
Poster Session ACAI‘09 Belfast

Sarah Alice Gaggl

ASPARTIX: A System for Computing Different
Argumentation Semantics in Answer-Set

Programming Vienna University of Technology
Institute of Information Systems

Database and Artificial Intelligence Group
Supervisor: Stefan Woltran

Contact: gaggl@dbai.tuwien.ac.at	
System page: http://www.dbai.tuwien.ac.at/staff/gaggl/systempage/

Project page: http://www.dbai.tuwien.ac.at/research/project/argumentation
Joint work with Uwe Egly and Stefan Woltran

supported under grant ICT 08-028

Motivation
Argumentation has become one of the central issues in Artificial Intelligence (AI).

Argumentation frameworks (AFs) formalize statements together with a relation for attack:

			 - Selecting acceptable subsets of arguments allows to solve conflicts between statements.

	 	 	 - A broad range of semantics exists.

	 	 	 - Many problems associated to AFs are intractable.

	 	 	 - Applications fields include Multi-Agent Systems and Law Research.

General system required!

Main Contributions
ASPARTIX is capable to compute admissible, preferred, stable, semi-stable, ideal, complete, and

grounded extensions for Dung´s original framework, PAFs, VAFs, and BAFs using ASP.

Can be used by researchers to compare different argumentation semantics on concrete examples

within a uniform setting.

We use DLV to compute the desired semantics via fixed datalog encodings.

The input is the only part depending on the actual AF to process (in contrast to most previous work).

The encodings are adequate from the complexity point of view.

•

•

•

•

•

•

•

•

Argumentation Frameworks
An argumentation framework (AF) is a pair (A,R), where A is a set of arguments and R is a binary

relation denoting attacks. The pair (a,b) in R means that a attacks b.

A set S of arguments defeats b, if there is an a in S, s.t. (a,b) in R. An argument a in A is defended

by a set S iff, for each b in A, it holds that, if (b,a) in R, then S defeats b.

Semantics

A set S of arguments is conflict-free, if there are no arguments a and b in S, such that a attacks b.

We denote the collection of conflict-free sets by cf(AF).
A conflict-free set S is admissible, if each argument a in S is defended by S. We denote the

collection of admissible sets by adm(AF).
A set S of arguments is a stable extension, if S in cf(AF) and each a in A \ S is defeated by S. We

denote the collection of stable extensions by stable(AF).
An admissible set S is a preferred extension, if it is maximal with respect to set inclusion.

Example

Let AF=(A,R), be an AF with A={a,b,c,d,e} and R={(a,e),(a,d),(b,a),(c,b),(d,c),(e,d)}. We obtain

adm(AF)={{},{a,c}}, stable(AF)=prefex(AF)={a,c}.

Framework Types

There exist several extensions of AFs like preference-based AFs (PAFs), value-based AFs

(VAFs), and bipolar AFs (BAFs).

Encodings

 We guess all possible solutions via the predicates in\1 and out\1. Solutions with conflicting

arguments are ruled out.

 Guesses which are not stable (resp. admissible) are ruled out via constraints.

G First, we compute the admissible extensions, then a second guess checks for maximality. We

use a saturation technique to identify those solutions, where the second guess equals the first one,

or is not admissible. (Predicates eq\0 and undefeated\1 are computed in additional modules Peq

and Pundefeated.)

Future Work
Implementation of further semantics: e.g. CF2, resolution-based, meta-attacks, etc.

Web application of ASPARTIX including a graphical representation of the output.

Experimental evaluation of the system.

•

•

•

•

•

•

•

•

•

•

System Architecture

Pcf= {in(X) :- not out(X), arg(X);

		 out(X) :- not in(X), arg(X);

		 :- in(X), in(Y), defeat(X,Y)}.

Pstable= Pcf U {defeated(X) :-in(Y),defeat(Y,X);

				 :- out(X), not defeated(X)}.

Padm= Pcf U {defeated(X) :- in(Y), defeat(Y,X);

				 :- in(X), defeat(Y,X), not defeated(Y)}.

Conflict-free Guess

Stable Extensions

Admissible Extensions

DB = {arg(a)| a in A} U {defeat(a,b)| (a,b) in R}.

Psatpref= {inN(X) v outN(X) :- out(X); inN(X) :- in(X);

			 sat :- eq;

			 sat :- inN(X), inN(Y), defeat(X,Y);

			 sat :- inN(X), outN(Y), defeat(Y,X), undefeated(Y);

			 inN(X) :- sat, arg(X); out(X) :- sat, arg(X);

			 :- not sat }.

Pprefex= Padm U Peq U Pundefeated U Psatpref

Do you
agree?

Of course
absolutely!

Answer-Set Programing (ASP)
Models of program represent solutions of

problem.

Separate problem specification and input data.

Disjunctive logic programs with constraints:

compact and easily maintainable representation.

Guess&Check methodology: first generate the

search space, then rule out wrong solutions.

Efficient systems (DLV) exist.

•

•

•

•

•

Input Database (DB) for AF= (A,R)

Preferred Extensions

G

G

Result: Answer sets of the encodings are in a one-to-one correspondence to the

extensions of the resp. semantics.

