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. Proof of Hanf's theorem.
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. Back-and-Forth Equivalence with threshold m. Notation: (2 ~,, 25).

21 ~,, B iff DuplicVor has winning strategy in m-round E-F games on 2l and ‘8.

. Hintikka formulae, i.e. describing the m-isomorphism type of a 7-structure 2 with an FO,[7] formula.
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4. Gaifman Graphs and r-neighbourhoods

. Examples of Hanf(r, t)-equivalent structures.

. Hanf's theorem + applications to inexpressivity in FO.

. Proof of Hanf's theorem.
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Goal: Prove that Ehrenfeucht-Fraissé games works + Simplification of E-F games with Hanf's locality

1. Recap of Ehrenfeucht-Fraissé games.

~N O G b

. Back-and-Forth Equivalence with threshold m. Notation: (2 ~,, 25).

21 ~,, B iff DuplicVor has winning strategy in m-round E-F games on 2l and ‘8.

. Hintikka formulae, i.e. describing the m-isomorphism type of a 7-structure 2 with an FO,[7] formula.

A, B iff B = orimiia:

. Gaifman Graphs and r-neighbourhoods L ecture based on
. Examples of Hanf(r, t)-equivalent structures. Chapter 3.5 of [Libkin’s Book]
. Hanf's theorem + applications to inexpressivity in FO. Slides 29-33, 43-51 of [Montanari]
- Proof of Hanf's theorem. 19:23-24:32 of lecture by [Anuj Dawar]
Slides 80-110 by [Diego Figueira]
@ Feel free to ask questions and interrupt me!

Don’t be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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e Duration: m rounds.
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Recap of Ehrenfeucht-Fraissé games

O\JQ O(—(K
e Duration: m rounds. A= T}l% B = g O
3 oS

e Playground: two 7-structures 2l and ‘8.
e Two players: Spoildr (D3vil /Jloise/3ve/Player 1) vs DuplicVtor

I &
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Recap of Ehrenfeucht-Fraissé games

O
Duration: m rounds. Q{l B = g\k(i:O

Playground: two 7-structures 21 and ‘8.
Two players: Spoil3r (D3vil /Jloise/3ve/Player 1) vs Dupllc‘v’tor Vngel/VbeIard/‘v’dam/PIayer 1)

Goal of V: 2,8 “look the same”.
Goal of H: pinpoint the difference.

During the i-th round:
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Recap of Ehrenfeucht-Fraissé games

O
e Duration: m rounds. Q{l B = g\k(i:()

e Playground: two 7-structures 2l and ‘8.
e Two players: Spoil3r (D3vil/Jloise/Ive/Player ) vs Dupllc‘v’tor Vngel/VbeIard/‘v’dam/PIayer 1)

Goal of V: 2,8 “look the same”.
Goal of H: pinpoint the difference.

e During the i-th round:
1. d selects a structure (say 2A) and picks an element (say a; € A)
2.V replies with an element (say b; € B) in the other structure (in this case B)
so that (ay — by, ..., a; +—> b;) is a partial isomorphism between 2( and ‘B.
e J wins if V cannot reply with a suitable element. V wins if he survives m rounds.
Theorem (Fraissé 1954 & Ehrenfeucht 1961)
V has a winning strategy in m-round Ehrenfeucht-Fraissé game on 7-structures 2l and ‘B iff 2l =7 ‘8.
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Back and Forth Equivalence (a.k.a. Bisimulations)
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L
w

e Van-Benthem Theorems for L C FO: ¢ is preserved under >~ iff © is equiv. to some ¥ € L.
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

. Ak <) -— k=1 (— k-1 (<
o (Step): vz (X) = A Ixk P(aze)(X; Xk) A VXV @aze) (X Xk)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call (3 ) the m-Hintikka formula. Goal: B |= ¢y .y iff there is an m-bisimulation Z between 2l and ‘B.

Proof (<) [We leave (=) as an exercise.]

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 5 Dresden Long) 4/ 9



m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): go(()glj)(Y) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

. Ak <) -— k=1 (— k-1 (<
o (Step): vz (X) = A Ixk P(aze)(X; Xk) A VXV @aze) (X Xk)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption:
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): go(()glj)(Y) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

. Ak <) -— k=1 (— k-1 (<
o (Step): vz (X) = A Ixk P(aze)(X; Xk) A VXV @aze) (X Xk)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]
Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.

Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A Ax) A A —A(x)
atomic \(x), AE=A(3) atomic \(X), AEA(3)
atomic harmony
o (Step): pas(¥) = A Ixk Paae(X: k) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]
Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony).
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

[] k Eva PR k_]. =~ k—]_ —
o (Step): vz (X) = A Ixk P(aze)(X; Xk) A VXV @aze) (X Xk)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]
Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).
For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.

Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A Ax) A A —A(x)
atomic \(x), AE=A(3) atomic \(X), AEA(3)
atomic harmony
o (Step): pas(¥) = A Ixk Paae(X: k) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.
Take any ¢ € A.
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

[] k Eva PR k_]. =~ k—]_ —
o (Step): vz (X) = A Ixk P(aze)(X; Xk) A VXV @aze) (X Xk)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]
Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).
For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.

Take any ¢ € A. By (forth) there is d € B so that (ac, bd) € Z.
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.

Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A Ax) A A —A(x)
atomic \(x), AE=A(3) atomic \(X), AEA(3)
atomic harmony
o (Step): pas(¥) = A Ixk Paae(X: k) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.
Take any ¢ € A. By (forth) there is d € B so that (ac, bd) € Z. By ind. ass. B = (g 50)(bd).
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.

Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A Ax) A A —A(x)
atomic \(x), AE=A(3) atomic \(X), AEA(3)
atomic harmony
o (Step): pas(¥) = A Ixk Paae(X: k) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.
Take any ¢ € A. By (forth) there is d € B so that (ac, bd) € Z. By ind. ass. B = (g 50)(bd).
Thus B = 3x; ©f (b, x;).
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.

Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A Ax) A A —A(x)
atomic \(x), AE=A(3) atomic \(X), AEA(3)
atomic harmony
o (Step): pas(¥) = A Ixk Paae(X: k) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B

Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.
Take any ¢ € A. By (forth) there is d € B so that (ac, bd) € Z. By ind. ass. B = (g 50)(bd).
Thus B = Ix; X (b, x;). By the choice of ¢, we conclude B |= C/E\A Ix; % (b, x;).
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m-Hintikka formulae

Goal: describe the m-isomorphism type of a 7-structure 2 with an FO,,[7] formula.
Fix a structure 2, a k-tuple a from A, and a k-tuple of variables x. Define ©fy 5(x) inductively as

e (Base): @?9[75)&) = A CAx) A A - 2A(X)
atomic \(x), AE=A(3) atomic \(X), AEA(3)

atomic harmony

N v) -— k—1 (<
o (Step): vz (X) = A Ixk i ze(X, %) A Y V @laae) (X xe)
cEA ceEA
forth: responses for challenges in 2 back: responses for challenges in B
Call () the m-Hintikka formula. Goal: B |= oy . iff there is an m-bisimulation Z between 2l and B.

Proof (<) [We leave (=) as an exercise.]

Induction over k. Assumption: For any (a, b) € Z with [a|=|b|=m—k we have B |= ¢(y ;(b).

For k = 0 we are done by (atomic harmony). For k > 0, take (a, b) € Z with |a| = |b| = m—k—1.

Take any ¢ € A. By (forth) there is d € B so that (ac, bd) € Z. By ind. ass. B |= (,0 a.3c)(bd).
Thus B = Ix; X (b, x;). By the choice of ¢, we conclude B |= /\ Ix; % (b, x;).

By reasoning similarly and employing (back), we conclude the satlsfactlon of the RHS of ¢ (b). O
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Main theorem about Ehrenfeucht-Fraissé games
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Main theorem about Ehrenfeucht-Fraissé games

Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:

1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.

2. There exists an m-bisimulation between 2 and 8.
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.

3. B satisfies the m-Hintikka formulae constructed from .
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. ‘B satisfies the m-Hintikka formulae constructed from L.

4.2 and *B agree on all FO,,[7] sentences.
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. ‘B satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3).
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. ‘B satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. ‘B satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. ‘B satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof

induction
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]

induction
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction| Let Z be an m-bisimulation.

induction
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction| Let Z be an m-bisimulation. The case m = 0 ~~

induction
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction| Let Z be an m-bisimulation. The case m = 0 ~~

induction atomic harmony

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 5 Dresden Long) 5/9



Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

induction atomic harmony
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

induction atomic harmony Simplify FO,[7]
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

Note that every FO,[7] formula is

induction atomic harmony Simplify FO,[7]
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

Note that every FO,[7] formula is a boolean combination of formulae

induction atomic harmony Simplify FO,[7]
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

Note that every FO,[7] formula is a boolean combination of formulae of the form Ix .

induction atomic harmony Simplify FO,[7]
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
Proof [(2) = (4) by induction]| Let Z be an m-bisimulation. The case m = 0 ~» (atomic harmony).

Note that every FO,[7] formula is a boolean combination of formulae of the form Ix .

induction atomic harmony Simplify FO,,[7]  reduce
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Main theorem about Ehrenfeucht-Fraissé games
Lemma: For any 7-structures 2, B and m € N, the following are equivalent:
1. DuplicVtor has the winning strategy in any m-round Ehrenfeucht-Fraissé game played on 2 and B.
2. There exists an m-bisimulation between 2l and 5.
3. %8 satisfies the m-Hintikka formulae constructed from L.

4.2 and B agree on all FO,,[7] sentences.

We've already seen that (1) < (2) and (2) < (3). Clearly (4) = (3), thus it suffices to show (2) = (4).
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We will now go through slides 78-110 from ESSLI 2016 by [Diego Figueira].
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Idea: First order logic can only express “local” properties

Local = properties of nodes which are close to one another
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007/
200
201

Gs=(V,E) where E={(4,v)|3(....%...,0,...) € R; for some: }

Name
James Bond
Mr Smith
Mrs Smith

Jason Bourne

BIVES

Aston Martin
Cadillac
Mercedes

BMW

Car

Aston Martin
Cadillac
Mercedes

BMW

Country

UK
USA
Germany

Germany
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Hanf locality

Theorem. S1, .5, are 7-equivalent ( they satisfy the same sentences with quantifier rank 7 )

whenever S1, S> are Hanf(7,#) - equivalent, with r=37and t =2

[Hanf '60]

Why so BIG?

Remember ¢i(x,y) = “there is a path of length 2k from x to y”

do(x,y) = E(x,y), and
dr(xy) = 3z (dr-1(x,2) A dr-1(z, y) )

qr(dx) =k

Not (n+2)-equivalent yet they have the same 2n-1 balls.
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k k
(Invariant): U A[a;,3" ] = U B[b;,3" 4]
i=1 i=1

Suppose that Spoiler picked a1 € A such that dist(a;,1,2;) < 2-3" ¥ holds for some a;.

We know how to reply since A[ax1,3" *~1] is fully contained in some previously selected balls.
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Let a1,ap,...,axk € Aand by, by, ..., by € B be the history of the play after k rounds.
k k
(Invariant): U A[a;,3" ] = U B[b;,3" 4]
i=1 i=1

Suppose that Spoiler picked a1 € A such that dist(a,,1,2;) > 23" * holds for some a;.

We know how to reply since we have sufficiently many realisations of 2[ax.1,3" %] in B.
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. Angel icons created by Freepik — Flaticon flaticon.com/free-icons/angel

. Devil icons created by Freepik and Pixel perfect — Flaticon flaticon.com/free-icons/devil
. VS icons created by Freepik — Flaticon flaticon.com/free-icons/vs

. Robot icon created by Eucalyp — Flaticon flaticon.com/free-icons/robot.

. Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning.
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