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Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.
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Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
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Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)

> A Datalog rule H « Biis safe if all variables in H also occur in B.
> A Datalog program P is safe if all rules r € P are safe.

Solution.
> Consider a (possibly unsafe) Datalog program P.

> We define a new Datalog program P’:
> we add a fresh predicate Top,

> for every ¢-ary EDB predicate r occurring in P and all 1 < i < ¢, we add a new rule Top(x;) « r(x1,...,X¢),
> for every constant ¢ occurring in P, we add a new fact Top(c),
> for every rule (H « B)[xi,...,Xs] € P, we add the rule H « B A Top(x1) A --- A Top(x¢).

> Then for every fact ¢ over the signature of P, we have that P’ entails ¢ over an instance D iff P entails ¢ over D.
> The size of P’ is polynomial in the size of P, and P’ is safe.
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

. The graph contains a node with two outgoing edges.

. The graph is 3-colourable.

. The graph is not connected (*).

. The graph does not contain a node with two outgoing edges.
. The graph is a chain.

oA WN
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1.

The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4.

5. The graph does not contain a node with two outgoing edges.
6.

The graph is not connected (*).

The graph is a chain.

Solution.

1.

Odd(x) « first(x)

Odd(y) « Even(x),succ(x,y)

Even(y) « Odd(x),succ(x, y)
EvenParity() < Even(x), last(x)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
2.
<(x,y) « succ(x,y)
<(x,2) « <(x,y),succ(y, z)
<>(x. ), <>y, x) « <(x.y)
)

TwoOutgoingEdges() « edge(x, y), edge(x, z),<>(y, z)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
2.
<(x,y) « succ(x,y)
<(x,2) « <(x,y),succ(y, z)
<>(%.y),<>(y.x) < <(x.y)
TwoOutgoingEdges() « edge(x, y), edge(x, z),<>(y, z)

3. This is (most likely) not expressible (unless P = NP), since 3-colourability is NP-complete and Datalog has P
data complexity.
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

4. D(x,y.k) x and y are not reachable via a path of length at most k
N(x.y.z k) thereis no path of length k + 1 from x to z via y

D(x,y.,€),D(y, x,€) « —edge(x, y).first(£), <>(x, y)

N(x,y, z, k) « first(y), D(x, y, k) N(x,y, z, k) « first(y), D(y, z, k)
N(x,y’,z, k) « succ(y,y'),N(x,y, z,k),D(x,y’, k) N(x,y’,z, k) « succ(y,y’),N(x, y, 2. k), D(y’, z, k)
D(x, z, k") « succ(k, k’),D(x, z, k), last(y),N(x, y, z, k) Ans() « D(x, y, k), last(k)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1.

The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4.

5. The graph does not contain a node with two outgoing edges.
6.

The graph is not connected (*).

The graph is a chain.

Solution.

5.

oneEdge(x, y) « first(y),edge(x, y) noEdge(x, y) « first(y), —edge(x, y)

)
oneEdge(x, z) « noEdge(x, y),succ(y, z), edge(x, z) noEdge(x, z) « noEdge(x, y), succ(y, z), ~edge(x, z)
oneEdge(x, z) « oneEdge(x, y),succ(y, z), ~edge(x, z)
r(x) « last(y), noEdge(x, y) s(x) « first(x),r(x)
r(x) « last(y),oneEdge(x, y) s(y) « succ(x,y),s(x),r(y)
NoTwoOutEdges() « s(x), last(x)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.
. The database contains an even number of elements.

. The graph contains a node with two outgoing edges.

. The graph is 3-colourable.

. The graph is not connected (*).

. The graph does not contain a node with two outgoing edges.

. The graph is a chain.

Solution.

oS ouhwN =

Chain() « Connected(), NoTwoInEdges(), NoTwoOutEdges(), NoCycle()
Conn(x), Reachable(x) « first(x) Reachable(x) « Reachable(x), succ(x, y), Conn(y)
Conn(y) « Conn(x), edge(x, y) Conn(y) « Conn(x), edge(y, x)
Connected() « last(x), Reachable(x)
NolnEdge(x, y) « first(x), —edge(x, y)
NoOutEdge(x, y) « first(x), —edge(y, x)
NolnEdge(x’, y) « succ(x, x"), NoInEdge(x, y), ~edge(x’, y)
NoOutEdge(x’, y) « succ(x, x"), NoOutEdge(x, y), ~edge(y, x")
NoCycle() « last(x), NolnEdge(x, y), NoOutEdge(x, z)
with NoTwoOutEdges() defined as in 5., and NoTwolnEdges() defined analogously.
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Exercise 3

Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.

It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.

It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.

Solution.

> Let P be a propositional Horn logic program.

> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,

> if Body = B consists of a single atom, thenadd BA B —» He P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.

> Let P be a propositional Horn logic program.

> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,

> if Body = B consists of a single atom, thenadd BA B —» He P,

> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.

> otherwise, add Body — H e P’.
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> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
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> The program P’ can be computed with a LOGSPACE transducer:

29/53



Exercise 3

Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
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> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
> if Body = B consists of a single atom, then add BA B — H € P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
> otherwise, add Body — H e P’.
> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
> The program P’ can be computed with a LOGSPACE transducer:
> count number of body atoms to generate these rules
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
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Solution.
> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
> if Body = B consists of a single atom, thenadd BA B —» He P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
> otherwise, add Body — H e P’.
> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
> The program P’ can be computed with a LOGSPACE transducer:

> count number of body atoms to generate these rules
> count number of rules to have fresh identifiers for every newly translated rule, and
> count the length of any propositional variable name to have unique identifiers
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

33/53



Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Consider a P-TM M =(Q,T, X, qo, gr,6) and an input word w = wy, ..., w, € X*.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

36/53



Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
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> Since M is polynomial, M halts after at most n* steps for some k > 0.
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.

We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

»
> Since M is polynomial, M halts after at most n* steps for some k > 0.
> Constants:

> celljjforall1<i<j<nk+1, and

> allelementsge Qandy el
Facts:

> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)

v
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
> Since M is polynomial, M halts after at most n* steps for some k > 0.
> Constants:
> celljjforall1<i<j<nk+1, and
> allelementsge Qandy el
Facts:
> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
> Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,9) A S(x,y) Afuture(x, y) Aright(z,y), S(y.¥') <« T(x,q) A S(x,y) Afuture(x, y) for all{q,y,q’,y’,L) € 5,
> and similarly for all (q.y,q".y.R) €

v
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

>

»
>
>

Consider a P-TM M =(Q,T', X, qo, g, 6) and an input word w = wy, ..., w, € X*.
We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
Since M is polynomial, M halts after at most n steps for some k > 0.
Constants:
> celljjforall1<i<j<nf+1,and
> allelementsge Qandy el
Facts:
> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,q) A S(x,y) Afuture(x, y) Aright(z,y), S(¥,¥') < T(x,q) A S(x,y) Afuture(x, y) forall (q,v,q’.y'. L) € 6,
> and similarly for all (q.y,q".y.R) €
The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

>

»
>
>

Consider a P-TM M =(Q,T', X, qo, g, 6) and an input word w = wy, ..., w, € X*.
We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

Since M is polynomial, M halts after at most n steps for some k > 0.
Constants:
> celljjforall1<i<j<nk+1, and
> allelementsge Qandy el
Facts:
> right(cell;;, cellj1), future(cell;j, celli 1), for 1 <i<j < nk,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,q) A S(x,y) Afuture(x, y) Aright(z,y), S(¥,¥') < T(x,q) A S(x,y) Afuture(x, y) forall (q,v,q’.y'. L) € 6,
> and similarly for all (q.y,q".y.R) €
The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

ground(P) can be computed by a LOGSPACE transducer.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?
4. ... aninequality predicate # with the obvious semantics?
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,

i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
1.

<(x,y) « succ(x,y) properEdge(x, y) « edge(x, y),<(x,y)
<(x,z) « <(x,y),succ(y, z) properEdge(x, y) « edge(x, y),<(y, x)
properPath(x, y) « properEdge(x, y)
properPath(x, z) « properPath(x, y), properEdge(y, z)
properCycle() « properPath(x, x)
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept, and there must be a derivation of Accept that does not use negation.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept, and there must be a derivation of Accept that does not use negation.
> Let P, C P be the negation-free subset of P.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
> Suppose that P is a program entailing Accept iff edge contains a proper cycle.
Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
Then P, I |= Accept, and there must be a derivation of Accept that does not use negation.
Let P4 C P be the negation-free subset of P.
P, T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.

vvyyy
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
> Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept, and there must be a derivation of Accept that does not use negation.
> Let P, C P be the negation-free subset of P.
> P,,T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.
3. Since ~ can be axiomatised using x ~ x «, Datalog with an equality predicate is not more expressive than
Datalog.

52/53



Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
> Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept, and there must be a derivation of Accept that does not use negation.
> Let P, C P be the negation-free subset of P.
> P,,T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.

3. Since ~ can be axiomatised using x ~ x «, Datalog with an equality predicate is not more expressive than

Datalog.
4.
properEdge(x, y) « edge(x,y) Ax # y properPath(x, y) « properEdge(x, y)
properPath(x, z) « properPath(x, y) A properEdge(y, z) properCycle() « properPath(x, x)
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