
On Rejected Arguments and Implicit Conflicts:
The Hidden Power of Argumentation Semantics

Ringo Baumanna, Wolfgang Dvořákb, Thomas Linsbichlerc, Christof
Spanringc,d, Hannes Strassa, Stefan Woltranc

a Leipzig University, Computer Science Institute, Germany
b University of Vienna, Faculty of Computer Science, Vienna, Austria

c TU Wien, Institute of Information Systems, Austria
d University of Liverpool, Department of Computer Science, United Kingdom

Abstract

Abstract argumentation frameworks (afs) are one of the most studied for-
malisms in AI and are formally simple tools to model arguments and their
conflicts. The evaluation of an af yields extensions (with respect to a seman-
tics) representing alternative acceptable sets of arguments. For many of the
available semantics two effects can be observed: there exist arguments in the
given af that do not appear in any extension (rejected arguments); there exist
pairs of arguments that do not occur jointly in any extension, albeit there is no
explicit conflict between them in the given af (implicit conflicts). In this paper,
we investigate the question whether these situations are only a side-effect of
particular afs, or whether rejected arguments and implicit conflicts contribute
to the expressiveness of the actual semantics. We do so by introducing two
subclasses of afs, namely compact and analytic frameworks. The former class
contains afs that do not contain rejected arguments with respect to a seman-
tics at hand; afs from the latter class are free of implicit conflicts for a given
semantics. Frameworks that are contained in both classes would be natural
candidates towards normal forms for afs since they minimize the number of
arguments on the one hand, and on the other hand maximize the information
on conflicts, a fact that might help argumentation systems to evaluate afs more
efficiently. Our main results show that under stable, preferred, semi-stable, and
stage semantics neither of the classes is able to capture the full expressive power
of these semantics; we thus also refute a recent conjecture by Baumann et al.
on implicit conflicts. Moreover, we give a detailed complexity analysis for the
problem of deciding whether an af is compact, resp. analytic. Finally, we also
study the signature of these subclasses for the mentioned semantics and shed
light on the question under which circumstances an arbitrary framework can be
transformed into an equivalent compact, resp. analytic, af.

Preprint submitted to Elsevier September 27, 2016

1. Introduction

In recent years argumentation has emerged to become one of the major
fields of research in Artificial Intelligence [34, 11]. In particular, Dung’s well-
studied abstract argumentation frameworks (afs) [18] are a simple, yet powerful
formalism for modeling and deciding argumentation problems that are integral
to many advanced argumentation systems, see e.g. [12]. The evaluation of afs
in terms of finding reasonable positions with respect to a given framework is
defined via so-called argumentation semantics (cf. [4] for an overview). Given an
af F , an argumentation semantics σ returns acceptable sets of arguments σ(F),
the (σ-)extensions of F . Several semantics have been introduced over the years
[18, 39, 13, 5] with motivations ranging from the desired treatment of specific
examples to fulfilling certain abstract principles. One important line of research
in abstract argumentation is thus the systematic comparison of the different
semantics available. Hereby, the behavior of extensions with respect to certain
properties [1] has been analyzed and the expressive power of semantics [23,
25, 28, 36] has been studied by identifying the set of extension-sets achievable
under certain semantics. On the other hand, subclasses of afs such as acyclic,
symmetric, odd-cycle-free or bipartite afs, have been considered, since for some
of these classes different semantics collapse [14, 19]. Beside these subclasses
based on the graph structure there are also classes defined via properties of
extensions. The probably most prominent such subclass is the class of coherent
afs [21], i.e. afs where the stable and preferred semantics coincide. Further
examples for subclasses that are defined via extensions can be found in [3, 27].

In this work we contribute to both streams of research. We introduce two
new classes, which to the best of our knowledge have not received attention in
the literature. The actual definition of these two classes is motivated by typical
phenomena that can be observed for several semantics. First, there exist argu-
ments in a given af that do not appear in any extension. Since these so-called
rejected arguments do not appear in the result of extension-based semantics, it
is a natural question whether such arguments can be “removed” from the af at
hand without changing its outcome (in a certain way, this question is similar
to the problem of simplifying propositional formulas by removing “don’t care”
atoms). In order to have a handle for analyzing the effect of rejected arguments,
we introduce the class of compact afs: an af is compact (with respect to a se-
mantics σ), if each of its arguments appears in at least one σ-extension. Second,
we are interested in the concept of implicit conflicts. An attack between two
arguments represents an explicit conflict. By the nature of most argumenta-
tion semantics, conflicts can however also be implicit in the sense that some
arguments do not occur together in any extension, although there is no attack
between them. In order to understand the expressive power of implicit conflicts
we introduce the class of analytic frameworks. Given a semantics σ, if every
conflict between two arguments a, b in an af F is explicit (i.e., for all arguments
a, b, if {a, b} ∩ E 6= {a, b} for all σ-extensions E, then a attacks b in F or b at-
tacks a in F) then F is called analytic. Both compact and analytic afs thus
yield a “semantic” subclass since their definitions rely on the actual extensions

2

Figure 1: Rejected argument x cannot be removed without changing the stable extensions.

obtained via the chosen semantics.

The role of rejected arguments. Although rejected arguments are natural in-
gredients in typical argumentation scenarios, it is of interest to understand in
which ways rejected arguments contribute to the “strength” of a particular se-
mantics. Let us first have a brief look on the naive semantics, which is defined
as subset-maximal conflict-free sets: Here, it is rather easy to see that any af
can be transformed into an equivalent compact af by just removing all self-
attacking arguments. In other words, the same outcome (in terms of the naive
extensions) can be achieved by a simplified af without rejected arguments. On
the one hand, this can be seen as a general weakness of naive semantics, since
any possible outcome can be equivalently achieved in the absence of rejected
arguments. On the other hand, this shows that towards evaluating an af under
naive semantics, the transformation into a compact af can provide a benefi-
cial pre-processing step for computing the extensions (which afterwards should
however be interpreted in terms of the original af).

How is the situation with semantics that are considered more mature? We
borrow an example from Dunne et al. [22]. Consider the af F1 in Figure 1,
where nodes represent arguments and directed edges represent attacks.

The stable extensions (conflict-free sets attacking all other arguments) of
F1 are given by the set S = {{a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a, b, c′},
{a′, b, c}, {a, b′, c}}. Observe that x is rejected, i.e. x does not appear in any
stable extension of F1. Hence, this framework is not compact for the stable se-
mantics. Moreover, it was shown in [22] that there is no compact af (in this case
an af not using argument x) that yields the same stable extensions as F1. By
the necessity of conflict-freeness any such compact af would only allow conflicts
between arguments a and a′, b and b′, and c and c′, respectively. Moreover, there
would have to be attacks in both directions for each of these conflicts in order
to ensure stability. Hence any compact af having the same stable extensions
as F1 necessarily yields {a′, b′, c′} in addition. In other words, under the stable
semantics particular outcomes (in the example the set S of extensions) can only
be achieved via afs containing at least one rejected argument. Thus, the stable
semantics makes proper use of rejected arguments. As we will see, all semantics
under consideration (except naive semantics) show a similar behaviour.

3

arg(a).arg(ap).
arg(b).arg(bp).
arg(c).arg(cp).
arg(x).

att(a,ap).att(ap,a).
att(b,bp).att(bp,b).
att(c,cp).att(cp,c).

att(a,x).att(b,x).att(c,x).

att(x,x).

Figure 2: af illustrating an implicit conflict between c and d for stable semantics.

The role of implicit conflicts. As introduced earlier, implicit conflicts arise when
two arguments are never jointly accepted although they do not attack each other.
The af F2 in Figure 2 provides a simple example for this effect.

It can be seen that stable semantics yields two extensions {a, d} and {b, c}
for F2. Since c and d do not occur together in an extension there is an implicit
conflict and thus F2 is not analytic (for stable semantics). However, the naive
extensions of F2 are given by {a, d}, {b, c}, {c, d}. Thus c and d are not in an
implicit conflict here, and the af is easily seen to be analytic for naive semantics.
Indeed, by definition of naive semantics, two arguments occur together in a naive
extension if and only if there is no attack between them and they are not self-
attacking. Thus not every af is analytic for naive semantics, but it is quite
easy to see that every af can be turned into an equivalent analytic one over the
same arguments, by just connecting the self-attacking arguments to any other
argument. Coming back to our example and to stable semantics, the question
remains whether F2 can be turned into an equivalent analytic one? This is quite
an easy exercise. Just add an attack from c to d, or likewise from d to c. In fact,
this addition does not change the set of extensions. However, it has been left as
open question in [10] (stated as “Explicit Conflict Conjecture”) whether such
a manipulation of an af is always possible. In this work, we shall negatively
answer this question showing that (i) for preferred and semi-stable semantics,
there exist afs such that there is no equivalent analytic af; and (ii) for stable
and stage semantics, there exist afs such that there is no equivalent analytic
af, unless we are allowed to add rejected arguments.

Expressiveness of compact and analytic argumentation frameworks. Before giv-
ing an overview of the obtained results, let us further illustrate some issues that
come along with the subclasses of compact and analytic argumentation frame-
works. One natural question is whether any af F can be transformed to an
equivalent af G, i.e. σ(F) = σ(G) for a given semantics σ, that is compact or
analytic. In case the answer is no, we can conclude that the full range of expres-
siveness of σ indeed relies on the concepts of rejected arguments and implicit
conflicts. Knowing which sets of extensions a semantics is able to express is of
central interest in approaches of extension-based revision of afs [16]. As the
result of the revision may also be subject to certain syntactic constraints (e.g.
a fixed set of arguments [15]) it is important to know about the role of rejected
arguments and implicit conflicts. For instance, a revised AF might be required
(e.g. in order to fulfill revision postulates) to have exactly the extension-set
S from above under stable semantics while consisting solely of the arguments
{a, b, c, a′, b′, c′}. As we have already observed, and we will show in a more

4

arg(a).arg(b).arg(c).arg(d).

att(a,b).att(b,a).
att(a,c).
att(b,d).

comprehensive and general manner in the paper, such a revision is not possi-
ble since getting S under stable semantics would require an additional, rejected
argument.

Implications for argumentation systems. An even more promising application of
our results lies in the field of concrete software systems for computing semantics
of abstract argumentation frameworks. A considerable number of such systems
(“solvers”) exist, as has been witnessed by the First International Competition
on Computational Models of Argument (ICCMA 2015) [38].1 Using instances
from that competition and additional instances created according to the same
graph model as the competition instances, we also performed an experimental
evaluation on the theoretical phenomena we study in this paper. The results
can be found in Appendix A, and demonstrate the clear computational benefit
of knowing about implicit conflicts in an argumentation framework. More pre-
cisely, once all implicit conflicts of an af are made explicit, then the competition
winners are able to compute the af’s extensions (for stable and preferred seman-
tics) much faster than before (without implicit conflicts made explicit). Thus
it is a naturally arising research question whether information about implicit
conflicts can be obtained “cheaply” in terms of computational cost, a question
that we will also address in the paper. For knowing about rejected arguments,
the computational gain is immediately clear, since the lower the number of ar-
guments, the smaller is the search space a solver has to go through in order to
find all extensions. Thus, preprocessing steps that remove rejected arguments
might also be beneficial to solving runtime. Moreover, if an af has no rejected
arguments then all of its arguments are contained in at least one extension, and
so credulous as well as skeptical reasoning become easy tasks [10].

Overall, the research question we are interested in is: how computationally
costly is it to determine whether an af can be simplified along the dimensions
rejected arguments and implicit conflicts? Answering this question would be
crucial towards the development of clever methods for preprocessing afs before
solving. However, more fundamental questions need to be addressed first. On
the one hand, we analyse how hard it is to decide whether an af is compact
(resp. analytic); on the other hand, we ask whether any af can be transformed
into an af that is compact (resp. analytic) and equivalent under a particular
semantics. Unfortunately, the answers to both of these questions is in a certain
sense negative for all of the semantics we consider: intuitively speaking, our
complexity results will show that deciding whether simplification is applicable
(having certain reasoning tasks in mind) is as expensive as solving the reasoning
tasks themselves. Furthermore, we can even show that there are afs that cannot
be exhaustively simplified. (More formally, there are afs that have “patholog-
ical” implicit conflicts that cannot be made explicit even if we allow arbitrary
semantics-preserving changes in other parts of the af.) This does not make our
results less applicable to implementation of reasoning systems, however. These

1A total number of 18 solvers participated, see http://argumentationcompetition.org.

5

http://argumentationcompetition.org

negative results help the solver development community to delineate what can
and cannot be done in improving solver performance by intelligent preprocess-
ing. That is, by our results, we know that computing all rejected arguments and
implicit conflicts are not viable candidates for simplifying given argumentation
frameworks.

Main contributions & structure of the paper. The main contributions of this
article are organized as follows. Recall that the semantics we mainly investigate
are stable, preferred, semi-stable, stage, and naive semantics.

• In Section 3 we formally introduce the subclasses of compact and analytic
afs with respect to the considered semantics and investigate their rela-
tionship. For both classes the picture is similar: for instance, if an af
is compact (resp. analytic) for stable it also is for semi-stable (preferred,
stage, and naive); but the other direction does not hold in general.

• Section 4 answers the question how hard it is to decide whether an af
is compact (resp. analytic). As it turns out, the complexity of this prob-
lem for a given semantics σ is the same as credulous acceptance under
σ. Thus, we obtain tractability for naive semantics, NP-completeness for
stable and preferred semantics, and ΣP

2 -completeness for semi-stable and
stage semantics.

• In Section 5 we refute the Explicit Conflict Conjecture [10] for σ being
among stable, preferred, semi-stable and stage semantics. In fact, we
provide afs such that there is no af equivalent under σ that contains solely
explicit conflicts. On the other hand, we identify sufficient conditions
guaranteeing equivalence-preserving translations to analytic afs.

• The final collection of results in Section 6 is concerned with signatures
for compact and analytic frameworks. Signatures as introduced in [23]
plainly collect all possible sets of extensions afs can deliver under a given
semantics. For instance, it is shown in [23] that preferred and semi-stable
semantics yield an equal signature Σ, while the signature of stage seman-
tics is a proper subset of Σ. Compared to [23], we do not give exact
characterizations of signatures for compact (resp. analytic) frameworks,
but obtain a full picture of their relationship with respect to the different
semantics. For instance, we show that in terms of compact afs, the signa-
tures for semi-stable and preferred semantics become incomparable, while
for analytic afs, the signature for semi-stable semantics is a proper subset
of the signature for preferred semantics. Finally, we generalize some recent
results on maximal numbers of extensions [8] to give some impossibility
results for compact realizability.

In this work we consider several rather complex examples of argumentation
frameworks, whose evaluation is a non-trivial task. Thus, for the reader’s con-
venience, we provide encodings in the .apx format, which can be used to evalu-

6

ate the afs with systems like ASPARTIX [29]2. These encodings can be either
downloaded from http://www.dbai.tuwien.ac.at/proj/adf/HiddenPowerAFs.

zip or directly accessed by clicking at the corresponding figure. (Depending on
the actual pdf viewer, a right or double-click should initiate saving.)

This article is based on [10] and [32], but also contains several new results.

2. Preliminaries

In what follows, we briefly recall the necessary background on abstract argu-
mentation and computational complexity. For an excellent overview on abstract
argumentation and in particular on argumentation semantics, we refer to [4].

Abstract Argumentation

Throughout the paper we assume a countably infinite domain A of argu-
ments. An argumentation framework (af) is a pair F = (A,R) where A ⊆ A is
a finite set of arguments and R ⊆ A × A is the attack relation. The collection
of all afs is given as AFA. For an af F = (B,S) we use AF and RF to refer
to B and S, respectively. We write a �F b for (a, b) ∈ RF and S �F a (resp.
a�F S) if there exists some s ∈ S such that s�F a (resp. a�F s). Symmet-
ric attacks {(a, b), (b, a)} ⊆ RF are occasionally denoted by a, b ∈ RF . For
S ⊆ A, the range of S (w.r.t. F), denoted S+

F , is the set S ∪ {b | S �F b}.
Moreover, F|S denotes the af (AF ∩ S,R ∩ (S × S)).

Given an af F , an argument a ∈ AF is defended (in F) by S ⊆ AF if for
each b ∈ AF , such that b�F a, also S �F b. A set T of arguments is defended
(in F) by S if each a ∈ T is defended by S (in F). A set S ⊆ AF is conflict-free
(in F), if there are no arguments a, b ∈ S, such that (a, b) ∈ RF . We denote the
set of all conflict-free sets in F as cf(F). S ∈ cf(F) is called admissible (in F)
if S defends itself. We denote the set of admissible sets in F as adm(F).

The terms semantics and extension are often used almost synonymously.
Formally a semantics is a mapping, while extensions are concrete elements of
its image. The semantics we study in this work are those characterized by the
naive, stable, preferred, stage, and semi-stable extensions. Given an af F they
are defined as subsets of cf(F) as follows:

• S ∈ nai(F), if @T ∈ cf(F) with T ⊃ S;

• S ∈ stb(F), if S+
F = AF ;

• S ∈ prf(F), if S ∈ adm(F) and @T ∈ adm(F) with T ⊃ S;

• S ∈ stg(F), if @T ∈ cf(F) with T+
F ⊃ S

+
F ;

• S ∈ sem(F), if S ∈ adm(F) and @T ∈ adm(F) with T+
F ⊃ S

+
F .

2A web front-end is available at http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/.

7

http://www.dbai.tuwien.ac.at/proj/adf/HiddenPowerAFs.zip
http://www.dbai.tuwien.ac.at/proj/adf/HiddenPowerAFs.zip
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

Figure 3: Argumentation framework F used in Example 1.

The following relations between these semantics are well-known to hold for
any af F :

stb(F) ⊆ sem(F) ⊆ prf(F)

stb(F) ⊆ stg(F) ⊆ nai(F)

Furthermore, apart from stable semantics all considered semantics guarantee
the existence of at least one (possibly empty) extension as long as finite afs are
considered (cf. [7] for a detailed overview including the infinite case).

We will also make frequent use of the following concepts.

Definition 1. Given S ⊆ 2A, ArgsS denotes
⋃
S∈S S and PairsS denotes {(a, b) |

∃S ∈ S : {a, b} ⊆ S}. S is called an extension-set (over A) if ArgsS is finite.

In words, ArgsS stands for all arguments occurring in some element of S and
PairsS for all pairs of arguments occurring together in some element of S. As is
easily observed, for all semantics σ, σ(F) is an extension-set for any af F .

Example 1. Consider the af F depicted in Figure 3. We have that a′, b′

and f ′ are self-attacking, since all semantics considered build upon conflict-
freeness these three arguments can thus not be included in any extension. Sim-
ilarly we may accept only one argument from a and c as these two are mu-
tually attacking each other; the same holds for b and d and also for c and
d. Naive semantics generates maximal conflict-free sets, we thus get nai(F) =
{{a, b, e}, {a, d, e}, {b, c, e}}.

Argument e is contained in each naive extension as it does not share any
attacks with not self-attacking arguments. However e is attacked by f and can
not defend itself against this attack. Thus the set {a, b, e} is not admissible.
Preferred semantics, as maximal admissible sets, then computes to prf(F) =
{{a, b}, {a, d, e}, {b, c, e}}.

Now for stable extensions we need conflict-freeness as well as a partition
of all arguments into accepted or attacked. Naturally this means that only
maximal conflict-free sets are candidates. However neither of the naive sets has
full range: {a, b, e} does not attack f , {a, d, e} does not attack b′ and {b, c, e}
does not attack a′. Thus there is no stable extension, i.e. stb(F) = ∅.

Stage semantics can be seen as a less restrictive form of stable semantics in
that we do not need to cover all arguments in range but want extensions to be
conflict-free and range-maximal. As emphasized above all naive extensions have

8

arg(a).arg(ap).
arg(b).arg(bp).
arg(c).
arg(d).
arg(f).
arg(e).

att(a,ap).
att(ap,ap).
at(b,bp).
att(bp,bp).
att(a,c).att(c,a).
att(b,d).att(d,b).
att(c,d).att(d,c).
att(c,f).
att(d,f).
att(f,f).
att(f,e).

Table 1: Complexity of decision problems (C-c denotes completeness for class C).

Verσ Credσ Skeptσ

nai in P in P in P

stb in P NP-c coNP-c

adm in P NP-c trivial

prf coNP-c NP-c ΠP
2 -c

stg coNP-c ΣP
2 -c ΠP

2 -c

sem coNP-c ΣP
2 -c ΠP

2 -c

incomparable range (missing f , b′, or resp. a′) and thus stg(F) = nai(F). Sim-
ilarly semi-stable extensions are those admissible sets that are range-maximal.
And in this case also the preferred extensions all have incomparable range (miss-
ing f and e, b′, or resp. a′) and thus sem(F) = prf(F).

Now as for the concepts introduced in Definition 1 we have Args which are
all the arguments occurring in any extension; in this case for all semantics
σ ∈ {nai, stg, sem, prf} we get Argsσ(F) = {a, b, c, d, e}. And we have Pairs,
all pairs of arguments that occur together in any extension; in this case as
can easily be checked again for all semantics σ ∈ {naive, stg, sem, prf} we get
Pairsσ(F) = {(a, b), (b, a), (a, e), (e, a), (b, e), (e, b), (a, d), (d, a), (d, e), (e, d),
(b, c), (c, b), (c, e), (e, c), (a, a), (b, b), (c, c), (d, d), (e, e)}. ♦

Computational Complexity

We assume the reader is familiar with standard complexity concepts, such as
P, NP and completeness. Nevertheless we briefly recapitulate the concept of NP-
oracle machines and the related complexity class ΣP

2 . By an NP-oracle machine
we mean a Turing machine that can access an oracle that decides a given sub-
problem from NP (or coNP) within one step. The class ΣP

2 (sometimes also
denoted by NPNP), contains the problems that can be decided in polynomial
time by a nondeterministic NP-oracle machine.

The known complexity results for the argumentation semantics under con-
sideration are summarized in Table 1 [13, 17, 19, 21, 26]. Here, Verσ refers to
the problem of verifying that a given set is an extension of a given arbitrary
af F w.r.t. the semantics σ; Credσ refers to the problem of verifying that a
given argument x is credulously accepted w.r.t. σ in F (there is at least one
σ-extension of F containing x); and Skeptσ refers to the problem of verifying
that a given argument x is skeptically accepted w.r.t. σ in F (x is contained in
each σ-extension of F). For a more detailed discussion of the complexity results
the interested reader is referred to [20, 24]. We only mention that the hardness
results still hold if restricted to frameworks without self-attacking arguments,
which we will make use of later on.

Later, for semantics σ, we will also need upper bounds for the problem
Cred 2

σ defined as follows: given af F and arguments a and b, does there exist

9

an extension S ∈ σ(F) such that {a, b} ⊆ S (see e.g. [19]). For the semantics
under consideration, it is rather straightforward to see that membership for
Credσ carries over to Cred 2

σ . For σ ∈ {prf, stb, sem, stg} this is witnessed by the
standard NP-algorithm of guessing a set S containing a and b and apply an oracle
for verifying whether S is a σ-extension. The complexity of the verification
problem then yields the desired upper bound. Membership in P for the naive
semantics can be decided by just checking whether a, b are neither self-attacking
nor attacking each other. Indeed, in this case {a, b} is conflict-free in the given
af F , and thus there must exist a naive extension of F containing both a and
b.

3. Subclasses of Argumentation Frameworks

In this section, we formally introduce the two central subclasses of argumen-
tation frameworks of this paper, namely compact and analytic frameworks. We
study basic properties and relations within the classes first. At the end of the
section we will compare the two classes.

3.1. Compact Argumentation Frameworks

The main idea behind compact argumentation frameworks is the absence of
rejected arguments (w.r.t. a given semantics).

Definition 2. Given a semantics σ, an af F is called compact for σ (or σ-
compact) if Argsσ(F) = AF . The set of all compact argumentation frameworks
for σ is denoted by CAFσ.

Example 2. Let us consider the af F depicted in Figure 4.3 The preferred
extensions of F are prf(F) = {{z}, {x1, a1}, {x2, a2}, {x3, a3}, {y1, b1}, {y2, b2},
{y3, b3}}, meaning that F is prf-compact (F ∈ CAFprf) since each argument
occurs in at least one preferred extension. On the other hand observe that
sem(F) = prf(F)\{{z}} and stg(F) = {{xi, ai, bj}, {yi, bi, aj} | 1 ≤ i, j ≤ 3}, i.e.
z is not contained in any semi-stable or stage extension. Therefore F is neither
compact for semi-stable nor compact for stage semantics (i.e. F /∈ CAFsem and
F /∈ CAFstg). ♦

As indicated by Example 2, the contents of CAFσ differ with respect to the
semantics σ. Concerning relations between the classes of compact afs we start
with an easy observation. In the following result, the only requirement on a
semantics σ is that extensions are subsets of the arguments in the framework,
i.e. Argsσ(F) ⊆ AF for any af F .

Lemma 1. For any two semantics σ and θ such that for each af F , for every
S ∈ σ(F) there is some S′ ∈ θ(F) with S ⊆ S′, we have CAFσ ⊆ CAFθ.

3The construct in the lower part of the figure represents symmetric attacks between each
pair of distinct arguments. We will make use of this style in illustrations throughout the
paper.

10

Figure 4: af discussed in Example 2, which is prf-compact but neither sem-compact nor
stg-compact.

Proof. Suppose F ∈ CAFσ. By definition, Argsσ(F) = AF . Now if for each S ∈
σ(F) there is some S′ ∈ θ(F) with S ⊆ S′, we have Argsσ(F) ⊆ Argsθ(F). Since
Argsθ(F) ⊆ AF by definition, Argsθ(F) = AF follows. Hence, F ∈ CAFθ.

Note that the case where σ(F) ⊆ θ(F) holds for each af F is a special
case of the premise of Lemma 1. The next result provides a full picture of the
relations between classes of compact afs for the semantics we consider (see also
Figure 5).

Theorem 2. The following relations hold:

1. CAFstb ⊂ CAFσ ⊂ CAFnai for σ ∈ {prf, sem, stg};
2. CAFsem ⊂ CAFprf;

3. CAFstg 6⊆ CAFθ and CAFθ 6⊆ CAFstg for θ ∈ {prf, sem}.

Proof. (1) Let σ ∈ {prf, sem, stg}. The ⊆-relations are due to Lemma 1 together
with following facts: (a) in any af F , stb(F) ⊆ σ(F); (b) each σ-extension E of
an af F is conflict-free in F , thus there exists a naive extension E′ of F with
E ⊆ E′.

CAFσ ⊂ CAFnai: The af ({a, b}, {(a, b)}) is compact for naive semantics
but not for σ.

CAFstb ⊂ CAFσ: Consider af F from Figure 6a. We have prf(F) =
sem(F) = {{x1, a1}, {x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, and each
of these extensions can be extended to a stage extension (the former three by
adding one of the arguments b1, b2, b3 the latter three by adding one of the ar-
guments a1, a2, a3), but stb(F) = ∅. Thus AF = Argsσ(F) 6= Argsstb(F) = ∅,
meaning that F ∈ CAFσ but F /∈ CAFstb.

CAFnai

CAFprfCAFsem

CAFstb

CAFstg

⊂
⊂

⊂

⊂ ⊂

Figure 5: Relations between classes of compact afs (cf. Theorem 2).

11

arg(a1). arg(a2). arg(a3).
arg(b1). arg(b2). arg(b3).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).
arg(z).

att(a1,a2).att(a2,a3).att(a3,a1).
att(b1,b2).att(b2,b3).att(b3,b1).

att(x1,a3).att(x2,a1).att(x3,a2).
att(y1,b3).att(y2,b1).att(y3,b2).

att(x1,x2). att(x1,x3). att(x1,y1). att(x1,y2). att(x1,y3). att(x1,z).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y2). att(x2,y3). att(x2,z).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2). att(x3,y3). att(x3,z).
att(y1,x1). att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3). att(y1,z).
att(y2,x1). att(y2,x2). att(y2,x3). att(y2,y1). att(y2,y3). att(y2,z).
att(y3,x1). att(y3,x2). att(y3,x3). att(y3,y1). att(y3,y2). att(y3,z).

att(z,x1). att(z,x2). att(z,x3). att(z,y1). att(z,y2). att(z,y3).

(a) af F ′ contained in CAFprf, CAFsem, and CAFstg but not in CAFstb.

(b) af F ′′ contained in CAFsem but not in CAFstg.

Figure 6: af used in the proof of Theorem 2 to show the incomparability of certain classes of
compact afs.

(2) CAFsem ⊆ CAFprf is by the fact that, in any af F , sem(F) ⊆ prf(F)
(cf. Lemma 1). Properness is by the af in Figure 4, which is (as discussed in
Example 2) prf-compact but not sem-compact.

(3) First we show CAFstg 6⊆ CAFθ for θ ∈ {prf, sem}. To this end, con-
sider the simple af F ′ = ({a, b, c}, {(a, b), (b, c), (c, a)}). We have stg(F ′) =
{{a}, {b}, {c}}, thus F ′ ∈ CAFstg. On the other hand, sem(F ′) = prf(F ′) = {∅},
thus F ′ /∈ CAFσ.

CAFprf 6⊆ CAFstg follows by the observations in Example 2.
CAFsem 6⊆ CAFstg: Consider the af F ′′ in Figure 6b. One can check that

this af is sem-compact, but not stg-compact. In fact, argument a does not
occur in any stage extension. Although {a, u1, x5}, {a, u2, x6}, {a, u3, x7} ∈
sem(F ′′), the range of any conflict-free set containing a is a proper subset of
the range of every stage extension of F ′′: stg(F ′′) = {{c, ui, x4} | i ∈ {1, 2, 3}}∪
{{b, ui, sj , xi+4} | i, j ∈ {1, 2, 3}} ∪ {{ti, uj , si, xi} | i, j ∈ {1, 2, 3}}. Hence
CAFsem 6⊆ CAFstg.

Finally note that every symmetric and irreflexive (i.e. no self-attacking ar-
guments) af is contained in CAFstb, as already observed in [14, Proposition
6], and therefore also in each CAFσ for all semantics σ under consideration.
But already CAFstb contains strictly more afs than the class of symmetric
and irreflexive afs, which is, for instance, indicated by the af ({a, b, c, d},
{(a, b), (b, c), (c, d), (d, a)}), which is clearly not symmetric but compact for the
stable semantics. On the other hand observe that CAFnai ⊂ AFA, as every af

12

arg(a1). arg(a2). arg(a3).
arg(b1). arg(b2). arg(b3).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).

att(a1,a2).att(a2,a3).att(a3,a1).
att(b1,b2).att(b2,b3).att(b3,b1).

att(x1,a3).att(x2,a1).att(x3,a2).
att(y1,b3).att(y2,b1).att(y3,b2).

att(x1,x2). att(x1,x3). att(x1,y1). att(x1,y2). att(x1,y3).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y2). att(x2,y3).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2). att(x3,y3).
att(y1,x1). att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3).
att(y2,x1). att(y2,x2). att(y2,x3). att(y2,y1). att(y2,y3).
att(y3,x1). att(y3,x2). att(y3,x3). att(y3,y1). att(y3,y2).

arg(a).arg(b).arg(c).
arg(s1).arg(s2).arg(s3).
arg(t1).arg(t2).arg(t3).
arg(u1).arg(u2).arg(u3).
arg(x1).arg(x2).arg(x3).arg(x4).
arg(x5).arg(x6).arg(x7).

att(s1,s2).att(s2,s3).att(s3,s1).
att(t1,t2).att(t2,t3).att(t3,t1).
att(u1,u2).att(u2,u3).att(u3,u1).

att(a,b).att(b,a).
att(a,c).

att(s1,c).att(s2,c).att(s3,c).
att(b,t1).att(b,t2).att(b,t3).

att(x1,a).att(x1,b).
att(x1,t3).att(x1,s3).
att(x2,a).att(x2,b).
att(x2,t1).att(x2,s1).
att(x3,a).att(x3,b).
att(x3,t2).att(x3,s2).
att(x4,a).att(x4,b).
att(x4,t1).att(x4,t2).att(x4,t3).
att(x4,s1).att(x4,s2).att(x4,s3).
att(x5,u3).
att(x6,u1).
att(x7,u2).

att(x1,x2).
att(x2,x1).
att(x1,x3).
att(x3,x1).
att(x1,x4).
att(x4,x1).
att(x1,x5).
att(x5,x1).
att(x1,x6).
att(x6,x1).
att(x1,x7).
att(x7,x1).
att(x2,x3).
att(x3,x2).
att(x2,x4).
att(x4,x2).
att(x2,x5).
att(x5,x2).
att(x2,x6).
att(x6,x2).
att(x2,x7).
att(x7,x2).
att(x3,x4).
att(x4,x3).
att(x3,x5).
att(x5,x3).
att(x3,x6).
att(x6,x3).
att(x3,x7).
att(x7,x3).
att(x4,x5).
att(x5,x4).
att(x4,x6).
att(x6,x4).
att(x4,x7).
att(x7,x4).
att(x5,x6).
att(x6,x5).
att(x5,x7).
att(x7,x5).
att(x6,x7).
att(x7,x6).

having self-attacking arguments is not contained in CAFnai.

3.2. Analytic Argumentation Frameworks

In this section we deal with afs containing no implicit conflicts, which we will
call analytic. We differentiate between the concept of an attack (as a syntactical
element) and the concept of a conflict (with respect to the evaluation under a
given semantics).

Definition 3. Given some af F = (A,R), a semantics σ and arguments a, b ∈
A. If (a, b) /∈ Pairsσ(F), we say that a and b are in conflict in F for σ. If
(a, b) ∈ R or (b, a) ∈ R we say that the conflict between a and b is explicit,
otherwise the conflict is called implicit (with respect to σ).

Notice that Definition 3 does not require a and b to be different arguments.
In particular, an argument that is not contained in any σ-extension is in conflict
with itself. This conflict is explicit if the argument is self-attacking and implicit
otherwise.

Definition 4. Given a semantics σ, an af F is called analytic for σ (or σ-
analytic) if all conflicts of F for σ are explicit in F . The set of all analytic
argumentation frameworks for σ is denoted by XAFσ.

Example 3. As a simple example consider the af F2 from the introduction,
depicted in Figure 2. For σ ∈ {stb, prf, sem, stg} we have σ(F2) = {{a, d}, {b, c}}.
Observe that there is an implicit conflict between arguments c and d, denoted by
a dashed line in Figure 2. Hence F2 is not σ-analytic, i.e. F2 /∈ XAFσ. Observe
however that nai(F2) = σ(F2) ∪ {{c, d}}, which means that F2 is analytic for
naive semantics. ♦

As indicated in Example 3 the sets of analytic afs can differ for different
semantics. Again, well-known relations between the extensions of certain se-
mantics allow us to obtain ⊆-relations between classes of analytic afs.

Lemma 3. For any two semantics σ and θ such that for each af F , for every
S ∈ σ(F) there is some S′ ∈ θ(F) with S ⊆ S′, we have XAFσ ⊆ XAFθ.

Proof. Let F ∈ XAFσ and let there be a conflict between arguments a, b ∈ AF
for θ, i.e. (a, b) /∈ Pairsθ(F). Now since for every S ∈ σ(F) there is some
S′ ∈ θ(F) with S ⊆ S′ it follows that Pairsσ(F) ⊆ Pairsθ(F). Hence also
(a, b) /∈ Pairsσ(F). By the assumption that F ∈ XAFσ we know that there is an
attack a�F b or b�F a, hence also F ∈ XAFθ.

Similarly as for compact afs, observe that every symmetric and irreflexive
(i.e. no self-attacking arguments) af is contained in XAFσ for all semantics
under consideration.

The next result provides a full picture of the relations between classes of
analytic afs for the semantics we consider (see also Figure 7). We will frequently
use Lemma 3, with either the exact condition or the special case σ(F) ⊆ θ(F).

13

XAFnai

XAFprfXAFsem

XAFstb

XAFstg

⊂
⊂

⊂

⊂ ⊂

Figure 7: Relations between classes of analytic afs (cf. Theorem 4).

Figure 8: af F with F ∈ XAFσ for σ ∈ {prf, sem, stg} and F 6∈ XAFstb.

Theorem 4. The following relations hold:

1. XAFstb ⊂ XAFσ ⊂ XAFnai for σ ∈ {prf, sem, stg};
2. XAFsem ⊂ XAFprf;

3. XAFstg 6⊆ XAFθ and XAFθ 6⊆ XAFstg for θ ∈ {prf, sem}.

Proof. (1) Let σ ∈ {prf, sem, stg}. The ⊆-relations are due to Lemma 3 together
with following facts: (a) in any af F , stb(F) ⊆ σ(F); (b) each σ-extension E of
an af F is conflict-free in F , thus there exists a naive extension E′ of F with
E ⊆ E′.

XAFσ ⊂ XAFnai: The af in Figure 2 is, as discussed in Example 3, nai-
analytic but not σ-analytic.

XAFstb ⊂ XAFσ: Consider the af F from Figure 8. It contains sev-
eral kinds of complete subframeworks, in the sense that each member of such
a subframework attacks each other member. Two complete subframeworks
of nine arguments ({ri, ui, xi | 1 ≤ i ≤ 3} and {si, vi, yi | 1 ≤ i ≤ 3})
and three complete subframeworks of six arguments ({ri, si | 1 ≤ i ≤ 3},
{ui, vi | 1 ≤ i ≤ 3} and {xi, yi | 1 ≤ i ≤ 3}). Further there are three directed
three-cycles (among {ai | 1 ≤ i ≤ 3}, {bi | 1 ≤ i ≤ 3} and {ci | 1 ≤ i ≤ 3}),

14

arg(a1).

arg(a2).

arg(a3).

arg(b1).

arg(b2).

arg(b3).

arg(c1).

arg(c2).

arg(c3).

arg(r1).

arg(r2).

arg(r3).

arg(s1).

arg(s2).

arg(s3).

arg(u1).

arg(u2).

arg(u3).

arg(v1).

arg(v2).

arg(v3).

arg(x1).

arg(x2).

arg(x3).

arg(y1).

arg(y2).

arg(y3).

att(a1,a2).

att(a2,a3).

att(a3,a1).

att(b1,b2).

att(b2,b3).

att(b3,b1).

att(c1,c2).

att(c2,c3).

att(c3,c1).

att(r1,r2).

att(r1,r3).

att(r2,r1).

att(r2,r3).

att(r3,r1).

att(r3,r2).

att(s1,s2).

att(s1,s3).

att(s2,s1).

att(s2,s3).

att(s3,s1).

att(s3,s2).

att(u1,u2).

att(u1,u3).

att(u2,u1).

att(u2,u3).

att(u3,u1).

att(u3,u2).

att(v1,v2).

att(v1,v3).

att(v2,v1).

att(v2,v3).

att(v3,v1).

att(v3,v2).

att(x1,x2).

att(x1,x3).

att(x2,x1).

att(x2,x3).

att(x3,x1).

att(x3,x2).

att(y1,y2).

att(y1,y3).

att(y2,y1).

att(y2,y3).

att(y3,y1).

att(y3,y2).

att(r1,u1).

att(r1,u2).

att(r1,u3).

att(r2,u1).

att(r2,u2).

att(r2,u3).

att(r3,u1).

att(r3,u2).

att(r3,u3).

att(r1,x1).

att(r1,x2).

att(r1,x3).

att(r2,x1).

att(r2,x2).

att(r2,x3).

att(r3,x1).

att(r3,x2).

att(r3,x3).

att(r1,s1).

att(r1,s2).

att(r1,s3).

att(r2,s1).

att(r2,s2).

att(r2,s3).

att(r3,s1).

att(r3,s2).

att(r3,s3).

att(u1,r1).

att(u1,r2).

att(u1,r3).

att(u2,r1).

att(u2,r2).

att(u2,r3).

att(u3,r1).

att(u3,r2).

att(u3,r3).

att(u1,x1).

att(u1,x2).

att(u1,x3).

att(u2,x1).

att(u2,x2).

att(u2,x3).

att(u3,x1).

att(u3,x2).

att(u3,x3).

att(u1,v1).

att(u1,v2).

att(u1,v3).

att(u2,v1).

att(u2,v2).

att(u2,v3).

att(u3,v1).

att(u3,v2).

att(u3,v3).

att(x1,r1).

att(x1,r2).

att(x1,r3).

att(x2,r1).

att(x2,r2).

att(x2,r3).

att(x3,r1).

att(x3,r2).

att(x3,r3).

att(x1,u1).

att(x1,u2).

att(x1,u3).

att(x2,u1).

att(x2,u2).

att(x2,u3).

att(x3,u1).

att(x3,u2).

att(x3,u3).

att(x1,y1).

att(x1,y2).

att(x1,y3).

att(x2,y1).

att(x2,y2).

att(x2,y3).

att(x3,y1).

att(x3,y2).

att(x3,y3).

att(s1,r1).

att(s1,r2).

att(s1,r3).

att(s2,r1).

att(s2,r2).

att(s2,r3).

att(s3,r1).

att(s3,r2).

att(s3,r3).

att(s1,v1).

att(s1,v2).

att(s1,v3).

att(s2,v1).

att(s2,v2).

att(s2,v3).

att(s3,v1).

att(s3,v2).

att(s3,v3).

att(s1,y1).

att(s1,y2).

att(s1,y3).

att(s2,y1).

att(s2,y2).

att(s2,y3).

att(s3,y1).

att(s3,y2).

att(s3,y3).

att(v1,u1).

att(v1,u2).

att(v1,u3).

att(v2,u1).

att(v2,u2).

att(v2,u3).

att(v3,u1).

att(v3,u2).

att(v3,u3).

att(v1,s1).

att(v1,s2).

att(v1,s3).

att(v2,s1).

att(v2,s2).

att(v2,s3).

att(v3,s1).

att(v3,s2).

att(v3,s3).

att(v1,y1).

att(v1,y2).

att(v1,y3).

att(v2,y1).

att(v2,y2).

att(v2,y3).

att(v3,y1).

att(v3,y2).

att(v3,y3).

att(y1,x1).

att(y1,x2).

att(y1,x3).

att(y2,x1).

att(y2,x2).

att(y2,x3).

att(y3,x1).

att(y3,x2).

att(y3,x3).

att(y1,s1).

att(y1,s2).

att(y1,s3).

att(y2,s1).

att(y2,s2).

att(y2,s3).

att(y3,s1).

att(y3,s2).

att(y3,s3).

att(y1,v1).

att(y1,v2).

att(y1,v3).

att(y2,v1).

att(y2,v2).

att(y2,v3).

att(y3,v1).

att(y3,v2).

att(y3,v3).

att(r1,a2).

att(r1,a3).

att(r2,a1).

att(r2,a3).

att(r3,a1).

att(r3,a2).

att(u1,b2).

att(u1,b3).

att(u2,b1).

att(u2,b3).

att(u3,b1).

att(u3,b2).

att(x1,c2).

att(x1,c3).

att(x2,c1).

att(x2,c3).

att(x3,c1).

att(x3,c2).

att(s1,a2).

att(s1,a3).

att(s2,a1).

att(s2,a3).

att(s3,a1).

att(s3,a2).

att(v1,b2).

att(v1,b3).

att(v2,b1).

att(v2,b3).

att(v3,b1).

att(v3,b2).

att(y1,c2).

att(y1,c3).

att(y2,c1).

att(y2,c3).

att(y3,c1).

att(y3,c2).

Figure 9: af F with F ∈ XAFprf and F 6∈ XAFσ for σ ∈ {stb, sem, stg}.

and each argument from the complete subframeworks attacks exactly two ar-
guments from one three-cycle, effectively activating the third one. Now ob-
serve that we have stb(F) = ∅, as at least one argument of ai, bi, ci remains
out of range due to conflict-freeness, i.e. a conflict-free set in F can have
only one argument from each complete nine-component and thus leaves at
least one of the three-cycles unattacked. Therefore there is an implicit con-
flict for stb for every pair of non-attacking arguments, hence F /∈ XAFstb.
On the other hand we have prf(F) = sem(F) = {{ri, vj , ai, bj}, {si, uj , ai, bj},
{ri, yj , ai, cj}, {si, xj , ai, cj}, {ui, yj , bi, cj}, {vi, xj , bi, cj} | 1 ≤ i, j ≤ 3} and
stg(F) = {{ri, vj , ai, bj , ck}, {si, uj , ai, bj , ck}, {ri, yj , ai, cj , bk}, {si, xj , ai, cj , bk},
{ui, yj , bi, cj , ak}, {vi, xj , bi, cj , ak} | 1 ≤ i, j, k ≤ 3}, which allows to verify that
all conflicts for σ are explicit in F , hence F ∈ XAFσ.

(2) By Lemma 3 we get XAFsem ⊆ XAFprf. In order to obtain properness of this
relation consider the af F from Figure 9 and define a cyclic successor function
s as s(1) = 2, s(2) = 3, s(3) = 1, and s(4) = 5, s(5) = 6, s(6) = 4. We have
sem(F) = {{xi, yj , zs(i), zs(j)} | i ∈ {1, 2, 3}, j ∈ {4, 5, 6} or i ∈ {4, 5, 6}, j ∈
{1, 2, 3}}, yielding plenty of implicit conflicts, e.g. between xi and yi. Hence F
is not analytic for semi-stable semantics. We further define s({i}) = s(i) and for
s(i) = j also s({i, j}) = s(j). Now on the other hand we have prf(F) = sem(F)∪
{{xi, yj , zs({i,j})} | i, j ∈ {1, 2, 3} or i, j ∈ {4, 5, 6}}, witnessing F ∈ XAFprf.
(3) XAFstg 6⊆ XAFσ: Consider a directed cycle of five arguments F , AF =
{x1, x2, x3, x4, x5} andRF = {(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x1)}. Here
we have stg(F) = {{x1, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}} and thus F ∈
XAFstg. On the other hand sem(F) = prf(F) = {∅}, marking all pairs of
arguments as being in conflict and thus for instance the conflict between x1 and
x3 is implicit for prf and sem (and also stb).

XAFprf 6⊆ XAFstg: The af F in Figure 9 is, as argued in (2), explicit for
prf, but not for sem. However, it holds that stg(F) = sem(F), hence also
F /∈ XAFstg.

XAFsem 6⊆ XAFstg: As witness of XAFsem 6⊆ XAFstg consider the af F from
Figure 10. This af is composed of two subframeworks, FX from Figure 8 and
FC from Figure 6b, and a connecting interface consisting of argument x̄ and

15

arg(x1).

arg(x2).

arg(x3).

arg(x4).

arg(x5).

arg(x6).

arg(y1).

arg(y2).

arg(y3).

arg(y4).

arg(y5).

arg(y6).

arg(z1).

arg(z2).

arg(z3).

arg(z4).

arg(z5).

arg(z6).

att(x1,x2).

att(x1,x3).

att(x1,x4).

att(x1,x5).

att(x1,x6).

att(x2,x1).

att(x2,x3).

att(x2,x4).

att(x2,x5).

att(x2,x6).

att(x3,x1).

att(x3,x2).

att(x3,x4).

att(x3,x5).

att(x3,x6).

att(x4,x1).

att(x4,x2).

att(x4,x3).

att(x4,x5).

att(x4,x6).

att(x5,x1).

att(x5,x2).

att(x5,x3).

att(x5,x4).

att(x5,x6).

att(x6,x1).

att(x6,x2).

att(x6,x3).

att(x6,x4).

att(x6,x5).

att(y1,y2).

att(y1,y3).

att(y1,y4).

att(y1,y5).

att(y1,y6).

att(y2,y1).

att(y2,y3).

att(y2,y4).

att(y2,y5).

att(y2,y6).

att(y3,y1).

att(y3,y2).

att(y3,y4).

att(y3,y5).

att(y3,y6).

att(y4,y1).

att(y4,y2).

att(y4,y3).

att(y4,y5).

att(y4,y6).

att(y5,y1).

att(y5,y2).

att(y5,y3).

att(y5,y4).

att(y5,y6).

att(y6,y1).

att(y6,y2).

att(y6,y3).

att(y6,y4).

att(y6,y5).

att(z1,z2).

att(z2,z3).

att(z3,z1).

att(z4,z5).

att(z5,z6).

att(z6,z4).

att(x1,z1).

att(y1,z1).

att(x2,z2).

att(y2,z2).

att(x3,z3).

att(y3,z3).

att(x4,z4).

att(y4,z4).

att(x5,z5).

att(y5,z5).

att(x6,z6).

att(y6,z6).

Figure 10: af F with F ∈ XAFsem for F 6∈ XAFstg. Here FX refers to the af from Figure 8
and x̄ is in a symmetric attack relationship with all arguments from FX .

its counterpart set Y = {s̄i, t̄i, ūi | i ∈ {1, 2, 3}}. There are symmetric attacks
between the members ᾱ of Y and their counterparts α from FC , between x̄ and
all members of Y , and between x̄ and all arguments from FX .

A key ingredient to this construction is that both, FC and FX , on their
own do not provide stable extensions and thus at least one argument remains
out of range for any stage or semi-stable extension. In addition observe that
FX is compact for both semi-stable and stage, while FC is compact only for
semi-stable, where a is the argument that does not occur in any S ∈ stg(FC).

Considering range-maximal (conflict-free or admissible) sets for F we first
distinguish between sets S in relation to the argument x̄. In case x̄ ∈ S we have
that all arguments from FX are in range, Y is attacked and thus FC needs to
be evaluated on its own. In case x̄ 6∈ S, wlog. assume Y ⊆ S and a, x5 ∈ S,
we have that all of FC and Y are in range, x̄ is attacked and FX needs to be
evaluated on its own. This means that either some argument from FC or some
argument from FX remains out of range of any semi-stable or stage extension
in F and thus stb(F) = ∅. On a sidenote observe that for very similar reasons
F is compact for both, semi-stable and stage semantics.

Recall that FC is compact for semi-stable, but not for stage (cf. Theorem 2).
This immediately means that for stage semantics there is an implicit conflict
between x̄ and FC (argument a to be precise). This also means that for semi-
stable semantics there are no implicit conflicts between x̄ and any argument
from FC .

It remains to show that F indeed is analytic for semi-stable semantics. To
this end we still need to investigate possible implicit conflicts between FX and
Y , between FC and Y , as well as between FX and FC , and among arguments
from FC , as well as among arguments from Y .

As mentioned before the range of any semi-stable extension will cover Y and

16

arg(a).arg(b).arg(c).

arg(s1).arg(s2).arg(s3).

arg(t1).arg(t2).arg(t3).

arg(u1).arg(u2).arg(u3).

arg(x1).arg(x2).arg(x3).arg(x4).

arg(x5).arg(x6).arg(x7).

arg(xbar).

arg(s1bar).

arg(s2bar).

arg(s3bar).

arg(t1bar).

arg(t2bar).

arg(t3bar).

arg(u1bar).

arg(u2bar).

arg(u3bar).

arg(fx_a1).

arg(fx_a2).

arg(fx_a3).

arg(fx_b1).

arg(fx_b2).

arg(fx_b3).

arg(fx_c1).

arg(fx_c2).

arg(fx_c3).

arg(fx_r1).

arg(fx_r2).

arg(fx_r3).

arg(fx_s1).

arg(fx_s2).

arg(fx_s3).

arg(fx_u1).

arg(fx_u2).

arg(fx_u3).

arg(fx_v1).

arg(fx_v2).

arg(fx_v3).

arg(fx_x1).

arg(fx_x2).

arg(fx_x3).

arg(fx_y1).

arg(fx_y2).

arg(fx_y3).

att(s1,s2).att(s2,s3).att(s3,s1).

att(t1,t2).att(t2,t3).att(t3,t1).

att(u1,u2).att(u2,u3).att(u3,u1).

att(a,b).att(b,a).

att(a,c).

att(s1,c).att(s2,c).att(s3,c).

att(b,t1).att(b,t2).att(b,t3).

att(x1,a).att(x1,b).

att(x1,t3).att(x1,s3).

att(x2,a).att(x2,b).

att(x2,t1).att(x2,s1).

att(x3,a).att(x3,b).

att(x3,t2).att(x3,s2).

att(x4,a).att(x4,b).

att(x4,t1).att(x4,t2).att(x4,t3).

att(x4,s1).att(x4,s2).att(x4,s3).

att(x5,u3).

att(x6,u1).

att(x7,u2).

att(x1,x2).

att(x2,x1).

att(x1,x3).

att(x3,x1).

att(x1,x4).

att(x4,x1).

att(x1,x5).

att(x5,x1).

att(x1,x6).

att(x6,x1).

att(x1,x7).

att(x7,x1).

att(x2,x3).

att(x3,x2).

att(x2,x4).

att(x4,x2).

att(x2,x5).

att(x5,x2).

att(x2,x6).

att(x6,x2).

att(x2,x7).

att(x7,x2).

att(x3,x4).

att(x4,x3).

att(x3,x5).

att(x5,x3).

att(x3,x6).

att(x6,x3).

att(x3,x7).

att(x7,x3).

att(x4,x5).

att(x5,x4).

att(x4,x6).

att(x6,x4).

att(x4,x7).

att(x7,x4).

att(x5,x6).

att(x6,x5).

att(x5,x7).

att(x7,x5).

att(x6,x7).

att(x7,x6).

att(xbar,s1bar).att(s1bar,xbar).

att(xbar,s2bar).att(s2bar,xbar).

att(xbar,s3bar).att(s3bar,xbar).

att(xbar,t1bar).att(t1bar,xbar).

att(xbar,t2bar).att(t2bar,xbar).

att(xbar,t3bar).att(t3bar,xbar).

att(xbar,u1bar).att(u1bar,xbar).

att(xbar,u2bar).att(u2bar,xbar).

att(xbar,u3bar).att(u3bar,xbar).

att(s1,s1bar).att(s1bar,s1).

att(s2,s2bar).att(s2bar,s2).

att(s3,s3bar).att(s3bar,s3).

att(t1,t1bar).att(t1bar,t1).

att(t2,t2bar).att(t2bar,t2).

att(t3,t3bar).att(t3bar,t3).

att(u1,u1bar).att(u1bar,u1).

att(u2,u2bar).att(u2bar,u2).

att(u3,u3bar).att(u3bar,u3).

att(xbar,fx_a1).att(xbar,fx_a2).att(xbar,fx_a3).att(xbar,fx_b1).

att(xbar,fx_b2).att(xbar,fx_b3).att(xbar,fx_c1).att(xbar,fx_c2).

att(xbar,fx_c3).att(xbar,fx_r1).att(xbar,fx_r2).att(xbar,fx_r3).

att(xbar,fx_s1).att(xbar,fx_s2).att(xbar,fx_s3).att(xbar,fx_u1).

att(xbar,fx_u2).att(xbar,fx_u3).att(xbar,fx_v1).att(xbar,fx_v2).

att(xbar,fx_v3).att(xbar,fx_x1).att(xbar,fx_x2).att(xbar,fx_x3).

att(xbar,fx_y1).att(xbar,fx_y2).att(xbar,fx_y3).

att(fx_a1,xbar).att(fx_a2,xbar).att(fx_a3,xbar).att(fx_b1,xbar).

att(fx_b2,xbar).att(fx_b3,xbar).att(fx_c1,xbar).att(fx_c2,xbar).

att(fx_c3,xbar).att(fx_r1,xbar).att(fx_r2,xbar).att(fx_r3,xbar).

att(fx_s1,xbar).att(fx_s2,xbar).att(fx_s3,xbar).att(fx_u1,xbar).

att(fx_u2,xbar).att(fx_u3,xbar).att(fx_v1,xbar).att(fx_v2,xbar).

att(fx_v3,xbar).att(fx_x1,xbar).att(fx_x2,xbar).att(fx_x3,xbar).

att(fx_y1,xbar).att(fx_y2,xbar).att(fx_y3,xbar).

att(fx_a1,fx_a2).

att(fx_a2,fx_a3).

att(fx_a3,fx_a1).

att(fx_b1,fx_b2).

att(fx_b2,fx_b3).

att(fx_b3,fx_b1).

att(fx_c1,fx_c2).

att(fx_c2,fx_c3).

att(fx_c3,fx_c1).

att(fx_r1,fx_r2).

att(fx_r1,fx_r3).

att(fx_r2,fx_r1).

att(fx_r2,fx_r3).

att(fx_r3,fx_r1).

att(fx_r3,fx_r2).

att(fx_s1,fx_s2).

att(fx_s1,fx_s3).

att(fx_s2,fx_s1).

att(fx_s2,fx_s3).

att(fx_s3,fx_s1).

att(fx_s3,fx_s2).

att(fx_u1,fx_u2).

att(fx_u1,fx_u3).

att(fx_u2,fx_u1).

att(fx_u2,fx_u3).

att(fx_u3,fx_u1).

att(fx_u3,fx_u2).

att(fx_v1,fx_v2).

att(fx_v1,fx_v3).

att(fx_v2,fx_v1).

att(fx_v2,fx_v3).

att(fx_v3,fx_v1).

att(fx_v3,fx_v2).

att(fx_x1,fx_x2).

att(fx_x1,fx_x3).

att(fx_x2,fx_x1).

att(fx_x2,fx_x3).

att(fx_x3,fx_x1).

att(fx_x3,fx_x2).

att(fx_y1,fx_y2).

att(fx_y1,fx_y3).

att(fx_y2,fx_y1).

att(fx_y2,fx_y3).

att(fx_y3,fx_y1).

att(fx_y3,fx_y2).

att(fx_r1,fx_u1).

att(fx_r1,fx_u2).

att(fx_r1,fx_u3).

att(fx_r2,fx_u1).

att(fx_r2,fx_u2).

att(fx_r2,fx_u3).

att(fx_r3,fx_u1).

att(fx_r3,fx_u2).

att(fx_r3,fx_u3).

att(fx_r1,fx_x1).

att(fx_r1,fx_x2).

att(fx_r1,fx_x3).

att(fx_r2,fx_x1).

att(fx_r2,fx_x2).

att(fx_r2,fx_x3).

att(fx_r3,fx_x1).

att(fx_r3,fx_x2).

att(fx_r3,fx_x3).

att(fx_r1,fx_s1).

att(fx_r1,fx_s2).

att(fx_r1,fx_s3).

att(fx_r2,fx_s1).

att(fx_r2,fx_s2).

att(fx_r2,fx_s3).

att(fx_r3,fx_s1).

att(fx_r3,fx_s2).

att(fx_r3,fx_s3).

att(fx_u1,fx_r1).

att(fx_u1,fx_r2).

att(fx_u1,fx_r3).

att(fx_u2,fx_r1).

att(fx_u2,fx_r2).

att(fx_u2,fx_r3).

att(fx_u3,fx_r1).

att(fx_u3,fx_r2).

att(fx_u3,fx_r3).

att(fx_u1,fx_x1).

att(fx_u1,fx_x2).

att(fx_u1,fx_x3).

att(fx_u2,fx_x1).

att(fx_u2,fx_x2).

att(fx_u2,fx_x3).

att(fx_u3,fx_x1).

att(fx_u3,fx_x2).

att(fx_u3,fx_x3).

att(fx_u1,fx_v1).

att(fx_u1,fx_v2).

att(fx_u1,fx_v3).

att(fx_u2,fx_v1).

att(fx_u2,fx_v2).

att(fx_u2,fx_v3).

att(fx_u3,fx_v1).

att(fx_u3,fx_v2).

att(fx_u3,fx_v3).

att(fx_x1,fx_r1).

att(fx_x1,fx_r2).

att(fx_x1,fx_r3).

att(fx_x2,fx_r1).

att(fx_x2,fx_r2).

att(fx_x2,fx_r3).

att(fx_x3,fx_r1).

att(fx_x3,fx_r2).

att(fx_x3,fx_r3).

att(fx_x1,fx_u1).

att(fx_x1,fx_u2).

att(fx_x1,fx_u3).

att(fx_x2,fx_u1).

att(fx_x2,fx_u2).

att(fx_x2,fx_u3).

att(fx_x3,fx_u1).

att(fx_x3,fx_u2).

att(fx_x3,fx_u3).

att(fx_x1,fx_y1).

att(fx_x1,fx_y2).

att(fx_x1,fx_y3).

att(fx_x2,fx_y1).

att(fx_x2,fx_y2).

att(fx_x2,fx_y3).

att(fx_x3,fx_y1).

att(fx_x3,fx_y2).

att(fx_x3,fx_y3).

att(fx_s1,fx_r1).

att(fx_s1,fx_r2).

att(fx_s1,fx_r3).

att(fx_s2,fx_r1).

att(fx_s2,fx_r2).

att(fx_s2,fx_r3).

att(fx_s3,fx_r1).

att(fx_s3,fx_r2).

att(fx_s3,fx_r3).

att(fx_s1,fx_v1).

att(fx_s1,fx_v2).

att(fx_s1,fx_v3).

att(fx_s2,fx_v1).

att(fx_s2,fx_v2).

att(fx_s2,fx_v3).

att(fx_s3,fx_v1).

att(fx_s3,fx_v2).

att(fx_s3,fx_v3).

att(fx_s1,fx_y1).

att(fx_s1,fx_y2).

att(fx_s1,fx_y3).

att(fx_s2,fx_y1).

att(fx_s2,fx_y2).

att(fx_s2,fx_y3).

att(fx_s3,fx_y1).

att(fx_s3,fx_y2).

att(fx_s3,fx_y3).

att(fx_v1,fx_u1).

att(fx_v1,fx_u2).

att(fx_v1,fx_u3).

att(fx_v2,fx_u1).

att(fx_v2,fx_u2).

att(fx_v2,fx_u3).

att(fx_v3,fx_u1).

att(fx_v3,fx_u2).

att(fx_v3,fx_u3).

att(fx_v1,fx_s1).

att(fx_v1,fx_s2).

att(fx_v1,fx_s3).

att(fx_v2,fx_s1).

att(fx_v2,fx_s2).

att(fx_v2,fx_s3).

att(fx_v3,fx_s1).

att(fx_v3,fx_s2).

att(fx_v3,fx_s3).

att(fx_v1,fx_y1).

att(fx_v1,fx_y2).

att(fx_v1,fx_y3).

att(fx_v2,fx_y1).

att(fx_v2,fx_y2).

att(fx_v2,fx_y3).

att(fx_v3,fx_y1).

att(fx_v3,fx_y2).

att(fx_v3,fx_y3).

att(fx_y1,fx_x1).

att(fx_y1,fx_x2).

att(fx_y1,fx_x3).

att(fx_y2,fx_x1).

att(fx_y2,fx_x2).

att(fx_y2,fx_x3).

att(fx_y3,fx_x1).

att(fx_y3,fx_x2).

att(fx_y3,fx_x3).

att(fx_y1,fx_s1).

att(fx_y1,fx_s2).

att(fx_y1,fx_s3).

att(fx_y2,fx_s1).

att(fx_y2,fx_s2).

att(fx_y2,fx_s3).

att(fx_y3,fx_s1).

att(fx_y3,fx_s2).

att(fx_y3,fx_s3).

att(fx_y1,fx_v1).

att(fx_y1,fx_v2).

att(fx_y1,fx_v3).

att(fx_y2,fx_v1).

att(fx_y2,fx_v2).

att(fx_y2,fx_v3).

att(fx_y3,fx_v1).

att(fx_y3,fx_v2).

att(fx_y3,fx_v3).

att(fx_r1,fx_a2).

att(fx_r1,fx_a3).

att(fx_r2,fx_a1).

att(fx_r2,fx_a3).

att(fx_r3,fx_a1).

att(fx_r3,fx_a2).

att(fx_u1,fx_b2).

att(fx_u1,fx_b3).

att(fx_u2,fx_b1).

att(fx_u2,fx_b3).

att(fx_u3,fx_b1).

att(fx_u3,fx_b2).

att(fx_x1,fx_c2).

att(fx_x1,fx_c3).

att(fx_x2,fx_c1).

att(fx_x2,fx_c3).

att(fx_x3,fx_c1).

att(fx_x3,fx_c2).

att(fx_s1,fx_a2).

att(fx_s1,fx_a3).

att(fx_s2,fx_a1).

att(fx_s2,fx_a3).

att(fx_s3,fx_a1).

att(fx_s3,fx_a2).

att(fx_v1,fx_b2).

att(fx_v1,fx_b3).

att(fx_v2,fx_b1).

att(fx_v2,fx_b3).

att(fx_v3,fx_b1).

att(fx_v3,fx_b2).

att(fx_y1,fx_c2).

att(fx_y1,fx_c3).

att(fx_y2,fx_c1).

att(fx_y2,fx_c3).

att(fx_y3,fx_c1).

att(fx_y3,fx_c2).

x̄ and either all of FC or all of FX . We start with extensions S with Y ⊆ S
and thus x̄ /∈ S and, wlog. fix the evaluation of FX and consider some arbitrary
SX ∈ sem(FX). First observe that this immediately means that Y does not
contain any conflicts and, due to FX being compact, there are also no conflicts
between Y and FX . As Y ∪ SX ∪ {c, xi} ∈ sem(F) for i ∈ {1, 2, 3, 4}, and for
i ∈ {5, 6, 7} also Y ∪SX∪{a, xi} ∈ sem(F) as well as Y ∪SX∪{b, c, xi} ∈ sem(F),
there are no conflicts between Y and a, b, c, x1 . . . x7, between c and b, x1 . . . x7,
or between a, b and x5, x6, x7.

We now investigate extensions S ∈ sem(F) that contain gradually less ar-
guments from Y . In the following we will omit certain xi from extensions, due
to in FC explicit conflicts, for instance x2 as well as x4 attack s1 and t1. For
(Y \ {s̄1} ∪ {s1}) ⊆ S we can have xi ∈ S for i ∈ {1, 3}, and for i ∈ {5, 6, 7} on
the other hand xi, a ∈ S or xi, b ∈ S. For (Y \ {t̄1} ∪ {t1}) ⊆ S we can have
xi, c ∈ S for i ∈ {1, 3}, or for i ∈ {5, 6, 7} on the other hand xi, a ∈ S. For
(Y \ {ū1} ∪ {u1}) ⊆ S we can have xi, a ∈ S or xi, b, c ∈ S for i ∈ {5, 7}, or
for i ∈ {1, 2, 3, 4} on the other hand xi, c ∈ S. Hence for symmetry reasons for
i ∈ {1, 2, 3} there are no implicit conflicts between arguments si, ti, ui on the one
side and on the other side Y and arguments a, b, c, xj for j ∈ {1, 2 . . . 7}. Here
we can already conclude that there are no implicit but only explicit conflicts
between FC and Y in F .

For i, j, k ∈ {1, 2, 3} fixed and SY = Y \ {s̄i, t̄j , ūk} we have that SX ∪ SY ∪
{si, tj , uk, xi} ∈ sem(F). This means that there are no conflicts between si, tj
and uk, and subsequently that the subframework FC does not have any implicit
conflicts in F .

Now finally, as elaborated on, each argument from FC can appear in semi-
stable extensions S of F that do not contain x̄ and thus contain some arbitrary
FX -extension SX . This means that there are no conflicts between FC and
FX , which closes the gaps and shows that F indeed is analytic for semi-stable
semantics.

3.3. Relations between Compact and Analytic Frameworks

In the previous two subsections we have separately investigated relations
between semantics for compact and analytic afs respectively. It looks like the
relations (Theorems 2 and 4) are not only similar but indeed equal. The question
why we looked at the different classes of afs separately and whether the equal
subset relations are based on stronger similarities must be answered two-fold.

On the one hand the examples used for the different proofs share exploitation
of similar properties for each semantics considered, and for instance Figure 10
actually builds upon fine-tuned relations between the properties of being com-
pact or analytic. On the other hand in fact not a single example could be used in
the other subsection. The compact afs are not analytic or the analytic afs are
not compact. In what follows we draw some relations between the two classes.
We start with similarities as observed in self-loop free afs.

Proposition 5. For any F ∈ XAFσ that is self-loop free, F ∈ CAFσ (σ ∈ {nai,
stb, prf, sem, stg}).

17

Proof. Observe that in Definition 3 we allow arguments in conflict to be equal.
Hence for any semantics rejected arguments are in conflict with themselves,
and rejected arguments in analytic afs need to be self-attacking. If there is no
self-loop in some analytic af then naturally there is no rejected argument.

For naive semantics we can provide even stronger observations.

Proposition 6. For any self-loop free af F we have F ∈ CAFnai and F ∈
XAFnai.

Proof. Two self-loop free arguments where none is attacking the other form a
conflict-free set. Since we are dealing with finite sets only this immediately
means that there is a naive extension containing both arguments.

Proposition 7. CAFnai ⊂ XAFnai .

Proof. For an af F ∈ CAFnai it holds that F is self-loop free, hence F ∈ XAFnai

by Proposition 6. Properness is by the af ({a}, {(a, a)}), which is nai-analytic,
but not nai-compact.

However observe that still not every af is analytic for naive semantics. To
see this consider the af ({a, b}, {(a, a)}). Here {b} is the only naive extension,
which means that a and b share an implicit conflict.

Finally we conclude this subsection with an observation on the missing rela-
tions. That is, we provide reasons why except for naive semantics the properties
of being compact or analytic are sufficiently distinct, despite their similarities.

Proposition 8. For σ ∈ {stb, sem, prf, stg}, we have CAFσ 6⊆ XAFσ and
XAFσ 6⊆ CAFσ.

Proof. Consider the af from Figure 2. We have as σ-extensions {a, d} and
{b, c}. Hence the af is compact, but not analytic as the conflict between c and
d is implicit only, resulting in CAFσ 6⊆ XAFσ.

For XAFσ 6⊆ CAFσ consider the af ({a, b}, {(a, b), (b, b)}). This af consists
of one accepted and one rejected argument only. It is analytic but not compact.

4. Complexity

When aiming for the simplification of an af along the dimensions of re-
jected arguments and implicit conflicts the very first questions one has to face
is whether there are any rejected arguments or implicit conflicts, in other words
whether the af is already compact, analytic resp., or there is potential for sim-
plifications. That is, in the following we focus on the computational complexity
of the following problems for the semantics σ under consideration: (1) decide
whether a given af is σ-compact or not and (2) to decide whether a given af is
σ-analytic or not. Note that the first problem can also be stated as a decision
problem for fairness: given an af, does each argument appear in at least one

18

σ-extension? Further complexity issues for these two classes are mentioned at
the end of the section.

As being compact means that each argument must be credulously accepted,
this question is closely related to credulous reasoning (the decision problem
Credσ is defined by the question whether, given an af F and an argument
a, a is contained in at least one σ-extension of F , i.e. whether a ∈ Argsσ(F)

holds). Exploiting this observation we first give a generic upper bound for the
computational complexity.

Theorem 9. For any argumentation semantics σ, with Credσ ∈ C for a com-
plexity class C closed under conjunction4, we have that deciding whether an af
is compact for σ is in C.

Proof. By definition an af F = (A,R) is σ-compact if each a ∈ A is credulously
accepted w.r.t. σ. Hence to check whether F is compact we simply evaluate∧
a∈A Cred(F, a), which is only of linear size and by assumption can be evaluated

in C as well.

We have a similar observation for analytic frameworks, when employing com-
plexity results for Cred2

σ.

Theorem 10. For any argumentation semantics σ, with Cred2
σ ∈ C for a com-

plexity class C closed under conjunction, we have that deciding whether an af
is analytic for σ is in C.

Proof. By definition an af F = (A,R) is σ-analytic if each pair {a, b} ∈ A with
neither (a, b) ∈ R nor (b, a) ∈ R is credulously accepted w.r.t. σ. Hence to check
whether F is analytic for σ we simply conjoin all these tests (only polynomially
many), each of which can be done in C.

As P, NP and ΣP
2 are closed under conjunctions we obtain upper bounds for

all semantics under our considerations.
In particular, we have the following results for naive semantics.

Corollary 11. The following problems are in P:

1. Given af F , deciding whether F ∈ CAFnai;
2. Given af F , deciding whether F ∈ XAFnai.

Towards our generic hardness result we introduce the concept of SCC-splittable5

semantics. Recall that we write F|S as shorthand for (AF ∩ S,RF ∩ (S × S)).

Definition 5. A semantics σ is called SCC-splittable if there exists a function
GFσ : F × 2A → 2A, with F being the set of all afs over A, such that the
following holds for every af F = (A,R) ∈ F.

4A complexity class C is closed under conjunctions iff for any problem Γ ∈ C the problem
of deciding whether for a finite set of instances of Γ each of these instances is a yes-instance
is also in C.

5Here SCC refer to strongly connected component and reflects the fact that our notion of
SCC-splittable is inspired by the notion of SCC-recursiveness [1].

19

Figure 11: The af F ′ from the reduction in the proof of Theorem 13, for af F =
({a, b, c, x}, {(a, b), (b, x), (c, x)}).

• GFσ(F,A) = σ(F)

• If A = B ∪ C and R does not contain attacks from C to B then

σ(F) =
⋃

E∈GFσ(F|B ,B)

{E ∪ E′ | E′ ∈ GFσ(F|C\E+
F
, UCE)}

with UCE = {c ∈ C \ E+
F | ∀a ∈ B : (a, c) ∈ R→ a ∈ E+

F }.

Observe that the second item implies that each strongly connected compo-
nent of F is either included in B or C.

Splitting argumentation frameworks was studied in [6] where (among oth-
ers) splittings for stable and preferred semantics are presented. Although the
splitting theorem in [6] is not stated in terms of Definition 5 it immediately
gives a function GFσ with the desired properties. We need one more definition.

Definition 6. A semantics σ is called rational, if for any af F that is a clique
(i.e. F is of the form (A, {(a, b) | a, b ∈ A, a 6= b})) it holds that σ(F) = {{a} |
a ∈ AF }.

Proposition 12. Stable and preferred semantics are rational and SCC-splittable.

Next we give the generic hardness results for semantics that are rational and
SCC-splittable.

Theorem 13. For any rational SCC-splittable argumentation semantics σ de-
ciding whether an af is compact for σ is as hard as Credσ when restricted to
afs without self-attacks.

Proof. We reduce the problem Credσ to deciding whether an af is compact for
σ. That is given an instance F = (A,R), x ∈ A of Credσ we build the following
af F ′ = (A ∪A′, R ∪R′) with A′ = {ta | a ∈ A} and

R′ = {(ta, tb) | a, b ∈ A, a 6= b} ∪ {(ta, b) | a, b ∈ A, a 6= x, b 6= a}.

20

arg(a).
arg(b).
arg(c).
arg(x).

arg(ta).
arg(tb).
arg(tc).
arg(tx).

att(a,b).att(b,x).att(c,x).

att(ta,tb).att(ta,tc).att(ta,tx).
att(tb,ta).att(tb,tc).att(tb,tx).
att(tc,ta).att(tc,tb).att(tc,tx).
att(tx,ta).att(tx,tb).att(tx,tc).

att(ta,b).att(ta,c).att(ta,x).
att(tb,a).att(tb,c).att(tb,x).
att(tc,a).att(tc,b).att(tc,x).

Figure 12: The af F ′ from the reduction in the proof of Theorem 14, for af F =
({a, b, c}, {(a, b)}).

That is, we add a clique af CA = (A′, {(ta, tb) | a, b ∈ A, a 6= b}) of size |A|
and link it to the original framework as follows: The argument tx does not
attack any of the original arguments. All the other arguments ta attack all but
one of the original arguments and thus, as we discuss below, enforces that this
argument is credulously accepted. The construction is illustrated in Figure 11.

To prove the claim we have to show that x is credulously accepted in F iff
F ′ is σ-compact. First observe that the new arguments in F ′ form a SCC and
are not attacked by arguments from outside. As σ is SCC-splittable we can
evaluate F ′ as follows:

1. Compute the extensions of the clique CA.

2. For each such extension E of CA build the af F|A\E+

F ′
by removing all

arguments in E+
F ′ from F .

3. For each extension E′ ∈ GFσ(F|A\E+

F ′
, UAE) return E ∪ E′.

By assumption the extensions of CA are the singletons {ta}. First, consider
Ea = {ta} with a 6= x, then F|A\E+

F ′
= ({a}, {}) and UAE = {a}. We have

GFσ(F|A\E+

F ′
, UAE) = GFσ(({a}, {}), {a}) = σ(({a}, {})) = {a} (the latter is

since σ is rational). Thus for each a 6= x the set {ta, a} is a σ-extension of F ′.
Second, consider Ex = {tx}. Here F|A\E+

F ′
= F and UAE = A. Thus for each

E ⊆ A we have that E ∈ GFσ(F,A) = σ(F) iff {tx} ∪ E ∈ σ(F ′). Hence, x is
credulously accepted (w.r.t. σ) in F iff x is credulously accepted (w.r.t. σ) in
F ′ iff F ′ is σ-compact.

Theorem 14. For any rational SCC-splittable argumentation semantics σ de-
ciding whether an af is analytic for σ is as hard as deciding whether an af is
compact for σ. The result even holds if one knows that the af being tested for
being analytic is already compact.

Proof. We reduce the problem of deciding whether an af F is compact to de-
ciding whether F is analytic. That is given an instance F = (A,R) (we can
assume that F has no self-attacks as otherwise it is an immediate no-instance)

21

arg(a).
arg(b).
arg(c).

arg(tac).
arg(tbc).
arg(ta).
arg(tb).
arg(tc).
arg(t).

att(a,b).

att(tbc,tac).att(ta,tac).att(tb,tac).att(tc,tac).
att(t,tac).att(tac,tbc).att(ta,tbc).att(tb,tbc).
att(tc,tbc).att(t,tbc).att(tac,ta).att(tbc,ta).
att(tb,ta).att(tc,ta).att(t,ta).att(tac,tb).
att(tbc,tb).att(ta,tb).att(tc,tb).att(t,tb).
att(tac,tc).att(tbc,tc).att(ta,tc).att(tb,tc).
att(t,tc).att(tac,t).att(tbc,t).att(ta,t).
att(tb,t).att(tc,t).

att(tac,b).
att(tbc,a).
att(ta,b).att(ta,c).
att(tb,a).att(tb,c).
att(tc,a).att(tc,b).

we build the following af F ′ = (A ∪ A′, R ∪ R′) with A′ = {t} ∪ {t{a,b} | a, b ∈
A, (a, b) /∈ R, (b, a) /∈ R} and

R′ = {(t1, t2) | t1, t2 ∈ A′, t1 6= t2} ∪ {(t{a,b}, c) | t{a,b} ∈ A′, c ∈ A, a 6= c, b 6= c}.

That is we add a clique af C of size at most (|A|2 + |A|)/2 + 1 to F with a
distinguished element t and link it to the original framework as follows: The
argument t does not attack any of the original arguments. All the other argu-
ments t{a,b} attack all original arguments in F except a and b (note that a and
b are not necessarily distinct). The construction is illustrated in Figure 12.

To prove the claim we have to show that F is σ-compact iff F ′ is σ-analytic.
First observe that the new arguments in F ′ form a strongly connected compo-
nent (SCC) and are not attacked by arguments from outside. As σ is SCC-
splittable we can evaluate F ′ as follows:

1. Compute the extensions of the clique C.

2. For each such extension E of C build the af F|A\E+

F ′
by removing all

arguments in E+
F ′ from F .

3. For each extension E′ ∈ GFσ(F|A\E+

F ′
, UAE) return E ∪ E′.

By assumption that σ is rational we have σ(C) = {{t′} | t′ ∈ A′}. First consider
an extension E of the form {t{a,b}} and recall that then we have (a, b) /∈ R and
(b, a) /∈ R. Then F|A\E+

F ′
= ({a, b}, R ∩ {a, b} × {a, b}) = ({a, b}, {}). UAE =

{a, b}. We have GFσ(F|A\E+

F ′
, UAE) = GFσ(({a, b}, {}), {a, b}) = σ(({a, b}, {})) =

{{a, b}}.6 Thus for each a, b ∈ A such that (a, b) /∈ R and (b, a) /∈ R, the set
{t{a,b}, a, b} is a σ-extension of F ′. This already shows that for any pair (x, y) of
arguments in F ′ where x and y are different from the distinguished argument t
in C, we have that x, y are jointly contained in at least one σ-extension iff there
is no attack x� y or y � x in F ′. Now, consider E = {t}. Here F|A\E+

F ′
= F

and UAE = A. Thus for each E ⊆ A we have that E ∈ GFσ(F,A) = σ(F) iff
{t} ∪ E ∈ σ(F ′). Recall that there is no attack between t and arguments in F .
Now, F is σ-compact iff, for each a ∈ A, t occurs together with a in at least one
σ-extension of F ′. Together with our previous observation, we conclude that F
is σ-compact iff F ′ is σ-analytic.

Finally, as for each a ∈ A and t{a} = t{a,a} the set {t{a}, a} is credulously
accepted the af F ′ is compact.

From the generic results above we immediately get the complexity charac-
terization for stable and preferred semantics.

Corollary 15. The following problems are NP-complete for σ ∈ {stb, prf}.

1. Given af F , deciding whether F ∈ CAFσ;

6Notice that σ(({a, b}, {})) = {{a, b}} for each rational SCC-splittable argumentation se-
mantics σ.

22

2. Given af F , deciding whether F ∈ XAFσ; hardness already holds if the
problem is restricted to afs F ∈ CAFσ.

Proof. Recall that Credstb and Credprf are NP-complete [17] and that NP is
closed under conjuction. Membership thus follows from Theorems 9 and 10.
Furthermore, stb and prf are SCC-splittable [6] and rational. Theorems 13 and
14 thus give the matching hardness results.

Theorems 13 and 14 do not apply to stage and semi-stable semantics (as they
are not SCC-splittable). However we can extend the results to these semantics
by carefully adapting the ideas from the proofs of Theorem 13 and 14. The
main idea is still the same: we take the original af F and add a gadget of
arguments that attack certain arguments in F but whose arguments are not
attacked by arguments of F . Such a gadget (replacing the clique) has to satisfy
certain properties: (i) its evaluation is independent of F ; (ii) all arguments of
the gadget are credulously accepted; (iii) there are certain arguments selecting
a single argument, resp. a pair, of the original af for acceptance, by attacking
all the other arguments of the original af; (iv) the gadget for testing F ∈ CAF
does not affect the acceptance of the argument under question and in the gadget
for testing F ∈ XAF there is an argument t that maintains all extensions E of
F as extensions {t} ∪ E.

Theorem 16. Given af F :

1. Deciding whether F ∈ CAFstg is ΣP
2 -complete.

2. Deciding whether F ∈ CAFsem is ΣP
2 -complete.

We split the proof of Theorem 16 into several Lemmas. First, we have to
show that both problems can be solved in ΣP

2 .

Lemma 17 (Membership in ΣP
2). Both deciding whether F ∈ CAFstg and de-

ciding whether F ∈ CAFsem are in ΣP
2 .

Proof. The membership in ΣP
2 follows from the memberships of Credstg and

Credsem in ΣP
2 [26, 13] and Theorem 9.

For hardness we give a reduction that constructs an af F ′ given an af F
and an argument x. Although, this reduction will be used for both hardness
proofs we will apply it to different problems, i.e. Credstg and Credsem, to show
hardness for both stg and sem.

Reduction 1. Given an af F = (A,R) and x ∈ A we build the af F ′ =
(A ∪A′, R ∪R′) with

A′ = {ta | a ∈ A} ∪ {ty, tz} ∪ {h1, h2, h3}
R′ = {(ta, tb) | a, b ∈ A ∪ {y, z}, a 6= b} ∪ {(ta, b) | a ∈ A\{x}, b ∈ A\{a}}∪

{(h1, h2), (h2, h3), (h3, h1)} ∪ {(tx, h1), (ty, h2), (tz, h3)}

The construction is illustrated in Figure 13.

23

Figure 13: The af F ′ from Reduction 1, for af F = ({a, b, c, x}, {(a, b), (b, x), (c, x)}).

For both semantics we can assume that F has no self-attacks [26] and no
stable extension. To achieve the second we can add an odd length cycle to F
that is not connected to any other argument. This will guarantee that there is
no stable extension and does not affect credulous acceptance w.r.t. semi-stable
or stage semantics.

Lemma 18. Given an af F without self-attacks and stable extensions then
F ′ ∈ CAFstg iff (F, x) ∈ Credstg.

Proof. Below we will show that all arguments except x are always credulously
accepted in F ′ and that x is credulously accepted in F ′ iff x is credulously
accepted in F .

First, we show that each stage extension E contains at least one argument
from {ta | a ∈ A ∪ {y, z}}. Suppose that not, then ,as at most one of the
arguments h1, h2, h3 is contained in E, two of the sets E ∪ {tx}, E ∪ {ty},
E ∪ {tz} are conflict-free. Hence we have a contradiction to the maximality of
E. Further, as {ta | a ∈ A ∪ {y, z}} forms a clique in F we get that each stage
extension contains exactly one argument from the set.

Next we show that the ranges of naive sets E containing an argument from
{ta | a ∈ {x, y, z}} cannot be contained in the ranges of conflict-free sets E′ not
containing any of these arguments.

• If tx ∈ E then h1 is attacked by E and cannot be in E but is in the
range of E. Now as h2 gives the larger range than h3 we can conclude
that h2 ∈ E and {h1, h2, h3} ∈ E+

F ′ . By similar arguments we get that
{h1, h2, h3} ⊆ E+

F ′ if either ty ∈ E or tz ∈ E.

• If ta ∈ E′ with a 6∈ {x, y, z} then only one of {h1, h2, h3} can be contained
in E′ and thus at most two of them are in the range of E′.

We will next consider these two kinds of extensions separately.

24

arg(a).
arg(b).
arg(c).
arg(x).

arg(ta).
arg(tb).
arg(tc).
arg(tx).
arg(ty).
arg(tz).

arg(h1).
arg(h2).
arg(h3).

att(a,b).att(b,c).att(c,a).att(c,x).

att(tb,ta).att(tc,ta).att(tx,ta).att(ty,ta).
att(tz,ta).att(ta,tb).att(tc,tb).att(tx,tb).
att(ty,tb).att(tz,tb).att(ta,tc).att(tb,tc).
att(tx,tc).att(ty,tc).att(tz,tc).att(ta,tx).
att(tb,tx).att(tc,tx).att(ty,tx).att(tz,tx).
att(ta,ty).att(tb,ty).att(tc,ty).att(tx,ty).
att(tz,ty).att(ta,tz).att(tb,tz).att(tc,tz).
att(tx,tz).att(ty,tz).

att(h1,h2).att(h2,h3).att(h3,h1).

att(tx,h1).
att(ty,h2).
att(tz,h3).
att(ta,b).att(ta,c).att(ta,x).
att(tb,a).att(tb,c).att(tb,x).
att(tc,a).att(tc,b).att(tc,x).

• First, consider the sets E containing an argument from {ta | a ∈ {x, y, z}}.
By the above we have that either {tx, h2} ⊆ E, {ty, h3} ⊆ E, or {tz, h1} ⊆
E. All of these three sets have the same attacks to the remaining argu-
ments and thus we have that for each E′ ⊆ A, {tx, h2} ∪ E′ ∈ stg(F ′) iff
{ty, h3} ∪ E′ ∈ stg(F ′) iff {tz, h1} ∪ E′ ∈ stg(F ′). As at least for E′ = ∅
these sets are conflict-free this implies that the arguments {tx, ty, tz, h1, h2, h3}
are all credulously accepted in F ′.

Moreover, the set {tx, h2} does not attack any argument in A nor does A
have any outgoing attacks. Thus

(i) {tx, h2} ∪ E′ ∈ cf(F ′) iff E′ ∈ cf(F) and

(ii) as arguments in A do not attack arguments in A′ we have that
({tx, h2} ∪ E′)+F ′ = {tx, h2}+F ′ ∪ E′+F ′ and thus ({tx, h2} ∪ E′)+F ′ is
maximal when E′+F ′ is maximal.

Hence, {tx, h2}∪E′ ∈ stg(F ′) iff E′ ∈ stg(F) and x is credulously accepted
in F iff x is credulously accepted in F ′.

As, by assumption, F has no stable extension there cannot be an exten-
sion E containing an argument from {ta | a ∈ {x, y, z}} and having all
arguments A in its range.

• Second, consider the sets E containing an argument from {ta | a ∈ A \
{x}}. Now it is easy to verify that the sets {ta, a} for a ∈ A \ {x} are
conflict-free sets of F ′ and have maximal range among the sets containing
{ta | a ∈ A \ {x}}. In particular A is in the range of each of these
extensions, and as the extensions of the first type never have the whole set
A in their range (cf. first item) a set {ta, a} for a ∈ A\{x} is incomparable
to these extensions, i.e. {ta, a} is a stage extension. Hence, we have that
the arguments {a, ta | a ∈ A \ {x}} are credulously accepted. Moreover,
no extensions E′ with {ta | a ∈ A \ {x}} ∩ E 6= ∅ can contain x.

Finally, combining the above results, we have that all arguments in A′ except
x are credulously accepted in F ′ and x is credulously accepted in F ′ iff x is
credulously accepted in F iff F ′ is stg-compact.

Now, as Reduction 1 can be performed in polynomial-time and Credstg is
ΣP

2 -hard [26], Lemma 18 implies that deciding whether F ∈ CAFstg is ΣP
2 -hard.

Lemma 19. Given an af F without self-attacks and stable extensions then
F ′ ∈ CAFsem iff (F, x) ∈ Credsem.

The proof of the above lemma is very similar to the proof of Lemma 18 and
thus omitted here, but provided in Appendix B. Now, as Reduction 1 can be
performed in polynomial-time and Credsem is ΣP

2 -hard [26], Lemma 19 implies
that deciding whether F ∈ CAFstg is ΣP

2 -hard. This completes the proof of
Theorem 16.

Next, starting from Theorem 16 we can show that also deciding whether an
af is analytic for stage or semi-stable is ΣP

2 -complete.

25

Figure 14: The af F ′ from Reduction 2, for af F = ({a, b, c}, {(a, b)}).

Theorem 20. Given af F :

1. Deciding whether F ∈ XAFstg is ΣP
2 -complete.

2. Deciding whether F ∈ XAFsem is ΣP
2 -complete.

For both problems, hardness already holds if the problem is restricted to afs
F ∈ CAFσ.

We split the proof of Theorem 20 into several Lemmas, starting with showing
that both problems can be solved in ΣP

2 .

Lemma 21 (Membership in ΣP
2). Both deciding whether F ∈ XAFstg and de-

ciding whether F ∈ XAFsem are in ΣP
2 .

Proof. The membership in ΣP
2 follows from the memberships of Cred2

stg, Cred2
sem

in ΣP
2 [26, 13] and Theorem 10.

For hardness we give a reduction that constructs an af F ′ given an af F .
Again this reduction will be used for both stg and sem but the hardness argu-
ments will start from different problems, i.e. from testing whether an af is in
CAFstg, in CAFsem respectively.

Reduction 2. Given an af F = (A,R) and the af7 G = (AG, RG) from
Figure 8 we build the af F ′ = (A ∪AG ∪A′, R ∪RG ∪R′) with

A′ = {ta,b | {a, b} ⊆ A, {(a, b), (b, a)} ∩R = ∅} ∪ {t}
R′ = {(t1, t2) | t1, t2 ∈ A′, t1 6= t2} ∪ {(t, x) | x ∈ AG} ∪

{(ta,b, c) | {a, b} ⊆ A, {(a, b), (b, a)} ∩R = ∅, c ∈ A \ {a, b}}

For both semantics we can assume that F has no self-attacks and no stable
extension. This is by the fact that we made the same assumptions for the
hardness proofs of Theorem 16 and the fact that Reduction 1 introduces neither
self-attacks nor stable extensions.

7We can use here any af G without self-attacks with G ∈ XAFstg, G ∈ XAFsem and
stb(G) = ∅.

26

arg(a).
arg(b).
arg(c).
arg(d).

arg(tad).
arg(tbd).
arg(taa).
arg(tbb).
arg(tcc).
arg(tdd).
arg(t).

arg(g_a1).
arg(g_a2).
arg(g_a3).
arg(g_b1).
arg(g_b2).
arg(g_b3).
arg(g_c1).
arg(g_c2).
arg(g_c3).
arg(g_r1).
arg(g_r2).
arg(g_r3).
arg(g_s1).
arg(g_s2).
arg(g_s3).
arg(g_u1).
arg(g_u2).
arg(g_u3).
arg(g_v1).
arg(g_v2).
arg(g_v3).
arg(g_x1).
arg(g_x2).
arg(g_x3).
arg(g_y1).
arg(g_y2).
arg(g_y3).

att(a,b).att(b,c).att(c,a).att(c,d).

att(tbd,tad).att(taa,tad).att(tbb,tad).att(tcc,tad).
att(tdd,tad).att(t,tad).att(tad,tbd).att(taa,tbd).
att(tbb,tbd).att(tcc,tbd).att(tdd,tbd).att(t,tbd).
att(tad,taa).att(tbd,taa).att(tbb,taa).att(tcc,taa).
att(tdd,taa).att(t,taa).att(tad,tbb).att(tbd,tbb).
att(taa,tbb).att(tcc,tbb).att(tdd,tbb).att(t,tbb).
att(tad,tcc).att(tbd,tcc).att(taa,tcc).att(tbb,tcc).
att(tdd,tcc).att(t,tcc).att(tad,tdd).att(tbd,tdd).
att(taa,tdd).att(tbb,tdd).att(tcc,tdd).att(t,tdd).
att(tad,t).att(tbd,t).att(taa,t).att(tbb,t).
att(tcc,t).att(tdd,t).

att(tad,b).att(tad,c).
att(tbd,a).att(tbd,c).

att(taa,b).att(taa,c).att(taa,d).
att(tbb,a).att(tbb,c).att(tbb,d).
att(tcc,a).att(tcc,b).att(tcc,d).
att(tdd,a).att(tdd,b).att(tdd,c).

att(t,g_a1).att(t,g_a2).att(t,g_a3).att(t,g_b1).
att(t,g_b2).att(t,g_b3).att(t,g_c1).att(t,g_c2).
att(t,g_c3).att(t,g_r1).att(t,g_r2).att(t,g_r3).
att(t,g_s1).att(t,g_s2).att(t,g_s3).att(t,g_u1).
att(t,g_u2).att(t,g_u3).att(t,g_v1).att(t,g_v2).
att(t,g_v3).att(t,g_x1).att(t,g_x2).att(t,g_x3).
att(t,g_y1).att(t,g_y2).att(t,g_y3).

att(g_a1,g_a2).
att(g_a2,g_a3).
att(g_a3,g_a1).
att(g_b1,g_b2).
att(g_b2,g_b3).
att(g_b3,g_b1).
att(g_c1,g_c2).
att(g_c2,g_c3).
att(g_c3,g_c1).
att(g_r1,g_r2).
att(g_r1,g_r3).
att(g_r2,g_r1).
att(g_r2,g_r3).
att(g_r3,g_r1).
att(g_r3,g_r2).
att(g_s1,g_s2).
att(g_s1,g_s3).
att(g_s2,g_s1).
att(g_s2,g_s3).
att(g_s3,g_s1).
att(g_s3,g_s2).
att(g_u1,g_u2).
att(g_u1,g_u3).
att(g_u2,g_u1).
att(g_u2,g_u3).
att(g_u3,g_u1).
att(g_u3,g_u2).
att(g_v1,g_v2).
att(g_v1,g_v3).
att(g_v2,g_v1).
att(g_v2,g_v3).
att(g_v3,g_v1).
att(g_v3,g_v2).
att(g_x1,g_x2).
att(g_x1,g_x3).
att(g_x2,g_x1).
att(g_x2,g_x3).
att(g_x3,g_x1).
att(g_x3,g_x2).
att(g_y1,g_y2).
att(g_y1,g_y3).
att(g_y2,g_y1).
att(g_y2,g_y3).
att(g_y3,g_y1).
att(g_y3,g_y2).

att(g_r1,g_u1).
att(g_r1,g_u2).
att(g_r1,g_u3).
att(g_r2,g_u1).
att(g_r2,g_u2).
att(g_r2,g_u3).
att(g_r3,g_u1).
att(g_r3,g_u2).
att(g_r3,g_u3).
att(g_r1,g_x1).
att(g_r1,g_x2).
att(g_r1,g_x3).
att(g_r2,g_x1).
att(g_r2,g_x2).
att(g_r2,g_x3).
att(g_r3,g_x1).
att(g_r3,g_x2).
att(g_r3,g_x3).
att(g_r1,g_s1).
att(g_r1,g_s2).
att(g_r1,g_s3).
att(g_r2,g_s1).
att(g_r2,g_s2).
att(g_r2,g_s3).
att(g_r3,g_s1).
att(g_r3,g_s2).
att(g_r3,g_s3).

att(g_u1,g_r1).
att(g_u1,g_r2).
att(g_u1,g_r3).
att(g_u2,g_r1).
att(g_u2,g_r2).
att(g_u2,g_r3).
att(g_u3,g_r1).
att(g_u3,g_r2).
att(g_u3,g_r3).
att(g_u1,g_x1).
att(g_u1,g_x2).
att(g_u1,g_x3).
att(g_u2,g_x1).
att(g_u2,g_x2).
att(g_u2,g_x3).
att(g_u3,g_x1).
att(g_u3,g_x2).
att(g_u3,g_x3).
att(g_u1,g_v1).
att(g_u1,g_v2).
att(g_u1,g_v3).
att(g_u2,g_v1).
att(g_u2,g_v2).
att(g_u2,g_v3).
att(g_u3,g_v1).
att(g_u3,g_v2).
att(g_u3,g_v3).

att(g_x1,g_r1).
att(g_x1,g_r2).
att(g_x1,g_r3).
att(g_x2,g_r1).
att(g_x2,g_r2).
att(g_x2,g_r3).
att(g_x3,g_r1).
att(g_x3,g_r2).
att(g_x3,g_r3).
att(g_x1,g_u1).
att(g_x1,g_u2).
att(g_x1,g_u3).
att(g_x2,g_u1).
att(g_x2,g_u2).
att(g_x2,g_u3).
att(g_x3,g_u1).
att(g_x3,g_u2).
att(g_x3,g_u3).
att(g_x1,g_y1).
att(g_x1,g_y2).
att(g_x1,g_y3).
att(g_x2,g_y1).
att(g_x2,g_y2).
att(g_x2,g_y3).
att(g_x3,g_y1).
att(g_x3,g_y2).
att(g_x3,g_y3).

att(g_s1,g_r1).
att(g_s1,g_r2).
att(g_s1,g_r3).
att(g_s2,g_r1).
att(g_s2,g_r2).
att(g_s2,g_r3).
att(g_s3,g_r1).
att(g_s3,g_r2).
att(g_s3,g_r3).
att(g_s1,g_v1).
att(g_s1,g_v2).
att(g_s1,g_v3).
att(g_s2,g_v1).
att(g_s2,g_v2).
att(g_s2,g_v3).
att(g_s3,g_v1).
att(g_s3,g_v2).
att(g_s3,g_v3).
att(g_s1,g_y1).
att(g_s1,g_y2).
att(g_s1,g_y3).
att(g_s2,g_y1).
att(g_s2,g_y2).
att(g_s2,g_y3).
att(g_s3,g_y1).
att(g_s3,g_y2).
att(g_s3,g_y3).

att(g_v1,g_u1).
att(g_v1,g_u2).
att(g_v1,g_u3).
att(g_v2,g_u1).
att(g_v2,g_u2).
att(g_v2,g_u3).
att(g_v3,g_u1).
att(g_v3,g_u2).
att(g_v3,g_u3).
att(g_v1,g_s1).
att(g_v1,g_s2).
att(g_v1,g_s3).
att(g_v2,g_s1).
att(g_v2,g_s2).
att(g_v2,g_s3).
att(g_v3,g_s1).
att(g_v3,g_s2).
att(g_v3,g_s3).
att(g_v1,g_y1).
att(g_v1,g_y2).
att(g_v1,g_y3).
att(g_v2,g_y1).
att(g_v2,g_y2).
att(g_v2,g_y3).
att(g_v3,g_y1).
att(g_v3,g_y2).
att(g_v3,g_y3).

att(g_y1,g_x1).
att(g_y1,g_x2).
att(g_y1,g_x3).
att(g_y2,g_x1).
att(g_y2,g_x2).
att(g_y2,g_x3).
att(g_y3,g_x1).
att(g_y3,g_x2).
att(g_y3,g_x3).
att(g_y1,g_s1).
att(g_y1,g_s2).
att(g_y1,g_s3).
att(g_y2,g_s1).
att(g_y2,g_s2).
att(g_y2,g_s3).
att(g_y3,g_s1).
att(g_y3,g_s2).
att(g_y3,g_s3).
att(g_y1,g_v1).
att(g_y1,g_v2).
att(g_y1,g_v3).
att(g_y2,g_v1).
att(g_y2,g_v2).
att(g_y2,g_v3).
att(g_y3,g_v1).
att(g_y3,g_v2).
att(g_y3,g_v3).

att(g_r1,g_a2).
att(g_r1,g_a3).
att(g_r2,g_a1).
att(g_r2,g_a3).
att(g_r3,g_a1).
att(g_r3,g_a2).

att(g_u1,g_b2).
att(g_u1,g_b3).
att(g_u2,g_b1).
att(g_u2,g_b3).
att(g_u3,g_b1).
att(g_u3,g_b2).

att(g_x1,g_c2).
att(g_x1,g_c3).
att(g_x2,g_c1).
att(g_x2,g_c3).
att(g_x3,g_c1).
att(g_x3,g_c2).

att(g_s1,g_a2).
att(g_s1,g_a3).
att(g_s2,g_a1).
att(g_s2,g_a3).
att(g_s3,g_a1).
att(g_s3,g_a2).

att(g_v1,g_b2).
att(g_v1,g_b3).
att(g_v2,g_b1).
att(g_v2,g_b3).
att(g_v3,g_b1).
att(g_v3,g_b2).

att(g_y1,g_c2).
att(g_y1,g_c3).
att(g_y2,g_c1).
att(g_y2,g_c3).
att(g_y3,g_c1).
att(g_y3,g_c2).

Lemma 22. Given an af F without self-attacks and stable extensions then
F ′ ∈ CAFstg, and F ∈ CAFstg iff F ′ ∈ XAFstg.

Proof. First, we show that each stage extension E contains at least one argument
from A′. Suppose that not, then E \AG ∪ {t} is a conflict-free set that has AG
in its range. Hence we have a contradiction to the range maximality of E.
Further, as A′ forms a clique in F we get that each extension contains exactly
one argument from the set.

Next we show that the ranges of naive sets E containing argument t cannot
be contained in the ranges of conflict-free sets E′ containing an argument ta,b
with a, b ∈ A.

• If t ∈ E then all arguments in AG are attacked by E and thus are in the
range of E.

• If t 6∈ E′ at least one argument of AG is not in the range of E′. Otherwise,
E′ ∩AG would be a stable extension of G, which contradicts stb(G) = ∅.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing t. As t does not attack any argument
in A nor does A have any outgoing attacks we have

(i) {t} ∪ E′ ∈ cf(F ′) iff E′ ∈ cf(F) and

(ii) as arguments in A do not attack arguments outside A we have that
({t} ∪ E′)+F ′ = {t}+F ′ ∪ E′+F ′ and thus ({t} ∪ E′)+F ′ is maximal when
E′+F ′ is maximal.

Hence, {t} ∪E′ ∈ stg(F ′) iff E′ ∈ stg(F) and thus for each a ∈ A we have
that {t, a} is credulously accepted in F ′ iff a is credulously accepted in F .

As, by assumption, F has no stable extension there cannot be an extension
E containing t and having all arguments A in its range.

• Second, consider the sets E containing an argument ta,b with a, b ∈ A.
Now it is easy to verify that the sets {ta,b, a, b} are conflict-free sets of F ′

and A is in the range of each of these extensions. As the extensions of the
first type never have the whole set A in their range (cf. first item) a set
{ta,b, a, b} is incomparable to these extensions.

As ta,b does not attack any argument in AG nor does AG have any outgoing
attacks we have

(i) {ta,b, a, b} ∪ E′ ∈ cf(F ′) iff E′ ∈ cf(G) and

(ii) as arguments in AG do not attack arguments outside Ag we have
that ({ta,b, a, b} ∪ E′)+F ′ = {t}+F ′ ∪ E′+F ′ and thus ({ta,b, a, b} ∪ E′)+F ′

is maximal when E′+F ′ is maximal.

27

Thus, {ta,b, a, b} ∪ E′ ∈ stg(F ′) iff E′ ∈ stg(G). Now, as G ∈ XAFstg we
have that for each g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG there is an E′ ∈
stg(G) with g, g′ ∈ E. Furthermore as G has no self-attacks it is also
compact (cf. Proposition 5) and thus for each g ∈ AG there is an E′ ∈
stg(G) with g ∈ E′. From these stage extensions we obtain that:

– {ta,b, a}, {ta,b, b} are credulously accepted in F ′;

– {ta,b, g, g′} is credulously accepted in F ′, for g, g′ ∈ G with (g, g′),
(g′, g) 6∈ RG;

– {ta,b, g} is credulously accepted in F ′, for each g ∈ G;

– {a, g} is credulously accepted in F ′, for each a ∈ A and g ∈ G;

Combining the above results, we have that all non-conflicting pairs of argu-
ments in F ′ except {t, a} with a ∈ A are credulously accepted in F ′. Thus F ′

is stg-analytic iff all the pairs {t, a} with a ∈ A are credulously accepted in F ′

iff each a ∈ A is credulously accepted in F iff F is stg-compact.
Finally we show that F ′ ∈ CAFstg (independent of whether F ∈ CAFstg).

As (i) for each a ∈ A the set {ta,a, a} is credulously accepted, and (ii) for
each g ∈ AG and a, b ∈ A with (a, b), (b, a) 6∈ R the set {ta,b, g} is credulously
accepted, the af F ′ is stg-compact.

Now, as Reduction 2 can be performed in polynomial-time and CAFstg is
ΣP

2 -hard [Th. 16], Lemma 22 implies that deciding whether F ∈ CAFstg is ΣP
2 -

hard.

Lemma 23. Given an af F without self-attacks and stable extensions then
F ′ ∈ CAFsem, and F ∈ CAFsem iff F ′ ∈ XAFsem.

The proof of the above lemma is very similar to the proof of Lemma 22
and thus omitted here, but provided in Appendix B. Now, as Reduction 2 can
be performed in polynomial-time and CAFsem is ΣP

2 -hard [Th. 16], Lemma 23
implies that deciding whether F ∈ CAFstg is ΣP

2 -hard. This completes the proof
of Theorem 20.

In conclusion we have that for all the semantics under our considerations
the complexity of testing whether an af is compact or analytic is as hard as
credulous acceptance. We summarize the results of this section in Table 2.

Complexity of further decision problems. Similar to other subclasses, compact
and analytic afs decrease the complexity of certain decision problems. Let
us first discuss the case of compact afs. By definition for credulous acceptance
(does an argument occur in at least one extension), this problem becomes trivial
for this class. For skeptical acceptance (does an argument a occur in all exten-
sions) in compact afs the problem reduces to checking whether a is isolated.
If yes, it is skeptically accepted; if no, a is connected to at least one further
argument that has to be credulously accepted by the definition of compact afs.
But then, it is the case for any semantics that is based on conflict-free sets that

28

Table 2: Complexity Results (C-c denotes completeness for class C).

F ∈ CAFσ? F ∈ XAFσ?

nai in P in P

stb NP-c NP-c

prf NP-c NP-c

stg ΣP
2 -c ΣP

2 -c

sem ΣP
2 -c ΣP

2 -c

a cannot be skeptically accepted, since it will not appear together with b in an
extension. For analytic afs we can distinguish between afs with self-attacks
and without. In the latter case the afs are also compact (cf. Proposition 5) and
thus credulous and skeptical acceptance can be solved as described above. In
the former case, for credulous acceptance we only have to check whether the ar-
gument is self-attacking or not. For skeptical acceptance the behavior seems to
diverge between different semantics. On the one hand, for deciding whether an
argument is skeptically accepted w.r.t. stable semantics one can test if the argu-
ment is credulously accepted and all its attackers are not credulously accepted,
which can be done in polynomial time. On the other hand side, for preferred
and semi-stable semantics analytic afs seem to have no computational benefits.
Moreover, [10] showed that in compact afs the verification problem (given af F
and a set of arguments E, is E a σ-extension of F?) is still coNP-hard for stage,
semi-stable and preferred semantics. Theses results can be extended to analytic
afs by the observation that the reductions used in the proofs of Theorems 14
and 20 are also valid reductions for the verification problem.

5. Explicit Conflict Conjecture

In this section we take another look at the issue of implicit conflicts and the
possibility of making them explicit. In Section 3.2 we identified the classes of
afs where all conflicts are explicit w.r.t. a given semantics. Recall the notion
of an analytic af from Definition 4. In [10] the authors conjectured that, under
stable semantics, every af can be translated to an equivalent analytic af (having
the same set of arguments), i.e. that all implicit conflicts can be made explicit
without changing the stable extensions. We will refute this conjecture and show
that the claim also does not hold for preferred, semi-stable and stage semantics.

Definition 7. An af F is called quasi-analytic for σ if there is an af G such
that AF = AG, σ(F) = σ(G) and G is analytic for σ, i.e., it has only explicit
conflicts for σ. On the other hand, F is called non-analytic for σ if it is not
quasi-analytic for σ.

Example 4. Consider again the af in Figure 2, which, as we have seen in
Example 3, is not analytic for σ ∈ {stb, prf, sem, stg}. However, adding the

29

Figure 15: Illustration of the af from Example 5.

attack c � d (or d � c or both) we obtain an equivalent (under σ) af F ′,
where all conflicts are explicit. Thus F is quasi-analytic. ♦

In other words, an af is quasi-analytic for a given semantics σ if it can be
translated to another af that has the same arguments, has the same exten-
sions under σ, and all conflicts are explicit. The conjecture from [10] says that
every af containing implicit conflicts for stable semantics is quasi-analytic, in
the sense that all implicit conflicts can be made explicit without adding further
arguments. We repeat the conjecture from [10], just parameterized by an ar-
bitrary semantics. In line with the following definition, [10] claimed that ECC
holds for stable semantics.

Definition 8. We say that the Explicit Conflict Conjecture (ECC) holds for
semantics σ if every af is quasi-analytic for σ.

First note that, as discussed in the introduction, ECC holds for naive se-
mantics. Every pair of non-self-attacking arguments occurs together in a naive
extension if and only if there is no attack between them. Hence a conflict can
only be implicit for naive semantics if at least one of the arguments involved is
self-attacking. But letting each self-attacking argument be attacked by all other
arguments does not change the naive extensions (and obviously does not change
the set of arguments), hence every af is quasi-analytic.

In the remainder of this section we will refute ECC for all semantics in
{stb, prf, sem, stg} by providing non-analytic afs.

Example 5. Take into account the af F = (A,R) depicted in Figure 15, which
features an implicit conflict for stable semantics between a and b:

A ={a, b, c} ∪ {ui, vi, xi, yi | i ∈ {1, 2}}
R ={ a, c , b, c } ∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}

∪ {(ui, a), (a, xi), (vi, b), (b, yi), ui, vi | i ∈ {1, 2}}

In the following we refer to A1 = {v1}, A2 = {u1}, A3 = {x1, y1}, and
B1 = {v2}, B2 = {u2}, B3 = {x2, y2} The stable extensions of F can be

30

arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(a).arg(b).arg(c).

att(x1,u1).att(u1,x1).
att(x1,v1).att(v1,x1).
att(u1,v1).att(v1,u1).
att(u1,y1).att(y1,u1).
att(v1,y1).att(y1,v1).
att(x2,u2).att(u2,x2).
att(x2,v2).att(v2,x2).
att(u2,v2).att(v2,u2).
att(u2,y2).att(y2,u2).
att(v2,y2).att(y2,v2).

att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).

att(a,c).att(c,a).
att(b,c).att(c,b).

separated into extensions containing c and others. For i, j ∈ {1, 2, 3} the former
are given as:

Sij = {c} ∪Ai ∪Bj
If on the other hand c 6∈ S one of a, b will be a member of S and thus:

S1 = {a, v1, v2} S3 = {a, v1, y2} S5 = {b, u1, x2}
S2 = {b, u1, u2} S4 = {a, y1, v2} S6 = {b, x1, u2}

For S ∈ stb(F) and wlog. a ∈ S take into account that a is attacked by u1
and the only possible defenders v1 and y1 are explicitly in conflict with b. Thus
clearly a and b share an implicit conflict, as one cannot be defended without
the other being attacked. However observe that all the other conflicts implicitly
defined by the extension-set S = {S1, S2, . . . , S6} ∪ {Sij | i, j ∈ {1, 2, 3}} are
already given explicitly in F . Furthermore the remaining maximal conflict-free
sets Sa = {a, y1, y2} and Sb = {b, x1, x2} do attack neither b nor a respectively
and thus are not stable extensions of F . ♦

We now proceed by showing that the af depicted in Figure 15 and discussed
in Example 5 serves as a counter-example for ECC for stable semantics.

Theorem 24. There are non-analytic afs for stable semantics.

Proof. Consider the af F from Example 5 and recall its set of stable exten-
sions S. We will show that there is no af G with AG = AF , stb(G) = S and
(a, b) ∈ RG. (Observe that due to symmetry reasons we need not consider
(b, a) ∈ RG and (a, b) 6∈ RG.) For a contradiction take such an af as given.

The extensions containing c ensure that there is no attack in G between
arguments c and αi for α ∈ {x, u, v, y} and i ∈ {1, 2}, or between α1 and α2.
By definition any stable extension S ∈ S attacks all outside arguments, S � α
for α ∈ AG\S. Hence from S3 = {a, v1, y2} being a stable extension we conclude
a � c and {a, y2}� α2 for α ∈ {x, u, v}. Similarly due to S4 = {a, y1, v2} we
conclude that {a, y1} � α1 for α ∈ {x, u, v}. But now by assumption a � b
and thus for Sa = {a, y1, y2} we acquire full range, Sa � α for any α ∈ AG \Sa,
i.e. Sa becomes an unwanted stable extension. Therefore F is non-analytic.

We observe that in this counter-example for ECC for stable semantics the
stable extensions coincide with semi-stable, preferred and stage extensions.
With the following lemma this leads to some straightforward generalizations.

Lemma 25. Let F be an af with prf(F) = stb(F) (resp. sem(F) = stb(F)).
If F is quasi-analytic for preferred (resp. semi-stable) semantics, then it is also
quasi-analytic for stable semantics.

Proof. By assumption, for σ ∈ {prf, sem}, there is a σ-analytic af G such that
AG = AF and σ(F) = σ(G). We want to show that stb(G) = σ(G). Using
the fact that for any af F , stb(F) ⊆ σ(F) holds, it remains to show that
σ(G) ⊆ stb(G). To this end observe that any attack of F still represents an
explicit conflict in G. Now for S ∈ stb(F) we know that for all a ∈ AF \ S we

31

Figure 16: A non-analytic af for prf as used in Example 6.

have S �F a. Since by assumption also S ∈ σ(F) this immediately implies
an explicit conflict between S and a in G. Due to admissibility of σ-extensions
this means that actually S �G a as otherwise S would not defend itself from
a in G. Therefore we have S �G a for all a ∈ AG \ S. Hence S ∈ stb(G),
resulting in σ(G) = stb(G) and thus G being stb-analytic and also F being
stb-quasi-analytic.

Using the af F from Example 5 and the contraposition of Lemma 25 yields
the following result, refuting ECC for preferred and semi-stable semantics.

Corollary 26. There are non-analytic afs for preferred and semi-stable se-
mantics, respectively.

The next example shows that some afs prove to be non-analytic for pre-
ferred semantics while being quasi-analytic for all the other semantics under
consideration.

Example 6. Take into account the af F = (A,R) as depicted in Figure 16
with

A = {ai, bi, xi, ui | i ∈ {1, 2, 3}}
R = { ai, bi , (bi, xi), (xi, ui) | i ∈ {1, 2, 3}} ∪ {(x1, x2), (x2, x3), (x3, x1)}

We have prf(F) = {Sa, Sb, A1, A2, A3, B1, B2, B3} and

Sa = {a1, a2, a3} Sb = {b1, b2, b3, u1, u2, u3}
A1 = {a2, a3, b1, x2, u1, u3} B1 = {a1, b2, b3, x1, u2, u3}
A2 = {a1, a3, b2, x3, u1, u2} B2 = {a2, b1, b3, x2, u1, u3}
A3 = {a1, a2, b3, x1, u2, u3} B3 = {a3, b1, b2, x3, u1, u2}

32

arg(a1).arg(a2).arg(a3).
arg(b1).arg(b2).arg(b3).
arg(x1).arg(x2).arg(x3).
arg(u1).arg(u2).arg(u3).

att(a1,b1).att(b1,a1).
att(a2,b2).att(b2,a2).
att(a3,b3).att(b3,a3).
att(b1,x1).
att(b2,x2).
att(b3,x3).
att(x1,x2).att(x2,x3).att(x3,x1).
att(x1,u1).
att(x2,u2).
att(x3,u3).

Figure 17: Analytic af for stage semantics, cf. Example 5.

In the following we show that F is non-analytic for preferred semantics. For
a contradiction we assume that there exists an analytic af G with AG = A
and prf(F) = prf(G). We now investigate this hypothetical af G. Observe
that for i, j ∈ {1, 2, 3} due to Sb there is no conflict between ui and bj , due
to A1, A2, A3 there is no conflict between ui and aj , and for i 6= j there is no
conflict between xi and uj ; in other words in G the ui can be attacked only by
the xi. Furthermore we have an implicit conflict between a1 and x2. Due to Sa
being admissible and G being analytic now Sa �G x2. But then Sa defends u2
and thus can not be a preferred extension in G. For symmetry reasons it follows
that the implicit conflicts (ai, xj) of F cannot be made explicit for preferred
semantics.

On the other hand for stable (or stage or semi-stable) semantics we observe
that Sa is not an extension. Although the overall conflicts remain the same, this
allows us to include conflicts (xj , ai) without any harm for the other extensions.
Thus for stable, semi-stable and stage semantics this af is quasi-analytic. ♦

We still have not answered the question whether stage semantics possesses
non-analytic afs. A candidate for a non-analytic af for stage semantics would
be the af F from Example 5, but it turns out to be quasi-analytic for stage
semantics. In fact, the analytic af G depicted in Figure 17 has the same stage
extensions as F , stb(F) = stg(F) = stg(G).

However, the following slightly more involved example yields a non-analytic
af for stage semantics.

Example 7. Take into account the af F = (A,R) depicted in Figure 18 with:

A = {a, b, c} ∪ {ui, vi, xi, yi, ri, si | i ∈ {1, 2}}
R = { a, c , b, c } ∪ { ri, xi , si, yi | i ∈ {1, 2}}
∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}
∪ {(ui, a), (a, xi), (vi, b), (b, yi), ui, vi | i ∈ {1, 2}}

In the following we will refer to Mi1 = {ri, vi, si},Mi2 = {ri, ui, si},Mi3 =
{ri, yi},Mi4 = {xi, si},Mi5 = {xi, yi}. The stable extensions of F can be

33

arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(a).arg(b).arg(c).

att(u1,x1).
att(x1,v1).
att(v1,u1).
att(u1,y1).
att(y1,v1).
att(u2,x2).
att(x2,v2).
att(v2,u2).
att(u2,y2).
att(y2,v2).
att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).
att(c,a).
att(b,c).att(c,b).
att(a,b).

Figure 18: Illustration of the af from Example 7.

separated into extensions containing c and others. For i, j ∈ {1 . . . 5} the former
are given as:

Sij = {c} ∪M1i ∪M2j

If, on the other hand, c 6∈ S, one of a, b will be a member of S:

S1 = {a, r1, r2, v1, v2, s1, s2} S4 = {a, r1, r2, y1, v2, s2}
S2 = {b, r1, r2, u1, u2, s1, s2} S5 = {b, r1, u1, x2, s1, s2}
S3 = {a, r1, r2, v1, y2, s1} S6 = {b, r2, x1, u2, s1, s2}

Similarly to Example 5 we have that a and b share an implicit conflict for
stable and thus stage semantics, as stb(F) = stg(F) = S = {S1 . . . S6} ∪ {Sij |
i, j ∈ {1 . . . 5}}. Again except for the implicit conflict between a and b all
conflicts in F already are explicit, and the only other maximal conflict-free
sets Sa = {a, r1, r2, y1, y2} and Sb = {b, x1, x2, s1, s2} are not stable extensions
here. ♦

Theorem 27. There are non-analytic afs for stage semantics.

Proof. Consider the af F = (A,R) from Example 7. We first show that F is
non-analytic for stable semantics by assuming a contradicting analytic af G
of the same arguments and extensions. We will then use this observation to
proceed similarly for stage semantics. As for any af G with stb(G) 6= ∅ we
have stb(G) = stg(G), we will assume some af G which is analytic for stage
semantics where stb(G) = ∅. In fact for both, stable and stage semantics, we
show a slightly stronger result; for the given extension-set the conflict between
a and b has to be implicit. For symmetry reasons, wlog. we assume (a, b) ∈ RG.
In what follows, we use the same naming schema for extensions as in Example 7.

For stable semantics we need a� c, since e.g. S1 has to be a stable extension.
From S33 ∈ stb(G), a � b by assumption and as observed a � c we conclude
Sa ∈ stb(G), as c ∈ S33 is allowed to attack only a and b. Thus if G is analytic
for stable semantics then stb(F) 6= stb(G).

We now turn to stage semantics and have the following observations:

34

arg(r1).arg(r2).
arg(x1).arg(x2).
arg(u1).arg(u2).
arg(v1).arg(v2).
arg(y1).arg(y2).
arg(s1).arg(s2).
arg(a).arg(b).arg(c).

att(r1,x1).att(x1,r1).
att(x1,u1).att(u1,x1).
att(x1,v1).att(v1,x1).
att(u1,v1).att(v1,u1).
att(u1,y1).att(y1,u1).
att(v1,y1).att(y1,v1).
att(y1,s1).att(s1,y1).
att(r2,x2).att(x2,r2).
att(x2,u2).att(u2,x2).
att(x2,v2).att(v2,x2).
att(u2,v2).att(v2,u2).
att(u2,y2).att(y2,u2).
att(v2,y2).att(y2,v2).
att(y2,s2).att(s2,y2).
att(u1,a).att(a,x1).
att(v1,b).att(b,y1).
att(u2,a).att(a,x2).
att(v2,b).att(b,y2).
att(a,c).att(c,a).
att(b,c).att(c,b).

• For i ∈ {1, 2}, due to maximal conflict-freeness and the given conflicts, we
need explicit conflicts between si and yi, ri and xi (ri, si 6∈ S55), between
c and a, c and b (a 6∈ S33, b 6∈ S44), and between ui and vi (vi 6∈ S22). We
will frequently make use of these necessities in the following.

• For the explicit conflict between s1 and y1, we need s1 � y1 for otherwise
S+
55 ⊂ S

+
45. Similarly we conclude s2 � y2, r1 � x1 and r2 � x2;

• As the conflict between c and a is explicit, furthermore necessarily c� a
for otherwise (in case a� c and c 6� a) S+

11 ⊂ S
+
1 ;

• Now since ui and vi need to be in conflict we need c 6� b for otherwise at
least one of Sij for i, j ∈ {1, 2} becomes a stable extension. By conflict-
implicitness hence b� c.

• From c � a, r1 � x1 and s1 � y1 we conclude u1 � v1 due to the
danger of S+

21 ⊂ S
+
11. Similarly u2 � v2.

• Since c � a and ui � vi furthermore we need xi � ri, xi � ui and
xi � vi, due to range comparison of Mi4 and Mi2.

• By previous range observations we have to assume b 6� a and ui 6� a, for
otherwise S2 becomes a stable extension.

• But now S+
2 ⊆ S+

b , i.e. either we gain the unwanted extension Sb or we
lose the desired extension S2.

To conclude this section we investigate the question of conditions such that
ECC holds. We have mentioned earlier that every af is quasi-analytic for naive
semantics. This insight can be generalized as follows.

Proposition 28. Let σ ∈ {stg, stb, sem, prf}. If for some af F there exists an
af G such that σ(F) = nai(G), then F is quasi-analytic for σ.

Proof. Let F,G be afs with σ(F) = nai(G). We define the af H with AH = AF
and RH = { a, b | (a, b) ∈ RG, a, b ∈ Argsσ(F)} ∪ { a, x , (x, x) | a ∈ AF , x 6∈
Argsσ(F)}. As this af H provides the same conflicts as the af G for naive
semantics, we deduce that also the maximal conflict-free sets are the same,
nai(H) = nai(G). By definition of H, for any S ∈ nai(H) and a ∈ AF \ S we
have S �H a and hence S is a stable extension of H. Finally observe that
stb(H) ⊆ σ(H) ⊆ nai(H) for any af H, hence the result follows.

Another property that guarantees that ECC holds relies on the existence of
what we call “identifying arguments”. We say that an af F is determined for
semantics σ if for every S ∈ σ(F) there exists an a ∈ S such that for S′ ∈ σ(F)
we have that a ∈ S′ implies S′ = S. In other words, every σ-extension contains
an identifying argument in the sense that it does not occur in any other σ-
extension. A simple necessary condition for an af to be determined for σ is
that the number of σ-extensions does not exceed the number of arguments.

35

Proposition 29. Let σ ∈ {stb, prf, sem, stg}. Then, any af F determined for
σ is quasi-analytic for σ.

Proof. Consider an af F determined for σ and for each S ∈ σ(F) let aS be
some fixed identifying argument. Now taking into account the sets I = {aS |
S ∈ σ(F)} and RI = { aS , aS′ | S, S′ ∈ σ(F), S 6= S′}, clearly σ((I,RI)) =
{{aS} | S ∈ σ(F)}. Furthermore let O = AF \ I be the remaining arguments
of F and RO = { a, b | a, b ∈ O, (a, b) /∈ Pairsσ(F)}. We now define G as
AG = AF = O∪I and RG = RI∪RO∪{(aS , b) | S ∈ σ(F), b ∈ (O\S)}. Observe
that I forms a clique within G, a clique that is not attacked by arguments in
O. For the SCC-splittable (cf. Definition 5) stable semantics we can evaluate G
as follows:

1. Compute the extensions of the clique I.

2. For each such extension E of I build the af G|O\E+
G

.

3. For each extension E′ ∈ GFstb(G|O\E+
G
, UOE) return E ∪ E′.

Now the stable extensions of I are singletons {aS} for each S ∈ stb(F). Moreover
G|O\{aS}+G

= (S\{aS}, ∅) and UO{aS} = S\{aS}. We get GFstb(G|O\{aS}+G
, UO{aS}) =

stb((S \ {aS}, ∅)) = S \ {aS}. Hence stb(G) = stb(F). The result for pre-
ferred semantics, which is also SCC-splittable, follows in the same way. For
θ ∈ {stg, sem} we get stb(G) = θ(F) in the same way as above and since
θ(F) 6= ∅ it follows that θ(G) = stb(G) = θ(F).

Finally observe that all conflicts in G for σ (among I, among O or between
I and O) are explicit by definition.

6. Signatures

The last section dealt with the problem of making conflicts explicit without
changing the set of arguments, or, in other words, finding an analytic af with the
same arguments that is equivalent with respect to a given semantics. Abstaining
from the condition that the set of arguments must be preserved, the focus is
not on the given af any more but on its sets of extensions. Given an extension-
set S and a semantics σ, the question is then whether the extension-set can
be analytically realized, i.e. whether there is an analytic af F having exactly
σ(F) = S, but imposing no restrictions on the arguments of F . We will deal
with analytic realizability in Section 6.1. Likewise, Section 6.2 will be concerned
with compact realizability where the af realizing a given extension-set needs to
be compact.

Prima facie this may seem similar to the concepts of analytic and compact
argumentation frameworks studied in Section 3. However, relations between
semantics from there do not carry over to realizability. For example we have
seen in Theorem 2 that CAFprf ⊂ CAFnai, that is, every af that is compact
for preferred semantics is also compact for naive semantics and there exist afs
compact for naive but not compact for preferred semantics. In terms of compact
realizability we will see that these semantics are related conversely, because

36

compact realizability under naive semantics implies compact realizability under
preferred semantics, but not vice versa (cf. Theorem 34).

Both analytic and compact realizability are restricted versions of the concept
of (general) realizability studied in [23]. We first repeat the basic definitions and
main results from there. Then we will for the analytic and compact scenario,
respectively, first analyze the difference to general realizability and then deal
with relations between the semantics under consideration.

Definition 9. An extension-set S is called realizable under semantics σ if there
is an af F with σ(F) = S. The signature of a semantics σ is defined as

Σσ = {σ(F) | F ∈ AFA}.

The main results from [23] include Σnai ⊂ Σstg = (Σstb\{∅}) ⊂ Σprf = Σsem.

6.1. Analytic Signatures

In this section we deal with the restricted form of realizability, namely with-
out the use of implicit conflicts.

Definition 10. An extension-set S is called analytically realizable under se-
mantics σ if there is some analytic af F ∈ XAFσ with σ(F) = S. The analytic
signature (x-signature) Σxσ of semantics σ consists of all extension-sets that are
analytically realizable under σ:

Σxσ = {σ(F) | F ∈ XAFσ}

First of all note that every extension-set in the analytic signature of a se-
mantics is also in the signature, i.e., Σxσ ⊆ Σσ. In the following we will, for
each semantics under consideration, either show that the relation is strict in the
sense that certain extension-sets in Σσ are not analytically realizable or show
that also Σxσ ⊇ Σσ holds, meaning that Σxσ and Σσ coincide.

First we consider the relation between the signature Σnai and the analytic
signature Σxnai of naive semantics and formalize what we have already discussed
in the introduction.

Theorem 30. It holds that Σxnai = Σnai.

Proof. Consider some S ∈ Σnai with F being the af realizing S under naive
semantics. It holds that a pair of arguments is contained in PairsS iff there is no
attack between these arguments and none of them is self-attacking. Moreover,
letting each self-attacking argument be attacked by all other arguments has no
effect on the naive extensions. Hence the af F ′ obtained from doing so has
nai(F ′) = S and F ′ ∈ XAFnai, therefore Σxnai = Σnai.

Preferred and semi-stable semantics show strictly less expressiveness with
respect to realizable extension-sets without implicit conflicts.

Theorem 31. For σ ∈ {prf, sem} it holds that Σxσ ⊂ Σσ.

37

Proof. Again consider the af F in Figure 16 and let S = prf(F), which is given
in Example 6. There we showed that there is no prf-analytic af G having
σ(G) = S and AG = AF . Here we can abstain from the last condition. So
assume there is an af G′ ∈ XAFprf with σ(G′) = S. We know from Example 6
that there cannot be an attack between Sa = {a1, a2, a3} ∈ S and u2 and that in
order for G′ to be analytic a1 �G x2. Moreover note that x2 is the only possible
attacker of u2 among ArgsS. Finally, every additional argument z /∈ ArgsS in
G′ must be attacked by Sa since G′ is prf-analytic and Sa must be admissible.
This causes Sa ∪ {u2} to be admissible in G′, hence Sa cannot be preferred in
G′. Thus any af realizing S is non-analytic for preferred semantics or, in other
words, S ∈ Σprf \ Σxprf.

Due to [25, 23] we know that Σsem = Σprf, hence there is an af F ′ having
sem(F ′) = S. But when trying to analytically realize S under sem, we make the
same observations as above, meaning that Sa ∪ {u2} is necessarily admissible,
a contradiction to Sa being semi-stable. Hence also S ∈ Σsem \ Σxsem.

We now turn to stable and stage semantics. In contrast to preferred and
semi-stable semantics, we will see that the use of additional arguments allows
us to make each implicit conflict explicit. Therefore the analytic signature
coincides with the signature for stable and stage semantics.

The following proposition shows that one additional argument allows, to-
gether with an appropriate modification of the attack relation, to make any
single implicit conflict explicit.

Proposition 32. For stable semantics and some af F , if there is an implicit
conflict between a and b, then there is an af G with |AG| = |AF |+1, RG ⊇ RF ,
(a, b) ∈ RG and stb(G) = stb(F) and all implicit conflicts in G are implicit
conflicts in F as well.

Proof. Let F be an arbitrary af with an implicit conflict between two arguments
a and b. We define R′ = RF ∪{(a, b)}. Observe that F ′ = (AF , R

′) has the same
and possibly more stable extensions as compared to F . By construction of F ′,
any S ∈ stb(F ′) \ stb(F) has a ∈ S and S 6�F b. We collect the arguments of
these unwanted extensions in Aa = Args(stb(F ′)\stb(F)) and observe that Aa 6�F

b. Now define the af G with AG = AF ∪ {x} and

RG = R′ ∪ {(x, x)} ∪ {(x, v) | v ∈ Aa} ∪ {(u, x) | u ∈ AF \Aa}.

First note that obviously |AG| = |AF |+1, RG ⊇ RF , and (a, b) ∈ RG. Moreover,
since the new argument x attacks or is attacked by every other argument, G
does not introduce any further implicit conflicts compared to F . It remains to
show that stb(G) = stb(F). Let S′ ∈ stb(F) and assume that b ∈ S′. As by
assumption b and a do not occur together in any stable extension of F , we know
that b �G x and thus S′ ∈ stb(G). On the other hand assume that b /∈ S′.
Then we have some c ∈ S′ with c �F b. If S′ /∈ stb(G), then only because
S′ 6�G x, hence S′ ⊆ Aa, a contradiction to Aa 6�F b. Therefore S′ ∈ stb(G).
Now assume there is some S ∈ stb(G) with S /∈ stb(F). By the construction of

38

Σxnai
ΣxprfΣxsem

Σxstb\{∅} = Σxstg

Figure 19: A Venn-Diagram illustrating analytic signatures of stable, semi-stable, stage and
preferred semantics.

G this S must be among stb(F ′) \ stb(F). However, we then have S 6�G x, a
contradiction to S ∈ stb(G), concluding the proof for stb(F) = stb(G).

Now we can show that analytic and general signatures coincide for stable
and stage semantics.

Theorem 33. For σ ∈ {stb, stg} it holds that Σxσ = Σσ.

Proof. We consider as special case stb(F) = ∅ or stg(F) = {∅} where by defini-
tion the af F = ({x}, {(x, x)}) serves as analytic witness. Let S ∈ Σσ, i.e., there
is some af F with σ(F) = S. As by definition any af F is finite we can have at
most finitely many implicit conflicts for semantics σ ∈ {stb, stg}. Each of them
can be removed by repeated application of Proposition 32 for σ = stb. Hence
there is an analytic af F ′ with σ(F ′) = S, meaning that S ∈ Σxstb. For σ = stg
semantics we know from [25] that there is an af G with stb(G) = stg(G) = S.
Now, again, we can remove all implicit conflicts and end up with the stg-analytic
af G′ with stg(G′) = S. Hence S ∈ Σxstg.

So far we have compared general signatures and analytic signatures for the
semantics under consideration. We have seen that preferred and semi-stable
semantics can realize strictly more when allowing the use of implicit conflicts,
while this is not the case for stable and stage semantics.

In the following we relate the analytic signatures of naive, stable, preferred,
stage and semi-stable semantics to each other. For general signatures it was
shown in [23] that Σnai ⊂ Σstg = (Σstb \ {∅}) ⊂ Σsem = Σprf. In the analytic
case preferred and semi-stable signatures do not coincide anymore.

Theorem 34. In accordance with Figure 19, it holds that:

1. Σxnai ⊂ Σxσ for σ ∈ {stb, stg, sem, prf};
2. Σxstb \ {∅} = Σxstg;

3. Σxstg ⊂ Σxsem;

4. Σxsem ⊂ Σxprf.

Proof. (1) First recall from [23] that for a given S ∈ Σxnai, the canonic af F
where AF = ArgsS and RF = (AF ×AF) \PairsS gives S = nai(F) = σ(F), and
F is analytic for σ, thus Σxnai ⊆ Σxσ.

39

Figure 20: The af witnessing Σxnai ⊂ Σxσ for σ ∈ {stb, sem, stg, prf}.

Further consider the af F where AF = {x1, x2, x3, y1, y2, y3} and RF =
{(xi, xj), (xi, yi) | i, j ∈ {1, 2, 3}}, cf. Figure 20, the af featured in [25] to
show that σ(F) = {{x1, y2, y3}, {x2, y1, y3}, {x3, y1, y2}} can not be realized
under naive semantics. With the fact that this af is analytic for σ we obtain
Σxnai 6⊇ Σxσ, hence Σxnai ⊂ Σxσ.

(2) Considering Σstb\{∅} = Σstg [23] and Theorem 33 we obtain Σxstb\{∅} = Σxstg.

(3) For S ∈ Σxstg with S 6= {∅} we know from (2) that there is an analytic af
F with stb(F) = S. Now as S 6= {∅} also sem(F) = S, hence S ∈ Σxsem. As
obviously {∅} ∈ Σxsem (witnessed by ({x}, {(x, x)})), we get Σxstg ⊆ Σxsem.

For properness take a look at the af F from Figure 8, which, as discussed
in the proof of Theorem 4, is analytic for semi-stable semantics. Now consider,
for instance, S = {r1, a1, v1, b1} ∈ sem(F). Observe that ci 6∈ S for i ∈ {1, 2, 3}
besides ci not being in conflict with S. If there was an af F ′ ∈ XAFstg with
stg(F ′) = sem(F), then there can not be any attack between S and ci in F .
But then S ∪ {c1} is conflict-free in F ′ and its range is strictly larger than the
range of S. Thus sem(F) 6∈ Σxstg and therefore Σxstg ⊂ Σxsem.

(4) For the last part of the theorem recall that the exact translation for sem→
prf from [25] does not add any implicit conflicts between arguments from the
original af. In more detail for a given (analytic) af F we add one self-attacking
argument xS for any unwanted preferred extension S ∈ prf(F) \ sem(F), and
further add attacks (xS , a) for a ∈ S and (b, xS) for b ∈ AF \ S. Thus the only
implicit conflicts generated by this translation are conflicts between new and
self-attacking arguments. However we can simply make such conflicts explicit
by adding attacks between any self-attacking arguments, which does not affect
preferred semantics, and hence Σxsem ⊆ Σxprf.

Now, for properness, consider the prf-analytic af F from Figure 9. Define a
cyclic successor functions with s(1) = 2, s(2) = 3, s(3) = 1 and s(4) = 5, s(5) =
6, s(6) = 4. We have as preferred extensions prf(F) = S0 ∪ S1 ∪ S2 with

S0 = {{xi, yj , zs(i), zs(j)} | i ∈ {1, 2, 3}, j ∈ {4, 5, 6} or i ∈ {4, 5, 6}, j ∈ {1, 2, 3}}
S1 = {{xi, yi, zs(i)} | i ∈ {1, 2, 3, 4, 5, 6}}
S2 = {{xi, ys(i), zs(s(i))}, {xs(i), yi, zs(s(i))} | i ∈ {1, 2, 3, 4, 5, 6}}

Assume that there is some G ∈ XAFsem with sem(G) = prf(F). We take
a look at S1 and more specifically {x1, y1, z2} ∈ S1. Now we need an explicit

40

arg(x1).arg(x2).arg(x3).
arg(y1).arg(y2).arg(y3).

att(x1,x2).att(x2,x1).
att(x1,x3).att(x3,x1).
att(x2,x3).att(x3,x2).
att(x1,y1).
att(x2,y2).
att(x3,y3).

conflict between x1 and x4, but in the selected set only x1 can possibly defend
against this attack, hence (x1, x4) ∈ RG. The same argument works for x1
and x3 as well as z2 and z3, meaning that also (x1, x3), (z2, z3) ∈ RG. For
symmetry reasons {(xi, xj), (xj , xi), (yi, yj), (yj , yi) | i ∈ {1, 2, 3}, j ∈ {4, 5, 6}}∪
{(xs(i), xi), (zi, zs(i)) | i ∈ {1, 2 . . . 6}} ⊆ RG.

We take a look at S2 and more specifically {x1, y2, z3} ∈ S2. As there
should be an explicit conflict between x1 and x2 with only x1 possibly defending
this extension against x2 we need (x1, x2) ∈ RG. Further as in this set only
y2 and z3 can possibly attack z2 we have the set {y2, z3} attacking z2. For
symmetry reasons {(xi, xs(i)), (yi, ys(i)) | i ∈ {1, 2 . . . 6}} ⊆ RG and each set
{xi, zs(i)}, {yi, zs(i)} for i ∈ {1, 2 . . . 6} attacks zi.

Finally we take a look at S0 and more specifically the set S = {x1, y4, z2, z5} ∈
S0. Since S necessarily is an admissible extension in an analytic af we have
that S attacks all rejected arguments. By the above observations we now have
that S even attacks all arguments not being member of S in G, which means
that S is a stable extension and stable semantics and semi-stable semantics thus
coincide on G. But then, with T = {x1, y1, z2} ∈ S1 not being in conflict with
for instance z4 we have that T can not be a stable or semi-stable extension in
G. We finally conclude that indeed prf(F) 6∈ Σxsem and thus Σxsem ⊂ Σxprf.

6.2. Compact Signatures

We now turn to the issue of realizing extension-sets without the use of re-
jected arguments.

Definition 11. An extension-set S is called compactly realizable under seman-
tics σ if there is some compact af F ∈ CAFσ with σ(F) = S. The compact
signature (c-signature) Σcσ of semantics σ consists of all extension-sets that are
compactly realizable under σ:

Σcσ = {σ(F) | F ∈ CAFσ}.

It is clear that Σcσ ⊆ Σσ holds for any semantics. The following theorem
repeats the equality of compact and general signatures for naive semantics dis-
cussed in the introduction, and shows a ⊂-relation for all other semantics.

Proposition 35. It holds that

1. Σcnai = Σnai, and

2. Σcσ ⊂ Σσ for σ ∈ {stb, stg, sem, prf}.

Proof. nai: Consider some S ∈ Σnai with F being the af realizing S under
naive semantics. It holds that an argument is contained in ArgsS iff it is not
self-attacking. Moreover removing any self-attacking argument together with its
associated attacks has no effect on the naive extensions. Hence the af F ′ ob-
tained from removing all self-attacking arguments together with their associated
attacks has nai(F ′) = S and F ′ ∈ CAFnai, therefore Σcnai = Σnai.

By definition we have Σcσ ⊆ Σσ. It remains to show that Σcσ 6= Σσ for
σ ∈ {stb, stg, sem, prf}.

41

Σcnai

Σcprf

Σcstg Σcsem

Σcstb

Figure 21: A Venn-Diagram illustrating compact signatures of stable, semi-stable, stage and
preferred semantics.

stb, stg: Consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′},
{a′, b, c}, {a′, b, c′}, {a′, b′, c}} from the example in the introduction. We have
seen that S is realized under stb and stg by the af F1 from the introduction. As-
sume there is an af F = (ArgsS, R) realizing S under stb or stg. Inspecting PairsS
we infer that R ⊆ {(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)}. Note that, for any
remaining choice of R, stb(F) = stg(F). Now for {a, b, c} ∈ stb(F) we need
(a, a′), (b, b′), (c, c′) ∈ R. On the other hand, for {a′, b, c}, {a, b′, c}, {a, b, c′} ∈
stb(F) we need (a′, a), (b′, b), (c′, c) ∈ R. But then also {a′, b′, c′} ∈ stb(F).
Hence S /∈ Σcstb and also S /∈ Σcstg, witnessing Σcstb ⊂ Σstb and Σcstg ⊂ Σstg.

prf, sem: Let σ ∈ {prf, sem} and consider S = {{a, b}, {a, d, e}, {b, c, e}}.
S ∈ Σσ holds since Figure 3 shows an af (with additional arguments) realizing
S as its semi-stable and preferred extensions. Now suppose there exists an af
F = (ArgsS, R) such that σ(F) = S. Since {a, d, e}, {b, c, e} ∈ S, it is clear
that R must not contain an edge involving e. But then, e is contained in each
E ∈ σ(F). It follows that σ(F) 6= S and therefore S /∈ Σcσ.

In the following we relate the compact signatures of the semantics under
consideration to each other. Recall that for general signatures it holds that
Σnai ⊂ Σstg = (Σstb \ {∅}) ⊂ Σsem = Σprf [23]. Similarly, but not equivalently
though, we have Σxnai ⊂ Σxstg = (Σxstb \ {∅}) ⊂ Σxsem ⊂ Σxprf for analytic signa-
tures (cf. Theorem 34). This picture changes when considering the relationships
between compact signatures. Figure 21 depicts the relations between compact
signatures which we will show in the next theorem. The dashed areas represent
particular intersections for which the question of extistence of extension-sets
has to be left open. Also notice that stable semantics cannot realize the empty
extension set within compact afs.

Theorem 36. In accordance with Figure 21, it holds that:

1. Σcnai ⊂ Σcσ for σ ∈ {stb, stg, sem, prf};
2. Σcstb ⊂ Σcσ for σ ∈ {stg, sem};

42

Figure 22: af showing Σcprf \ (Σcstb ∪ Σcsem ∪ Σcstg) 6= ∅.

3. Σcprf \ (Σcstb ∪ Σcsem ∪ Σcstg) 6= ∅;
4. Σcstg \ (Σcstb ∪ Σcprf ∪ Σcsem) 6= ∅;
5. Σcstb \ Σcprf 6= ∅;
6. (Σcprf ∩ Σcsem) \ (Σcstb ∪ Σcstg) 6= ∅;
7. Σcsem \ (Σcstb ∪ Σcprf ∪ Σcstg) 6= ∅.

Proof. (1) First recall that for a given S ∈ Σcnai, the canonic af F where AF =
ArgsS and RF = (AF × AF) \ PairsS gives S = nai(F) = σ(F), and F is
compact for σ, thus Σxnai ⊆ Σxσ. Moreover, the af depicted in Figure 20 is
compact for σ ∈ {stb, stg, sem, prf}, but σ(F) can not, as discussed in the proof
of Theorem 34, be realized under the naive semantics. Hence Σxnai ⊂ Σxσ.

(2) Σcstb ⊆ Σcσ for σ ∈ {stg, sem}, follows from the fact that stg(F) =
sem(F) = stb(F) for every F ∈ CAFstb [13]. Properness is by (4) and (7),
to be shown in the remainder of this proof.

In the following we provide, as part of the proof, examples witnessing the
remaining statements. The general procedure is as follows: Let σ1, . . . , σn and

τ1, . . . , τm be semantics. To show that
(⋂

1≤i≤n Σcσi

)
\
(⋃

1≤j≤m Σcτj

)
6= ∅

holds, we fix some extension-set S, provide an af F with σi(F) = S for all
i ∈ {1, . . . , n}, and show that S is not compactly realizable under any of the
semantics τ1, . . . , τm.

We begin by showing (3) Σcprf \ (Σcstb ∪ Σcsem ∪ Σcstg) 6= ∅.

Example 8. Consider the extension-set S = {{a, b}, {a, xi, si}, {b, yi, si},
{xi, yi, si} | 1 ≤ i ≤ 3} and observe that the af F depicted in Figure 22
has exactly prf(F) = S. Since F is compact for prf we have S ∈ Σcprf. Let
σ ∈ {stb, stg, sem}. We show that S /∈ Σcσ. Towards a contradiction assume
that there is an af G with AG = ArgsS and σ(G) = S. First observe that there
cannot be any attack between a and b on the one hand and s1, s2, and s3 on the
other. For σ = stb we have a contradiction to σ(G) = S since s1, s2, s3 /∈ {a, b}+G.
Also for σ = stg we have a contradiction since for each i, {a, b, si} is conflict-free
and {a, b, si}+G ⊃ {a, b}

+
G, hence {a, b} /∈ stg(G). Finally consider σ = sem. Let

S = {a, x1, s1}, T = {x1, y1, s1}. If there was no attack between a and y1 then

43

arg(a). arg(b).
arg(x1). arg(x2). arg(x3).
arg(y1). arg(y2). arg(y3).
arg(s1).arg(s2).arg(s3).

att(b,x1).att(b,x2).att(b,x3).
att(x1,b).att(x2,b).att(x3,b).
att(a,y1).att(a,y2).att(a,y3).
att(y1,a).att(y2,a).att(y3,a).

att(x1,x2). att(x1,x3). att(x1,y2). att(x1,y3).
att(x2,x1). att(x2,x3). att(x2,y1). att(x2,y3).
att(x3,x1). att(x3,x2). att(x3,y1). att(x3,y2).
att(y1,x2). att(y1,x3). att(y1,y2). att(y1,y3).
att(y2,x1). att(y2,x3). att(y2,y1). att(y2,y3).
att(y3,x1). att(y3,x2). att(y3,y1). att(y3,y2).

att(x1,s3).
att(x2,s1).
att(x3,s2).
att(y1,s3).
att(y2,s1).
att(y3,s2).

att(s1,s2).att(s2,s3).att(s3,s1).

Figure 23: A directed cycle of nine arguments.

S ∪ T would be conflict-free and therefore S, T /∈ σ(G). Since each of T and
{a, b} must defend itself, necessarily both (y1, a), (a, y1) ∈ RG. By symmetry we
get { a, yi , b, xi | 1 ≤ i ≤ 3} ⊆ RG. Now in order to have {a, b} ∈ sem(G),
no si can be defended by {a, b}, hence each si must have an attacker that is not
attacked by {a, b} and si. Hence wlog. {(s1, s2), (s2, s3), (s3, s1)} ⊆ RG. Now
observe that S has to defend s1 from s3, therefore (x1, s3) ∈ RG. So far we
have S+

G ⊇ (ArgsS \ {x2, x3}). S has to attack both x2 and x3 since otherwise
either S would not defend itself or at least one of S ∪ {x2} and S ∪ {x3} would
be admissible and have greater range than S. But now S+

G = ArgsS ⊃ {a, b}+G,
a contradiction to {a, b} ∈ sem(G). ♦

We continue with (4) Σcstg \ (Σcstb ∪ Σcprf ∪ Σcsem) 6= ∅.

Example 9. Let ⊕ such that a ⊕ b = (a + b) mod 9. Consider the af F =
({a0, . . . , a8}, {(ai, ai⊕1) | 0 ≤ i < 9, }), i.e. the directed cycle of nine arguments.
We get stg(F) = {{ai, ai⊕2, ai⊕4, ai⊕6} | 0 ≤ i < 9}. Now assume this extension-
set is compactly realizable under stable, preferred or semi-stable semantics, i.e.
there is some G with σ(G) = stg(F) (σ ∈ {stb, prf, sem}) and AG = AF . Since
ai and aj occur together in some stage extension of F for all i, j with i⊕ 1 6= j
and i 6= j ⊕ 1, the only possible attacks in G are (ai, aj) with i ⊕ 1 = j or
i = j ⊕ 1. Now let Si = {ai, ai⊕2, ai⊕4, ai⊕6}. In order to have Si ∈ σ(G),
ai has to attack ai⊕8 and ai⊕6 has to attack ai⊕7, first for Si to be maximal
and second to be defended. Hence RG = { ai, ai⊕1 | 0 ≤ i < 9} and σ(G) =
stg(F) ∪ {ai, ai⊕3, ai⊕6 | 0 ≤ i < 3}, showing that there is no compact af
realizing stg(F) under σ. ♦

The following example witnesses that (5) Σcstb \ Σcprf 6= ∅.

Example 10. Consider stable semantics for the af F depicted in Figure 24
and let S = stb(F) be its extension-set. Observe that neither {a, b, c} nor any
superset is a stable extension.

Assume there exists some af G compactly realizing S under preferred se-
mantics, i.e. prf(G) = S and AG = ArgsS. One can check that F is analytic for
stable semantics, i.e. for the af G there can only be attacks between arguments
being linked in Figure 24.

Consider the extension S = {b, c, x1, s1} ∈ S. For S ∈ prf(G) there are two
possible reasons for a /∈ S. Either a is in conflict with S or a is not defended
by S. Assume a not to be defended by S. Then x2 �G a and x1 6�G x2

44

arg(a0).
arg(a1).
arg(a2).
arg(a3).
arg(a4).
arg(a5).
arg(a6).
arg(a7).
arg(a8).

att(a0,a1).
att(a1,a2).
att(a2,a3).
att(a3,a4).
att(a4,a5).
att(a5,a6).
att(a6,a7).
att(a7,a8).
att(a8,a0).

Figure 24: af showing Σcstb \ Σcprf 6= ∅.

Figure 25: af showing (Σcprf ∩ Σcsem) \ (Σcstb ∪ Σcstg) 6= ∅.

and s1 6�G x2. But then x2 /∈ S defends itself, hence S cannot be a maximal
admissible set in G. It follows that a is in conflict with S, the only possibility
being a conflict with x1, hence x1 �G a (a �G x1 is not sufficient since no
other argument in S can defend x1 against a). Considering {a, y1, z1, s2} ∈ S,
none of y1, z1, and s2 can defend a against x1, hence also a�G x1.

Similarly, one can justify the existence of symmetric attacks between a and
x2, b and yi, and c and zi (i ∈ {1, 2}). Therefore the set {a, b, c} is admissible
in G, hence there must be some S′ ∈ prf(G) with S′ ⊇ {a, b, c}, a contradiction
to S being compactly realizable under the preferred semantics. ♦

We proceed with an example showing that (6) (Σcprf ∩ Σcsem) \ (Σcstb ∪ Σcstg) 6= ∅.

Example 11. Consider the af F from Figure 25. We have S = sem(F) =
prf(F) = {{vi, yj , ri, sj}, {wi, xj , ti, sj}, {vi, wj , ri, tj} | 1 ≤ i, j ≤ 3}. For σ =
stg or σ = stb, assume there is an af G with σ(G) = S and and AG = ArgsS.
First note that for all i, j ∈ {1, 2, 3} each pair {vi, sj}, {wi, sj}, {ri, sj}, {ti, sj}
is contained in some element of S, hence there cannot be an attack between
any of these pairs in G. Now let S = {vi, wj , ri, tj} for some i, j ∈ {1, . . . , 3}.
We have S+

G ⊆ AG \ {s1, s2, s3}, hence S cannot be a stable extension of G.

45

arg(a).arg(b).arg(c).
arg(x1).arg(x2).	
arg(y1).arg(y2).
arg(z1).arg(z2).
arg(s1).arg(s2).arg(s3).

att(a,x1).att(a,x2). att(x1,a).att(x2,a).
att(b,y1).att(b,y2). att(y1,b).att(y2,b).
att(c,z1).att(c,z2). att(z1,c).att(z2,c).

att(x1,x2). att(x2,x1).
att(y1,y2). att(y2,y1).
att(z1,z2). att(z2,z1).

att(x1,s3).att(s3,x1).
att(x2,s1).att(s1,x2).
att(y1,s3).att(s3,y1).
att(y2,s2).att(s2,y2).
att(z1,s1).att(s1,z1).
att(z2,s2).att(s2,z2).

att(s1,s2).att(s2,s3).att(s3,s1).

arg(r1).

arg(r2).

arg(r3).

arg(s1).

arg(s2).

arg(s3).

arg(t1).

arg(t2).

arg(t3).

arg(v1).

arg(v2).

arg(v3).

arg(w1).

arg(w2).

arg(w3).

arg(x1).

arg(x2).

arg(x3).

arg(y1).

arg(y2).

arg(y3).

att(r1,r2).att(r2,r3).att(r3,r1).

att(s1,s2).att(s2,s3).att(s3,s1).

att(t1,t2).att(t2,t3).att(t3,t1).

att(v1,v2).att(v1,v3).

att(v2,v1).att(v2,v3).

att(v3,v1).att(v3,v2).

att(w1,w2).att(w1,w3).

att(w2,w1).att(w2,w3).

att(w3,w1).att(w3,w2).

att(x1,x2).att(x1,x3).

att(x2,x1).att(x2,x3).

att(x3,x1).att(x3,x2).

att(y1,y2).att(y1,y3).

att(y2,y1).att(y2,y3).

att(y3,y1).att(y3,y2).

att(v1,x1).att(v1,x2).att(v1,x3).

att(v2,x1).att(v2,x2).att(v2,x3).

att(v3,x1).att(v3,x2).att(v3,x3).

att(x1,v1).att(x1,v2).att(x1,v3).

att(x2,v1).att(x2,v2).att(x2,v3).

att(x3,v1).att(x3,v2).att(x3,v3).

att(w1,y1).att(w1,y2).att(w1,y3).

att(w2,y1).att(w2,y2).att(w2,y3).

att(w3,y1).att(w3,y2).att(w3,y3).

att(y1,w1).att(y1,w2).att(y1,w3).

att(y2,w1).att(y2,w2).att(y2,w3).

att(y3,w1).att(y3,w2).att(y3,w3).

att(x1,y1).att(x1,y2).att(x1,y3).

att(x2,y1).att(x2,y2).att(x2,y3).

att(x3,y1).att(x3,y2).att(x3,y3).

att(y1,x1).att(y1,x2).att(y1,x3).

att(y2,x1).att(y2,x2).att(y2,x3).

att(y3,x1).att(y3,x2).att(y3,x3).

att(v1,r3).

att(v2,r1).

att(v3,r2).

att(x1,s3).

att(x2,s1).

att(x3,s2).

att(y1,s3).

att(y2,s1).

att(y3,s2).

att(w1,t3).

att(w2,t1).

att(w3,t2).

Moreover, since G must be self-loop-free, S ∪ {sk} with 1 ≤ k ≤ 3 is conflict-
free and obviously has a bigger range than S. Therefore S cannot be a stage
extension in G. ♦

For (7) we will make use of the following lemma, which might be of interest
on its own.

Lemma 37. Let σ, τ ∈ {stb, prf, sem, stg} and F,G be τ -compact afs such that
τ(F) /∈ Σcσ and AF ∩AG = ∅. It holds that τ(F ∪G) /∈ Σcσ.

Proof. Assume there is some compact af H such that σ(H) = τ(F ∪G). Since
AF ∩ AG = ∅, it follows that τ(F ∪ G) = τ(F) × τ(G). Due to compactness
every argument a ∈ AF occurs together with every argument b ∈ AG in some τ -
extension of F ∪G, meaning that H cannot contain any attack between a and b.
Hence σ(H) = σ(H1)×σ(H2) with AH1

= AF and AH2
= AG. Therefore it must

hold that σ(H1) = τ(F), a contradiction to the assumption that τ(F) /∈ Σcσ.

Now we get (7) Σcsem \ (Σcstb ∪ Σcprf ∪ Σcstg) 6= ∅ as follows: Let F = F1 ∪ F2

where F1 is the af in Figure 24 and F2 is the af in Figure 25 (observe that
for AF1 ∩ AF2 = ∅ some renaming is necessary). From sem(F1) /∈ Σcprf (see
Example 10) we get sem(F) = (sem(F1) × sem(F2)) /∈ Σcprf by Lemma 37. In
the same way sem(F) /∈ Σcstb ∪ Σcstg follows from sem(F2) /∈ Σcstb ∪ Σcstg (see
Example 11).

This concludes the proof of Theorem 36.

Comparing the insights obtained from Theorem 36 with the results on ex-
pressiveness of semantics in [23] we observe notable differences depending on
whether rejected arguments are allowed or not. When allowing rejected ar-
guments (as utilized in [23]), preferred and semi-stable semantics are equally
expressive and at the same time strictly more expressive than stable and stage
semantics. As we have seen, this does not carry over to the compact setting
where, with the exception of Σcstb ⊂ Σcsem and Σcstb ⊂ Σcstg, signatures become
incomparable.

What remains an open issue is the existence of extension-sets lying in the
intersection between Σcprf (resp. Σcsem) and Σcstg but outside of Σcstb (see Venn-
diagram in Figure 21). We approach this issue in the remainder of this section.

Lemma 38. In self-attack free afs every stage extension that is admissible is
also stable.

Proof. Take some af F = (A,R), and some admissible stage extension S, S ∈
stg(F), S ∈ adm(F) as given. Suppose there is some argument that is not in
the range of S, i.e. a ∈ A \ S+

F . Then by admissibility a cannot attack S, by
assumption S does not attack a. Consider that any stage extension is maximal
conflict-free, thus for a 6∈ S we in fact would need (a, a) ∈ R. It follows that
there is no such argument a and thus S+

F = A. Hence S ∈ stb(F).

Proposition 39. Let σ ∈ {sem, prf} and F,G be σ-compact afs such that
stg(F) = σ(G). If stg(F) /∈ Σcstb then

46

1. F 6= G, and

2. G is non-analytic for σ.

Proof. Assume that F = G. But then, as by assumption stg(F) = σ(F), by
Lemma 38 also σ(F) = stb(F), a contradiction to the assumption that stg(F) /∈
Σcstb. Therefore F 6= G.

For a contradiction, wlog. assume G to be σ-analytic (for any quasi-analytic
H there is some corresponding analytic G). Observe that for stage extensions
S ∈ stg(F) and any argument a ∈ A \ S it holds that either there is an explicit
conflict between S and a in F , or a is self-attacking in F , for otherwise S+

F would
not be maximal. With stg(F) = σ(G) and G being analytic for the admissibility
based semantics σ this means that S �G a, i.e. S+

G = A. With all σ-extensions
becoming stb-extensions and the fact that stb(F) ⊆ σ(F) for any F , we derive
a contradiction to the initial statement: stb(G) = stg(F).

Assume that for σ ∈ {prf, stg} there exists an extension-set S ∈ (Σcσ ∩Σcstg)\
Σcstb. Now Proposition 39 says that S is compactly realized by different afs
under σ and stg, i.e. stg(F) = S and σ(G) = S with F 6= G. Moreover, G is non-
analytic. Recent investigations encourage us to conjecture that such extension-
sets do not exist (we already know that Σcstb ⊆ Σcsem ∩ Σcstg (cf. Theorem 36.2)
and Σcstb \ Σcprf 6= ∅ (cf. Theorem 36.5) hold):

Conjecture. It holds that Σcprf ∩ Σcstg ⊂ Σcstb and Σcsem ∩ Σcstg = Σcstb.

6.3. Numbers of Extensions in Compact Frameworks

In the previous section we have related the semantics under consideration
with respect to their capabilities in compactly realizing extension-sets. The
concrete problem which was tackled in [23] is deciding, given an extension-set
S, whether S is realizable. For compact realizability this is, in general, a hard
problem; that is, we have no reason to believe that we can do any better than
guessing a compact af and checking whether its extension-set coincides with
S. Nevertheless, in this section we provide a number of shortcuts to detect
non-compactness. By “shortcut”, we mean a property of the given extension-
set S that is easily computable (preferably in polynomial time) and lets us
(sometimes) give a definitive answer to the decision problem. These shortcuts
are related to numerical aspects of argumentation frameworks, some of which
have been studied in graph theory.

Among the most basic properties that are necessary for compact realizability,
we find numerical aspects like possible cardinalities of σ-extension-sets.

Example 12. Consider the following af F2:

47

a1 a2

a3

c1 c2

c3

b1 b2

z

Let us determine the stable extensions of F2. Clearly, taking one ai, one bi
and one ci yields a conflict-free set that is also stable as long as it attacks z.
Thus from the 3 · 2 · 3 = 18 combinations, only one (the set {a1, b1, c2}) is not
stable, whence F2 has 18 − 1 = 17 stable extensions. We note that this af is
not compact since z occurs in none of the extensions. Is there an equivalent stb-
compact af? The results of this section will provide us with a negative answer.

♦

Baumann and Strass (2014) have shown that there is a correspondence be-
tween the maximal number of stable extensions in argumentation frameworks
and the maximal number of maximal independent sets in undirected graphs [33].
Recently, the result was generalized to further semantics [23, Proposition 11 and
Theorem 5].8 To set the scene for the subsequent results building upon it, we
recall the result below (Theorem 40). For any natural number n we define:9

σmax(n) = max {|σ(F)| | F ∈ AFA, |AF | = n}

σmax(n) returns the maximal number of σ-extensions among all AFs with n
arguments. Surprisingly, there is a closed expression for σmax.

Theorem 40. The function σmax(n) : N→ N is given by

σmax(n) =


1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

What about the maximal number of σ-extensions on weakly connected10

graphs? Does this number coincide with σmax(n)? The next theorem provides
a negative answer to this question and thus gives space for impossibility results
as we will see. For a natural number n define

σcon
max(n) = max {|σ(F)| | F ∈ AFA, |AF | = n, F connected}

8We mention that it is not the case that for all semantics σ the so-called diversity function
∆σ(n) introduced in [23] coincides with σmax(n) as introduced in [8] and defined below. This
can be seen by considering complete semantics [23, 9].

9In this section, unless stated otherwise we use σ as a placeholder for stable, semi-stable,
preferred, stage and naive semantics.

10In the following we simply write connected and take it to mean weakly connected.

48

σcon
max(n) returns the maximal number of σ-extensions among all connected AFs

with n arguments. Again, a closed expression exists.

Theorem 41. The function σcon
max(n) : N→ N is given by

σcon
max(n) =


n, if n ≤ 5,

2 · 3s−1 + 2s−1, if n ≥ 6 and n = 3s,

3s + 2s−1, if n ≥ 6 and n = 3s+ 1,

4 · 3s−1 + 3 · 2s−2, if n ≥ 6 and n = 3s+ 2.

Proof. First some notations: for an af F = (A,R), denote its irreflexive version
by

irr(F) = (A,R \ {(a, a) | a ∈ A});

denote its symmetric version by

sym(F) = (A,R ∪ {(b, a) | (a, b) ∈ R});

and its associated undirected graph by

und(F) = (A, {{a, b} | (a, b) ∈ R}).

Furthermore, for a simple and undirected graph G = (V,E) we use MIS(G)
for the set of maximal independent sets of G. Remember, a set S ⊆ V is
called independent if no edge e ∈ E has both its endpoints in S. Moreover, an
independent set S is called maximal independent if it is ⊆-maximal among the
independent sets of G. Finally, we denote its associated symmetric af by

dir(G) = (V, {(a, b), (b, a) | {a, b} ∈ E}).

Now for the proof. We start with showing that the number of naive exten-
sions does not exceed the claimed value range of σcon

max(n). Given a connected af
F . Observe that the deletion of self-loops does not reduce the number of naive
extensions, i.e. |nai(F)| ≤ |nai(irr(F))|. This can be seen as follows. First, for
any E ∈ nai(F) exists an E′ ∈ nai(irr(F)), such that E ⊆ E′ and second, for
each two E1, E2 ∈ nai(F) there is no E′ ∈ nai(irr(F)), such that E1 ⊆ E′ and
E2 ⊆ E′ simultaneously. Furthermore, it is easy to see that for any irreflexive
af G, nai(G) = MIS(und(G)). Roughly speaking, this is due to the fact that
first, both concepts call for ⊆-maximal sets and second, naive semantics does
not distinguish between the presence of an attack (a, b) or the presence of (b, a)
or the presence of both of them. Consequently, |nai(F)| ≤ |MIS(und(irr(F)))|.
Fortunately, due to Theorem 2 in [30] the maximal number of maximal inde-
pendent sets in connected n-graphs are exactly given by the claimed value range
of σcon

max(n).
We proceed with arguing that the maximal number of stable extensions

within the class of connected afs is at least as large as the claimed value range
of σcon

max(n). In Figure 1 in [30] graphs realizing the maximal number of max-
imal independent sets for connected n-graphs are presented. These so-called

49

extremal graphs can be used to derive afs where former maximal independent
sets become stable extensions. This can be done by replacing undirected edges
by symmetric directed attacks. This construction is justified by the fact that
for any simple graph G, |MIS(G)| = |nai(dir(G))| and furthermore, as shown in
[14, Propositions 4 and 5] naive and stable semantics coincide on the class of
irreflexive and symmetric afs. Example 13 below provides an illustration.

In order to conclude the proof we use well-known subset-relations between
the considered semantics (compare Section 2). Since stb(F) ⊆ stg(F) ⊆ nai(F)
for any af F , we derive that |stb(F)| ≤ |stg(F)| ≤ |nai(F)|. Furthermore,
we have already shown that first, σcon

max(n) does not exceed the claimed value
range in case of naive semantics and second, σcon

max(n) is at least as great as the
claimed value range in case of stable semantics. Consequently, the stated equal-
ity provides us with a tight upper bound for stable, stage and naive semantics.
What about semi-stable and preferred semantics? Since the result is already
shown for stable semantics and in consideration of stb(F) ⊆ sem(F) ⊆ prf(F)
for any af F , it suffices to prove that σcon

max(n) does not exceed the claimed value
range in case of preferred semantics. This can be seen as follows. First, one
may easily verify that for any af F we have, |prf(F)| ≤ |prf(irr(F))| as well as
prf(F) ⊆ prf(sym(F)). Hence, |prf(F)| ≤ |prf(sym(irr(F)))|. In [2, Corollary
1] it was already shown that preferred and stable semantics agree on irreflexive
and symmetric afs, i.e. for any af F , prf(sym(irr(F))) = stb(sym(irr(F))). In
summary, for any af F we have, |prf(F)| ≤ |stb(sym(irr(F)))|. Assuming the
existence of an af F possessing more preferred extension than the claimed value
range of σcon

max(n) implies the existence of an witnessing af, namely sym(irr(F)),
possessing more stable extension than the claimed value range of σcon

max(n) in
contrast to the already shown upper bound. Hence, the stated value range of
σcon
max(n) serves as a tight upper bound for semi-stable and preferred semantics

too.

The following illustration provides an example how connected afs having
the maximal number of σ-extensions look like.

Example 13. Consider the following af G:

a1 a2

a3

c1 c2

c3

b1 b2

b3

The af G is connected and possesses 22 σ-extensions. More precisely:

σ(G) = {{ai, bj , ck} | 1 ≤ i, j, k ≤ 3} \ {{ai, bj , ck} | i = j = 3 ∨ j = k = 3}

This justifies |σ(G)| = 27 − 5 = 22. Furthermore, G consists of 9 arguments.
Applying Theorem 41 we obtain σcon

max(n) = 2 · 33−1 + 23−1 = 2 · 32 + 22 =
18 + 4 = 22. This means, G is an extremal af within the class of connected

50

graphs. As an aside, in case of arbitrary frameworks, the maximal number
of stable extensions given n arguments can be realized by deleting the mutual
attacks between a3 and b3 as well as b3 and c3 (cf. Theorem 40). Restoring
mutual attacks between one pair only yields the second largest number, which
will be proven in Theorem 42. ♦

A further interesting question concerning arbitrary afs is whether all natural
numbers less than σmax(n) are realizable by afs possessing n arguments.11 The
following theorem shows that there is a serious gap between the maximal and
second largest number. For any positive natural n define

σ2nd(n) = max ({|σ(F)| | F ∈ AFA, |AF | = n} \ {σmax(n)})

σ2nd(n) returns the second largest number of σ-extensions among all AFs with
n arguments. Graph theory provides us with an expression.

Theorem 42. Function σ2nd(n) : N \ {0} → N is given by

σ2nd(n) =


σmax(n)− 1, if 1 ≤ n ≤ 7,

σmax(n) · 1112 , if n ≥ 8 and n = 3s+ 1,

σmax(n) · 89 , otherwise.

Proof. At first we argue that the second largest number of σ-extensions is at
least as large as the claimed value range of σ2nd(n). For this it suffices to
present witnessing afs. In [31, Theorem 2.4] graphs realizing the second largest
number of maximal independent sets for n-graphs are given. These simple
graphs can be used to derive afs where former maximal independent sets be-
come σ-extensions. Replacing undirected edges by symmetric directed attacks
accounts for this. This can be seen as follows. First, for any simple graph G,
|MIS(G)| = |nai(dir(G))|. Second, for any irreflexive and symmetric af F we
have, stb(F) = nai(F) [14, Propositions 4 and 5] and finally, applying well-
known subset-relations, namely stb(F) ⊆ sem(F) ⊆ prf(F) and stb(F) ⊆ stg(F)
(for any af F) justifies the claim for all considered semantics.

We show now that the second largest number of σ-extensions does not exceed
the claimed value range of σ2nd(n). Given an af F where |AF | = n. Observe
that we have nothing to show if n ≤ 7 since σ2nd(n) is given as the maxi-
mal number minus one. Let n ≥ 8 and suppose, towards a contradiction, that
l ·σmax(n) < σ2nd(n) = |σ(F)| < σmax(n) where l depends on the remainder of n
on division by 3 (l ∈ { 1112 ,

8
9}). Similar to the proof of Theorem 41 one may easily

show that for all considered semantics σ, |σ(F)| ≤ |σ(sym(irr(F)))| as well as
that for any symmetric and irreflexive G, σ(F) = MIS(und(G)). This means,
l·σmax(n) < |σ(F)| ≤ |MIS(und(sym(irr(F))))| ≤ σmax(n). We further conclude
that |MIS(und(sym(irr(F))))| = σmax(n). This equality has to hold because the

11We sometimes speak about realizing a natural number k and mean finding an af having
exactly k extensions.

51

term l · σmax(n) as well as the value range of σmax(n) precisely coincide with
the second largest or maximal number of maximal independent sets in simple
graphs [31, 33]. This means, l · σmax(n) < |MIS(und(sym(irr(F))))| < σmax(n)
would contradict the second largest number of maximal independent sets. Note
that up to isomorphisms the extremal graphs are uniquely determined (cf.
Theorem 1 in [30]). In the following we use Kn to denote a complete graph
on n vertices. Depending on the remainder of n on division by 3 we have
K3s for n ≡ 0, either one K4 or two K2s and the rest are K3s in case of
n ≡ 1 and one K2 plus K3s for n ≡ 2. Remember that we have |σ(F)| <
|σ(sym(irr(F)))| = σmax(n). In particular, this means F 6= sym(irr(F)). Conse-
quently, depending on the remainder we may thus estimate |σ(F)| ≤ k · σmax(n)
where k ∈ { 23 ,

3
4 ,

1
2}. This can be seen as follows: First, computing the σ-

extensions of an af can be reduced to computing the σ-extensions of each of
its component (see Lemma 46) and second, the minimal factors decreasing the
number of σ-extension (through adding self-loops or deleting attacks) within a
component where 3, 4 or 2 arguments attack each other are 2

3 , 3
4 or 1

2 , respec-
tively. We finally state l · σmax(n) < |σ(F)| ≤ k · σmax(n) where l ∈ { 1112 ,

8
9} and

k ∈ { 23 ,
3
4 ,

1
2}. This is a clear contradiction concluding the proof.

The attentive reader might have noticed that all maximal number functions
introduced in this subsection refer to arbitrary argumentation frameworks in-
stead of compact ones. The following theorem shows that this is not incidental
since the compact versions of these functions return the same values (provided
that they are defined). We first introduce the corresponding functions:

σcmax(n) = max {|σ(F)| | F ∈ CAFσ, |AF | = n}
σc,con
max (n) = max {|σ(F)| | F ∈ CAFσ, |AF | = n, F connected}
σc2nd(n) = max ({|σ(F)| | F ∈ CAFσ, |AF | = n} \ {σcmax(n)})

Theorem 43. For any n ∈ N, σcmax(n) = σmax(n) and σc,con
max (n) = σcon

max(n).
Furthermore, for any n ∈ N \ {0, 1}, σc2nd(n) = σ2nd(n).

Proof. (sketch) Given n ∈ N as claimed above.
(≤) Obviously, σcmax(n) ≤ σmax(n), σc,con

max (n) ≤ σcon
max(n) and σc2nd(n) ≤ σ2nd(n)

since CAFσ ⊆ AFA.
(≥) Inspecting the proofs of Theorems 40, 41 and 42 (respective the proofs of
the mentioned references therein) reveals that the witnessing examples, i.e. the
afs realizing a certain maximal number are already compact.

From now on we implicitly presuppose that the introduced maximal num-
ber functions restricted to compact frameworks coincide with their unrestricted
versions.

Example 14. Recall that the (non-compact) af we discussed in Example 12
had the extension-set S with |S| = 17 and |ArgsS| = 8. Is there a stable-
compact af with the same extensions? Firstly, nothing definitive can be said
by Theorem 40 since 17 ≤ 18 = σmax(8). Furthermore, in accordance with

52

Theorem 41 the set S cannot be compactly σ-realized by a connected af since
17 > 15 = σcon

max(8). Finally, using Theorem 42 we infer that the set S is not
compactly σ-realizable because σ2nd(8) = 16 < 17 < 18 = σmax(8). ♦

The compactness property is instrumental here, since Theorem 42 has no
counterpart in non-compact afs. More generally, allowing additional arguments
as long as they do not occur in extensions enables us to realize any number of
stable extensions up to the maximal one.

Proposition 44. Let n be a natural number. For each k ≤ σmax(n), there is
an af F with |Argsstb(F)| = n and |stb(F)| = k.

Proof. To realize k stable extensions with n arguments, we start with the con-
struction for the maximal number from Theorem 40. We then subtract exten-
sions as follows: We choose σmax(n) − k arbitrary distinct stable extensions of
the af realizing the maximal number. To exclude them, we use the construction
of Definition 9 in [23].

Corollary 45. Let n be a natural number and σ among preferred, semi-stable
and stage semantics. For each k ≤ σmax(n), there is an af F with |Argsσ(F)| =
n and σ(F) = k.

Proof. Follows from Lemmata 2.2 and 4.2 in [23].

Now we are prepared to provide possible short cuts when deciding realizabil-
ity of a given extension-set by initially simply counting the extensions. First
some formal definitions.

Definition 12. Given an af F = (A,R), the component-structure K(F) =
{K1, . . . ,Kn} of F is the set of sets of arguments, where each Ki coincides
with the arguments of a weakly connected component of the underlying graph;
K≥2(F) = {K ∈ K(F) | |K| ≥ 2}.

Example 15. The af F = ({a, b, c}, {(a, b)}) has component-structure K(F) =
{{a, b}, {c}}. ♦

The component-structure K(F) gives information about the number n of
components of F as well as the size |Ki| of each component. Knowing the
components of an af, computing the σ-extensions can be reduced to computing
the σ-extensions of each component and building the cross-product. The af
resulting from restricting F to component Ki is given by F↓Ki = (Ki, RF ∩
Ki ×Ki).

Lemma 46. Given an af F with component-structure K(F) = {K1, . . . ,Kn}
it holds that the extensions in σ(F) and the tuples in σ(F↓K1

)× · · · × σ(F↓Kn)
are in one-to-one correspondence.

Proof. By induction on n; the base case n = 1 is trivial. For the induction step
let K(F) = {K1, . . . ,Kn,Kn+1}.

53

“⊆”: Let S ∈ σ(F). Define Dn+1 = S ∩ Kn+1. By induction hypothesis,
there are sets D1, . . . , Dn such that each Di is a σ-extension of F↓Ki and S \
Kn+1 = D1 ∪ · · · ∪Dn. We have to show that Dn+1 is a σ-extension of F↓Kn+1

.
σ = stb: Clearly Dn+1 is conflict-free, and any a ∈ Kn+1 \ Dn+1 is attacked
since S is stable and the attacks must come from Dn+1 due to connectivity.
σ ∈ {nai, prf}: If there is a conflict-free/admissible superset of Dn+1, then S is
not naive/preferred for F . σ ∈ {stg, sem}: If there is a superset of Dn+1 with
greater range, then S is not stage/semi-stable for F .

“⊇”: Let D1, . . . , Dn, Dn+1 such that each Di is a σ-extension of F↓Ki .
Define S = D1 ∪ · · · ∪ Dn ∪ Dn+1; we show that S ∈ σ(F). By induction
hypothesis, D1 ∪ · · · ∪ Dn ∈ σ(F↓K1,...,Kn). σ = stb: Clearly S is conflict-
free since all Di are conflict-free; since Dn+1 is stable for F↓Kn+1

it attacks
all a ∈ Kn+1 \ Dn+1 and thus S is stable for F . σ ∈ {nai, prf}: If S is not
naive/preferred for F , there is a conflict-free/admissible superset of S in F .
There is at least one additional argument, that is either in D1 ∪ · · · ∪Dn or in
Dn+1. But the first is impossible due to induction hypothesis, and the second
due to presumption. σ ∈ {stg, sem}: If S is not stage/semi-stable for F , there is
a conflict-free/admissible set S′ with greater range. The range difference must
manifest itself in D1 ∪ · · · ∪ Dn or Dn+1, which leads to a contradiction with
the induction hypothesis and the presumption that Dn+1 is stage/semi-stable
for F↓Kn+1

.

Given an extension-set S we want to decide whether S is realizable by a
compact af under semantics σ. For an af F = (A,R) with σ(F) = S we know
that there cannot be a conflict between any pair of arguments in PairsS, hence
R ⊆ PairsS = (A × A) \ PairsS. The next proposition implicitly shows that
for argument-pairs (a, b) /∈ PairsS, although there is not necessarily a direct
conflict between a and b, they are definitely in the same component. In other
words, this shows that implicit conflicts cannot arise across (weakly connected)
components but only within them.

Proposition 47. Let S be an extension-set. (1) The transitive closure of PairsS,

the set
(
PairsS

)∗
, is an equivalence relation, that is, it is reflexive, symmetric,

and transitive. (2) For each af F ∈ CAFσ that compactly realizes S under
semantics σ (that is, σ(F) = S), the component structure K(F) of F is given by

the equivalence classes of
(
PairsS

)∗
, that is, K(F) is the quotient set of ArgsS

by
(
PairsS

)∗
.

Proof. Consider some extension-set S together with an af F ∈ CAFσ with
σ(F) = S. We have to show that for any pair of arguments a, b ∈ ArgsS it holds

that (a, b) ∈
(
PairsS

)∗
iff a and b are connected in the graph underlying F .

If a and b are connected in F , this means that there is a sequence s1, . . . , sn
such that a = s1, b = sn, and (s1, s2), . . . , (sn−1, sn) /∈ PairsS, hence (a, b) ∈(
PairsS

)∗
.

If (a, b) ∈
(
PairsS

)∗
then also there is a sequence s1, . . . , sn such that a = s1,

b = sn, and (s1, s2), . . . , (sn−1, sn) ∈ PairsS. Consider some (si, si+1) ∈ PairsS

54

and assume, towards a contradiction, that si occurs in another component of F
than si+1. Recall that F ∈ CAFσ, so each of si and si+1 occur in some extension
and σ(F) 6= ∅. Hence, by Lemma 46, there is some σ-extension E ⊇ {si, si+1}
of F , meaning that (si, si+1) ∈ PairsS, a contradiction. Hence all si and si+1

for 1 ≤ i < n occur in the same component of F , proving that also a and b do
so.

It is particularly nice to note that the only conditions we used in the proof
were compactness and conflict-freeness, which indeed shows the Proposition for
all five semantics considered here.

We will denote the component-structure induced by an extension-set S as
K(S), i.e. K(S) is the quotient set of ArgsS by

(
PairsS

)∗
. Note that, by Proposi-

tion 47, K(S) is equivalent to K(F) for every F ∈ CAFσ with σ(F) = S. Given
S, the computation of K(S) can be done in polynomial time. With this we can
use results from graph theory together with number-theoretical considerations
in order to get impossibility results for compact realizability.

Recall that for a single connected component with n arguments the maxi-
mal number of σ-extensions is denoted by σcon

max(n) and its values are given by
Theorem 41. In the compact setting it further holds for a connected af F with
at least 2 arguments that |σ(F)| ≥ 2.

Proposition 48. Given an extension-set S where |S| is odd, it holds that if
∃K ∈ K(S) : |K| = 2 then S is not compactly realizable under semantics σ.

Proof. Assume to the contrary that there is an F ∈ CAFσ with σ(F) = S. We
know that K(F) = K(S). By assumption there is a K ∈ K(S) with |K| = 2,
whence |σ(K)| = 2. Thus by Lemma 46 the total number of σ-extensions is
even. Contradiction.

Example 16. Consider the extension-set S = {{a, b, c}, {a, b′, c′}, {a′, b, c′},
{a′, b′, c}, {a, b, c′}, {a′, b, c}, {a, b′, c}} = stb(F1) where F1 is the non-compact
af from the proof of Proposition 35. There, it took us some effort to argue that S
is not compactly stb-realizable. Proposition 48 now gives an easier justification:
PairsS yields K(S) = {{a, a′}, {b, b′}, {c, c′}}. Thus S with |S| = 7 cannot be
realized. ♦

We denote the set of possible numbers of σ-extensions of a compact af
with n arguments as P(n); likewise we denote the set of possible numbers of σ-
extensions of a compact and connected af with n arguments as Pc(n). Although
we know that p ∈ P(n) implies p ≤ σmax(n), there may be q ≤ σmax(n) that
are not realizable by a compact af under σ; likewise for q ∈ Pc(n).

Clearly, any p ≤ n is possible by building an undirected graph with p ar-
guments where every argument attacks all other arguments, a Kp, and filling
up with k isolated arguments (k distinct copies of K1) such that k + p = n.
This construction obviously breaks down if we want to realize more extensions
than we have arguments, that is, p > n. In this case, we have to use Lemma 46
and further graph-theoretic gadgets for addition and even a limited form of
subtraction. Let us show how for n = 7 any number of extensions up to the

55

maximal number 12 is realizable. For 12 = 3 · 4, Theorem 40 yields the

realization, a disjoint union of a K3 and a K4 (). For the remaining
numbers, we have that 8 = 2 · 4 · 1 and so we can combine a K2, a K4 and a

K1 (). Likewise, 9 = 3 · 3 · 1 (); 10 = 3 · 3 + 1 () and

finally 11 = 3 · 4 − 1 (). These small examples already show that P and
Pc are closely intertwined and let us deduce some general corollaries: Firstly,
Pc(n) ⊆ P(n) since connected afs are a subclass of afs. Next, P(n) ⊆ P(n+1)

as in the step from to . We even know that P(n) ⊂ P(n + 1)
since σmax(n + 1) ∈ P(n + 1) \ P(n). Furthermore, whenever p ∈ P(n), then

p+ 1 ∈ Pc(n+ 1), as in the step from to . The construction that
goes from 12 to 11 above obviously only works if there are two weakly connected
components overall, which underlines the importance of the component struc-
ture of the realizing af. Indeed, multiplication of extension numbers of single
components is our only chance to achieve overall numbers that are substantially
larger than the number of arguments. This is what we will turn to next.

Having to leave the exact contents of P(n) and Pc(n) open, we can still state
the following result:

Proposition 49. Let S be an extension-set that is compactly realizable under
semantics σ where K≥2(S) = {K1, . . . ,Kn}. Then for each 1 ≤ i ≤ n there is a
pi ∈ Pc(|Ki|) such that |S| =

∏n
i=1 pi.

Example 17. Consider the extension-set S′ = {{a, b, c}, {a, b′, c′}, {a′, b, c′},
{a′, b′, c}}. (In fact there exists a (non-compact) af F with stb(F) = S′). We
have the same component-structure K(S′) = K(S) as in Example 16, but since
now |S′| = 4 we cannot use Proposition 48 to show impossibility of realization
in terms of a compact af. But with Proposition 49 at hand we can argue in the
following way: Pc(2) = {2} and since ∀K ∈ K(S′) : |K| = 2 it must hold that
|S| = 2 · 2 · 2 = 8, which is obviously not the case. ♦

In particular, we have a straightforward non-realizability criterion whenever
|S| is a prime number: the af (if any) must have at most one weakly connected
component of size greater than two. Theorem 41 gives us the maximal number
of σ-extensions in a single weakly connected component. Thus whenever the
number of desired extensions is larger than that number and prime, it cannot
be realized.

Corollary 50. Let extension-set S with |ArgsS| = n be compactly realizable
under σ. If |S| is a prime number, then |S| ≤ σcon

max(n).

Example 18. Let S be an extension-set with |ArgsS| = 9 and |S| = 23. We
find that σcon

max(9) = 2 · 32 + 22 = 22 < 23 = |S| and thus S is not compactly re-
alizable under semantics σ. ♦

We can also make use of the derived component structure of an extension-
set S. Since the total number of extensions of an af is the product of these
numbers for its weakly connected components (Lemma 46), each non-trivial

56

component contributes a non-trivial amount to the total. Hence if there are
more components than the factorization of |S| has primes in it, then S cannot
be realized.

Corollary 51. Let extension-set S be compactly realizable under σ and let
fz11 · . . . · fzmm be the integer factorization of |S|, where f1, . . . , fm are prime
numbers. Then,

z1 + . . .+ zm ≥ |K≥2(S)|.

Example 19. Consider an extension-set S containing 21 extensions and |K≥2(S)| =
3. Since 21 = 31 ∗ 71 and further 1 + 1 < 3, S is not compactly realizable under
semantics σ. ♦

We conclude this section with a partial recipe for determining compact (non-
)realizability. Given an extension-set S, compute:

• the number of extensions k = |S|,

• the number of arguments n = |ArgsS|,

• the component-structure K(S), in particular the number of non-trivial
components c = K≥2(S),

• the integer factorization of k = fz11 · . . . · fzmm

Towards deciding compact realizability, we can use the results of this section in
the following way:

1. If σmax(n) < k then S is not compactly realizable.

2. If σ2nd(n) < k < σmax(n) then S is not compactly realizable.

3. If c = 1 and σcon
max(n) < k then S is not compactly realizable.

4. If k is prime and σcon
max(n) < k then S is not compactly realizable.

5. If k is odd and there is a K ∈ K(S) with |K| = 2 then S is not compactly
realizable.

6. If z1 + . . .+ zm < c then S is not compactly realizable.

7. Discussion

In this work we studied several aspects concerning the fundamental con-
cepts of rejected arguments and implicit conflicts in abstract argumentation
frameworks. For that, we focused on naive, stable, preferred, semi-stable and
stage semantics, all of which satisfy the principle of I-maximality [1]. We omit-
ted prominent basic semantics like complete, admissible and conflict-free sets
from our studies as they do not align in this respect. However, for the sake of
completeness we provide a complete account of results for the issues tackled in
this paper for these semantics in Appendix C.

The idea of avoiding rejected arguments or implicit conflicts, lead us to
introduce and study the novel classes of compact and analytic argumentation

57

frameworks, each parameterized by a particular semantics. For both classes we
obtained a similar picture for the relationship between semantics.

Concerning computational issues, we have analyzed the complexity of decid-
ing whether a given af is compact (resp. analytic) for a semantics σ. Our results
range from tractability for naive semantics, over NP-completeness for stable and
preferred semantics, up to ΣP

2 -completeness for semi-stable and stage semantics.
We also have argued that the problem of credulous acceptance becomes trivial
and skeptical acceptance is often polynomial time computable when we restrict
ourselves to the subclasses under consideration, while the verification problems
remain as hard as in the general case. The overall picture is now as follows:
On the one hand we have illustrated that the classes of compact and analytic
afs provide computational benefits both in practice and in terms of theoretical
worst-case analysis. On the other hand testing for membership in one of the
classes is, for most of the semantics, of rather high complexity and thus these
classes cannot be directly used to improve systems. However, for future work,
we plan to take the rather negative complexity results for deciding member-
ship in the subclass of compact (resp. analytic) afs into account and seek for
efficiently checkable (but not necessarily complete) criteria in order to decide
whether a given af (a) is compact (resp. analytic); and (b) whether it can be
easily transformed into a compact (resp. analytic) one. The ultimate goal re-
mains to design pre-processing procedures that identify rejected arguments that
can be removed and implicit conflicts that can be made explicit; in other words,
simplifications of the given af into a semantically equivalent af with better
computational properties.

One of our main results was the refutation of the Explicit Conflict Conjecture,
originally proposed in [10] for stable semantics. In fact, for each semantics
σ among stable, preferred, semi-stable, and stage, we provided afs where it
is not possible to find an equivalent (under σ) af where all conflicts become
explicit. As a consequence, this result shows that in order to express a certain
set S of extensions via an af, one cannot just draw attacks between any pair of
arguments that do not occur jointly in any extension E ∈ S. We believe that this
not only gives a new insight into the fundamental properties of argumentation
semantics, but also is important to be taken into account in research about
the dynamics and evolvement of afs. In particular these results indicate that
techniques similar to Conflict-Driven Clause Learning [35] in SAT-solvers cannot
be directly applied in the argumentation setting, as it can happen that a solver
identifies a conflict between two arguments but it is impossible to add this
conflict to the af without changing the outcome. This is in particular interesting
as most of the leading abstract argumentation systems are built on top of SAT-
solvers [37, 38].

Finally, we addressed the question of signatures and realizability. We stud-
ied the relationship between signatures of compact and resp. analytic afs. Our
results complement the analysis from [23] and give a more fine-grained land-
scape about the expressive power of different semantics when the shape of afs
is restricted. Building on initial research from [8], we also analyzed possible
numbers of extensions afs can yield under a semantics at hand. Extending

58

these considerations to admissible and complete semantics will be part of fu-
ture work (cf. [9] for a conjecture regarding the maximal number of complete
extensions). Results of the latter kind can also be beneficial for argumentation
systems, since they may allow af solvers to navigate more efficiently through
the search space of possible extensions.

Acknowledgements. This research has been supported by the German Research
Foundation (DFG) under project BR 1817/7-1 and the Austrian Science Fund
(FWF) under projects I1102, I2854, and P25518.

References

[1] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation
of extension-based argumentation semantics. Artificial Intelligence, 171
(10-15):675–700, 2007.

[2] Pietro Baroni and Massimiliano Giacomin. Characterizing defeat graphs
where argumentation semantics agree. In Guillermo R. Simari and Paolo
Torroni, editors, Proc. ArgNMR, pages 33–48, 2007.

[3] Pietro Baroni and Massimiliano Giacomin. A systematic classification of
argumentation frameworks where semantics agree. In Philippe Besnard,
Sylvie Doutre, and Anthony Hunter, editors, Proc. COMMA, volume 172
of Frontiers in Artificial Intelligence and Applications, pages 37–48. IOS
Press, 2008.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An intro-
duction to argumentation semantics. Knowledge Eng. Review, 26(4):365–
410, 2011.

[5] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the
resolution-based family of abstract argumentation semantics and its
grounded instance. Artificial Intelligence, 175(3-4):791–813, 2011.

[6] Ringo Baumann. Splitting an argumentation framework. In James P.
Delgrande and Wolfgang Faber, editors, Proc. LPNMR, volume 6645 of
Lecture Notes in Computer Science, pages 40–53. Springer, 2011.

[7] Ringo Baumann and Christof Spanring. Infinite Argumentation Frame-
works – On the Existence and Uniqueness of Extensions. In Thomas Eiter,
Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors, Ad-
vances in Knowledge Representation, Logic Programming, and Abstract Ar-
gumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His
60th Birthday, volume 9060 of Lecture Notes in Computer Science, pages
281–295. Springer, 2015.

59

[8] Ringo Baumann and Hannes Strass. On the Maximal and Average Num-
bers of Stable Extensions. In Elizabeth Black, Sanjay Modgil, and Nir
Oren, editors, Proc. TAFA 2013, volume 8306 of Lecture Notes in Com-
puter Science, pages 111–126. Springer, 2014.

[9] Ringo Baumann and Hannes Strass. Open Problems in Abstract Argumen-
tation. In Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan
Woltran, editors, Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation - Essays Dedicated to Gerhard Brewka
on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in
Computer Science, pages 325–339. Springer, 2015.

[10] Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Hannes Strass,
and Stefan Woltran. Compact argumentation frameworks. In Torsten
Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors, Proc. ECAI,
volume 263 of Frontiers in Artificial Intelligence and Applications, pages
69–74. IOS Press, 2014.

[11] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artificial Intelligence, 171(10-15):619–641, 2007.

[12] Martin Caminada and Leila Amgoud. On the evaluation of argumentation
formalisms. Artificial Intelligence, 171(5-6):286–310, 2007.

[13] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable
semantics. J. Log. Comput., 22(5):1207–1254, 2012.

[14] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric
argumentation frameworks. In Lluis Godo, editor, Proc. ECSQARU, vol-
ume 3571 of Lecture Notes in Computer Science, pages 317–328. Springer,
2005.

[15] Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre
Marquis. On the revision of argumentation systems: Minimal change of
arguments statuses. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Proc. KR, pages 52–61. AAAI Press, 2014.

[16] Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and
Stefan Woltran. An extension-based approach to belief revision in abstract
argumentation. In Qiang Yang and Michael Wooldridge, editors, Proc.
IJCAI, pages 2926–2932. AAAI Press, 2015.

[17] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in
logic programs and default theories. Theoretical Computer Science, 170
(1-2):209–244, 1996.

[18] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–357, 1995.

60

[19] Paul E. Dunne. Computational properties of argument systems satisfy-
ing graph-theoretic constraints. Artificial Intelligence, 171(10–15):701–729,
2007.

[20] Paul E. Dunne. The computational complexity of ideal semantics. Artificial
Intelligence, 173(18):1559–1591, 2009.

[21] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argu-
ment systems. Artificial Intelligence, 141(1/2):187–203, 2002.

[22] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan
Woltran. Characteristics of multiple viewpoints in abstract argumenta-
tion. In Christoph Beierle and Gabriele Kern-Isberner, editors, Proc. DKB,
pages 16–30, 2013.

[23] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan
Woltran. Characteristics of multiple viewpoints in abstract argumentation.
Artificial Intelligence, 228:153–178, 2015.

[24] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD
thesis, Vienna University of Technology, 2012.

[25] Wolfgang Dvořák and Christof Spanring. Comparing the expressiveness of
argumentation semantics. J. Log. Comput., 2016. doi: 10.1093/logcom/
exw008.

[26] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage
semantics in argumentation frameworks. Inf. Process. Lett., 110(11):425–
430, 2010.

[27] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan
Woltran. Complexity-sensitive decision procedures for abstract argumen-
tation. Artificial Intelligence, 206:53–78, 2014.

[28] Sjur K. Dyrkolbotn. How to argue for anything: Enforcing arbitrary sets of
labellings using AFs. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Proc. KR, pages 626–629. AAAI Press, 2014.

[29] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set program-
ming encodings for argumentation frameworks. Argument & Computation,
1(2):147–177, 2010.

[30] Jerrold R. Griggs, Charles M. Grinstead, and David R. Guichard. The
number of maximal independent sets in a connected graph. Discrete Math-
ematics, 68(23):211–220, 1988.

[31] Zemin Jin and Xueliang Li. Graphs with the second largest number of
maximal independent sets. Discrete Mathematics, 308(23):5864–5870, 2008.

61

[32] Thomas Linsbichler, Christof Spanring, and Stefan Woltran. The hidden
power of abstract argumentation semantics. In Elizabeth Black, Sanjay
Modgil, and Nir Oren, editors, Proc. TAFA, volume 9524 of Lecture Notes
in Computer Science, pages 146–162. Springer, 2015.

[33] John W. Moon and Leo Moser. On cliques in graphs. Israel Journal of
Mathematics, 3(1):23–28, 1965.

[34] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial
Intelligence. Springer, 2009.

[35] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, pages 131–153. IOS
Press, 2009. ISBN 978-1-58603-929-5.

[36] Hannes Strass. The relative expressiveness of abstract argumentation and
logic programming. In Sven Koenig and Blai Bonet, editors, Proc. AAAI,
pages 1625–1631. AAAI Press, 2015.

[37] Matthias Thimm and Serena Villata. System descriptions of the first in-
ternational competition on computational models of argumentation (IC-
CMA’15). CoRR, abs/1510.05373, 2015. URL http://arxiv.org/abs/

1510.05373.

[38] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes
Strass, and Mauro Vallati. Summary report of the first international com-
petition on computational models of argumentation. AI Magazine, 37(1):
102, 2016.

[39] Bart Verheij. Two approaches to dialectical argumentation: admissible sets
and argumentation stages. In John-Jules C. Meyer and Linda C. van der
Gaag, editors, Proc. NAIC, pages 357–368, 1996.

62

http://arxiv.org/abs/1510.05373
http://arxiv.org/abs/1510.05373

Appendix A. Implicit Conflicts and Runtime

This appendix reports the results of experiments carried out in order to
understand the impact of implicit conflicts on the efficiency of solvers. The
underlying assumption is that the explication of implicit conflicts leads to a more
succinct representation of an af, which in turn supports the solver by providing
more information to work with. The results for extension enumeration under
stable and preferred semantics confirm this hypothesis.

The First International Competition on Computational Models of Argumen-
tation (ICCMA, see http://argumentationcompetition.org/2015/) featured
three types of benchmark graphs, each following a certain graph model. The
one which turned out to be the hardest for most solvers is based on a construc-
tion that aims at having many stable (and preferred) extensions.12 As the set
containing the largest instances of this type even had to be removed from the
competition due to its difficulty and therefore seems most interesting to analyze,
we focus on this group of instances.13 For stable and preferred semantics we
analyze the correlation between the number of implicit conflicts and the runtime
of solving. We focus on the particular task of extension enumeration and employ
the winning solvers of the competition, that is ASPARTIX [29] for stable seman-
tics and CEGARTIX [27] for preferred semantics. We report statistics for the
instances of the competition as well as for a larger set of instances constructed
with the same generator to get results which are statistically more significant.

Instances of the considered type usually feature many rejected arguments –
the ICCMA-instances have an average of 78% for stable and 76% for preferred
semantics. Therefore we only take into account implicit conflicts that occur
between arguments that are not rejected. Hence, in this appendix, given an af
F and semantics σ, there is an implicit conflict between arguments a, b ∈ AF
if (a, b) /∈ Pairsσ(F), (a, b), (b, a) /∈ RF and a, b ∈ Argsσ(F). The σ-explication
of F is then (AF , RF ∪ {(a, b), (b, a) | implicit conflict between a and b}). Note
that, in general, the explicated af is not equivalent w.r.t. σ to the original one.
However, it is not a simplification in terms of extensions, as the number of
extensions of the explicated af is always greater or equal than in the original
af.

The tests have been run on a machine with two AMD Opteron 6308 proces-
sors (3.5GHz) having 2 physical cores each; each of these cores puts at disposal
2 logical cores (per hyperthreading), 192 GB RAM (12 x 16GB) and a timeout
of 600 seconds for each instance.

The experiments show a clear tendency to shorter runtime when decreasing
the number of implicit conflicts. Figure A.26 shows the experimental results

12Generators can be found at https://sourceforge.net/projects/probo/.
13Besides, the other two types are of limited interest also because of other reasons: (i)

Instances of the first type have only one (large) extension under all standard semantics and
are therefore relatively easy to solve and, more importantly, have no implicit conflicts among
non-rejected arguments; (ii) The other instance type has a rich structure of strongly connected
components leading to very few (or no) extensions and only a small amount of implicit conflicts.

63

http://argumentationcompetition.org/2015/
https://sourceforge.net/projects/probo/

stb, ASPARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

prf, CEGARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

Figure A.26: Experimental results for implicit conflicts on ICCMA 2015 instances. Out of
the 48 instances there are 30 (63%) for stb and 33 (69%) for prf which contain at least one
implicit conflict. Among those, the number of implicit conflicts divided by the number of
non-rejected arguments is 16.0 for stb and 15.6 for prf on average. The scatter plots at the top
relate the number of implicit conflicts per non-rejected argument to the runtime of extension
enumeration. We get a correlation coefficient of 0.16 for stb and 0.26 for prf. The diagrams
at the bottom show the cumulative runtime for extension enumeration for the original set of
afs on the one hand and the corresponding explicated afs on the other.

64

stb, ASPARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

prf, CEGARTIX

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

lo
g

R
un

tim
e

Implicit Conflicts / # non-rej. Arguments

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

T
im

e
(s

ec
)

Number of Solved Instances

explicit
original

Figure A.27: Experimental results for implicit conflicts on an additional 1061 instances ob-
tained from the same generator as the most difficult instances of ICCMA 2015. This set of afs
contains 533 (50%) for stb and 567 (53%) for prf with at least one implicit conflict. Among
those, the number of implicit conflicts divided by the number of non-rejected arguments is
17.1 for stb and 17.0 for prf on average. Again, the scatter plots at the top of the figure relate
the number of implicit conflicts per non-rejected argument to the runtime of extension enu-
meration. Now we get a correlation coefficient of 0.24 for stb and 0.30 for prf. The cumulative
runtimes for extension enumeration indicating a significant speedup for the explicated afs are
shown at the bottom of the figure.

65

Table A.3: Statistics for the generated instances. The total number of instances is 533 for
stable and 567 for preferred semantics. Every instance which led to a timeout for the explicated
instance also did so for the original one.

Semantics stable preferred
original explicit original explicit

solved instances 512 528 544 561
timeouts 21 5 23 6
faster 115 416 257 304
uniquely solved 0 16 0 17
average runtime (s) 49.7 11.6 60.7 23.9
maximal runtime (s) 600.0 600.0 600.0 600.0

for the ICCMA instances and Figure A.27 for the generated instances. The
correlation between implicit conflicts per non-rejected argument and runtime
of solving turns out to be slightly greater for preferred semantics. Explica-
tion of implicit conflicts leads to a speedup in solving for both semantics, more
significantly for stable though. Table A.3 shows a few more statistics for the
generated instances. While the solvers have about four times as many timeouts
for the original instances than for the explicated instances for both semantics,
the number of instances which are solved faster is less significantly different for
preferred semantics. The explanation is that, for preferred semantics, explica-
tion only pays off if the original af is sufficiently difficult to solve.

In this appendix we have only considered implicit conflicts among non-
rejected arguments. Dropping this constraint would have the following effects
on the experiments: due to the already mentioned high number of rejected argu-
ments (i) the size of explicated afs significantly increases, and (ii) the number
of implicit conflicts mostly depends on the number of rejected arguments. The
effect on the runtime for extension enumeration on these explicated instances
strongly differs between stable and preferred semantics. We get runtime on a
constantly low level (between one and two seconds) for stable semantics and run-
times significantly higher than on the original instances for preferred instances.
While the former observation is somehow in accordance with [10] as discussed
at the end of Section 4, we attribute the latter to the almost quadratic increase
in instance size.

Appendix B. Proofs of Section 4

Proof of Lemma 19. Below we will show that all arguments except x are always
credulously accepted in F ′ and that x is credulously accepted in F ′ iff x is
credulously accepted in F .

First we show that each semi-stable extension E contains at least one argu-
ment from {ta | a ∈ A∪{y, z}}. Suppose that not, then E∪{tx} is a conflict-free
set and, as tx defends itself against all its attackers, the set E ∪ {tx} is also ad-
missible. Hence we have a contradiction to the maximality of E. Further, as

66

{ta | a ∈ A ∪ {y, z}} forms a clique in F we get that each extension contains
exactly one argument from the set.

Next we show that the ranges of preferred extensions E containing an argu-
ment from {ta | a ∈ {x, y, z}} cannot be contained in the ranges of admissible
sets E′ not containing any of these arguments.

• If tx ∈ E then h2 is defended against all its attackers, that are ty and
h1, and thus also h2 ∈ E. As h1 is attacked by tx and h3 is attacked
by h2 we have {h1, h2, h3} ⊆ E+

F ′ . By similar arguments we get that
{h1, h2, h3} ⊆ E+

F ′ if either ty ∈ E or tz ∈ E.

• If ta ∈ E′ with a 6∈ {x, y, z} then none of the h1, h2, h3 can be in the
range, as they form an odd length cycle and all attacking arguments from
outside are counter attacked by E′.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing an argument from {ta | a ∈ {x, y, z}}.
By the above we have that either {tx, h2} ⊆ E, {ty, h3} ⊆ E, or {tz, h1} ⊆
E. All of these three sets have the same attacks to the remaining argu-
ments and thus we have that for each E′ ⊆ A, {tx, h2} ∪ E′ ∈ sem(F ′)
iff {ty, h3} ∪ E′ ∈ sem(F ′) iff {tz, h1} ∪ E′ ∈ sem(F ′). As at least for
E′ = ∅ these sets are also admissible this implies that the arguments
{tx, ty, tz, h1, h2, h3} are credulously accepted in F ′.

Moreover, {tx, h2} defends the arguments A against all attack from argu-
ments in A′ and does not attack any argument in A. Thus

(i) {tx, h2} ∪ E′ ∈ adm(F ′) iff E′ ∈ adm(F) and

(ii) as arguments in A do not attack arguments in A′ we have that
({tx, h2} ∪ E′)+F ′ = {tx, h2}+F ′ ∪ E′+F ′ and thus ({tx, h2} ∪ E′)+F ′ is
maximal when E′+F ′ is maximal.

Hence, {tx, h2} ∪ E′ ∈ sem(F ′) iff E′ ∈ sem(F) and x is credulously
accepted in F iff x is credulously accepted in F ′.

As, by assumption, F has no stable extension there cannot be an exten-
sion E containing an argument from {ta | a ∈ {x, y, z}} and having all
arguments A in its range.

• Second, consider the sets E containing an argument from {ta | a ∈
A \ {x}}. Now it is easy to verify that the sets {ta, a} for a ∈ A \ {x}
are admissible sets of F ′ and have maximal range among the extensions
containing {ta,b | a, b ∈ A}. In particular A is in the range of each of
these extensions, and thus they are incomparable with the extension of the
first type, i.e. they are semi-stable. Hence, we have that the arguments
{a, ta | a ∈ A\{x}} are credulously accepted. Moreover, no extensions E′

with {ta | a ∈ A \ {x}} ∩ E 6= ∅ can contain x.

67

Finally, combining the above results, we have that all arguments in A′ except
x are credulously accepted in F ′ and x is credulously accepted in F iff x is
credulously accepted in F ′ iff F ′ is stg-compact.

Proof of Lemma 23. First, we show that each semi-stable extension E contains
at least one argument from A′. Suppose that not, then E \ AG ∪ {t} is an
admissible set that has AG in its range. Hence we have a contradiction to the
range maximality of E. Further, as A′ forms a clique in F we get that each
semi-stable extension contains exactly one argument from the set.

Next we show that the ranges of preferred extensions E containing argument
t cannot be contained in the ranges of admissible sets E′ containing an argument
ta,b with a, b ∈ A.

• If t ∈ E then all arguments in AG are attacked by E and thus are in the
range of E.

• If t 6∈ E′ at least one argument of AG is not in the range of E′. Otherwise,
E′ ∩AG would be a stable extension of G, which contradicts stb(G) = ∅.

We will next consider these two kind of extensions separately.

• First, consider the sets E containing t. As t does not attack any argument
in A nor does A have any outgoing attacks we have

(i) {t} ∪ E′ ∈ adm(F ′) iff E′ ∈ adm(F) and

(ii) as arguments in A do not attack arguments outside A we have that
({t} ∪ E′)+F ′ = {t}+F ′ ∪ E′+F ′ and thus ({t} ∪ E′)+F ′ is maximal when
E′+F ′ is maximal.

Hence, {t} ∪ E′ ∈ sem(F ′) iff E′ ∈ sem(F) and {t, a} is credulously
accepted in F ′ iff a is credulously accepted in F .

As, by assumption, F has no stable extension there cannot be a semi-stable
extension E containing t and having all arguments A in its range.

• Second, consider the extensions E containing an argument ta,b with a, b ∈
A. Now it is easy to verify that the sets {ta,b, a, b} are admissible sets
of F ′ and A is in the range of each of theses extensions. Thus they are
incomparable with the extension of the first type.

As ta,b does not attack any argument in AG nor does AG have any outgoing
attacks we have

(i) {ta,b, a, b} ∪ E′ ∈ adm(F ′) iff E′ ∈ adm(G) and

(ii) as arguments in AG do not attack arguments outside Ag we have
that ({ta,b, a, b} ∪ E′)+F ′ = {t}+F ′ ∪ E′+F ′ and thus ({ta,b, a, b} ∪ E′)+F ′

is maximal when E′+F ′ is maximal.

68

Thus, {ta,b, a, b} ∪ E′ ∈ sem(F ′) iff E′ ∈ sem(G). Now, as G ∈ XAFsem

we have that for each g, g′ ∈ G with (g, g′), (g′, g) 6∈ RG there is an E′ ∈
sem(G) with g, g′ ∈ E. Furthermore as G has no self-attacks it is also
compact (cf. Proposition 5) and thus for each g ∈ AG there is an E′ ∈
sem(G) with g ∈ E′. From these stage extensions we obtain that:

– {ta,b, a}, {ta,b, b} are credulously accepted in F ′;

– {ta,b, g, g′} is credulously accepted in F ′, for g, g′ ∈ G with (g, g′), (g′, g) 6∈
RG;

– {ta,b, g} is credulously accepted in F ′, for each g ∈ G;

– {a, g} is credulously accepted in F ′, for each a ∈ A and g ∈ G;

Combining the above results, we have that all non-conflicting pairs of argu-
ments in F ′ except {t, a} with a ∈ A are credulously accepted in F ′. Thus F ′

is stg-analytic iff all the pairs {t, a} with a ∈ A are credulously accepted in F ′

iff each a ∈ A is credulously accepted in F iff F is sem-compact.
Finally we show that F ′ ∈ CAFsem (independent of whether F ∈ CAFsem).

As (i) for each a ∈ A the set {ta,a, a} is credulously accepted, and (ii) for
each g ∈ AG and a, b ∈ A with (a, b), (b, a) 6∈ R the set {ta,b, g} is credulously
accepted, the af F ′ is stg-compact.

Appendix C. Basic Semantics

In the following show how the concepts considered in the paper carry over to
conflict-free, admissible and complete semantics. For that we have to introduce
complete semantics first [18]:

Definition 13. Given F ∈ AFA, S ∈ com(F) if S ∈ adm(F) and for each a ∈ A
that is defended by S it holds that a ∈ S.

Proposition 52. It holds that CAFcf = CAFnai and CAFadm = CAFcom =
CAFprf.

Proof. Since naive (resp. preferred) extensions of any given af F are exactly the
⊆-maximal conflict-free (resp. admissible and complete) extensions it holds that
Argsnai(F) = Argscf(F) and Argsprf(F) = Argsadm(F) = Argscom(F). Therefore
F ∈ CAFnai iff F ∈ CAFcf and F ∈ CAFprf iff F ∈ CAFadm iff F ∈ CAFcom.

Proposition 53. It holds that XAFcf = XAFnai and XAFadm = XAFcom =
XAFprf.

Proof. Since naive (resp. preferred) extensions of any given af F are exactly
the ⊆-maximal conflict-free (resp. admissible and complete) extensions it holds
that Pairsnai(F) = Pairscf(F) and Pairsprf(F) = Pairsadm(F) = Pairscom(F).
Therefore F ∈ XAFnai iff F ∈ XAFcf and F ∈ XAFprf iff F ∈ XAFadm iff
F ∈ XAFcom.

69

Corollary 54. The following problems are in P:

1. Given af F , deciding whether F ∈ CAFcf;

2. Given af F , deciding whether F ∈ XAFcf.

Proof. Follows from Corollary 11 and Propositions 52 and 53.

Corollary 55. The following problems are NP-complete for σ ∈ {adm, com}.

1. Given af F , deciding whether F ∈ CAFσ;

2. Given af F , deciding whether F ∈ XAFσ; hardness already holds if the
problem is restricted to afs F ∈ CAFσ.

Proof. Follows from Corollary 15 and Propositions 52 and 53.

Proposition 56. ECC holds for cf.

Proof. Consider an arbitrary af F , and observe that in order to have an implicit
conflict between arguments a and b, at least one of these arguments has to be
self-attacking. Hence we obtain an analytic af F ′ having cf(F ′) = cf(F) by
letting each self-attacking argument be attacked by all other arguments.

Proposition 57. ECC does not hold for adm and com.

Proof. Assume ECC holds for adm (resp. com) and let F be an af which is
non-analytic for prf. By assumption there is an af F ′ with AF ′ = AF and
adm(F ′) = adm(F) (resp. com(F ′) = com(F)). But then also prf(F ′) = prf(F),
a contradiction to F being non-analytic for prf.

Proposition 58. It holds that

1. Σccf = Σcf and

2. Σcσ ⊂ Σσ for σ ∈ {adm, com}.

Proof. (1) Follows directly from Proposition 35.1.
(2)Let σ ∈ {adm, com}, S = {∅, {a, b}} and assume there is an af F ∈

CAFσ with σ(F) = S. Since a and b are free of conflict it must hold that
F = ({a, b}, ∅). But then we get adm(F) = {∅, {a}, {b}, {a, b}} and com(F) =
{{a, b}}, hence S /∈ Σcσ. On the other hand there is the non-compact af F ′ =
({a, b, c, d}, {(a, c), (c, c), (c, b), (b, d), (d, d), (d, a)}) having σ(F ′) = S, hence S ∈
Σσ.

70

Proposition 59. It holds that

1. Σccf ⊂ Σcadm and

2. Σccom 6⊆ Σcσ and Σcσ 6⊆ Σccom for σ ∈ {cf, adm}.

70

Figure C.28: af F compactly realizing an extension-set S /∈ Σcadm ∪ Σccf under com.

Proof. (1) Given an arbitrary af F it holds that cf(F) = adm(sym(F)), where
sym(F) is the af obtained from making all attacks of F symmetric, hence Σccf ⊆
Σcadm. Properness is by the af G = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}), that
is the directed cycle of four arguments, having adm(G) = {∅, {a, c}, {b, d}},
which is an extension-set not realizable under cf. This is by the fact that if
{a, c} is conflict-free in some af then clearly also {a} and {c} must be conflict-
free. Hence Σccf ⊂ Σcadm.

(2) Σccom 6⊆ Σcσ: Any extension-set S containing exactly one non-empty
set of arguments S is compactly realizable under com by the af (S, ∅), but
not under cf and adm since ∅ is not contained in S. The following exam-
ple shows that these trivial cases are not the only afs in Σccom \ Σcσ. To
this end consider the af F depicted in Figure C.28. We have com(F) =
{∅, {a1}, {a2}, {b1}, {b2}, {a1, b2}, {a2, b1}, {a1, a2, c}, {b1, b2, d}}. On the one hand
it is easy to see that F is compact for complete semantics, on the other hand
observe that both {a1}, {a2} ∈ com(F), (a1, a2) ∈ Pairscom(F), but {a1, a2} /∈
com(F). So com(F) violates a necessary condition for admissible and conflict-
free extension-sets (cf. [23]). Hence com(F) /∈ Σσ and therefore by Proposi-
tion 58 also com(F) /∈ Σcσ.

Σcσ 6⊆ Σccom: Let F = ({a, b, c}, { a, b , b, c }) and observe that cf(F) =
adm(F) = {∅, {a}, {b}, {c}, {a, c}}. Now assume there is an af G ∈ CAFcom

with com(G) = cf(F). ClearlyAG = {a, b, c} andRG ⊆ {(a, b), (b, a), (b, c), (c, b)}.
Now for ∅ ∈ com(G) each argument must be attacked and, moreover, the sin-
gletons {a}, {b} and {c} must defend themselves. Hence it must be that G = F
which means com(G) = {∅, {a, c}, {b}}, a contradiction.

Proposition 60. It holds that

1. Σxcf = Σcf and

2. Σxσ ⊂ Σσ for σ ∈ {adm, com}.

Proof. (1) Follows directly from Theorem 30.
(2) Consider the af depicted in Figure 16 which was discussed in Example 6.

We show in Theorem 31 that prf(F) /∈ Σxprf. Observe that F has the same
implicit conflicts (namely between a1 and x2, a2 and x3, and a3 and x1) for
preferred, admissible and complete semantics. Now assuming that com(F) ∈
Σxcom (resp. adm(F) ∈ Σxadm) means that there is some af F ′ which is analytic
for com (resp. adm) and has com(F ′) = com(F) (resp. adm(F ′) = adm(F)).
But then F ′ is also analytic for prf and has prf(F ′) = prf(F), a contradiction to
prf(F) /∈ Σxprf. Hence com(F) /∈ Σxcom and adm(F) /∈ Σxadm.

71

arg(a1).

arg(a2).

arg(b1).

arg(b2).

arg(c).

arg(d).

att(a1,d).

att(a2,d).

att(b1,c).

att(b2,c).

att(a1,b1).

att(b1,a1).

att(a2,b2).

att(b2,a2).

#show in/1.

Proposition 61. It holds that

1. Σxcf ⊂ Σxadm and

2. Σxcom 6⊆ Σxσ and Σxσ 6⊆ Σxcom for σ ∈ {cf, adm}.

Proof. (1) The argument from in the proof of Proposition 59 applies here as
well.

(2) Σxcom 6⊆ Σxσ: Consider the af F from the proof of Proposition 59 (resp.
Figure C.28) and extend it by a symmetric attack between arguments c and d
as follows F ′ = (AF , RF ∪ { c, d }). Now com(F) = com(F ′) and it is easy
to verify that F ′ is analytic for complete semantics, but as discussed before
com(F) = com(F ′) /∈ Σσ. Hence, we have a witness for Σxcom 6⊆ Σxσ.

Σxσ 6⊆ Σxcom: Again consider the af F = ({a, b, c}, { a, b , b, c }) and recall
that cf(F) = adm(F) = {∅, {a}, {b}, {c}, {a, c}}. Assume there is an af G ∈
XAFx with com(G) = cf(F). Clearly {a, b, c} ⊆ AG and RG ∩ (AG × AG) ⊆
{(a, b), (b, a), (b, c), (c, b)}. Consider arguments in AG that are different from
a, b, c. As such arguments do not appear in any extensions they have to be
self-attacking and in conflict with all the other arguments. From {a}, {b}, {c} ∈
cf(F) = adm(F) we obtain that a, b, c attack all arguments in AG \ {a, b, c}.
Now as {b} ∈ com(G) we have that a and c must be attacked by some argument
not attacked by b. Thus (b, a) ∈ RG and (b, c) ∈ RG and as {a}, {c} ∈ com(G)
and have to defend themselves also (a, b) ∈ RG and (c, b) ∈ RG. But then we
have com(G) = {∅, {a, c}, {b}}, a contradiction.

72

	Introduction
	Preliminaries
	Subclasses of Argumentation Frameworks
	Compact Argumentation Frameworks
	Analytic Argumentation Frameworks
	Relations between Compact and Analytic Frameworks

	Complexity
	Explicit Conflict Conjecture
	Signatures
	Analytic Signatures
	Compact Signatures
	Numbers of Extensions in Compact Frameworks

	Discussion
	Implicit Conflicts and Runtime
	Proofs of Section 4
	Basic Semantics

