
A Robot Control System Integrating

Reactive Control, Reasoning, and Execution

Monitoring

Axel Großmann Andreas Henschel Michael Thielscher

Artificial Intelligence Institute
Department of Computer Science
Technische Universität Dresden

Technical Report WV-03-02/CL-2003-01

Abstract

We present a robot control system that integrates robust reactive control with
efficient reasoning about actions and execution monitoring. On the reactive level,
the robot is controlled using a hierarchy of low-level behaviors. On the high level,
a logical representation of the world enables the robot to reason about the state
of the world and to plan action sequences. If the execution of an action fails,
probabilistic information on the state of the world based on the robot’s sensors are
used to update the logic-based representation of the world. High-level reasoning
then allows to infer possible explanations and to recover from the failure situation.
The proposed system is evaluated using a set of realistic office-delivery scenarios.

1 Introduction

In recent years, robotics has been subject to promising advances in sensor
and actuator hardware, sensory processing techniques, and low-level control
methods. Yet, the area has not been benefited to the full amount from the
availability of powerful knowledge representation tools and action calculi.
Imagine a mobile robot that is to accomplish complex delivery tasks in a
typical office environment. The ability to plan would allow the robot to
divide the overall task into executable steps. Moreover, if a delivery action
fails, a smart recovery procedure could possibly explain the failure and,
based on this explanation, calculate alternative solutions: The current item
could be delivered to an alternative recipient, for example, or the item may
be scheduled for delivery at a later time.

The capabilities described above require the robot to maintain information
on its own state, usually obtained by processing the sensory data, as well as
knowledge about the operating environment and the task at hand, commonly
referred to as world model. To deal with the uncertainty in the robot’s
perceptions, it is common practice to represent state information such as the
robot’s location in the environment or the position of objects of interest using
state enumeration and probabilities. Popular approaches include position
probability grids [4] and particle sets [15]. On the other hand, we would
like to avoid state enumeration as a representation of the world model and
prefer a logical representation instead [1, 6]. We feel that up to now there is
still a large gap between state-of-the-art reactive control mechanisms using
probabilistic representations and symbolic reasoning and action planning
methods for mobile robots.

Existing symbolic reasoning theories serve the purpose of reasoning and
planning on an abstract level. Only a scarce number of serious attempts
to implement them on real robots exist at present [12, 8, 7]. In the field
of cognitive robotics, many approaches focus on the generation of high-level
plans and never leave the ground of pure soft-bot applications, neglecting the
tedious work of realistic action execution and assuming an error-free inter-
action with the environment. Experiences as in [10] proved this assumption
to be too strong and led to the conclusion to take sensor and actuator errors
more seriously.

The aim of our work is to enable a mobile robot to reason and to perform
action planning and thus to gain problem solving power. We present a
hierarchical, modular control architecture that integrates low-level behaviors
and symbolic reasoning, thus combining the robustness of reactive control
with abstract thinking. The system includes a layered scheme of execution
monitoring. It is evaluated using realistic scenarios for an office-delivery
robot.

The paper is organized as follows. In Section 2, we introduce the notion and
concepts of execution monitoring. In Section 3, we describe the main com-
ponents of the proposed architecture and the representations and techniques
used at the reactive and the abstract level. In Section 4, we demonstrate
the functionality of the system using example scenarios. We conclude in
Section 5.

2 Execution Monitoring

There is no generally accepted definition of execution monitoring. [5] de-
fined execution monitoring as ‘the robot’s process of observing the world for
discrepancies between the actual world and the robot’s internal representa-
tion of it, and recovering from such discrepancies’. In this work, we extend

2

this notion to the extent that the robot should come up with explanations
for the detected discrepancies as well.

The process of execution monitoring is divided into three steps: detecting
discrepancies, explaining the situation, and launching a recovery procedure.
The individual steps are discussed subsequently.

2.1 Detecting Discrepancies

The execution of complex actions generally requires the robot to have a
representation of its current state – such as the robot’s position in the en-
vironment, the distance to obstacles, and the state of the gripper – as well
as a model of the environment and a description of the task to be solved.
By comparing the current state with the model of the world and the task, it
should be possible to detect erroneous situations. However, we do not expect
such a comparison to be straightforward as the models and representations
are likely to be complex and incompatible.

In general, the representation of the robot’s state will be layered and dis-
tributed. The control architectures usually include specialized modules for
sensor data processing, e.g., to compute the robot’s position of the state of
doors from distance information, or to detect objects of interest from image
data. At the low levels of control, we mostly use probabilistic representa-
tions. For example, the robot’s position in the environment can be encoded
as a probability distribution over all possible locations, and the state of a
door as a probability distribution over the set of possible door configurations.
At the highest level of control, in contrast, we prefer symbolic, logic-based
representations. For instance, the robot’s position and the state of doors
can be described using states of fluents. The robot’s state at all levels is
updated at regular intervals.

Suppose the robot is to execute a sequence of actions. At the beginning,
we usually have an expectation of the intended effects, i.e., the change of
state caused by each action. These expectations are going to be layered and
distributed as well. The anticipated effect of a go-to action at the low level,
for example, is a change of the robot’s position within a certain amount of
time while maintaining a minimum distance to obstacles. At the highest
level of control, expectations can be inferred using a knowledge base and an
underlying action theory.

Given the availability of state information and expectations, it should be
possible to detect discrepancies between the current state and the antici-
pated effects of actions. The means of detection will depend on the individ-
ual levels of control. These could be time or confidence thresholds, spatial
distances, or symbolic state discrepancies.

3

2.2 Providing Explanations

Once an action had not the intended effect, we would like to know the
reason, i.e., find an explanation for the encountered discrepancy between
state information and expectation. In general, this will require reasoning.
This goes beyond the capabilities of reactive control and has to be performed
at the highest level of control.

The robot can generally only observe symptoms of the current situation.
For instance, a robot getting stuck could have been caused by a variety of
reasons: a localization failure, a visible obstacle (a person), an invisibly ob-
stacle (a chair leg), an unexpected change of the environment (a door being
closed), etc. On the other hand, the more relevant features of the environ-
ment are included in the state information and the smaller the granularity
of the world model and task description, the easier it is to make conjectures
about the possible reasons of failure.

Hierarchical planning meets the requirements mentioned above. If, for ex-
ample, a complex navigation task is broken down into smaller actions like
door passings, corridor and room traverses, then failures can be substanti-
ated with higher reliability. By using default logic [11], the planning and
reasoning module can abstract away from the sheer non-exhausting, but in-
creasingly unlikely, set of preconditions, thus solving the qualification prob-
lem. In case of unexpected situations though, these default assumptions
must be double checked according to an ordered preference list [9], thus
providing the most likely explanation for action failure.

2.3 Recovering

Once an explanation of the current situation is found and the state infor-
mation and world model are corrected, some recovery strategy is expected
to remedy the failure. In approaches such as [3], it is suggested to launch
a predefined recovery plan. For example, when the robot notices that it
ran into a dead end, it computes a path that brings it back on the original
track and continues with the initial plan. Given a strong planning tool, in-
stead of just correcting the mistake, we are able to find an optimal plan for
the current situation (provided that the state and world model are correct).
Suppose the robot did not run into a dead end, but found a shortcut. Now,
the planner can provide a better solution if returning to the old track proves
to be more costly.

4

path info

camera image

sensor readings

info

path request

status

status info

position

exogenous events

position estimates of

Vision System

Cognitive−Level
Controller

Controller
Reactive−Level

Robot Hardware

Tracking
Position

Interface
User

detected objects estimates

sonar and odometry

Path Planner

sensor data actuator settings

path request path node list

behavior
parameter

Map Module

Fig. 1: Control architecture of the robot.

3 Building the System

To put the functionality described above into practice, we added a high-level
planning and reasoning component to a fairly standard hierarchical robot
control system. In the following, we describe the parts of the system that
are relevant specifically to execution monitoring.

3.1 System Architecture

The control architecture of the robot, as depicted in Figure 1, consists of sev-
eral modules. The hardware controller talking directly to the robot’s sensors
(odometry, sonars, laser) and actuators (drive motors, gripper) is considered
the lowest level of control. The basic perceptual and behavioral functions
of the robot are implemented by the reactive-level controller. We have used
a behavior-based approach. That is, the reactive controller includes several
interacting, task-specific programs that are referred to as low-level behav-
iors. Each behavior program takes the current sensor readings and the state
information and computes target values of the robot’s actuators. Individual
behaviors can overwrite the output of other behaviors. There are specialized
sensor-processing modules for visual object detection and laser-based posi-
tion tracking. These components maintain a probabilistic representation of
the detected objects and robot poses, respectively.

The robot’s goal-oriented behavior is directed by the cognitive-level con-
troller. This is done by setting task specific parameters of the low-level
behaviors such as the activation context and target coordinates. To navi-
gate the office environment, both the reactive and the cognitive controller

5

obtains information from the map and path planning module.

3.2 At the Lower Levels

Independent of the task to be performed, the safety of the robot has to be
maintained at all times. Therefore, the reactive controller includes a set of
low-level safety behaviors, e.g., for obstacle avoidance and velocity control,
that cannot be switched off by higher levels of control. The other low-level
behaviors are designed to achieve specific (parameterized) goals such as to
travel to a target position or to pick up an object. Suppose the robot is
to execute a sequence of high-level actions. Then for each action, there
is a designated process that supervises the execution of that action. This
execution monitoring process invokes the appropriate low-level behaviors
and deals with exceptional situations. In the following, we illustrate this
concept for the action of traveling to a given office.

The monitoring processes are implemented as finite state machines. Some
states are common to all actions, others are specific to the task. In the
example, we have used the following states:

Init Initialize the process
Deactivated Wait for activation

WaitForGoal Wait for target from cognitive controller

RequestPlan Query the path planner
ReceivePlan Receive path node list
PlanReceived Activate low-level behavior GoToPos

ExecutePlan Set new intermediate target position and
react on status info from GoToPos

For each monitoring process, there is a predefined set of exceptions, rep-
resented by status information. There are exceptions that are passed on
by the low-level behaviors and there are exceptions that were detected by
the sensor processing systems. The low-level behavior GoToPos was im-
plemented as finite state machine, too. The common interface to low-level
behaviors consists of three states: Init , Deactivated , and Running. The
status information used in the example above are:

InProgress Execution in progress
Success Execution terminated successfully
FailureStalled Drive motors stalled
FailureObstacle Path blocked by obstacle
FailureDoor Path blocked by door
Timeout Execution timeout
Interrupt Execution interrupted

6

The monitoring process passes this status information on to the cognitive
controller.

3.3 At the Highest Level

The high-level controller maintains a symbolic world model. Reasoning
about actions is used at this level to plan complex tasks and to generate
expectations as to the effects of actions. When a discrepancy arises between
the expectations and the actual situation, the high-level control uses its rea-
soning facilities to come up with suitable explanations and a recovery plan.
As the underlying action theory we use the fluent calculus with its solution
to the classical frame, ramification, and qualification problems. Our system
builds on the inference engine FLUX for the fluent calculus [14].

Specifying actions

The cognitive controller requires precondition and effect specifications of
each high-level action. To account for unexpected action failure, we make
the distinction between normal and abnormal preconditions. The former
need to be ascertained before an action can be planned while the latter
are assumed away by default but serve as possible explanations in case the
action surprisingly fails. For example, the following axiom specifies the
preconditions of the action Deliver(o, p) of delivering object o to person p:

Poss(Deliver(o, p), s) ≡

Holds(Carries(o, p), s) ∧ ∃r Holds(InRoom(r), s)∧

Office(r, p)∧

¬Ab(Traceable(p), s) ∧ ¬Ab(NotLost(o), s)

Here, the standard predicates Poss(a, s) and Holds(f, s) denote that in sit-
uation s, action a is possible and property f is known to hold, respectively.
An instance of Ab(f, s) indicates the presence of abnormal condition f in
situation s. Hence, the precondition axiom says that normally a delivery is
possible if the robot carries the object in question and happens to be in the
office of the recipient. However, the action fails under the unusual circum-
stances that the respective person is not traceable or the object has been
lost.

Effects of high-level actions are specified by state update axioms, which pro-
vide a solution to the frame problem. For example, the action Receive(o, p)
of receiving object o from person p is specified by:

7

Poss(Receive(o, p), s) ⊃

∃rHolds(Request(p, o, p′), s) ⊃

State(Do(Receive, s)) = (State(s) − Request(p, o, p′))

+ Carries(o, p′)

Here, the standard functions State(s) and Do(a, s) denote, respectively, the
state in situation s and the situation reached after performing action a in
situation s. Hence, the axiom describes the subsequent state in terms of an
update of the current state by the negative effect Request(p, o, p′) and the
positive effect Carries(o, p′). That is, upon receiving o from p addressed
to person p′, the robot carries the object and the corresponding delivery
request is canceled.

Actions sometimes fail to produce the intended effect. For example, in
exceptional cases a delivery may leave the recipient with the wrong item:

Poss(Deliver(o, p), s) ⊃

¬∃o′Ab(Delivery(p, o′), s) ⊃

State(Do(Deliver(o, p), s)) = State(s) − Carries(o, p)∨

∃o′, p′Ab(Delivery(p, o′), s)∧

Holds(Carries(o′, p′)) ∧ o 6= o′ ∧ p 6= p′ ⊃

State(Do(Deliver(o, p), s)) = State(s) − Carries(o′, p′)

The condition Ab(Delivery(p, o), s) represents the abnormal case of deliv-
ering the wrong item o to person p in situation s. Abnormal conditions in
state update axioms, too, are assumed away by default but may serve as
explanation for observed discrepancies between the expected and the actual
outcome.

Possible indirect effects of actions are specified by causal relationships, which
solves the ramification problem. For example, suppose the robot searches for
an object o among the group of people in some room r. Whenever Has(p′, o)
becomes true, stating that person p′ is in possession of the object, then all
other previously considered possibilities of people having o are ruled out:

Holds(MightHave(p, o, r), s) ⊃

Causes(Has(p′, o),¬MightHave(p, o, r), s)

Here, the standard macro definition Causes(e, r, s) means that effect e causes
indirect effect r in situation s.

8

Explaining action failures

Unless there is evidence to the contrary, abnormal conditions Ab(f, s) are
assumed away by default. We use non-monotonic default theory to this end,
which provides a solution to the qualification problem [13]. Whenever the
observations suggest a discrepancy between the default expectations and
the actual world, the default theory entails that one or more default as-
sumptions no longer hold. In this way, the high-level controller generates
suitable explanations for the encountered failure [9]. By appealing to prior-
itized default logic [2], one can specify qualitative knowledge of the relative
likelihood of the various explanations for abnormal qualifications. The ac-
companying concept of preferred extensions then helps selecting the most
likely explanations.

Planning Engine

A controlling mechanism that monitors action execution inevitably requires
a high amount of reactivity. On the low level, a set of interacting behaviors
seem to meet this requirement. In an analogous manner, an abstract task
planner should be able to react on events, that might effect the current
agenda. Action failures and general world changes require replanning for
both successful accomplishment and efficiency reasons.

The maintenance of a state S and a set of abstract state evaluation functions
E : S → A that are consulted during every action-execution cycle, are the
base for the planning loop. Once a critical world change is realized, the
current agenda is dropped, and the planner is invoked again. The planner
investigates the current state according to state dependent criteria:

loop(S,Z):-

(/* Stationary */

notify_reach(Z, URL) -> As = URL;

call_help(P,Z) -> As = [call_help(P)];

search_fail(O,P,Z) -> As = [email(O,P)];

delivery(O, P, Z) -> As = [deliver(O,P)];

receipt(O, P, Z) -> As = [receive(O,P)];

/* Knowledge Acquisition */

search(SearchDialog,Z) -> As = SearchDialog;

/* Navigation */

continue(GoAct, Z) -> As = [walk_on|GoAct];

/* Otherwise */ As = [idle]

),

execute(As, S, Z).

The predicates on the left hand side of the arrows can be understood as
diagnostic functions of the current state. This is, the predicate NotifyReach
investigates whether people became out of reach recently. The output pa-
rameter URL is an action sequence of notifications about the unreachable

9

422

Axel

Pascal, Uschi

421

420

419

Steffen

Sylvia

hall

421

419

420

422

Fig. 2: Office environment consisting of four rooms (419, 420, 421, 423) and
a hallway. Left : In room 420, the low-level GoToPos-actions fail as
the way is blocked by a door and an obstacle. The only possible way
now is to enter room 421. Right : Starting in room 420, on the way
to room 422, the robot fails and attempts to go to 419 again.

people. CallHelp succeeds if the preconditions for the action CallHelp are
met and if it is necessary in the current state to call help. SearchFail launches
an email notification to the originator of a search request if none of the pos-
sible candidates has the desired item. If delivery or receipt is possible, the
according actions are performed. If no stationary action is launched, i.e.,
all the previous state diagnostic predicates failed, the Continue predicate
is invoked. Depending on the current state (e.g. the position), a rather
complex path planning procedure is invoked and returns, if possible, a nav-
igation action sequence (consisting of Goto, or several Enter and GotoDoor
actions). If nothing works, the robot goes Idle.

If stationary actions are possible, then these are executed. The plan can
either be a single action or an action sequence.

4 Example Scenarios

The robot control system has been used on a Pioneer 2 mobile robot. In
the following, we present execution traces taken from office delivery tasks.
The examples were recorded in a simulator only. However, the system’s
functionality has been tested on the real robot as well. We have taken great
care to make the simulation environment as realistic as possible. We have
used realistic sensor models for odometry, sonars, and laser. The operating
environment is changed dynamically by opening and closing doors and by
introducing obstacles that block the way of the robot.

10

Keeping track of multiple requests

In the following example, we want to demonstrate the functionality of the
high-level planning system, in particular, its ability to keep track of multiple
requests. In the usual mode of operation, the robot attempts to go to the
nearest location first where a delivery or dialog action is supposed to be
performed.

Take the office environment as depicted in the left-hand part of Figure 2.
The robot is asked to deliver a book from Axel (room 421) to Sylvia (419).
In addition, it received a request to search for another book amongst Pascal
and Uschi (422), in the following denoted as s request fluent. Initially, the
robot is located in room 421. After having received the book, the robot is
on its way to Sylvia. The corresponding execution trace of the high-level
controller (FLUX) is printed below:

>State: [carries(book, sylvia), in_room(r421), at(axel),

s_request([pascal, uschi], book_2, andreas), ...|Z1]

>Agenda: [goto(sylvia)]

In room 420, neither the attempt to reach room 419 directly nor the attempt
to enter through the hallway are successful.

> *** Weak qual. occurred ***

>State: [ab(reachable(d6, r420)), in_room(r420), carries(

book, sylvia), ...|Z2]

>Agenda: [gotodoor(d2), enter(hall), gotodoor(d1),

enter(r419), r_goto(sylvia)]

> *** Weak qual. occurred ***

>State: [ab(reachable(d2, r420)), ab(reachable(d6, r420)),

in_room(r420), carries(book, sylvia), ...|Z3]

Having to detour back to room 421, the robot postpones the delivery of
Sylvia’s book and heads for Pascal’s room instead.

>Agenda: [gotodoor(d7), enter(r421), ... r_goto(pascal)]

...

>State: [in_room(hall), at(d3), ab(reachable(d2, r420)),

ab(reachable(d6, r420)), carries(book, sylvia), ...]

>Agenda: [gotodoor(d4), enter(r422), r_goto(pascal)]

The robot fails on the way to Pascal because of another obstacle in the hall:

> *** Weak qual. occurred ***

>State: [ab(reachable(d4, hall)), in_room(hall),

carries(book, sylvia), ...|Z4]

The path to Sylvia again seems to be shortest, so the robot decides to deliver
the book to Sylvia, this time successfully.

11

>Agenda: [goto(sylvia)]

> *** SUCCESS ***

>State: [in_room(r419), at(sylvia), ...|Z2]

>Agenda: [deliver(book, sylvia)]

...

Global path planning is performed in collaboration between the high-level
task-planner and the path planning module. FLUX determines the set of
locations where the delivery, receive, or dialog actions are supposed to take
place. The closest of all these locations is then found by repeatedly invoking
the path planner. Afterward, the goal locations are passed on the low-level
controller, where they are translated into target coordinates of the low-level
GoToPos behavior. Please note the division of labor between the high and
lower levels of control. While traveling to the requested goal position, the
low-level controller attempts to avoid obstacles on its own. It will notify the
high level only about exceptional situations if its own attempts to recover
the situation have eventually failed.

Recovering from failure by finding explanations

The next example demonstrates how the robot recovers from an unsuccess-
ful attempt to deliver an item. During a delivery, objects can get mixed
up which comes to light when the original recipient does not find the de-
sired item on the robot’s tray. Usually, such a situation is detected only
several action steps after the failure actually occurred, requiring the robot
to reconsider all encountered states since the time of the failure.

Take the office environment shown in right-hand part of Figure 2. The
robot’s task is to deliver two books from Axel: Book1 to Sylvia and Book2
to Steffen. The path planner decides to go to Steffen first because it is closest
according to the information on known obstacles and closed doors currently
available. While traveling, small obstacles are successfully avoided by the
low level behaviors; the high-level remains unnotified.

The first delivery apparently goes smoothly because the robots itself cannot
check using its sensors whether the correct item was taken from the tray.
The corresponding execution trace is shown below:

>State: [in_room(r420), at(steffen),

carries(book_2, steffen), carries(book_1, sylvia),...|Z2]

>Agenda: [deliver(book_2, steffen)]

> *** SUCCESS ***

Execution is continued in the belief that Book1 is still on the robots tray:

>State: [in_room(r420), at(steffen),

carries(book_1, sylvia), ...|Z2]

>Agenda: [goto(sylvia)]

> *** SUCCESS ***

12

up to the point where the delivery of Book1 is supposed to take place. Sylvia
signals that delivery is impossible because her book is not in the robot’s tray:

>State: [in_room(r419), at(sylvia),

carries(book_1, sylvia), ...|Z2]

>Agenda: [deliver(book_1, sylvia)]

> *** Strong qual. occurred ***

a fact which might have several explanations: (1) a previous delivery failed
(someone else took Sylvia’s book, i.e., Steffen took Book1 instead of Book2)
or (2) the book simply got lost from the tray. Since these explanations are
ordered in a respective preference list, the robot assumes (1). Hence, for
recovery, the current state is calculated by assuming that Steffen took the
wrong book (failure at the preceding delivery action), which means that
Steffen’s book is still on the robot’s tray and Sylvia’s book is at Steffen’s.

>Abnormality occurred: [delivery(steffen, book_1)]

>State: [request(steffen, book_1, sylvia), in_room(r419),

at(sylvia), carries(book_2, steffen), ...|Z3]

Having calculated this state, the recovery actions emerge automatically:

>Agenda: [goto(steffen)]

...

>State: [at(steffen), in_room(r420), request(steffen,

book_1, sylvia), carries(book_2, steffen), ...|Z4]

>Agenda: [deliver(book_2, steffen)]

> *** SUCCESS ***

>State: [at(steffen), in_room(r420), ab(enterable(d6)),

request(steffen, book_1, sylvia), ...|Z4]

>Agenda: [receive(book_1, steffen)]

> *** SUCCESS ***

>State: [carries(book_1, sylvia), at(steffen),

in_room(r420), ab(enterable(d6)), ...|Z4]

>Agenda: [walk_on, gotodoor(d2), enter(hall),

gotodoor(d1), enter(r419), r_goto(sylvia)]

> *** SUCCESS ***

...

>State: [at(sylvia), in_room(r419),

carries(book_1, sylvia), ab(enterable(d6)), ...|Z4]

>Agenda: [deliver(book_1, sylvia)]

> *** SUCCESS ***

Note that recovery actions are not necessarily launched immediately but
possibly at a later point in time due to efficiency reasons. If, however,
no delivery happened after the missing object of interest was put back in
the robot’s tray, the first explanation is found to be false and the second
explanation is chosen for further processing.

13

5 Conclusions and Future Work

The presented work demonstrates a successful combination of techniques
from various subfields of robotics. In particular, we were able to integrate
reactive control with high-level planning and reasoning for the sake of an
increased reliability in performing complex delivery tasks. It can also be seen
as an investigation to what extent logic in general and the fluent calculus in
particular can contribute to real-world robotic applications.

Promising results could be documented in several aspects. First, high-level
domain descriptions could be utilized for action planning in a domain where
multiple and possibly complex delivery tasked are performed. Second, the
use of the fluent calculus along with its augmentations assist during execu-
tion monitoring by means of providing explanations and corrective action
planning in the case of execution failures.

The planning and reasoning component is embedded in a modular control
architecture using an interface for interprocess communication. The robot
control system can easily be extended with additional modules, e.g., for
perceptual processing or user interaction.

Our approach is similar to the systems by [12, 8, 7] in the sense that all use
high-level planning on real robots. Shanahan’s Khepera robot based on the
event calculus makes heavy use of abductive planning and explanations of
failures. However, these failures are mainly due to the sensor limitations of
this fairly simple robot. In contrast to our work, the high-level planner is
not embedded in a complex modular architecture with clearly defined low-
level behaviors such as obstacle avoidance and sophisticated localization
techniques.

The control architecture used in our work is more comparable to the ones
proposed in [8] and [7]. These, in turn, provide only hand-coded recovery
procedures for failures of the current action. Undetected failures of earlier
actions are not considered. Furthermore, the use of the fluent calculus allows
us to model side effects of actions.

Future Work

Preference lists for action failures involve a great deal of speculation and
need to be specified in advance. An alternative method would be a form of
hypothesis testing: being left with a set of possible explanations for some
action failure, each of them could be double checked by additional sens-
ing/state verification. This topic is closely related to central questions in
the field of active perception, for example, active vision. The application of
a cognitive planner for sensing actions in the fashion outlined above could
help in minimizing action effort and maximizing knowledge gain. Thus, it

14

seems promising to formalize active vision domains within the fluent calcu-
lus. Furthermore, the static nature of the preference list could be overcome
by learning from experiences. Please note, no general theory about the
connection between high and low level has been established yet.

References

[1] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming
for first-order MDPs. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI-01), pages 690–700, 2001.

[2] G. Brewka. Adding priorities and specificity to default logic. In Proc.
of the European Workshop on Logics in AI (JELIA-94), volume 838 of
LNAI, pages 247–260. Springer, 1994.

[3] J. L. Fernández and R. G. Simmons. Robust execution monitoring
for navigation plans. In Proc. of the Conf. on Intelligent Robots and
Systems (IROS-98), 1998.

[4] D. Fox, W. Burgard, and S. Thrun. Markov localization for mo-
bile robots in dynamic environments. Artificial Intelligence Research,
11:391–427, 1999.

[5] G. D. Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of
high-level robot programs. In Principles of Knowledge Representation
and Reasoning, pages 453–465, 1998.

[6] A. Großmann, S. Hölldobler, and O. Skvortsova. Symbolic dynamic
programming with the Fluent Calculus. In Proc. of the IASTED Int.
Conf. on Artificial and Computational Intelligence (ACI-2002), pages
378–383, 2002.

[7] D. Hähnel, W. Burgard, and G. Lakemeyer. GOLEX - Bridging the
gap between logic (GOLOG) and a real robot. In Proc. of the 22nd
German Conf. on Artificial Intelligence (KI-98), 1998.

[8] K. Z. Haigh and M. M. Veloso. High-level planning and low-level exe-
cution: Towards a complete robotic agent. In Proc. of First Int. Conf.
on Autonomous Agents, pages 363–370, 1997.

[9] Y. Martin and M. Thielscher. Addressing the qualification problem in
FLUX. In Proc. of the German Annual Conf. on Artificial Intelligence
(KI-2001), pages 290–304, 2001.

[10] N. J. Nilsson. Shakey the robot. Technical Note 323, SRI International,
Menlo Park, CA, USA, 1984.

15

[11] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-
2):81–132, 1980.

[12] M. Shanahan. Robotics and the common sense informatics situation.
In Planning with Incomplete Information for Robot Problems: Papers
from the 1996 AAAI Spring Symposium, pages 95–106, 1996.

[13] M. Thielscher. The qualification problem: A solution to the problem
of anomalous models. Artificial Intelligence, 131(1-2):1–37, 2001.

[14] M. Thielscher. Programming of reasoning and planning agents with
FLUX. In Proc. of the Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR-2002), pages 435–446, 2002.

[15] S. Thrun, D. Fox, W. Burgard, and F. Dellart. Robust Monte Carlo
localization for mobile robots. Artificial Intelligence, 128(1-2):99–141,
2000.

16

