
KNOWLEDGE GRAPHS

Lecture 10: Property Graphs

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 17th Dec 2019

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2019/20)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en


Review

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 2 of 30



Review

Datalog is a general language for recursive, relational queries

• Easy to adopt to graphs (edges = special relations)

• Plain Datalog is a “pure” paradigm without the technical extensions of real query
languages (esp. data types, filters)

• Adding negation is useful, but the interplay with recursion must be limited

• Adding aggregation must consider similar issues

VLog4j can be used to issue Datalog queries:

• Data can be loaded from various sources, including SPARQL endpoints

• Stratified negation is supported (~)

• Syntax inspired by RDF and SPARQL to work with IRIs and datatype literals

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 3 of 30



Property Graphs

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 4 of 30



What is a Property Graph?

Property Graph is a type of graph, which can be described as follows:

• directed (edges have source and target vertices)

• vertex-labelled (for some kind of “label”)

• edge-labelled (for some kind of “label”)

• multi-graph (several versions of the exact same edge may exists)

• with self-loops (vertices can have edges to themselves), and

• with sets of attribute-value pairs associated with any vertex or edge

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 5 of 30



Example

name: Tim Berners-Lee

description: British computer scientist

id1

name: CERN

description: international organization

id3

employer

start time: 1984

end time: 1994

position: fellow

id2

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 6 of 30



Obvious questions

Many issues require further specification:

• What are the ids for vertices and edges?

• What are “attributes”?

• What are “values”? Which datatypes are supported? How are they defined?

• What are those “labels” that one can use for edges?

• What are those “labels” that one can use for vertices?

• If vertices and edge can have arbitrary attribute-value pairs,
why do we also need labels?

Unfortunately, Property Graph as such is not an answer to all such questions:

The name “Property Graph” refers to a broad class of enriched graph structures,
allowing for many technical interpretations in different software systems. These
interpretations are often incompatible and based on different assumptions.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 7 of 30



Types of “Property Graphs”: Object Model

The name “Property Graph” primarily hints at the attribute-value pairs (called
“properties”) that can be associated with nodes and edges.
There are different ways to interpret this model when designing actual data structures.

View 1: Property Graph as an Object Model

“If you have ever worked with an object model or an entity-relationship diagram,
the labeled property graph model will seem familiar.”
– Neo4j, https://neo4j.com/developer/guide-data-modeling/

• Graphs viewed as data-modelling API in a programming language (often Java)

• “Values” are could be any other objects that represent data in programming

• Programmatic data access approaches are preferred over query language services

• Examples: Apache TinkerPop/Gremlin1, Neo4j/Cypher, multi-model object
databases (e.g., Azure Cosmos DB, OrientDB, Oracle Spatial and Graph),

1Many graph DBMS have TinkerPop bindings, but TinkerPop’s native view is object-based.
Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 8 of 30

https://neo4j.com/developer/guide-data-modeling/


Types of “Property Graphs”: Relational Database Extension

The name “Property Graph” primarily hints at the attribute-value pairs (called
“properties”) that can be associated with nodes and edges.
There are different ways to interpret this model when designing actual data structures.

View 2: Property Graph as Extended Relational Model

“Vertex attributes match to columns of the vertex table. Edge attributes match to
columns of the edge table. The maximum number of attributes is bound by the
maximum number of columns for the underlying tables”
– SAP HANA Graph Reference, v1.0 – 2016-11-30

• Graphs viewed as indexing and access layer on top of RDBMS
• “Values” can be any values in standard or proprietary SQL datatypes
• Various data access paradigms: in-DB-code (e.g., SAP Hana GraphScript) or

query language (e.g., Tigergraph GSQL)
• Examples: SAP Hanah Graph, Tigergraph1

1Not based on a full RDBMS, but strongly using RDB concepts, rigid schema.
Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 9 of 30

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwj5tPK614PfAhXEzKQKHTS-BgUQFjAAegQIABAC&url=https%3A%2F%2Fhelp.sap.com%2Fdoc%2F21574acf46fe45a8ae9def213f2c4d9e%2F2.0.00%2Fen-us%2Fsap_hana_graph_reference_en.pdf&usg=AOvVaw0Z3h6LFX0A16xcIwxA9mBZ


Types of “Property Graphs”: RDF-Database Extension

The name “Property Graph” primarily hints at the attribute-value pairs (called
“properties”) that can be associated with nodes and edges.
There are different ways to interpret this model when designing actual data structures.

View 3: Property Graph as Access Layer on Top of RDF

“property graph data can be loaded and accessed via the TinkerPop3 API, but
underneath the hood the data will be stored as RDF” – Blazegraph TinkerPop3

• Property Graphs stored internally as RDF graphs

• “Values” can be any values supported in RDF (XML Schema + proprietary
extensions)

• Multiple access paradigms: Apache Tinkerpop Gremlin or SPARQL

• Examples: Amazon Neptune, Stardog, BlazeGraph

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 10 of 30

https://github.com/blazegraph/tinkerpop3/


Types of “Property Graphs”: Summary

Main approaches:

• Object databases: flexible, schema-less; often multi-model; includes many graph
extensions of noSQL DBMS; varying datatypes and formats (e.g., JSON for many
object DBs)

• Relational databases: rather rigid, schema-based; graph extensions of classical
RDBMS; SQL datatypes

• RDF databases: flexible, schema-less, highly normalised (data atomised into
triples); property graph extensions of RDFDBs; RDF datatypes

Other types of graph databases:

• Simpler graph models (neither RDF nor property graph); mostly for network
analysis; e.g., Apache Giraph

• Based on other paradigms; e.g., AllegroGraph (RDF database with Prolog support)

• Combinations and specialised components/frameworks; e.g., some data stored in
Lucene or Solr (for text search), exchangeable storage back-end

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 11 of 30



Property graph: data access

Methods for data access are as diverse as the data structures that are used.

Programmatic access:

• Proprietary or common APIs (mostly Tinkerpop)

• Scripting and processing languages (e.g., Apache Gremlin, SAP GraphScript)

• MapReduce, Spark, and other processing frameworks

Query languages:

• Neo4j Cypher

• Oracle PGQL

• Tigergraph GSQL

• . . .

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 12 of 30



Property Graph: What to teach?

The current implementation chaos has prompted some activities:

• OpenCypher publishes a specification for some parts of Neo4j’s Cypher query
language

• The Linked Data Benchmark Council has proposed a merger of PGQL, Cypher,
and some Gremlin features, called G-CORE (not implemented yet)

• A current push towards a unified “(Property) Graph Query Language” GQL is
underway (ISO standardisation has been started; optimistic ETA: late 2021)

{ In this course: focus on (Open) Cypher + discussion of proposed changes

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 13 of 30



A note on terminology

Unfortunately, the OpenCypher/Neo4j world uses completely different names for
concepts than the RDF world:

Graph-theoretic concept OpenCypher terminology

vertex node

edge relationship

vertex label a set of strings, each of which is called label

edge label relationship type

key-value pair property

Terms are shown in a distinct style to clarify this special meaning

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 14 of 30



Identity and labelling

Nodes and relationships have independent identity

• Especially: two relationships can be indistinguishable in terms of data (same
source, target, label, properties) and yet be different

• Identity conferred by identifiers, which are implementation specific

Labels are based on strings:

• Vertex labels are sets of unicode strings, each called label
• Edge labels are single unicode strings, called relationship types
• Both vertices and edges may have no labelling

In practice, labels are used to take the role of types or classes, e.g., one may
have a label person used for all nodes representing people.

Relationship types play the role of RDF properties, denoting the type of relation-
ship that an edge expresses.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 15 of 30



Properties

Sets of properties can be assigned to vertices and edges.

Properties are key-value pairs:

• Property keys are unicode strings

• Property values are either concrete values of some datatype, or lists of values of the
same datatype

Property keys must be unique in a set of properties used on some node or relationship,
but lists can be used to encode several values.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 16 of 30



Datatypes

Supported datatypes for property values in OpenCypher:

• INTEGER: “exact numbers without decimals” (apparently of arbitrary magnitude)

• FLOAT: double precision (64bit) floating point numbers

• STRING: unicode strings

• BOOLEAN: true or false

• lists of values of the above

Missing datatypes of much practical importance

• dates and times

• geographic coordinates

• fine-grained numeric types

{ might be supported as proprietary extensions in implementations

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 17 of 30



Anything missing?

Another major omission and one of the biggest shortcomings or Property Graph models:

Property values cannot be references to vertices or edges.

Property Graph in this form is therefore not suitable to model, e.g., Wikidata statements:

This information could be captured in a Property Graph that looks like the RDF graph we
used before (with seven relations), but not using any properties at all.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 18 of 30



Anything missing?

Another major omission and one of the biggest shortcomings or Property Graph models:

Property values cannot be references to vertices or edges.

Property Graph in this form is therefore not suitable to model, e.g., Wikidata statements:

This information could be captured in a Property Graph that looks like the RDF graph we
used before (with seven relations), but not using any properties at all.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 18 of 30



Anything missing?

Another major omission and one of the biggest shortcomings or Property Graph models:

Property values cannot be references to vertices or edges.

Property Graph in this form is therefore not suitable to model, e.g., Wikidata statements:

This information could be captured in a Property Graph that looks like the RDF graph we
used before (with seven relations), but not using any properties at all.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 18 of 30



From Property Graph to RDF
As expected, every Property Graph can be expressed as an RDF graph:
• Use reification to represent edges by auxiliary nodes
• Use special RDF properties to encode source and target of edges, and the

node-label and relationship-relationship type association
• Use application-based RDF properties to encode property keys
• Depending on the exact Property graph implementation, use some appropriate

datatype-to-RDF mapping
(e.g., based on RDF2RDB mappings from SQL datatypes to RDF)

Remarks:
• This scheme is implemented natively in existing DBMS (Blazegraph, Amazon

Neptune), and scales there despite of the increase size of the graph data that the
system has to work with

• The use of reification can be avoided for relationships without properties
• One can also use both (reified and direct statements) for flexibility (similar to

Wikidata’s RDF encoding)
Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 19 of 30



From RDF to Property Graph
As expected, every RDF Graph can be expressed as a Property Graph:
• Represent all RDF resources by nodes
• Use property keys to associate resources with IRIs and/or datatype literal

information
• Represent all RDF triples with auxiliary nodes
• Use relationships with special relationship types to associate auxiliary nodes with

triple subject, predicate, and object

Remarks:
• There does not seem to be any simpler way of capturing the full power of RDF in

Property Graph, due to the restrictions of the latter (no reference in relationship
types or property values to nodes)

• In some cases, certain triples could be represented as properties (if their datatype
is supported in Property Graph and we do not need their RDF property to be
addressable in the graph)

• Many Property Graph implementations will have performance problems in handling
graphs with so many edges (part of the motivation for moving data into properties is to reduce the graph size)

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 20 of 30



(No) Schema Modelling
In RDF, properties were identified by IRIs and could be subject of triples
• to define labels and descriptions in several languages
• to specify the dataype for the property
• to relate it to other properties, e.g., to their inverse

Example 10.1: Wikidata describes properties on own pages, and allows them to
be used in statements, references, or statement qualifiers.

In Property Graph, labels, relationship types, and property keys are plain strings
• They cannot occur in the graph
• They can have neither relationships nor properties

Workarounds:
• One can create nodes that refer to a string token through a property value, and

encode the knowledge that this is meant as a reference in application software
• Some database management system may support the declaration of constraints

that restrict the usage of labels, relationship types, or property keys

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 21 of 30



(No) Schema Modelling
In RDF, properties were identified by IRIs and could be subject of triples
• to define labels and descriptions in several languages
• to specify the dataype for the property
• to relate it to other properties, e.g., to their inverse

Example 10.1: Wikidata describes properties on own pages, and allows them to
be used in statements, references, or statement qualifiers.

In Property Graph, labels, relationship types, and property keys are plain strings
• They cannot occur in the graph
• They can have neither relationships nor properties

Workarounds:
• One can create nodes that refer to a string token through a property value, and

encode the knowledge that this is meant as a reference in application software
• Some database management system may support the declaration of constraints

that restrict the usage of labels, relationship types, or property keys

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 21 of 30



(No) Schema Modelling
In RDF, properties were identified by IRIs and could be subject of triples
• to define labels and descriptions in several languages
• to specify the dataype for the property
• to relate it to other properties, e.g., to their inverse

Example 10.1: Wikidata describes properties on own pages, and allows them to
be used in statements, references, or statement qualifiers.

In Property Graph, labels, relationship types, and property keys are plain strings
• They cannot occur in the graph
• They can have neither relationships nor properties

Workarounds:
• One can create nodes that refer to a string token through a property value, and

encode the knowledge that this is meant as a reference in application software
• Some database management system may support the declaration of constraints

that restrict the usage of labels, relationship types, or property keys
Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 21 of 30



Cypher

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 22 of 30



Cypher overview
Cypher is a (family of) query languages for Property Graph:

• Proprietary query language of the Neo4j graph database

• Subset supported by other tools as well: openCypher

• Might be an important input to future graph query language standards

openCypher supports two main functions:

• A query language

• An update language

Current specification of openCypher 9:
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Currently not defined in openCypher v9 and depending on implementation:

• Parts of the query language (e.g., comparison and ordering of some values)

• Result formats for sending query results

• Protocol for sending queries and receiving answers
Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 23 of 30

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf


Cypher queries

The heart of Cypher is its query language.

Example 10.2: The following Cypher query asks for a list of all nodes that are in
an EMPLOYER relationship:

MATCH (person)-[:EMPLOYER]->(company)
RETURN person, company

This corresponds to the following SPARQL query:

SELECT ?person ?company
WHERE { ?person :EMPLOYER ?company }

Basic concepts:

• Cypher uses variables, marked by their context of use

• The core of a query is the query condition within MATCH { . . . }

• Conditions can be simple patterns based on graph edges in a custom syntax

• RETURN specifies how results are produced from query matches

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 24 of 30



Basic Cypher by example

Example 10.3: Find up to ten people whose daughter is a professor:

MATCH
(parent)-[:HAS_DAUGHTER]->(child {occupation:’Professor’})

RETURN parent
LIMIT 10

Example 10.4: Count all relationships in the database:

MATCH ()-[relationship]->()
RETURN count(relationship) AS count

Example 10.5: Count all relationship types in the database:

MATCH ()-[relationship]->()
RETURN count(DISTINCT type(relationship)) AS count

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 25 of 30



Basic Cypher by example

Example 10.3: Find up to ten people whose daughter is a professor:

MATCH
(parent)-[:HAS_DAUGHTER]->(child {occupation:’Professor’})

RETURN parent
LIMIT 10

Example 10.4: Count all relationships in the database:

MATCH ()-[relationship]->()
RETURN count(relationship) AS count

Example 10.5: Count all relationship types in the database:

MATCH ()-[relationship]->()
RETURN count(DISTINCT type(relationship)) AS count

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 25 of 30



Basic Cypher by example

Example 10.3: Find up to ten people whose daughter is a professor:

MATCH
(parent)-[:HAS_DAUGHTER]->(child {occupation:’Professor’})

RETURN parent
LIMIT 10

Example 10.4: Count all relationships in the database:

MATCH ()-[relationship]->()
RETURN count(relationship) AS count

Example 10.5: Count all relationship types in the database:

MATCH ()-[relationship]->()
RETURN count(DISTINCT type(relationship)) AS count

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 25 of 30



Basic Cypher by example (2)

Example 10.6: Find the person with most friends:

MATCH (person)-[:HAS_FRIEND]->(friend)
RETURN person, count(DISTINCT friend) AS friendCount
ORDER BY friendCount DESC
LIMIT 1

Example 10.7: Find pairs of siblings:

MATCH
(parent)-[:HAS_CHILD]->(child1),

(parent)-[:HAS_CHILD]->(child2)

WHERE id(child1) <> id(child2)
RETURN child1, child2

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 26 of 30



Basic Cypher by example (2)

Example 10.6: Find the person with most friends:

MATCH (person)-[:HAS_FRIEND]->(friend)
RETURN person, count(DISTINCT friend) AS friendCount
ORDER BY friendCount DESC
LIMIT 1

Example 10.7: Find pairs of siblings:

MATCH
(parent)-[:HAS_CHILD]->(child1),

(parent)-[:HAS_CHILD]->(child2)

WHERE id(child1) <> id(child2)
RETURN child1, child2

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 26 of 30



Basic Cypher by example (3): properties and labels

Queries can also access

• Labels (the additional strings used on nodes)
• Properties (of nodes and relationships)

Example 10.8: Find friends of all people with name Paul Erdős, and return their
name and the start date of the friendship:

MATCH
(:Human {name: ’Paul Erdős’})-[rel:HAS_FRIEND]->(friend:Human)

RETURN friend.name, rel.startDate

Here Human is a label, and name and startDate are property keys.

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 27 of 30



Cypher: Outlook

Cypher has many further features:

• Filter expressions (similar to SPARQL)

• Some regular path expressions (less than SPARQL)

• Returning of paths and shortest paths (more than SPARQL)

• Groups and aggregates (largely as in SPARQL)

• Subqueries

• Unions (more limited than in SPARQL)

• Optional (similar to SPARQL)

See next lecture for further details . . .

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 28 of 30



Summary

Property Graph is a general concept for organising graph data in two layers: a primary
graph layer and a sub-ordinate key-value-set layer

Property graph has many different, incompatible implementations, based on several
database paradigms (object, relational, RDF graph)

Cypher is an influential query language for property graph

What’s next?

• Holidays

• Detailed overview of Cypher

• Quality control in knowledge graphs

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 29 of 30



Here’s wishing you

a Merry Christmas, a Happy Hanukkah,

a Joyous Yalda, a Cheerful Dōngzhì,

a Great Feast of Juul,

and a Wonderful Winter Solstice,

respectively!

Markus Krötzsch, 17th Dec 2019 Knowledge Graphs slide 30 of 30


