FAKULTAT FUR !NFORMATIK

Wiener Wissenschafts-, Forschungs- und Technologiefonds

supported under grant ICT 08-028

Poster Session ACAI‘09 Belfast

ASPARTIX: A System for Computing Different
Argumentation Semantics in Answer-Set
Programming

Sarah Alice Gaggl

dbali

Vienna University of Technology

Institute of Information Systems
Database and Artificial Intelligence Group
Supervisor: Stefan Woltran

Motivation

 Argumentation has become one of the central issues in Artificial Intelligence (Al).
 Argumentation frameworks (AFs) formalize statements together with a relation for attack:
- Selecting acceptable subsets of arguments allows to solve conflicts between statements.
- A broad range of semantics exists.
- Many problems associated to AFs are intractable.
- Applications fields include Multi-Agent Systems and Law Research.
 General system required!
Main Contributions
« ASPARTIX is capable to compute admissible, preferred, stable, semi-stable, ideal, complete, and
grounded extensions for Dung’s original framework, PAFs, VAFs, and BAFs using ASP.
« Can be used by researchers to compare different argumentation semantics on concrete examples
within a uniform setting.
* We use DLV to compute the desired semantics via fixed datalog encodings.

* The input is the only part depending on the actual AF to process (in contrast to most previous work).

* The encodings are adequate from the complexity point of view.

Answer-Set Programing (ASP)

YT T = * Models of program represent solutions of
v oy

Do you

7 agree? f

Y

) A Ofcourse < problem.
. absolutely! |

» Separate problem specification and input data.

e __}- |""-.__ l\-_,—'-"-
I

 Disjunctive logic programs with constraints:
compact and easily maintainable representation.

 Guess&Check methodology: first generate the
search space, then rule out wrong solutions.

« Efficient systems (DLV) exist.

Input DB
arg(a). ...
sels up :
att(a,b). . ..
selects semantics and
type of framework
~ ASPARTIX [DLV
aemantics:
- adm
- siable
- compl
- ground |
- prefex calculates
- SBMis
- ideal v
- Answer Sets |
- vaf (in(a),in(b), ... }
g - pﬂf : '[lI"II:t}J', ||"||:|:|:|, “ e]'
correspond to
Acceptable Sets
fa.b, ..
ib.d, ..

Argumentation Frameworks

 An argumentation framework (AF) is a pair (A,R), where A is a set of arguments and R is a binary
relation denoting attacks. The pair (a,b) in R means that a attacks b.

» A set § of arguments defeats b, if there is an a in S, s.t. (a,b) in R. An argument a in A is defended
by a set S iff, for each b in A, it holds that, if (b,a) in R, then S defeats b.

Semantics

« Aset S of arguments is conflict-free, if there are no arguments a and b in S, such that a attacks b.
We denote the collection of conflict-free sets by cf{AF).

« A conflict-free set S is admissible, if each argument a in S is defended by S. We denote the
collection of admissible sets by adm(AF).

« Aset S of arguments is a stable extension, if S in cf(AF) and each a in A\ S is defeated by S. We
denote the collection of stable extensions by stable(AF).

 An admissible set S is a preferred extension, if it is maximal with respect to set inclusion.

Example

Let AF=(A,R), be an AF with A={a,b,c,d,e} and R={(a,e),(a,d),(b,a),(c,b),(d,c),(e,d)}. We obtain
adm(AF)={{}.,{a,c}}, stable(AF)=prefex(AF)={a,c}.

a -
A

&—©

Framework Types

* There exist several extensions of AFs like preference-based AFs (PAFs), value-based AFs
(VAFs), and bipolar AFs (BAFs).

Encodings

Input Database (DB) for AF=(A,R)
DB ={arg(a)|ain A} U {defeat(a,b)]| (ab)in R}.
Conflict-free Guess

P ={in(X) :- not out(X), arg(X);
out(X) :- not in(X), arg(X);
:— in(X), in(Y), defeat(X,Y)}.

= We guess all possible solutions via the predicates in\1 and out\ 1. Solutions with conflicting

arguments are ruled out.
Stable Extensions

PmW;?PdU{defeated(X) :—in(Y),defeat (Y, X);
:— out(X), not defeated(X)}.

Admissible Extensions

};m=11HJ{defeated(X) :— in(Y), defeat(Y,X);
:— in(X), defeat(Y¥,X), not defeated(Y)}.

= (Guesses which are not stable (resp. admissible) are ruled out via constraints.

Preferred Extensions

“WW;{inN(X) Vv OoutN(X) :- out(X); inN(X) :- in(X);
sat :- eq,
sat :- 1nN(X), 1inN(Y), defeat(X,Y);
sat :- 1nN(X), outN(Y), defeat(Y,X), undefeated(Y);
inN(X) :- sat, arg(X); out(X) :- sat, arg(X);
:— not sat }.

prefex= Padm U Peq U Pundefeated satpref

= First, we compute the admissible extensions, then a second guess checks for maximality. We
use a saturation technique to identify those solutions, where the second guess equals the first one,
or is not admissible. (Predicates eq\ 0 and undefeated\1 are computed in additional modules P,

an d Pundefeated))

Result: Answer sets of the encodings are in a one-to-one correspondence to the
extensions of the resp. semantics.

Future Work

* Implementation of further semantics: e.g. CF2, resolution-based, meta-attacks, etc.
» Web application of ASPARTIX including a graphical representation of the output.
« Experimental evaluation of the system.

Contact: gaggl@dbai.tuwien.ac.at
System page: http://www.dbai.tuwien.ac.at/staff/gaggl/systempage/

Project page: http://www.dbai.tuwien.ac.at/research/project/argumentation
Joint work with Uwe Egly and Stefan Woltran

