situation is illustrated
below:

Tn

m∈D(α)
‖φ(x)‖wi

M N (α)

-

�

‖(∀x)φ(x)‖

subset of (by expansion)

element in (by [m])

fig. 4

This does not bring us all the way, of course, since what we need to have (according
to lemma 2.11 is the membership in N (α), not of

Tn

m∈D(α)
‖φ(x)‖wi , but of each of the

atomic propositions ‖φ(x)‖wi such that wi(x) ∈ D(α). We know, however, that the
former set is formed by taking the intersection of all of the latter. If we wish to go
in the other direction we may thus simply apply supplementation once more. Letting
vision aid thought, what we do, then, is to move from figure 4 to figure 5 below.
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M

‖φ(a)‖

‖φ(b)‖

‖φ(c)‖

N (α)

-

� ?

Tn

m∈D(α)
‖φ(x)‖wi

subset of each of

members of N (α) (by [m])

fig. 5

That this will indeed suffice is demonstrated in the proof of the following theorem:

Theorem 3.2 The converse Barcan formula is valid in the class of minimally expand-
ing supplementations.

Proof. Let M be a minimally expanding supplementation and assume that M, α � �

(∀x)φ(x). By the definition of � it follows that ‖(∀x)φ(x)‖ ∈ N (α) which (by lemma 2.10)
is equivalent to saying that {β ∈ W : β ∈

Tn

m∈D(β)
‖φ(x)‖wi } ∈ N (α) . Now, since every

γ ∈ {β ∈ W : β ∈
Tn

m∈D(β)
‖φ(x)‖wi} is such that M, γ �{wi ∈v : wi(x)∈D(γ)} φ(x), and since,

by minimal expansion, D(α) ⊆ D(γ), we have that M, γ �{wi ∈v:wi(x)∈D(α)}φ(x). In other
words; the γ-closure set for φ(x) is also an α-closure set for φ(x), which means that γ ∈
Tn

m∈D(α)
‖φ(x)‖wi .Consequently ‖(∀x)φ(x)‖ coincides with

Tn

m∈D(α)
‖φ(x)‖wi ∩‖(∀x)φ(x)‖,

and since the former set is in N (α) the latter set is in N (α) too. It follows, by supple-
mentation that,

Tn

m∈D(α)
‖φ(x)‖wi∈ N (α). Now,

Tn

m∈D(α)
‖φ(x)‖wi =df ‖φ(x)‖wm∩ , . . . ,

∩ ‖φ(x)‖wn where {wm(x), . . . , wn(x)} = D (α) (definition 2.5). Applying supplementation
once more gives ‖φ(x)‖wi ∈ N (α) for all wi such that wi(x) ∈ D (α). By the definition of
� it follows that M, α �wi �φ(x) and hence that M, α � (∀x)�φ(x).

The dynamics of this proof, although different in certain important respects 8 bears
an interesting resemblance to the proof of the Barcan formula (as one would expect).
In both cases a requirement on the size each of a certain set of sets of associated
domains makes

Tn

m∈D(α)
‖φ(x)‖wi intersect with ‖(∀x)φ(x)‖. More specifically, minimal

contraction guarantees that
Tn

m∈D(α)
‖φ(x)‖wi ⊆ ‖(∀x)φ(x)‖, whereas minimal expansion

gives us the converse. In each case the relevant fragments of this intersection is then
“chopped” off and put into N (α) by the condition [m]. In the case of the Barcan
formula the desired fragment is ‖(∀x)φ(x)‖, and once we have this we’re done. In
the case of the converse Barcan formula we apply supplementation twice to get from
Tn

m∈D(α)
‖φ(x)‖wi to the individual ‖φ(x)‖wi .

8Notably, the proof does not require closure under intersections. Loosely speaking, this is due to the fact that the

proposition we start with is already universally closed. It is not necessary, therefore, to “squeeze” a set of objects

into the relevant set of worlds – they are already there.
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3.2 The limiting case: Constant domains

As we have already mentioned, varying domain semantics is a species of free logic –
a brand of quantificational logic in which a term need not refer to anything in the
domain of quantification. Due to this, free logic differs from classical quantificational
logic in certain important respects. Notably, it does not preserve the validity of the
principle of universal instantiation:

[UI]: (∀x)φ(x) → φ(y)

Since domains are allowed to vary from world to world we cannot, from the fact
that every object in the domain of α has the property φ in α, conclude that every
object β from any world has the property φ in α, because β may well not be in the
domain of quantification – in which case the formula (∀x)φ(x) tells us nothing about it.

If one prefers to keep classical quantificational logic as a fragment of one’s system,
the domain of discourse must therefore be kept constant over the entire model. Since
constant domain semantics is simply the limiting case of varying domain semantics,
it is interesting, from a theoretical point of view, to see how constant domains affect
our logic: 9

Assume that the domain D of any world β in M is such that D(β) =
S

{D(α) : α ∈ W}

(for convenience we shall refer to
S

{D(α) : α ∈ W} as the domain D(M) of the model),
i.e. that the domain is constant over the model. The following lemma shows in what
way this assumption alters the semantical machinery:

Lemma 3.3 If every world α ∈ W is such that D(α) = D(M) then {β ∈ W : β ∈
Tn

m∈D(β)
‖φ(x)‖wi } =

Tn

m∈D(M)
‖φ(x)‖wi

Proof. Since every individual domain D(β) in M is equal to the domain D (M) of
the model, β ∈

Tn

m∈D(M)
‖φ(x)‖wi if and only if β ∈

Tn

m∈D(β)
‖φ(x)‖wi . Thus {β : β ∈

Tn

m∈D(β)
‖φ(x)‖wi } is equal to {β : β ∈

Tn

m∈D(M)
‖φ(x)‖wi}. Now, from elementary set-

theory we know that {γ : γ ∈ X} = X. Hence, we have that {β : β ∈
Tn

m∈D(β)
‖φ(x)‖wi}

= {β : β ∈
Tn

m∈D(M)
‖φ(x)‖wi } =

Tn

m∈D(M)
‖φ(x)‖wi

The significance of this lies in the fact that in constant domain semantics ‖(∀x)φ(x)‖=
Tn

m∈D(α)
‖φ(x)‖wi for any α ∈ W. Unlike the varying domain case, therefore, we may

always substitute the one for the other – a fact that simplifies the semantics and gives
us the following theorems:

Theorem 3.4 The Barcan formula is valid in the class of constant domain intersec-
tion closures. 10

9Much of the material in this section derives from Geir Waagbö [7] . Both of the theorems below were proved

there (the second of these was independently proved in [6], in the varying domain framework employed here). The

material in the present section contributes by providing a lemma bridging constant and varying domain semantics.

10As Waagböe has demonstrated this theorem holds only in the finite case. When W contains an infinite number

of worlds it must be strengthened to closure under arbitrary intersections.
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Proof. : Let M be closed under intersections and assume that M, α �(∀x)�φ(x). By
the definition of ∀ and � it follows that ‖φ(x)‖wi ∈ N (α) for any wi such that wi(x) ∈

D (M). Since M is closed under intersections, then, we have that
Tn

m∈D(M)
‖φ(x)‖wi∈

N (α). By lemma 3.3 {β ∈ W : β ∈
Tn

m∈D(β)
‖φ(x)‖wi} =

Tn

m∈D(M)
‖φ(x)‖wi . Since the latter

set is in N (α) the former is in N (α), which means, by lemma 2.10, that M, α � �(∀x)φ(x)

Theorem 3.5 The converse Barcan formula is valid in the class of constant domain
supplementations.

Proof. : Let M be supplemented and assume that M, α � �(∀x)φ(x). It follows that
‖(∀x)φ(x)‖ ∈ N (α), by the definition of �, and that

Tn

m∈D(M)
‖φ(x)‖wi∈ N (α), by lemma

3.3. Now,
Tn

m∈D(α)
‖φ(x)‖wi =df ‖φ(x)‖wm∩ , . . . ,∩‖φ(x)‖wn where {wm(x), . . . , wn(x)} =

D (α) (definition 2.5). Applying supplementation once more gives ‖φ(x)‖wi ∈ N (α) for
all wi such that wi(x) ∈ D (α). By the definition of � it follows that M, α �wi �φ(x) and
hence that M, α � (∀x)�φ(x).

As these proofs show constant domain semantics is simpler in the sense that the prop-
erties of minimal contraction and minimal expansion no longer figure explicitly in the
proofs. More interestingly though, it is also simpler in the sense that supplementation
– due to the coincidence of ‖(∀x)φ(x)‖ with any

Tn

m∈D(α)
‖φ(x)‖wi – is not needed for the

proof of the validity of the Barcan formula to go through. This feature lends constant
domain semantics a grace and symmetry that is lacking from the varying domain case.
Supplementation and intersection of sets thus forms an axis, so to speak, along which
quantifiers and modalities permute.

4 The relationship between QML and QMML

The reader has probably noticed the rather conspicous divergence between our goals,
as set forth in the introduction, and the amount of terrain that has been gained by
our results: We wanted to have a quantified modal logic general enough to serve as
a characterisation tool for first-order concepts involving non-normal modalities such
as obligatoriness and agency. However, if we actually use either of the permutation
principles as a part of such a characterisation, then we end up with a minimal system
that is only marginally weaker than the normal systems we abandoned. This is true
in particular of the class of minimally contracting quasi-filters. A quasi-filter is a
filter whenever N (α) is non-empty, and a finite filter is a normal model. Hence, a
quasi-filters is, for all practical purposes, itself a normal model. Hence, validating
the Barcan formula along the lines sketched above brings us very close to the class
of standard models. So close, indeed, that it becomes natural to ask what the exact
relationship between the two classes is. 11

11In order to distinguih them clearly, we shall henceforth use ’monotonic’/’anti-monotonic’ when speaking of stan-

dard models, and ’expanding’/’contracting’ when speaking of minimal models.
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A propositional standardmodel, we know ([1]), is essentially an augmented minimal
model, where augmentation means:

[Augmentation]: X ∈ N (α) iff
T

N (α) ⊆ X

In other words: An augmented model is a minimal model in which N (α) contains the
intersection of all of its members, and every superset thereof.

Moreover, one model being essentially another, means that it belongs to a class any
member of which has a pointwise equivalent in the other class. A theorem to this
effect can be found [1] where it is stated as follows (it is here numbered to fit the
present essay):

Theorem 4.1 For every standard model MS there is a pointwise equivalent aug-
mented minimal model MM and vice versa.

The theorem is proved by constructing a model from the one class out of a model from
the other (and conversely), and by demonstrating, inductively, that these construc-
tions preserve satisfaction. More specifically; a standardmodel MS is constructed
from an arbitrary augmentation MM by defining R as αRβ iff β ∈ N (α), and a minimal
model is constructed from an arbitrary standardmodel by defining N as X ∈ N (α) iff
{β ∈ W : αRβ} ⊆ X. Pointwise equivalence is proved by showing, on the assumption
that the models are pointwise equivalent for all atomic sentences, that they are point-
wise equivalent for any complex sentence formed from any atomic formulae and any
combination of operators in the language. The only non-trivial case is the case where
a sentence is a neccessitation (from [1]):

MM, α � �B iff ‖B‖M
M

∈ N (α)

- by the minimal definition of �

iff
T

N (α) ⊆ ‖B‖M
M

- by augmentation
iff for every β ∈ W such that αRβ; MS , β � B

- definition of R and the inductive hypothesis
iff MS , α � �B

- by the standard defintion of �

Theorem 4.1 is easily extended to the first-order case. We just have to prove, on
the basis of the hypothesis ‖φ(x)‖M

M

wi = ‖φ(x)‖M
S

wi for any atomic formula φ(x) and
any valuation wi, that MM and MS are pointwise equivalent for universally closed
sentences. The proof is trivial: If MM, α � (∀x)φ(x) then MM, α �wi φ(x) for any
object wi(x) from D(α). By the inductive hypothesis it follows that MS , α �wi φ(x) and
hence that MS , α � (∀x)φ(x). Since this argument can clearly be repeated in the other
direction we have that ‖(∀x)φ(x)‖M

M

= ‖(∀x)φ(x)‖M
S

– i.e.;

Theorem 4.2 For every first-order standard model MS there is a pointwise equivalent
first-order augmented minimal model MM and vice versa.

However, the pointwise equivalent minimal model that theorem 4.2 proves the ex-
istence of is not necessarily a (as the case may be) contracting or expanding one.
Consider the following graphically represented quasi-filter:
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M N (α)

-

-

A contracting set

T

N (α)

fig. 6

We clearly have a match in one direction: The set
T

N (α) is itself contracting. This
follows from the fact that

T

N (α) is a subset of every other set in N (α) and the
assumption that at least one of these is contracting. Thus, since constructing the
point-wise equivalent standard model is done by defining R in terms of

T

N (α), minimal
contraction translates nicely into anti-monotonicity :

Proof. -sketch: Let MM be a contracting minimal model and define the standard
model MS stipulating that αRβ iff β ∈

T

N (α). Then;

‖φ(x)‖wi ∈ N (α) is contracting
only if every β ∈

T

N (α) is such that D (α) ⊆ D (β).
- by the inclusion of

T

N (α) in ‖φ(x)‖wi

only if αRβ then D (β) ⊆ D (α)

- by the definition of R.

However, things do not work out this nicely for the other direction. Even though
T

N (α) is contracting it does not follow that any of its supersets are, which blocks the
equivalence.

Hence, minimal contraction is a sufficient but not a necessary condition for the valid-
ity of the Barcan formula. We can generate an anti-monotonic standard-model from a
contracting augmentation, but we cannot generate a contracting augmentation from
an anti-monotonic standard model. This reflects the fact that minimal contraction is
unnecessarily strong. To ensure the validity of the Barcan formula in a minimal model
a much weaker principle which, tracking the movement of the necessity operator we
have chosen (in want of a better name) to call closure under permutation inwards,
will do:

[CUPI]: If ‖φ(x)‖wi ∈ N (α) for all wi such that wi(x) ∈ D (α) then ‖(∀x)φ(x)‖ ∈ N (α)

No proof, I am sure, is required to convince the reader of the adequacy of this restric-
tion. Whereas minimal contraction validates the Barcan formula via a restriction on
domains [CUPI] simply picks out the relevant sets and puts them in N (α). Since
[CUPI], quite clearly, and unlike minimal contraction, corresponds to the Barcan
formula (i.e. that the Barcan formula is a theorem if and only if [CUPI] is valid),
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demonstrating pointwise equivalence between anti-monotonic standard models and
minimal CUPI models is trivial and almost empty of formal content. We shall do it
anyway – for purposes of expository completeness:

Proof. :

‖φ(x)‖wi ∈ N (α) for all wi such that wi(x) ∈ D (α) then ‖(∀x)φ(x)‖ ∈ N (α)

iff MM, α � (∀x)�φ(x) → �(∀x)φ(x)

- by correspondence
iff MS , α � (∀x)�φ(x) → �(∀x)φ(x)

- by pointwise equivalence
iff if αRβ then D(α) ⊆ D(β)

- by correspondence

The argument can clearly be repeated in the other direction, and so, every anti-
monotonic Kripke model has a pointwise equivalent CUPI model. It is this that is
captured by theorem 4.2. The argument for CUPO models and montonic Kripke
models is similar.

5 Completeness

To our knowledge, there are as yet no completeness results for varying domain QMML.
However, the situation is by no means one that calls for drastic measures or intense
research activity because simply collecting together existing results almost gets the
job done.

A complete, least system of free logic can be constructed by defining defining ∃x as
¬∀x¬ and adding the following rules to propositional logic [4]:

[FUI] From (∀x)φ(x) infer E(y) → φ(y)

[FUG] From ψ → (E(y) → φ(y)) infer ψ → (∀x)φ(x)

Here E is a primitive existence predicate used to adjust the familiar principles of
universal instantiation and universal generalization to free logic. 12 Thus [FUI] says
that what is true of everything is true of any arbitrary object on the condition that
this arbitrary object exists. The rule of inference [FUG] is a similarly weakened
principle saying that if a formula φ implies another formula ψ whenever x exists, then
φ implies that every x is ψ.

The least modal logic, on the other hand, is constructed by defining �A as ¬♦¬A, and
adding the following rule to PL:

[RE] From A ≡ B deduce �A ≡ �B

We shall argue a) that the first-order modal logic obtained by combining these sys-

12Note, that we could have taken advantage of the flexibility of varying domains and defined the notion of the

existence in the following way: E(x) =df (∃y)(y = x). However, since we have chosen to leave the identity sign

out of our language we must work with the primitive
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tems, we call it QFE, is complete with respect to the class of varying domain minimal
models, and b) that the extensions obtained by adding the Barcan formulae are com-
plete with regard to the class of models that are closed under [CUPI] and [CUPO]
respectively.

A canonical model for varying domain first-order modal logic is built from sets of
formulae Γ that are saturated (with respect to the language L) in the following sense:

1. Γ is consistent, i.e. there is some A ⊆ L such that A /∈ Γ

2. Γ is maximal, i.e. for all formulae A ⊆ L either A ∈ Γ or ¬A ∈ Γ, and

3. Γ is ω-complete, i.e. if φ[y/x] ∈ Γ for all terms y such that E(y) then (∀x)φ(x) ∈ Γ

This definition differs from the corresponding definition for classical first-order logic
in an instructive way: In classical first-order logic omega-completeness (3) means that

[ω] If Γ ` φ(y) for any term y of L then Γ ` (∀x)φ(x) for any variable x

which is equivalent to,

[ω′] If Γ ∪ {¬(∀x)φ(x)} is consistent, then for some term y of L, Γ ∪ {¬φ(y)} is consistent.

In free logic, on the other hand, we know that the meaning of the quantifiers is given,
not by satisfaction alone, but by satisfaction + existence (cf. definition 2.1). The
definition of saturation is adjusted to reflect this.

Now, as Henkin was the first to prove, Ω-completeness is guaranteed if we extend
a first-order language L into a larger language L+ which has all the terms of L and
infinitely many new ones as well (cf. [5]). Thus,

Lemma 5.1 Any consistent set of free logic formulae of L can be extended to a free
logic ω-complete set in L+.

Moreover, it is a standard result of quantificational logic that once a set Γ is free
logic ω-complete then any set (in the same language) ∆ of which Γ is a subset is still
ω-complete, which means that Γ can be extended into a maximally consistent set:

Lemma 5.2 If Γ is a omega-complete set of free logic formulae of L+ then it can be
extended to a saturated set ∆ of formulae of L+ which is such that Γ ⊆ ∆.

Since lemma 5.2 guarantees the existence of a saturated extension of any consistent
set of QFE we will have worlds enough to build a canonical model for the system.
We call this model MCan and define it as follows:13

1. W is the set of saturated extensions α of QFE each written in a language L+
α such

that Lα is an infinitely proper sublanguage of the language L+
α

2. N satisfies �A ∈ α iff |A| ∈ N (α) (where |A| is the set of all maximally consistent
sets containing A).

3. D(α) is equal to the terms in L+
α

13This model is a free logic version of one found in [7]
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4. v maps terms to themselves and V(α,φ(x1, . . . , xn)) = T iff φ(x1, . . . , xn) ∈ α, for all
φ(x1, . . . , xn) ⊆

S

Lα

As is well known completeness usually involves proving a lemma (the truth-lemma)
which shows that membership in α and truth in α amounts to the same thing:

[TL] V(α,A) = T iff A ∈ α

However, the members of W are sets written in different languages (corresponding
to the different domains) so it is not obvious that the truth-lemma, as stated above,
is provable in our model. For instance, if a term y does not appear in Lα we could
have that V(α,¬φ(y)) = T , but ¬φ(y) /∈ α. However, as a consequence of how we have
defined our model, where truth is equivalent to satisfaction and predicates can be
satisfied by objects from the union

S

Lα of the domains of all worlds α (cf. the
definition of the canonical model, point 4), y would have to be a term from L+

α . But,
by the construction of the model α is written in L+

α which reduces the assumption that
V(α,¬φ(y)) = T , and ¬φ(y) /∈ α to an absurdity. Hence [TL] holds for atomic sentences.
That it also holds for all other formulae is proved by induction on their complexity.
There are two non-trivial cases:

(A) A = (∀x)φ(x). Proved in [4].

(B) A = �B. Assume that the truth lemma holds for the simpler formula B, i. e. that
{α ∈ W : MCan, α � B} = |B|. Now, MCan, α � �B iff {α ∈ W : MCan, α � B} ∈ N (α) iff
|B| ∈ N (α). By the definition of N this is the case iff �B ∈ α.

Completeness follows immediately. If A is a consistent formula then, by lemma 5.2,
there must be a saturated extension Γ of QFE such that A ∈ Γ. Hence, a canonical
model containing Γ exists, which means that A is satisfiable in a model in the relevant
class [7]. That this model is written in different superlanguages L+

α doesn’t matter
since the valuation function v is in each case restricted to the set of variables in

S

Lα.
As a corollary we have the following theorem:

Theorem 5.3 The system QFE is complete with regard to the class of minimal free
logic models.

As regards the permutation principles call the respective extensions of our basic sys-
tem QFE + BF and QFE + CBF, and consider the two semantical requirements
[CUPI] (closure under permutation inwards) and [CUPO] (closure under permuta-
tion outwards).

[CUPI]: If ‖φ(x)‖wi ∈ N (α) for all wi such that wi(x) ∈ D (α) then ‖(∀x)φ(x)‖ ∈ N (α)

[CUPO]: If ‖(∀x)φ(x)‖ ∈ N (α) then ‖φ(x)‖wi ∈ N (α) for all wi such that wi(x) ∈ D (α).

To show that QFE + BF is complete with regard to the former and QFE + CBF
with regard to the latter we must show that the respective canonical models belong
to the class of CUPI and CUPO models, we will prove the former case only:

Theorem 5.4 The system QFE + BF is complete with regard to the class of mini-
mal free logic CUPI models.
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Proof. Let M be the smallest canonical minimal model for a classical first-order
system containing the Barcan formula, and assume that an atomic sentence φ(x) is a
member of the saturated set α for all assignments to x of values from D (α) – in other
words; assume that |φ(x)|wi ∈ N (α) for all wi such that wi(x) ∈ D (α). By the truth
lemma all these open sentences are true at α, and consequently so is (∀x)�φ(x) (by
the definition of a universal closure (2.1)). Since BF is a theorem of the system, it
is true at α, which allows us to conclude, by modus ponens, that �(∀x)φ(x) is true at
α too. By the definition of the necessity operator in the canonical model, therefore,
|(∀x)φ(x)| ∈ N (α) and we are done.

The proof of the completeness of QFE + CBF with respect to cupo models is similar
in all relevant respects and has therefore been skipped.

The situation is rather more involved when it comes to minimal contraction and
minimal expansion as we have to take the restrictions [m] and [c] into consideration
as well. We leave this for future research and, for the moment, rest content with the
fact that we have proved completeness for the most general minimal systems having
the Barcan formulae. The language is thus under control, and the need for further
developments is no longer pressing.
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Review of Relation algebras by games , by Robin Hirsch & Ian Hodkinson, Elsevier;
Amsterdam, 2002, Studies in Logic and The Foundations of Mathematics, V. 147,
ISBN 0 444 50932 1, xviii+691pp.

There are twenty-one Chapters in six parts. Parts of eight chapters are modified
versions of nine previously published papers (six by Hirsch and Hodkinson, one by
Hirsch, one by Hodkinson, and one by Andréka and Hodkinson). There are more than
400 exercises ranging from drill to open problems. Chapter 21 has a list of twenty-one
open problems, recalled from the body of the text, that the authors believe would
“make a significant contribution to research in this field.” The book is itself such a
contribution, since it is built around the solutions to several open problems.

The first third of the book is occupied by the five chapters of Part I. It contains
a historical introduction, preliminaries from model theory, universal algebra, and
Boolean algebras, two chapters on relation algebras (with basic definitions, elementary
facts, and many examples), and brief surveys of relativized representations, cylindric
algebras, and other approaches to algebraic logic.

In Chapter 2, many basic definitions and facts from model theory are recalled,
including the compactness theorem, the Löwenheim-Skolem-Tarski theorem, theorems
on the existence of saturated models and ultraproducts, Los’s theorem, and so on. The
theory of Boolean algebras with operators is summarized up through the existence,
uniqueness, and preservation theorems for completions and perfect extensions. This
summary includes a survey of results on the interaction of atom structures, complex
algebras, Sahlqvist equations, and modal logic.

In Chapters 3 and 4, representations of a relation algebra are viewed as models
of an appropriate first-order theory constructed from the algebra. This allows the
authors to prove Monk’s theorem, that the class of representable relation algebras
is closed under perfect extensions, by using the existence of saturated models of the
associated first-order theories. Using this result, they then prove Tarski’s theorem,
that the class of representable relation algebras is closed under homomorphisms, by
constructing a representation of a homomorphic image of a representable algebra
from a representation of its perfect extension. Examples of relation algebras include
proper relation algebras (algebras of binary relations), group relation algebras (whose
elements are subsets of a group), Lyndon algebras (whose elements are sets of points
in a projective geometry), and Monk algebras (which are designed to utilize some
basic results of Ramsey theory).

Chapter 5 reviews the definitions, basic facts, and gives a brief survey of results
about non-associative relation algebras, weakly associative relation algebras, semi-
associative relation algebras, weakly representable relation algebras (wRRA), cylindric
algebras, and the connections among these classes that arise through relativization
and the formation of reducts. Chapter 6 is a short survey of other kinds of algebras
of relations, including diagonal-free cylindric algebras, Halmos’s polyadic algebras,
and Pinter’s substitution algebras. There is an informative discussion of the (as
yet unresolved) finitization problem, and a list of representation results for relation
algebras.
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The second third of the book is comprised of Part II (Chapters 7–11, on games,
networks, and axiomatization) and Part III (Chapters 12 and 13, on approximations
to representations).

The general theme of Part II is that representability can be characterized by the
existence of a winning strategy for a game played with networks. A network over
some algebra is a (typically finite) graph whose edges are labeled with elements of the
algebra. A network is essentially just a portion of a representation. Networks serve as
positions in games. The object of a typical game on an algebra is, for the first player
(male), to ferret out a difficulty that prevents the algebra from being representable
(or having some other nice property), while the second player (female) attempts to
build a representation (or some other appropriate structure) in response to challenges
by the first player. These ideas are illustrated by a proof of Maddux’s theorem
that every weakly associative relation algebra has a relativized representation. An
appropriate infinite game is defined and shown to be winnable by the second player,
which implies that every countable weakly associative relation algebra has a relativized
representation. This conclusion can then be extended to all weakly associative relation
algebras by compactness or ultraproducts.

There are many variations on the games. They can be played on networks in
general, or on networks restricted in some way, such as having atoms as labels or
bounded size (no more than p nodes, for some fixed bound p < ω). Depending on the
application, moves may consist of choosing an edge and two elements, choosing two
nearly identical networks, dropping a node and its edges from a network, properly
labeling a set of edges of a network, or choosing one of two alternative networks. A
given game can be last for countably many moves (an infinite game), or it can be
terminated after a fixed finite number of rounds (an r-round game for some finite
length r < ω). A key lemma is that if the second player can win all the finite-
length games, then she can win the infinite game. According to the central result of
Chapter 7, if the second player can win a certain game on a relation algebra, then that
algebra is representable. The proof relies on the fact that the representable relation
algebras form an equational class.

The ability of the second player to win all finite-length games can be expressed as
a sequence of first-order sentences, one for each finite-length game. The collection
of such sentences characterizes representability. Each sentence in such collection has
a quantifier prefix of the form (∀∃)r, where r is the number of rounds in the corre-
sponding game. The sentence says, roughly, that for every move by the first player,
there is a response available to the second player such that for every move by the first
player, etc. By restricting the second player to choosing only one of two alternative
moves, the existential quantifier can be reduced to a disjunction and the resulting
sentence is universal. For discriminator varieties (the typical case in this book) a uni-
versal sentence is equivalent in all simple algebras to an equation. These techniques
are applied to obtained axiomatizations for various classes, including representable
relation algebras and representable cylindric algebras in Chapter 8, and some pseudo-
elementary classes and pseudo-universal classes in Chapter 9. Chapter 10 is a more
formal presentation of some of this material, including precise definitions of games
and strategies in terms of trees labeled with variables and formulas.

Chapter 11 is primarily about atomic relation algebras and Lyndon’s conditions
from his 1950 paper. Assume A is an atomic relation algebra. Atomic networks are
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those networks whose labels are atoms of A. A new “atom-game” is introduced, played
on atomic networks. The main results are that the atomic relation algebra A satisfies
the Lyndon conditions iff the second player wins all finite-length atom-games on A iff
A is elementarily equivalent to a completely representable (hence also atomic) relation
algebra. Furthermore, if A is completely representable then the second player wins
the infinite atom-game on A. The converse fails in general but holds if the number
of atoms is countable. The exercises include examples of finite symmetric integral
representable relation algebras with no finite representations, Monk’s theorem that
RRA, the class of representable relation algebra, is not finitely based, and Jónsson’s
proof that there is no equational axiomatization of RRA that uses only finitely many
variables. The latter two results are both proved via Lyndon’s algebras, obtained
from projective lines, which were published in 1961. Jónsson’s proof was found in
1988, but the result was stated by Tarski in a videotaped lecture in 1974. Perhaps
this proof was at one time in the 1960’s known to both Tarski and Jónsson.

For n ≥ 3, RAn is the class of relation algebras of dimension n, and SRaCAn is the
class of subalgebras of relation-algebraic reducts of cylindric algebras of dimension
n. It has long been known that these classes are canonical varieties. RAn is defined
via the concept of relational basis. Every atomic algebra in SRaCAn has a relational
basis. This implies that SRaCAn ⊆ RAn. In spite of the names, RA3 and SRaCA3

are strictly larger classes than RA, the class of all relation algebras. For n = 4 and
n = ω the situation is quite nice, and provides characterizations of RA and RRA, since
RA = RA4 = SRaCA4 and RRA = RAω = SRaCAω. When 4 ≤ n < ω, these classes
form descending chains of varieties of relation algebras that converge to RRA, that is,
RAn+1 ⊂ RAn and SRaCAn+1 ⊂ SRaCAn, where all inclusions were known to be strict,
and RRA =

⋂
3≤n<ω RAn =

⋂
3≤n<ω SRaCAn. In Chapters 12 and 13 these definitions

and results are reviewed and extended. A variation on the atom-game is introduced,
in which there is a fixed finite bound p on the number of nodes in the networks that
appear in the game. The second player wins the infinite p-bounded atom-game if and
only if the algebra has a p-dimensional relational basis. An extension of the concept
of relational basis, called “hyperbasis”, is used to characterize SRaCAn in a manner
similar to the definition of RAn. The classes RAn and SRaCAn are also characterized
in terms of relativized representations that have certain nice properties.

The last third of the book consists of Part IV (Chapters 14–17), which contains
various constructions of algebras, and Part V (Chapters 18 and 19) on decidability
and the finite base property.

In Chapter 14 a relational structure S(G) is associated with every graph G, with
these crucial properties. If G has infinite chromatic number (and is itself necessarily
infinite), then CmS(G), the complex algebra of S(G), is a representable relation
algebra. On the other hand, if G has a finite chromatic number, and G itself is
either infinite or sufficiently large compared to its chromatic number, then CmS(G) /∈
RRA. This allows two significant theorems. If, for example, G is a countable chain
(undirected edges, all nodes of degree 2), then CmS(G) /∈ RRA, but it turns out
that if A is the subalgebra of CmS(G) generated by the atoms of CmS(G), then A is
representable. It follows that RRA is not closed under completions, for CmS(G) is the
completion of A. This result settles a 30-year old problem of Monk that was first solved
by Hodkinson using a different example. Then, using a result of Erdös that there are
finite graphs with arbitrarily large girth and chromatic number, the authors construct
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a sequence of infinite graphs Gi with infinite chromatic number and increasing girth,
say Gi has girth i. The ultraproduct of the graphs Gi is 2-colorable because it has
infinite girth, so the corresponding structure has a nonrepresentable complex algebra.
But the complex algebras of the S(Gi) are in RRA. Thus the class of structures
whose complex algebras are in RRA does not form an elementary class. For i > 15,
the algebra CmS(Gi) satisfies only finitely many Lyndon conditions, so the second
player will lose any sufficiently long finite-length atom-game played on CmS(Gi).
This algebra cannot be completely representable (for it would otherwise satisfy all
the Lyndon conditions) but it is, nevertheless, representable. It is complete, atomic,
and representable, but has no complete representations. The earliest example of such
an algebra appears in Lyndon’s 1950 paper. Additional examples, from Maddux’s
1978 dissertation, conclude Chapter 14.

The main result of Chapter 15 is that SRaCAn+1 is not finitely based relative to
SRaCAn (and a similar statement for neat reducts of cylindric algebras). The proofs
utilize variations on Monk algebras and techniques from Ramsey theory, and they
produce other interesting results. For every finite n ≥ 5, the inclusion SRaCAn ⊆ RAn

is strict, and, in fact, SRaCAn is not finitely based relative to RAn, nor is it finitely
based relative to RAn ∩ SRaCAn−1. Furthermore, for every finite n ≥ 5, RAn is not
included in SRaCA5.

Chapters 16 and 17 are devoted to the construction and application of the rainbow
algebra AA,B, which is built from two relational structures A and B for a language
having only binary and unary relation symbols. The rainbow algebra AA,B is always
complete and atomic, and it is finite whenever A and B are finite. The number
of atoms in AA,B is approximately the sum of the squares of the cardinalities of A
and B. The idea is to translate Ehrenfeucht-Fräıssé games on relational structures
to games on algebras. It is a result from model theory that the second player wins
the standard p-pebble r-round Ehrenfeucht-Fräıssé “forth” game from A to B just
in case every positive existential sentence with p variables and quantifier depth r
true in A is also true in B. The main result is that if the second player can win
a (slightly modified) p-pebble finite-length Ehrenfeucht-Fräıssé game from A to B,
then the second player can win a p-bounded finite-length atom-game on AA,B . This
construction is quite powerful. It provides alternate proofs of earlier theorems, a proof
of Haiman’s theorem that wRRA is not finitely based, and some significant new results.
For example, the class of completely representable relation algebras is not elementary.
Perhaps most important is that RAn+1 is not finitely based relative to RAn whenever
4 ≤ n < ω, and that RAn and SRaCAn are not closed under completions whenever
6 ≤ n (leaving open the case n = 5.)

Chapter 18 is devoted to showing that if K is any class of algebras that contains
RRA and is contained in either SRaCA5 or wRRA, then there is no algorithm for
determining whether a finite algebra belongs to K. In particular, the question “is a
finite RA in RRA?” is undecidable. It follows readily from these results that if K is a
variety, then the equational theory of K is also undecidable. The method is to encode
each instance of the (undecidable) tiling problem as a relation algebra. Given a set of
edge-labeled tiles τ , there is an algebra Aτ that is representable if and only if there
is a tiling of plane using copies of tiles from τ so that adjacent tiles have matching
labels on their common edge.

Every weakly associative relation algebra has a relative representation, but if the
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algebra is finite then, in fact, such a representation can be constructed on a finite set.
In Chapter 19, this and similar results for finite algebras in RAn and subalgebras of
relation-algebraic reducts of finite n-dimensional cylindric algebras, involving appro-
priate notions of relative representation, are derived fairly directly from recent deep
results in model theory that are stated with references but without proof.

Part VI, the Epilogue, has just two short chapters. One is a fifteen-page summary of
the book, and the other is a list of twenty-one unsolved problems. There are 326 items
in bibliography and ten pages of symbol indices, organized into ten tables according
to subject.

This book is a significant advance in the theory of relation algebras. Many of its
main results solve difficult and long-standing problems. Its methods, techniques, and
constructions are powerful tools for exploring the intricate and varied world of relation
algebras. Its many open problems indicate fruitful directions for further research.

Roger D. Maddux

Department of Mathematics, 400 Carver Hall, Iowa State University, Ames, Iowa
50011-2066 USA. E-mail: maddux@iastate.edu

10 July 2003
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10th Workshop on Logic, Language, Information and
Computation (WoLLIC’2003)

WoLLIC’2003 was held at the Salão Nobre of the Escola de Minas of Universidade
Federal de Ouro Preto, Minas Gerais, Brazil. WoLLIC is a series of workshops which
started in 1994 with the aim of fostering interdisciplinary research in pure
and applied logic. The idea is to have a forum which is large enough in the number
of possible interactions between logic and the sciences related to information and
computation, and yet is small enough to allow for concrete and useful interaction
among participants. Previous versions were held at: Recife (Pernambuco, Brazil) in
1994 and 1995; Salvador (Bahia, Brazil) in 1996; Fortaleza (Ceará, Brazil) in 1997;
São Paulo (Brazil) in 1998; Itatiaia (Rio de Janeiro, Brazil) in 1999; Natal (Rio
Grande do Norte) in 2000; Braśılia (Distrito Federal, Brazil) in 2001; Rio de Janeiro
(Brazil) in 2002.

Scientific sponsorship comes from the Interest Group in Pure and Applied Logics
(IGPL), the European Association for Logic, Language and Information (FoLLI ), the
Association for Symbolic Logic (ASL), European Association for Theoretical Computer
Science (EATCS ), the Sociedade Brasileira de Computação (SBC ), and the Sociedade
Brasileira de Lógica (SBL).

Funding was kindly given by: (i) CNPq (Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico, the scientific and technological development council of the
Brazilian Ministério da Ciência e Tecnologia) (grant 450709/2003-5); (ii) CAPES
(Fundação Coordenação de Apoio ao Aperfeiçoa- mento de Pessoal de Nı́vel Superior ,
a Foundation for the Development of Higher-Education under the Brazilian Ministério
da Educação e do Desporto) (grant PAEP0140/03-1); (iii) FAPEMIG (Fundação de
Amparo à Pesquisa do Estado de Minas Gerais); (iv) UFMG (Universidade Fed-
eral de Minas Gerais); (v) UFOP (Universidade Federal de Ouro Preto); (vi) Mi-
crosoft Brasil .

Contributions were received in the form of short papers in all areas related to logic,
language, information and computation, including: pure logical systems, proof theory,
model theory, algebraic logic, type theory, category theory, constructive mathemat-
ics, lambda and combinatorial calculi, program logic and program semantics, logics
and models of concurrency, logic and complexity theory, proof complexity, founda-
tions of cryptography (zero-knowledge proofs), descriptive complexity, nonclassical
logics, nonmonotonic logic, logic and language, discourse representation, logic and
artificial intelligence, automated deduction, foundations of logic programming, logic
and computation, and logic engineering.

Apart from the contributed papers (15), and the invited talks (5), the programme
includes 5 tutorial lectures:

• Algorithmic Randomness and Derandomization
by Eric Allender (Departament of Computer Science, Rutgers, the State University
of NJ, USA)
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• Generalized Quantifiers
by Lauri Hella (Department of Mathematics, Statistics and Philosophy, University
of Tampere, Finland)

• Implicit computational complexity
by Jean-Baptiste Joinet (Équipe de Logique Matemátique, Université Paris 7,
France)

• Proof search foundations for logic programming
by Dale Miller (Laboratoire d’Informatique, LIX, École Polytechnique, France)

• Iterated theory change
by Hans Rott (Institut für Philosophie, Universität Regensburg, Germany)

All papers in the volume were reviewed under the scientific responsibility of the
programme committee consisting of

Argimiro Arratia (Departamento de Matematicas, Universidad Simón Bolivar,
Venezuela)
Alessandra Carbone (Institut des Hautes Études Scientifiques, and Université de
Paris XII, France)
Marcelo Coniglio (Centro de Lógica e Epistemologia, Universidade Estadual de
Campinas, Brazil)
Gilles Dowek (INRIA, France)
Arnaud Fleury (Facoltà di Scienze, Università di Verona, Italy)
Dexter Kozen (Computer Science Department, Cornell University, USA)
Maarten Marx (ILLC, Faculty of Science, Univ Amsterdam, The Netherlands)
Antônio Carlos da Rocha Costa (Escola de Informática, Universidade Católica
de Pelotas, Brazil)
Dieter Spreen (Fachbereich Mathematik, Theoretische Informatik, Universität Siegen,
Germany)
Luiz Carlos Pereira (Departamento de Filosofia, Pontif́ıcia Universidade Católida
do Rio de Janeiro, and Universidade Federal do Rio de Janeiro, Brazil)
Jouko Väänänen (Department of Mathematics, University of Helsinki, Finland)
Renata Wassermann (Departamento de Ciência da Computação,
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Brazil)

The organising committee consisted of

Lućılia Figueiredo (Departamento de Computação, Universidade Federal de Ouro
Preto)
Fred Ulisses Maranhão (Centro de Informática, Universidade Federal de Pernam-
buco)
Anjolina Grisi de Oliveira (Centro de Informática, Universidade Federal de Per-
nambuco, Brazil)
Elaine Pimentel (Departamento de Matemática, Universidade Federal de Minas
Gerais) (Co-Chair)
Ruy de Queiroz (Centro de Informática, Universidade Federal de Pernambuco,
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Brazil) (Co-Chair)
Maria Ângela Weiss (Departamento de Matemática, Universidade de São Paulo)

The proceedings was published as volume 84 in the series Electronic Notes in The-
oretical Computer Science (ENTCS ). This series is published electronically through
the facilities of Elsevier Science B.V. and its auspices. The volumes in the ENTCS
series can be accessed at the URL

http://www.elsevier.nl/locate/entcs

Contributed papers: The programme committee received 21 (twenty-one) papers of
high quality, from all over the world: Brazil: 7, France: 3, Brazil/New Zealand:
1, Germany: 1, Israel: 1, Italy: 1, Japan: 1, Mexico: 1, New Zealand: 1, New
Zealand/Finland: 1, Norway: 1, Poland: 1, Spain: 1.

Each submitted paper was made anonymous and sent to 2 referees for evaluation.
The referees gave 0-10 ratings to: (i) overall quality; (ii) soundness; (iii) originality;
(iv) relevance to the workshop; (v) presentation, in this order of priority.

Full versions of the papers will go through another round of refereeing for pos-
sible publication in a special issue of the Annals of Pure and Applied Logic (to be
confirmed).

Ruy J.G.B. de Queiroz

Elaine Pimentel

Lućılia Figueiredo

Tutorials

Tutorial : Algorithmic Randomness and Derandomization
Eric Allender
Department of Computer Science, Rutgers, the State University of NJ, USA. E-
mail: allender@cs.rutgers.edu
Kolmogorov complexity is a tool to measure the information content of a string.
Strings with high Kolmogorov complexity are said to be ”K-random”. The study of
this notion of randomness has a long history and it has close connections with the
theory of computability. The set of K-random strings has long been known to be
undecidable.

Derandomization is a fairly recent topic in complexity theory, providing techniques
whereby probabilistic algorithms can be simulated efficiently by deterministic algo-
rithms.

In this tutorial, we will survey a few of the important developments in these two
fields (with particular emphasis on derandomization and pseudorandom generators),
and we will learn what these two fields have to do with each other. In particular,
we will see what derandomization techniques tell us about what can be “efficiently”
reduced to the set of K-random strings.

Tutorial : Generalized Quantifiers
Lauri Hella
Department of Mathematics, Statistics and Philosophy, University of Tampere, Fin-
land. E-mail: Lauri.Hella@uta.fi
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The idea of generalizing the usual existential and universal quantifiers is due to A.
Mostowski (1957). He considered logical operators expressing cardinalities, like Q0x
and Q1x which say that “there are infinitely many x” and “there are uncountably
many x”, respectively. Later Per Lindstrom (1966) generalized the notion of quan-
tifier still further: according to his definition, any property of models of some fixed
vocabulary can be taken as the interpretation of a quantifier. For example, if P is
the property of graphs of being 3-colorable, and QP is the corresponding quantifier,
then the formula QPxyφ(x, y) says that the binary relation defined by φ(x, y) is a
3-colorable graph.

Extending a logic by generalized quantifiers is a minimal way of making undefinable
properties definable. Indeed, if P is a property of models which is not definable in first
order logic FO, then FO(QP ) is the least extension of FO, in which P is definable and
which is closed under Boolean operations, first order quantifications and substituting
relations by formulas. This fact has made generalized quantifiers a useful tool in
studying th expressive power of various extensions of first order logic.

In this tutorial I will give a survey on the definability theory of generalized quanti-
fiers. In particular, I will consider applications of quantifiers in the context of Finite
Model Theory. I will also talk about some recent work on generalized second order
quantifiers.

Tutorial : Implicit computational complexity
Jean-Baptiste Joinet
Preuves-Programmes-Systèmes, Universit Paris 7, France.
E-mail: joinet@logique.jussieu.fr
The proofs-as-programs paradigm, where computations are modelled by proofs con-
version, offers a convenient theoretical framework for analysing properties of the com-
putational dynamics of proofs/programs. In that frame, implicit computational com-
plexity theory investigates computational complexity as a direct effect of the logical
means involved (not as a by-product of ad hoc explicit external constraints). I will
ouline the main recent approaches proposed in that field and will present how Linear
Logic, having pull back to the logical level, the decomposition of dynamics into more
fine grained operations, permits to design logically founded programming languages
corresponding to several natural specific complexity classes.

Tutorial : Proof search foundations for logic programming
Dale Miller
NRIA/Futurs/Saclay, and Laboratoire d’Informatique, cole Polytechnique, France.
E-mail: dale@lix.polytechnique.fr
Sequent calculus is generally accepted as a foundation for logic programming, es-
pecially when the logic used is richer than first-order classical Horn clauses. I will
outline a formal foundation of logic programming based on goal-directed sequent cal-
culus provability, and will illustrate how higher-order quantification and linear logic all
fit well into this foundation. Numerous examples of logic programming specifications
using higher-order linear logic will be presented.

Tutorial : Iterated theory change
Hans Rott
Institut für Philosophie, Universität Regensburg, Germany. E-mail: hans.rott@psk.uni-
regensburg.de
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It is well known that early models of theory revision developed by Alchourrón, Makin-
son and Gärdenfors in the 1980s could account only for single changes of belief. Things
changed only later when various authors addressed the problem of iterated theory
change. The tutorial offers an overview over vari ous ideas and concepts for iterated
theory change that were developed in the past ten years or so (with a certain emphasis
on the speaker’s own work). Topics include:
(1) revisions of “belief bases”
(2) revisions of “belief states”
(3) revisions by sequences
(4) revisions by comparisons.

Invited Papers

NL-printable sets and Nondeterministic Kolmogorov Complexity
Eric Allender
Department of Computer Science, Rutgers, the State University of NJ, USA. E-
mail: allender@cs.rutgers.edu
P-printable sets were defined by Hartmanis and Yesha and have been investigated by
several researchers. The analogous notion of L-printable sets was defined by Fortnow
et al; both P-printability and L-printability were shown to be related to notions of
resource-bounded Kolmogorov complexity. NL-printability was defined by Jenner and
Kirsig, but some basic questions regarding this notion were left open. In this paper we
answer a question of Jenner and Kirsig by providing a machine-based characterization
of the NL-printable sets. The proof makes use of a simple hashing technique. We
apply this same technique to investigate relationships among some resource-bounded
notions of Kolmogorov complexity, based on nondeterministic Turing machines.

Quantifying over Quantifiers
Lauri Hella
Department of Mathematics, Statistics and Philosophy, University of Tampere, Fin-
land. E-mail: Lauri.Hella@uta.fi
We study existential and universal quantification over quantifiers, i.e. quantification
where the objects quantified over are Lindstrom quantifiers. First we consider the
fragment where only existential quantification over quantifiers is allowed, denoted
ΣQ

1 . We show that ΣQ
1 includes inflationary fixed-point logic extended with the abil-

ity to express that two defined structures are non-isomorphic, and that ΣQ
1 is included

in existential second-order logic with the same extension.
The logic ΣQ

n is defined as the fragment where we alternate existential and universal

quantification for n levels. We show that ΣQ
n+1 is included in the n-th level of the

complexity theoretical exponential hierarchy. We also show that there is a hierarchy
on the arity of the quantifier variables, by showing that no fragment of ΣQ

n with

restricted arity of the quantifiers can express all ΣQ
1 properties.

Calculus of structures and proof-nets
Jean-Baptiste Joinet
Preuves-Programmes-Systèmes, Universit Paris 7, France.
E-mail: joinet@logique.jussieu.fr
The Calculus of Structures is a new logical formalism developped by A.Gugliemi,
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L.Strassburger et al. Using the central idea of CS, namely local rewritings of proofs
at any depth, but directly in the formalism of Proof-Nets, I will give an alternative
characterisation of the Multiplicative fragment of Multiplicative Linear Logic Proof
Nets.

Encryption as an abstract data type
Dale Miller
NRIA/Futurs/Saclay, and Laboratoire d’Informatique, cole Polytechnique, France.
E-mail: dale@lix.polytechnique.fr
At the Dolev-Yao level of abstraction, security protocols can be specified using mul-
tisets rewriting. Such rewriting can be modeled naturally using proof search in linear
logic. The linear logic setting also provides a simple mechanism for generating nonces
and session and encryption keys via eigenvariables. We illustrate several additional
aspects of this direct encoding of protocols into logic. In particular, encrypted data
can be seen naturally as an abstract data-type. Entailments between security pro-
tocols as linear logic theories can be surprisingly strong. We also illustrate how the
well-known connection in linear logic between bipolar formulas and general formulas
can be used to show that the asynchronous model of communication given by multiset
rewriting rules can be understood, more naturally as asynchronous process calculus
(also represented directly as linear logic formulas).

Economy and economics in the logic of theory change
Hans Rott
Institut für Philosophie, Universität Regensburg, Germany. E-mail: hans.rott@psk.uni-
regensburg.de
In this paper, I ask to what extent theory revision may be regarded as a branch of
cognitive economics. Theory dynamics has long been said to be driven primarily by
a concern for “informational economy”. Asking about its descriptive as well as its
normative adequacy, we discuss and criticize the idea of informational economy both
with respect to theories and with respect to richer structures representing belief states
(identified with theory-revision guiding structures). This view is contrasted with an
alternative view of cognitve economics that takes theory change to be a problem of ra-
tional choice based on complete and transitive preferences. Under this interpretation,
theory revision models are indeed amenable to an essentially economic interpretation,
but they inherit the criticism that has been levelled against the classical theory of
choice in wider contexts.

Contributed Papers

Intersection Types and Computational Rules
Fabio Alessi, Franco Barbanera and Mariangiola Dezani-Ciancaglini
Dip. di Matematica e Informatica, Via delle Scienze, 206 33100 Udine, Italy. E-
mail: alessi@dimi.uniud.it
Dip. di Matematica e Informatica, Viale A.Doria, 6 95125 Catania. Italy. E-
mail: barba@dmi.unict.it
Dip. di Informatica, Corso Svizzera, 185 10149 Torino, Italy. E-mail: dezani@di.unito.it

The invariance of the meaning of a λ-term by reduction/expansion w.r.t. the con-
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sidered computational rules is one of the minimal requirements for a λ-model. Being
the intersection type systems a general framework for the study of semantic domains
for the Lambda-calculus, the present paper provides a characterisation of “meaning
invariance” in terms of characterisation results for intersection type systems enabling
typing invariance of terms w.r.t. various notions of reduction/expansion, like β, η
and a number of relevant restrictions of theirs.

k-Valued Non-Associative Lambek Grammars are Learnable from Function-
Argument Structures
Denis Béchet and Annie Foret
IRISA, INRIA & Université de Rennes 1, Campus Universitaire de Beaulieu, Av-
enue du Général Leclerc, 35042 Rennes Cedex, France. E-mail: {Denis.Bechet, An-
nie.Foret}@irisa.fr
This paper is concerned with learning categorial grammars in the model of Gold. We
show that rigid and k-valued non-associative Lambek grammars are learnable from
function-argument structured sentences. In fact, function-argument structures are
natural syntactical decompositions of sentences in sub-components with the indica-
tion of the head of each sub-component.

This result is interesting and surprising because for every k, the class of k-valued
NL grammars has infinite elasticity and one could think that it is not learnable,
which is not true. Moreover, these classes are very close to unlearnable classes like k-
valued associative Lambek grammars learned from function-argument sentences or k-
valued non-associative Lambek calculus grammars learned from well-bracketed list of
words or from strings. Thus, the k-valued non-associative Lambek grammars learned
from function-argument sentences is at the frontier between learnable and unlearnable
classes of languages.

Lowness Properties of Reals and Hyper-Immunity
Benjamı́n René Callejas Bedregal and André Nies
Department of Informatics and Applied Mathematics, Laboratory of Logic and Com-
putational Intelligence, Federal University of Rio Grande do Norte, 59072-970, Natal,
Brazil. E-mail: bedregal@dimap.ufrn.br
Department of Computer Science, Centre for Discrete Mathematics and Theoreti-
cal Computer Science, University of Auckland, Private Bag 92019, Auckland, New
Zealand. E-mail: andre@cs.auckland.ac.nz
Ambos-Spies and Kučera [Problem 4.5, AK] asked if there is a non-computable set
A which is low for the computably random reals. We show that no such A is of
hyper-immune degree. Thus, each g ≤T A is dominated by a computable function.
Ambos-Spies and Kučera [Problem 4.8, AK] also asked if every S-low set is S0-low. We
give a partial solution to this problem, showing that no S-low set is of hyper-immune
degree.

Gap Embedding for Well-Quasi-Orderings
Nachum Dershowitz and Iddo Tzameret
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
E-mail: {Nachumd,Tzameret}@tau.ac.il
Given a quasi-ordering of labels, a labelled ordered tree s is embedded with gaps in
another tree t if there is an injection from the nodes of s into those of t that maps each
edge in s to a unique disjoint path in t with greater-or-equivalent labels, and which
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preserves the order of children. We show that finite trees are well-quasi-ordered with
respect to gap embedding when labels are taken from an arbitrary well-quasi-ordering
such that each tree path can be partitioned into a bounded number of subpaths of
comparable nodes. This extends Kř́ıž’s result [?] and is also optimal in the sense that
unbounded incomparability yields a counterexample.

The Universe of Approximations
Marcelo Finger and Renata Wassermann
Departamento de Ciência da Computação, Universidade de São Paulo, São Paulo,
Brazil. E-mail: {mfinger,renata}@ime.usp.br
The idea of approximate entailment has been proposed in [Schaerf-Cadoli] as a way of
modeling the reasoning of an agent with limited resources. They proposed a system in
which a family of logics, parameterized by a set of propositional letters, approximates
classical logic as the size of the set increases.

In this paper, we take the idea further, extending two of their systems to deal with
full propositional logic, giving them semantics and sound and complete proof methods
based on tableaux. We then present a more general system of which the two previous
systems are particular cases and show how it can be used to formalize heuristics used
in theorem proving.

Cut Elimination in a Class of Sequent Calculi for Pure Type Systems
Francisco Gutiérrez and Blas Ruiz
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Campus Teatinos 29071, Málaga, Spain. E-mail: {pacog,blas}@lcc.uma.es
This paper present a new sequent calculus for Pure Type Systems (PTS). The calcu-
lus proposed is equiconsistent to the standard formulation (natural deduction like).
The corresponding cut-free fragment makes it possible to introduce a notion of Cut
Elimination. This property can be applied to develop proof-search strategies with
dependent types.

We prove that Cut Elimination holds in two important families of normalizing
systems, including, in particular, three systems in the Barendregt’s λ-cube: l→, l2,
and lω. In addition, a cut elimination result is obtained for the minimal implicational
second-order sequent calculus.

On Functional Dependencies in Advanced Data Models
Sven Hartmann and Sebastian Link
Information Science Research Centre, Massey University, Palmerston North, New
Zealand. E-mail: {s.hartmann,s.link}@massey.ac.nz
One dilemma in the database community is the great variety of data models existing.
We define an abstract data model that captures most of the relevant data models
depending on the underlying type system. An algebraic foundation for the investiga-
tion of dependencies is presented similar to the one which is easily available for the
relational data model (RDM). This may lead to a unifying dependency theory. A
generalisation of Armstrong’s Axioms for the implication of functional dependencies
in the RDM to our abstract data model is given. The inference rules look similar to
Armstrong’s original axioms, thanks to the algebraic framework. The completeness
result, however, requires a much finer analysis of the inference rules than in the RDM.
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Expressibility of Higher Order Logics
Lauri Hella and José M. Turull-Torres
Department of Mathematics, Statistics and Philosophy, University of Tampere, Kans-
lerinrinne 1, 33014 Tampere, Finland. E-mail: Lauri.Hella@uta.fi
Information Science Research Centre, Department of Information Systems, Massey
University, PO Box 756, Wellington, New Zealand. E-mail: J.M.Turull@massey.ac.nz
We study the expressive power of higher order logics on finite relational structures or
databases. First, we give a characterization of the expressive power of the fragments
Σi

j and Πi
j , for each order i ≥ 2 and each number of alternations of quantifier blocks j.

Then we get as a corollary the expressive power of HOi for each order i ≥ 2. From our
results, as well as from the results of D. Leivant and of R. Hull and J. Su, it turns out
that no higher order logic can be complete. Even if we consider the union of higher
order logics of all natural orders, i.e.,

⋃
i≥2

HOi, we still do not get a complete logic.
So, we define a logic which we call variable order logic (V O) which permits the use of
untyped relation variables, i.e., variables of variable order, by allowing quantification
over orders. We show that this logic is complete.

Quantifier-free logic for multialgebraic theories
Yngve Lamo and Micha l Walicki
Faculty of Engineering, Bergen University College, 5020 Bergen, Norway.
E-mail: yla@hib.no
Department of Informatics, University of Bergen, 5020 Bergen, Norway.
E-mail: michal@ii.uib.no
We develop a new quantifier-free logic for deriving consequences of multialgebraic the-
ories. Multilagebras are used as models for nondeterminism in the context of algebraic
specifications. They are many sorted algebras with set valued operations. Formulae
are sequents over atoms allowing one to state set-inclusion or identity of 1-element sets
(determinacy). We introduce a sound and complete Rasiowa-Sikorski logic for proving
multilagebraic tautologies. We then extend this system for proving consequences of
specifications based on translation of finite theories into logical formulae. Finally, we
show how such a translation may be avoided – introduction of the specific cut rules
leads to a sound and complete Gentzen system for proving directly consequences of
specifications. The improvements over earlier logics for multialgebras concern mainly
the ability to handle empty carriers (as well as empty result-sets) without the use of
quantifiers, and to derive consequences of (potentially infinite) theories without the
use of general cut.

A Programming Language for the Interval Geometric Machine
Renata Hax Sander Reiser, Antn̂io Carlos da Rocha Costa and Graçaliz Pereira
Dimuro
Escola de Informática, Universidade Católica de Pelotas, Pelotas, 96010-000, Brazil.
E-mail: {reiser,rocha,liz}@atlas.ucpel.tche.br
This paper presents an interval version of the Geometric Machine Model (GMM)
and the programming language induced by its structure. The GMM is an abstract
machine model, based on Girard’s coherence space, capable of modelling sequential,
alternative, parallel (synchronous) and non-deterministic computations on a (possibly
infinite) shared memory. The processes of the GMM are inductively constructed in
a Coherence Space of Processes. The memory of the GMM, supporting a coherence
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space of states, is conceived as the set of points of a three dimensional euclidian space.
The version of the GMM presented here operates with real intervals, and is defined to
model the semantics of algorithms of Interval Mathematics. Using the programming
language induced by such structure, simple interval algorithms are presented, and
their domain-theoretic semantics in the machine model is given.

System NEL is Undecidable
Lutz Straßburger
Technische Universität Dresden, Fakultät Informatik, 01062 Dresden, Germany. E-
mail: lutz.strassburger@inf.tu-dresden.de
System NEL is a conservative extension of multiplicative exponential linear logic
(extended by the rules mix and nullary mix) by a self-dual noncommutative connective
called seq which has an intermediate position between the connectives par and times.
In this paper, I will show that system NEL is undecidable by encoding two counter
machines into NEL. Although the encoding is simple, the proof of the faithfulness is
a little intricate because there is no sequent calculus and no phase semantics available
for NEL.

Fusion of Pedigreed Preferential Relations
Yoshitaka Suzuki and Satoshi Tojo
Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Tat-
sunokuchi, Ishikawa, 923-1292, Japan. E-mail: {syoshita,tojo}@jaist.ac.jp
Belief fusion, instead of AGM belief revision, was first proposed to solve the problem
of inconsistency, that arise from repetitive application of the operation when agents’
knowledge were amalgamated. However in the theory, all the sources must be totally
ordered and thus applicable area is quite restrictive. In this paper, we realize the
belief fusion of multiple agents for partially ordered sources. When we consider such
a partial ranking over sources, there is no need to restrict that each agent has total
preorders over possible worlds. The preferential model allows each agent to have strict
partial orders over possible worlds. Especially, such an order is called a preferential
relation, that prescribes a world is more plausible than the other. We introduce an
operation which combines multiple preferential relations of agents. In addition, we
show that our operation can properly include the ordinary belief fusion.

A Tableau Method for the Lambek Calculus based on a Matrix Charac-
terization
Leonardo B. Vana and Marcelo da S. Corrêa
Depto. de Análise, Universidade Federal Fluminense (UFF), Niterói, Brazil. E-
mail: leonardobvana@bol.com.br and ganmarc@vm.uff.br
We propose a tableau method for the Lambek Calculus by adapting a method devel-
oped by Mantel and Otten for the multiplicative exponential fragment of the Linear
Logic (MELL). We have incorporated new elements to the language of the tableau
system and a new restriction to its closure conditions to deal with the noncommuta-
tive feature of the Lambek Calculus, considering a labelling technique developed for
the matrix characterization method.

Statistics of implicational logic
Marek Zaionc
Computer Science Department, Jagiellonian University, Krakow, Poland.
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E-mail: zaionc@ii.uj.edu.pl
In this paper we investigate the size of the fraction of tautologies of the given length
n against the number of all formulas of length n for implicational logic. We are spe-
cially interested in asymptotic behavior of this fraction. We demonstrate the relation
between a number of premises of implicational formula and asymptotic probability
of finding formula with this number of premises. Furthermore we investigate the dis-
tribution of this asymptotic probabilities. Distribution for all formulas is contrasted
with the same distribution for tautologies only. We prove those distributions to be
so different that enable us to estimate likelihood of truth for a given long formula.
Despite of the fact that all discussed problems and methods in this paper are solved
by mathematical means, the paper may have some philosophical impact on the un-
derstanding how much the phenomenon of truth is sporadic or frequent in random
logical sentences.

Some properties of intercategorial entailment
Richard Zuber
CNRS, Paris, France. E-mail: Richard.Zuber@linguist.jussieu.fr
An equivalent definition of the intercategorial entailment (i.e. an entailment between
expressions of different but functionally related categories) is given and some other
formal properties are established. These show that the atomicity of denotational
algebras plays an essential role in the phenomenon of intercategorial entailment. Var-
ious possible applications to the semantics of non-declaratives are indicated. They
suggest that intercategorial entailment, although formally different from generalized
entailment and from presupposition is a generalisation of both of these notions.
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The Interest Group in Pure and Applied Logics (IGPL) is sponsored by The Euro-
pean Association for Logic, Language and Information (FoLLI), and currently has
a membership of over a thousand researchers in various aspects of logic (symbolic,
mathematical, computational, philosophical, etc.) from all over the world (currently,
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