
Computational
Logic ∴ Group

Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Computation and Characterisation
Lecture 12, 23rd Jan 2023 // Foundations of Logic Programming, WS 2022/23

https://github.com/potassco-asp-course/course
https://creativecommons.org/licenses/by/3.0/deed.en_US
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2022)


Previously . . .
• The language of normal logic programs can be extended by constructs:– Integrity constraints for eliminating unwanted solution candidates– Choice rules for choosing subsets of atoms– Cardinality rules for counting certain present/absent atoms
• All of them can be translated back into normal logic program rules.• The modelling methodology of ASP is generate and test:– Generate solution candidates, eliminate infeasible ones.
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Overview

ComputationConsequence OperatorComputation from First Principles
Axiomatic CharacterisationCompletionTightnessLoops and Loop Formulas
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Consequence Operator
Definition
Let P be a positive program and X a set of atoms.The consequence operator TP is defined as follows:

TP(X) = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T jP for j ≥ 0, where
• T0P (X) = X and
• T iP(X) = TP(T i–1P (X)) for i ≥ 1
For any positive program P, we have
• Cn(P) = ⋃

i≥0 T iP(∅)• X ⊆ Y implies TP(X) ⊆ TP(Y )• Cn(P) is the ⊆-least fixpoint of TP
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An Example
• Consider the program

P = {p←, q←, r ← p, s← q, t, t ← r, u← v}

• We get
T0P (∅) = ∅
T1P (∅) = {p,q} = TP(T0P (∅)) = TP(∅)
T2P (∅) = {p,q, r} = TP(T1P (∅)) = TP({p,q})
T3P (∅) = {p,q, r, t} = TP(T2P (∅)) = TP({p,q, r})
T4P (∅) = {p,q, r, t, s} = TP(T3P (∅)) = TP({p,q, r, t})
T5P (∅) = {p,q, r, t, s} = TP(T4P (∅)) = TP({p,q, r, t, s})
T6P (∅) = {p,q, r, t, s} = TP(T5P (∅)) = TP({p,q, r, t, s})

• Cn(P) = {p,q, r, t, s} is the ⊆-least fixpoint of TP because– TP({p,q, r, t, s}) = {p,q, r, t, s} and– TP(X) ̸= X for each X ⊂ {p,q, r, t, s}
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Approximating Stable Models
First Idea
Approximate a stable model X by two atom sets L and U such that L ⊆ X ⊆ U
• L and U constitute lower and upper bounds on X
• L and (A \U) describe a three-valued model of the program

Observation
L ⊆ U implies PU ⊆ PL implies Cn(PU) ⊆ Cn(PL)

Properties
Let X be a stable model of normal logic program P.

• If L ⊆ X , then X ⊆ Cn(PL)
• If X ⊆ U, then Cn(PU) ⊆ X
• If L ⊆ X ⊆ U, then L∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)
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Approximating Stable Models
Second Idea

repeat
replace L by L∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
• At each iteration step

– L becomes larger (or equal)– U becomes smaller (or equal)
• L ⊆ X ⊆ U is invariant for every stable model X of P

• If L ̸⊆ U, then P has no stable model
• If L = U, then L is a stable model of P

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 30 Computational
Logic ∴ Group



Approximating Stable Models
Second Idea

repeat
replace L by L∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
• At each iteration step

– L becomes larger (or equal)– U becomes smaller (or equal)
• L ⊆ X ⊆ U is invariant for every stable model X of P

• If L ̸⊆ U, then P has no stable model
• If L = U, then L is a stable model of P

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 30 Computational
Logic ∴ Group



Approximating Stable Models
Second Idea

repeat
replace L by L∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
• At each iteration step

– L becomes larger (or equal)– U becomes smaller (or equal)
• L ⊆ X ⊆ U is invariant for every stable model X of P
• If L ̸⊆ U, then P has no stable model

• If L = U, then L is a stable model of P

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 30 Computational
Logic ∴ Group



Approximating Stable Models
Second Idea

repeat
replace L by L∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
• At each iteration step

– L becomes larger (or equal)– U becomes smaller (or equal)
• L ⊆ X ⊆ U is invariant for every stable model X of P
• If L ̸⊆ U, then P has no stable model
• If L = U, then L is a stable model of P

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 30 Computational
Logic ∴ Group



The Simplistic expand Algorithm
expandP(L,U)

repeat
L′ ← L
U′ ← U
L← L′ ∪ Cn(PU′ )
U← U′ ∩ Cn(PL′ )
if L ̸⊆ U then return

until L = L′ and U = U′

The algorithm:
• tightens the approximation on stable models
• is stable model preserving
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An Example

Consider P =


a←
b← a,∼c
d← b,∼e
e← ∼d

 over atoms A = {a,b, c,d, e}.

The expand algorithm – started on the trivial pair (∅,A) – yields:
L′ Cn(PU′ ) L U′ Cn(PL′ ) U1 ∅ {a} {a} {a,b, c,d, e} {a,b,d, e} {a,b,d, e}2 {a} {a,b} {a,b} {a,b,d, e} {a,b,d, e} {a,b,d, e}3 {a,b} {a,b} {a,b} {a,b,d, e} {a,b,d, e} {a,b,d, e}

Note
We have {a,b} ⊆ X and (A \ {a,b,d, e})∩ X = ({c} ∩ X) = ∅ for every stablemodel X of P.
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Let us expand with d . . .

P =


a←
b← a,∼c
d← b,∼e
e← ∼d



L′ Cn(PU′ ) L U′ Cn(PL′ ) U1 {d} {a} {a,d} {a,b, c,d, e} {a,b,d} {a,b,d}2 {a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}3 {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
Note
{a,b,d} is a stable model of P.
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b← a,∼c
d← b,∼e
e← ∼d


L′ Cn(PU′ ) L U′ Cn(PL′ ) U1 {d} {a} {a,d} {a,b, c,d, e} {a,b,d} {a,b,d}2 {a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}3 {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}

Note
{a,b,d} is a stable model of P.
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A Simplistic Solving Algorithm

solveP(L,U)
(L,U)← expandP(L,U) // propagation
if L ̸⊆ U then failure // failure
if L = U then output L // success
else choose a ∈ U \ L // choice

solveP(L∪ {a},U)
solveP(L,U \ {a})
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A Simplistic Solving Algorithm

Close to the approach taken by the ASP solver smodels, inspired by theDavis-Putman-Logemann-Loveland (DPLL) procedure for SAT solving:

• Backtracking search building a binary search tree
• A node in the search tree corresponds to a three-valued interpretation
• The search space is pruned by

– deriving deterministic consequences and detecting conflicts (expand)– making one choice at a time by appeal to a heuristic (choose)
• Heuristic choices are made on atoms
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Quiz: Solving

solveP(L,U)(L,U)← expandP(L,U)
if L ̸⊆ U then failure
if L = U then output L
else choose a ∈ U \ L

solveP(L∪ {a},U)
solveP(L,U \ {a})

expandP(L,U)
repeat

L′ ← L; L← L′ ∪ Cn(PU′ )
U′ ← U; U← U′ ∩ Cn(PL′ )
if L ̸⊆ U then return

until L = L′ and U = U′

Quiz
. . .
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Axiomatic Characterisation

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 16 of 30 Computational
Logic ∴ Group



Motivation
• There exist sophisticated algorithms and efficient implementations forSATisfiability testing in propositional logic
• Can we harness these systems for answer set programming?
Question
Is there a propositional formula/theory F(P) such that the models of F(P)correspond one-to-one to the stable models of P?

Recall
• For every normal program P, there is a propositional theory comp(P) suchthat its models correspond one-to-one to the supported models of P.
• Every stable model is a supported model, but not vice versa.
⇝ Can we add a second theory T (P) such that the models of comp(P)∪ T (P)correspond one-to-one to the stable models of P?
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Program Completion: A Closer Look

The theory comp(P) is logically equivalent to←−−−comp(P)∪−−−→comp(P), where
←−−−comp(P) =

{
a←

∨
B∈bodyP(a)BF(B)

∣∣∣ a ∈ atom(P)}
−−−→comp(P) =

{
a→

∨
B∈bodyP(a)BF(B)

∣∣∣ a ∈ atom(P)}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

BF(body(r)) =
∧
a∈body(r)+a∧

∧
a∈body(r)–¬a

• ←−−−comp(P) characterises the classical models of P.
• −−−→comp(P) characterises that all true atoms must be supported.
• ⇝ How to axiomatise that all true atoms must be well-supported?
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Stable vs. Supported Models: An Example
Example

P =

{
a← c← a,∼d e← b,∼f
b← ∼a d← ∼c,∼e e← e

}

• P has 21 models, including {a, c}, {a,d}, but also {a,b, c,d, e, f}.
• P has 3 supported models, namely {a, c}, {a,d}, and {a, c, e}.
• P has 2 stable models, namely {a, c} and {a,d}.
• The model {a, c, e} is not well-supported (stable) because e supports itself.
Observation
Atoms in a strictly positive cycle (not being “supported from outside thecycle”) cannot be “derived” from a program in a finite number of steps.
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Positive Atom Dependency Graph
Definition
The positive atom dependency graph G(P) of a logic program P is given by

(atom(P), {(a,b) | r ∈ P,a ∈ body(r)+,head(r) = b})
A logic program P is called tight :⇐⇒ G(P) is acyclic.
Example
• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d← ∼c,∼e e← e

}

• G(P) = ({a,b, c,d, e}, {(a, c), (b, e), (e, e)})
• P has supported models: {a, c}, {a,d}, and {a, c, e}
• P has stable models: {a, c} and {a,d}

a c d

b e f

Theorem (Fages)
For tight normal logic programs, stable and supported models coincide.
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Motivation

Question
Is there a propositional formula F(P) such that the models of F(P)correspond to the stable models of P ?
Observation
Starting from the completion of a program, the problem boils down toeliminating the circular support of atoms holding in the supported models.
Idea
Add formulas prohibiting circular support of sets of atoms.
Circular support between atoms a and b is possible if a has a path to b and
b has a path to a in the program’s positive atom dependency graph.
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Loops

Definition
Let P be a normal logic program with positive atom dependency graph
G(P) = (atom(P), E).

• A non-empty set L ⊆ atom(P) is a loop of P:⇐⇒ it induces a non-trivial strongly connected subgraph of G(P).
• We denote the set of all loops of P by loops(P).

That is, each pair of atoms in a loop L is connected by a path of non-zerolength in (L, E ∩ (L× L)).
Observation
A program P is tight iff loops(P) = ∅.
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Loops: Examples (1)
Example
• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d← ∼c,∼e e← e

}

• loops(P) = {{e}}

a c d

b e f

Example
• P =

{
a← ∼b c← a,b d← a e← ∼a,∼b
b← ∼a c← d d← b, c

}

• loops(P) = {{c,d}}

d a c e

b
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• loops(P) = {{c,d}}

d a c e

b
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Loops: Examples (2)

Example
• P =

{
a← ∼b c← a d← b, c e← b,∼a
b← ∼a c← b,d d← e e← c,d

}

• loops(P) = {{c,d}, {d, e}, {c,d, e}}

b

a c d e

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 24 of 30 Computational
Logic ∴ Group



Loops: Examples (2)

Example
• P =

{
a← ∼b c← a d← b, c e← b,∼a
b← ∼a c← b,d d← e e← c,d

}

• loops(P) = {{c,d}, {d, e}, {c,d, e}}

b

a c d e

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 24 of 30 Computational
Logic ∴ Group



Loops: Examples (2)

Example
• P =

{
a← ∼b c← a d← b, c e← b,∼a
b← ∼a c← b,d d← e e← c,d

}
• loops(P) = {{c,d}, {d, e}, {c,d, e}}

b

a c d e

ASP: Computation and Characterisation (Lecture 12)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 24 of 30 Computational
Logic ∴ Group



Loop Formulas
Definition
Let P be a normal logic program.
• For L ⊆ atom(P), define the external supports of L for P as

ESP(L) := {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• Define the external bodies of L in P as EBP(L) := body(ESP(L)).• The (disjunctive) loop formula of L for P is
LFP(L) := (

∨
a∈La)→

(∨
B∈EBP(L)BF(B)

)
≡

(∧
B∈EBP(L)¬BF(B)

)
→ (

∧
a∈L¬a)

• Define LF(P) := {LFP(L) | L ∈ loops(P)}.

The loop formula of L enforces all atoms in L to be false whenever L is notexternally supported.
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Loop Formulas: Examples (1)
Example
• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d← ∼c,∼e e← e

}

• loops(P) = {{e}}
• LF(P) = {e→ b∧¬f}

a c d

b e f

Example
• P =

{
a← ∼b c← a,b d← a e← ∼a,∼b
b← ∼a c← d d← b, c

}

• loops(P) = {{c,d}}
• LF(P) = {c ∨ d→ (a∧ b)∨ a}

d a c e

b
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Loops: Examples (2)

Example
• P =

{
a← ∼b c← a d← b, c e← b,∼a
b← ∼a c← b,d d← e e← c,d

}

• loops(P) = {{c,d}, {d, e}, {c,d, e}}

• LF(P) =
 c ∨ d→ a∨ e

d ∨ e→ (b∧ c)∨ (b∧¬a)
c ∨ d ∨ e→ a∨ (b∧¬a)



b

a c d e
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Lin-Zhao Theorem and Properties
Theorem (Lin and Zhao, 2004)
Let P be a normal logic program and X ⊆ atom(P). Then:

X is a stable model of P iff X |= comp(P)∪ LF(P).

Properties of Loop Formulas
Let X be a supported model of normal LP P. Then, X is a stable model of P iff
• X |= {LFP(U) | U ⊆ atom(P)};
• X |= {LFP(U) | U ⊆ X};
• X |= {LFP(L) | L ∈ loops(P)}, that is, X |= LF(P);
• X |= {LFP(L) | L ∈ loops(P) and L ⊆ X}.
• If supported X is not stable for P, there is a loop L ⊆ X \ Cn(PX ) with X ̸|= LFP(L).• There might be exponentially many loop formulas.• Blowup seems to be unavoidable in general [Lifschitz and Razborov, 2006].
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Conclusion
Summary
• The stable models of P can be approximated using the operator TP:(L,U)⇝ (

L∪
⋃
i≥0 T iPU (∅),U ∩⋃

i≥0 T iPL (∅))• Solving may use non-deterministic choice, propagation, and backtracking.
• Supported non-stable models are caused by loops in the program.
• A loop is a non-empty set of atoms that mutually depend on each other.
• The loop formulas LF(P) of P enforce that every support is well-founded.
• The stable models of P can be characterised by comp(P)∪ LF(P).
Suggested action points:
• Prove the properties on Slide 7.
• Try the algorithm on Slide 13 for some example programs.
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Course Summary

• LPs are a declarative language for knowledge representation and reasoning.
• PROLOG-based logic programming focuses on theorem proving.
• PROLOG is also a programming language (via non-logical side effects).
• For definite LPs, SLD resolution is a sound and complete proof theory.
• For normal LPs, SLDNF resolution is sound and (sometimes) complete.
• Stable models are recognised as the “standard” semantics for normal LPs.
• ASP-based logic programming focuses on model generation.
• ASP is a modelling language for problem solving.
• Its modelling methodology is based on the generate-and-test paradigm.
• ASP solvers can make use of technology from propositional satisfiability.
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