Bounded Treewidth and the Infinite Core Chase

Complications and Workarounds toward Decidable Querying

Jean-François Baget¹ Marie-Laure Mugnier¹ Sebastian Rudolph²

¹LIRMM, Inria, University of Montpellier, CNRS, France

²Computational Logic Group, TU Dresden

2023 ACM SIGMOD/PODS @Seattle, WA, USA

Query Answering with Existential Rules

Basic Problem (Entailment)

Introduction

INPUT: a knowledge base $K = (F, \Sigma)$ where F is a database instance and Σ is a finite set of existential rules, a (Boolean) conjunctive query Q.

QUESTION: does K entail Q, i.e. $F, \Sigma \models Q$?

- **1 Atomset:** a possibly infinite (countable) set of atoms over constants and variables (no equality, no function symbol);
- Database (Instance): a finite atomset;
- **3** (Existential) Rule (or tgd): a pair of *finite* atomsets whose general logic form is $\forall \vec{X} \forall \vec{Y} \ (body(\vec{X}, \vec{Y}) \rightarrow \exists \vec{Z} \ head(\vec{Y}, \vec{Z})));$
- (Boolean Conjunctive) Query: a finite atomset.

Object	Example	Logical form
Database	p(a,b),q(b,c)	$p(a,b) \wedge q(b,c)$
Rule	$p(X,Y), q(Y,Z) \rightarrow r(X,T,Z), s(T)$	$\forall X \forall Y \forall Z (p(X,Y) \land q(Y,Z) \rightarrow \exists T (r(X,T,Z) \land s(T)))$
Query	r(a, U, b), p(a, V), q(W, b)	$\exists U \exists V \exists W (r(a, U, b) \land p(a, V) \land q(W, b))$

The Great AlJ Blunder of 2011 (BagLecMugSal11)

Figure: A cartography of some (abstract) decidable subclasses for the entailment problem, following (BagLecMugSal11)

- **1** Preliminaries: why is the proof of decidability for *core-bts* wrong?
- The steepening staircase: the class core-bts is misplaced!
- **3 Robust aggregations:** a new proof of decidability for the core-bts class.
 - a novel way to define the result of an infinite chase:
 - the need to consider finitely-universal models instead of the usual universal models.

Introduction

Preliminary Notions

Semantic Definition of Finite Expansion Sets (fes)

- **1 Trigger:** a (K-)*trigger* for an atomset F is a pair $t = (R, \pi)$ where $R \in \Sigma$ and π maps body(R) into F. It is *satisfied* when π extends to map $body(R) \cup head(R)$ into F.
- 2 **Model:** an atomset *I* (seen as an interpretation) is a *model* (of *K*) when it is a model of *F* and all *K*-triggers for *I* are satisfied.
- 3 Universality: an atomset is *universal* (for *K*) when it maps to every model of *K*.
- **4 (BCQ) Representative:** a (BCQ)-representative of K is an atomset I such that, for any Q, we have $K \models Q \Leftrightarrow I \models Q$.

Theorem (Universal Models)

If an atomset is a universal model of K, then it is a BCQ representative of K.

Semantic fes: a set of rules Σ belongs to the (decidable but unrecognizable) semantic fes class when, for every F, (F, Σ) admits a finite universal model.

Semantic Definition of Bounded Treewidth Sets (bts)

Theorem (Treewidth and decidability, (Cou90) + (BagLecMugSal11))

Entailment is decidable for KBs admitting a universal model of finite treewidth.

- **2 Treewidth:** the *treewidth* of an atomset F measures its similarity to a tree. If F is a tree, then tw(F) = 1. If F contains a grid of unbounded size, then $tw(F) = +\infty$.
- **3 Semantic bts:** a set of rules Σ belongs to the (decidable) *semantic bts* class when, for every F, (F, Σ) admits an universal model of finite treewidth.
- 4 semantic-fes ⊂ semantic-bts

Theorem (Compactness of treewidth, Thomas88thetree-width)

If every finite subset B of an atomset A has treewidth $tw(B) \le k$, then $tw(A) \le k$.

Derivations and their Results (1)

1 Rule application: let $t = (R, \pi)$ be a trigger in F. Then the *application* of t on F produces the atomset $\alpha(F, t) = F \cup \pi^{safe}(head(R))$.

Proposition (Properties of Rule Application)

A trigger t for F is satisfied in $\alpha(F, t)$. Moreover, if F is universal, then $\alpha(F, t)$ is universal.

- **2 Derivation:** a *possibly infinite* sequence $\mathcal{D} = (F_i)$ where $F_0 = \sigma_0(F)$ and $F_i = \sigma_i(\alpha(F_{i-1}, t_i))$, the σ_i being endomorphisms.
- **3 Fairness:** \mathcal{D} is said *fair* when, for any trigger (R, π) for some F_i , there is some F_j in which $(R, \sigma_i^j \circ \pi)$ is satisfied.

Derivations and their Results (2)

- **1) Finite result:** if \mathcal{D} is a finite derivation, then its *finite result* \mathcal{D}^+ is its last atomset.
- **2 Natural aggregation:** the *natural aggregation* of a (possibly infinite) derivation $\mathcal{D} = (F_i)_{i \in \mathcal{I}}$ is the (possibly infinite) atomset $\mathcal{D}^* = \cup_{i \in \mathcal{I}} F_i$.

Theorem (Finite result)

The finite result \mathcal{D}^+ of a fair derivation is a finite universal model.

Theorem (Natural aggregation)

The natural aggregation \mathcal{D}^* of a fair monotonic derivation \mathcal{D} is a (possibly infinite) universal model. If \mathcal{D} is non-monotonic, then \mathcal{D}^* is a universal BCQ representative, but not necessarily a model.

The Restricted and Core Chases: the Terminating Case

- **1 Restricted chase (fkmp05):** the *restricted chase* is a fair derivation that only applies unsatisfied triggers and whose endomorphisms σ_i are the identity. The restricted chase is *monotonic*.
- 2 Core: a finite atomset is a core when there is no homomorphism into one of its strict subsets. Every finite atomset maps to a subset which is a core.
- **3** Core chase (DBLP:conf/pods/DeutschNR08): the *core chase* is a fair derivation that only applies unsatisfied triggers and whose endomorphisms σ_i map A_i to a core. The core chase is not always monotonic.
- **Restricted-fes:** a set of rules Σ belongs to the (decidable) *restricted-fes* class when, for every F, the restricted chase halts on (F, Σ) .
- **6** Core-fes: a set of rules Σ belongs to the (decidable) *core-fes* class when, for every F, the core chase halts on (F, Σ) .
- 6 restricted-fes ⊂ core-fes = semantic-fes

The Restricted and Core Chases: the Bounded Treewidth Case

1 Bounded treewidth: a derivation \mathcal{D} has bounded treewidth k when $\forall F_i$, $tw(F_i) \leq k$.

Theorem (Treewidth and monotonic derivations)

If \mathcal{D} is a monotonic derivation with bounded treewidth k, then $tw(\mathcal{D}^*) \leq k$.

- 1 the natural aggregation \mathcal{D}^* of a restricted chase is a universal model.
- the natural aggregation D* of a restricted chase of bounded treewidth is an atomset of finite treewidth.
- 3 Restricted-bts: a set of rules Σ belongs to the (decidable) restricted-bts class when, for every F, the restricted chase from (F, Σ) has bounded treewidth.

- 1 the natural aggregation \mathcal{D}^* of a core chase is not necessarily a model.
- 2 the natural aggregation D* of a core chase of bounded treewidth may not have finite treewidth.
- 3 No reason for core-bts decidability: a set of rules Σ belongs to the *core-bts* class when, for every F, the core chase from (F, Σ) has bounded treewidth.

The Steepening Staircase

The Steepening Staircase: Presentation of the KB

F

$$R_4$$

- **1) Facts:** d(X), h(X, X).
- Rules:

 - 2 $h(X,X), v(X,Y), h(Y,Y), h(Y,Z) \rightarrow \exists T h(X,T), v(T,Z), u(Z).$
 - 3 $d(X), h(X, X), h(X, Y) \rightarrow d(Y), h(Y, Y)$.

The Steepening Staircase: Universal Models of Infinite Treewidth

- **1 Restricted chase:** the natural aggregation of a restricted chase \mathcal{D}^* is a universal model of infinite treewidth (grids of unbounded size).
- **2 Moreover**, every universal model of the steepening staircase KB has infinite treewidth (see paper).

1) Core of a S_k : the core of a S_k is a C_{k+1} . All atomsets built from a C_k to S_{k} are cores.

Steepening Staircase

- 2 Core chase: the atomsets along the core chase have treewidth between 1 and 2.
- 3 Treewidth: the natural aggregation of the core chase is the same as the one obtained from the restricted chase, and has thus infinite treewidth.
- 4 Consequence: core-bts semantic-bts

Finitely-Universal Models

- 1 the infinite column C_{∞} is a model of the steepening staircase KB, but it is not universal.
- Finite-universality: an atomset A is finitely-universal when every subset of A is universal.
- \odot C_{∞} is finitely-universal.

Theorem ((BCQ) representative)

A finitely-universal model of a KB K is a (BCQ) representative of K.

Robust Renaming

1 We want to define the **result** as $\bigcup_{i \in \mathfrak{I}} \sigma^*(F_i)$, but it doesn't work!

- **1 Robust renaming:** if $X \in vars(F_i)$, we define $\rho_i(X) = min(\sigma_i^{-1}(X))$
- 2 ρ_i is an **isomorphism** and $\tau_i = \rho_i \circ \sigma_i$ is such that, for any $X \in vars(A_i)$, $\tau_i(X) \leq X$.

 $\mathcal{D}^{\circledast}$

- **1)** Apply the robust renaming all along the derivation. See that $\tau_i = \rho_i \circ \sigma_i$ is also a homomorphism from G_{i-1} to G_i , and that G_i is isomorphic to F_i .
- The τ_i are finitely morphing: if X is a variable in F_i , there is i > i such that for any $r \geq j$, $\tau_i^j(X) = \tau_i^r(X)$. We can thus **define** $\tau^*(X) = \tau_i^j(X)$.
- **Robust aggregation:** if \mathcal{D} is a derivation, we call $\mathcal{D}^{\otimes} = \bigcup_{i \in \mathcal{I}} \tau^*(G_i)$ its *robust* aggregation.

Main Properties of Robust Aggregation

Theorem (Model)

 $\mathcal{D}^{\circledast}$ is a model.

 $\mathbf{1}$ \mathcal{D}^* is not a model for nonmonotonic derivations.

Theorem (Finite-universality)

 $\mathcal{D}^{\circledast}$ is finitely-universal.

2 \mathcal{D}^* is always universal.

Theorem

If \mathcal{D} is a derivation with bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.

3 \mathcal{D}^* may have infinite treewidth (see steepening staircase).

Finishing touches

1 If \mathcal{D} is a chase with bounded treewidth k, then $\mathcal{D}^{\circledast}$ is a finitely-universal model (and thus a BCQ representative) of treewidth $\leq k$.

Theorem (Basically (Cou90) + (BagLecMugSal11) + (this paper))

CQ entailment is decidable for KBs admitting a finitely-universal model of finite treewidth.

- **Semantic-bts+:** a set of rules Σ belongs to the (decidable) *semantic-bts+* class when, for every F, (F, Σ) admits a finitely-universal model of finite treewidth.
- 3 this is now a proof of decidablity of core-bts!

ntroduction Preliminaries Steepening Staircase Robust Aggregations
oo ooo oo ooo oooo ooooo

The New Map of Abstract Decidable Classes

References I

Part I

Appendix

Nonmonotonic derivations: nothing is lost [...] everything is transformed

1 The Lavoisier point of view: If a is an atom in some F_i , it may not be in F_j (with j > i), but it has not disappeared: it has morphed to $\sigma_i^j(a)$ in F_i .

2 Problem: what is the result of the morphing of a in \mathcal{D}^* ?

Our strategy: ensuring variables to be finitely morphing

- **1 Renaming variables of F_i:** each G_i is isomorphic to F_i (with isomorphism ρ_i), and we build homomorphisms τ_i from G_{i-1} to G_i .
- **2 The** τ_i are finitely morphing: if X is a variable in F_i , there is $j \geq i$ such that for any $r \geq j$, $\tau_i^j(X) = \tau_i^r(X)$. We can thus **define** $\tau^*(X) = \tau_i^j(X)$.
- **3 Robust aggregation:** if \mathcal{D} is a derivation, we call $\mathcal{D}^{\circledast} = \bigcup_{i \in \mathfrak{I}} \tau^*(G_i)$ its *robust aggregation*.

How to reach that goal (1): the renaming operation

- **1 Total ordering of variables:** bijection $s: \mathcal{X} \to \mathbb{N}$. We note $X \leq_{\mathcal{X}} Y$ when $s(X) \leq s(Y)$. As a consequence, $(\mathcal{X}, \leq_{\mathcal{X}})$ is **well-founded**.
- **2 The renaming:** if $F_i = \sigma_i(F_i)$ (where σ_i is a retraction), and X a variable of F_i , we define $\rho_i(X) = \min_{\mathcal{X}}(\sigma_i^{-1}(X))$
- **3 Important properties:** ρ_i is an **isomorphism** and the homomorphism $\tau_i = \rho_i \circ \sigma_i$ is such that, for any variable X in A_i , $\tau_i(X) \leq_{\mathcal{X}} X$.

How to reach that goal (2): building the G_i

How to reach that goal (3): wrapping it up

Theorem (Finitely morphing, monotonicity)

The τ_i are finitely morphing, allowing to define τ^* . The $\tau^*(G_i)$ are monotonic.

How about a staircase example?

- **1 Model:** $\mathcal{D}^{\circledast}$ is a *model* of the staircase KB.
- ② Universality: D[®] is not universal. However, its is finitely universal.
- **3 Treewidth:** $\mathcal{D}^{\circledast}$ has treewidth 1.

The staircase example: a closer look

Main properties of robust aggregation

Theorem (Model)

 $\mathcal{D}^{\circledast}$ is a model.

 \bigcirc \mathcal{D}^* is not a model for nonmonotonic derivations.

Theorem (Finite universality)

 $\mathcal{D}^{\circledast}$ is finitely universal.

2 \mathcal{D}^* is always universal.

Theorem ((BCQ) representative)

A finitely universal model of a KB K is a (BCQ) representative of K.

3 The natural aggregation \mathcal{D}^* is also a (BCQ) representative.

Preliminary: a kind of monotonicity

- **1** Where is Wally ? if $(B_i)_{i \in \mathcal{I}}$ is a monotonic sequence of atomsets, then for any finite subset A of $\bigcup_{i \in \mathcal{I}} B_i$, there exists $j \in \mathcal{I}$ such that, for any $k \geq j \in \mathcal{I}$, $A \subseteq B_k$.
- **2 Monotonic derivations:** if $\mathcal{D} = (F_i)_{i \in \mathfrak{I}}$ is a monotonic derivation and A is a finite subset of \mathcal{D}^* , then there exists $j \in \mathfrak{I}$ such that, for any $k \geq j \in \mathfrak{I}$, $A \subseteq F_k$.

Lemma (Where is Wally)

If A is a finite subset of $\mathcal{D}^{\circledast}$, then there exists $j \in \mathfrak{I}$ such that, for any $k \geq j \in \mathfrak{I}$, $A \subseteq G_k$.

$\mathcal{D}^{\circledast}$ is finitely universal

Theorem (Finite universality)

 $\mathcal{D}^{\circledast}$ is finitely universal.

- 1 if A is a finite subset of \mathcal{D}^{\otimes} , then there exists G_i such that $A \subseteq G_i$ (Wally lemma).
- 2 since G_i is isomorphic to F_i and F_i universal, then G_i is universal.
- 3 as a subset of a universal atomset, A is universal

$\mathcal{D}^{\circledast}$ is a model (1)

Theorem (Model)

 $\mathcal{D}^{\circledast}$ is a model.

- if (R, π) is a trigger for $\mathcal{D}^{\circledast}$, then $\pi(body(R))$ is a finite subset of \mathcal{D}^{*} and thus (Wally lemma) there is G_{i} such that (R, π) is a trigger for G_{i} .
- 2 then $(R, \rho_i^{-1} \circ \pi)$ is a trigger for F_i , and by **fairness** $(R, \sigma_i^j \circ \rho_i^{-1} \circ \pi)$ is satisfied in some F_i . Thus $(R, \rho_i \circ \sigma_i^j \circ \rho_i^{-1} \circ \pi)$ is satisfied in some G_i .

$\mathcal{D}^{\circledast}$ is a model (2)

- 2 [...] Thus $(R, \rho_j \circ \sigma_i^j \circ \rho_i^{-1} \circ \pi)$ is satisfied in some G_j .
- **3** Magic formula: $\rho_j \circ \sigma_i^j \circ \rho_i^{-1} = \tau_i^j$
- **4** Thus $(R, \tau_i^j \circ \pi)$ satisfied in G_j
- **5** Then $(R, \tau^* \circ \tau_i^j \circ \pi) = (R, \tau^* \circ \pi)$ satisfied in $\tau^*(G_j)$.
- **6** Since $\pi(body(R))$ was **stable** in G_i , we have $\tau^* \circ \pi = \pi$.
- 7 We conclude with (R, π) satisfied in $\tau^*(G_i)$, and thus in $\mathcal{D}^{\circledast}$.

A finitely universal model is a (BCQ) representative

Theorem ((BCQ) representative)

A finitely universal model M of a KB K is a (BCQ) representative of K.

- (\Rightarrow) If $M \models Q$ then $\mathcal{K} \models Q$.
 - 1 Let $\sigma: Q \to M$. Since Q finite, then $Q' = \sigma(Q)$ finite and thus (finitely universal) universal.
 - 2 For any model M' of K, since Q' is universal, we have $\sigma': Q' \to M'$.
 - **3** Thus $\sigma' \circ \sigma : Q \to M'$, which is a model of Q.

- (\Leftarrow) If $\mathcal{K} \models Q$ then $M \models Q$.
 - **1** For any fair derivation \mathcal{D} , we have $\sigma: Q \to \mathcal{D}^*$.
 - 2 Since \mathcal{D}^* is universal and M is a **model**, we have $\sigma': \mathcal{D}^* \to M$.
 - **3** Then $\sigma' \circ \sigma : Q \to M$.

Preliminary: treewidth and monotonic derivations

Theorem

If \mathcal{D} is a monotonic derivation with bounded treewidth k, then \mathcal{D}^* has treewidth $\leq k$.

- **1** Let us consider any finite subset A of \mathcal{D}^* . Since \mathcal{D} is **monotonic**, there exists $i \in \mathcal{I}$ such that $A \subseteq F_i$ (where is Wally).
- 2 Since $A \subseteq F_i$, we have $tw(A) \le tw(F_i)$, and since \mathcal{D} has bounded treewidth k, we have $tw(F_i) \le k$. Thus $tw(A) \le k$.
- 3 We conclude with the compactness theorem: $tw(\mathcal{D}^*) \leq k$

Treewidth and robust aggregation

Theorem

If \mathcal{D} is a derivation with bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.

- **1** Let us consider any finite subset A of $\mathcal{D}^{\circledast}$. There is $i \in \mathfrak{I}$ st $A \subseteq G_i$ (Wally lemma).
- 2 Since $A \subseteq G_i$, we have $tw(A) \le tw(G_i)$, since G_i is isomorphic to F_i we have $tw(G_i) = tw(F_i)$, and since \mathcal{D} has btw k, we have $tw(F_i) \le k$. Thus $tw(A) \le k$.
- 3 We conclude with the compactness theorem: $tw(\mathcal{D}^*) \leq k$

Better yet: intermittently bounded treewidth (1)

Definition

A derivation \mathcal{D} has (**uniform**) bounded treewidth k when each F_i has treewidth $\leq k$. It has **intermittent** bounded treewith k when an infinite number of F_i have treewidth $\leq k$.

Theorem

If \mathcal{D} is a derivation with intermittent bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.

Better yet: intermittently bounded treewidth (2)

Theorem

If \mathcal{D} is a derivation with intermittent bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.

- 1 Let us consider any finite subset A of $\mathcal{D}^{\circledast}$. There exists $i \in \mathfrak{I}$ st, for any $j \geq i \in \mathfrak{I}$, $A \subseteq G_i$ (Wally lemma).
- **2** Since \mathcal{D} has intermittent bounded treewidth k, there exists $q \ge i$ such that $tw(F_q) \le k$.
- 3 We conclude as previously, working with G_q instead of G_i ...

Finishing touches (1)

1 If \mathcal{D} is a derivation with intermittent bounded treewidth k, then $\mathcal{D}^{\circledast}$ is a finitely universal model (and thus a BCQ representative) of treewidth $\leq k$.

Theorem (Basically (Cou90) + (BagLecMugSal11))

CQ entailment is decidable for knowledge bases admitting a finitely universal model of finite treewidth.

- 2 A ruleset \mathcal{R} is said **fes** when, for every F, (F, \mathcal{R}) admits a finite universal model. It is said **bts** when, for every F, there is a **monotonic** derivation from (F, \mathcal{R}) (*.e.g.* a restricted chase) having uniformly bounded treewidth.
- 3 CQ entailment is decidable for KBs having fes or bts rulesets.
- 4 fes and bts are not comparable.

Finishing touches (3)

The Inflating Elevator

- **1 Treewidth:** the core chase derivation \mathcal{D} has unbounded treewidth, and \mathcal{D}^* has infinite treewidth. No derivation with bounded treewidth can be obtained.
- 2 Finite treewidth universal model: The infinite atomset *MS* is a universal model of the inflating elevator KB, and it has treewidth 1.

Quasimodels

- $\bigcirc \mathcal{D}^{\circledast}$ is a finitely universal model.
- 2 a finitely universal model is a (BCQ) representative
- $\ \ \, \mathfrak{D}^*$ is a universal (not a model), but a (BCQ) representative.

Objective

Find a nice characterization of a quasimodel such that:

- D* is a quasimodel
- a universal quasimodel is a (BCQ) representative
- 1 is a finitely universal quasimodel a (BCQ) representative?
- 2 is CQ entailment decidable when \mathcal{K} admits a finitely universal quasimodel of finite treewidth?
- 3 are all (BCQ) representatives finitely universal quasimodels?

Semantic BTS

- **1** A ruleset \mathcal{R} is said **cci-bts** when, for every F, there is a derivation from (F, \mathcal{R}) (*,e.g.* a core chase) having intermittent bounded treewidth.
- 2 A ruleset \mathcal{R} is said **sem-bts** when, for every F, there exists a finitely universal model of (F, \mathcal{R}) with finite treewidth.
- 3 the magic staircase rules are sem-bts, but not cci-bts.

Remark

In the magic staircase core derivation, neither the F_i nor the G_i have (uniform or intermittent) bounded treewidth. However, the $\tau^*(G_i)$ have bounded treewidth.

- 1 see that if the $\tau^*(G_i)$ have intermittent bounded treewidth, then $\mathcal{D}^{\circledast}$ has finite treewidth; this leads to a new decidable class cci-bts \subset wf-cci-bts \subseteq sem-bts.
- 2 wouldn't it be nice to have wf-cci-bts = sem-bts?

Building infinite cores

- 1 the initial goal of well-founded aggregation was to generate a $\mathcal{D}^{\circledast}$ smaller than \mathcal{D}^* , hoping that in the case of a core chase, it would be a **core**.
- Infinite cores are tricky: for finite atomsets, there is numerous definitions of cores that are all equivalent. For infinite atomsets, however, those different definitions lead to different notions of cores (DBLP:journals/dm/Bauslaugh95).

Failure

Neither \mathcal{D}^* nor \mathcal{D}^* are ensured to be cores, whatever the definition.

1 generalize our general framework to take into account the stable chase (DBLP:conf/icdt/CarralK0OR18)