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Existential Rules

∀~x∀~y .Body(~x , ~y)→ ∃~z.Head(~x , ~z)

• Body and Head : conjunctions of atoms
• ~x , ~y , ~z: pairwise disjoint lists of variables

Pizza(x)→ ∃z.SameDeliverer(x , z) ∧ Pizza(z)
WeeklyOrder(y , x)→ ∃z.WeeklyOrder(x , z)

Pizza(x) ∧WeeklyOrder(x , y)→ Pizza(y) ∧ SameDeliverer(x , y)
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Chasing a Universal Core Model
Pizza(x)→ ∃z.SameDeliverer(x , z) ∧ Pizza(z)

WeeklyOrder(y , x)→ ∃z.WeeklyOrder(x , z)
Pizza(x) ∧WeeklyOrder(x , y)→ Pizza(y) ∧ SameDeliverer(x , y)

order1 : Pizza

n1 : Pizza
SameDeliverer

n2 : Pizza
SameDeliverer

order2

: Pizza

WeeklyOrder

n3

:Pizza

WeeklyOrder

SameDeliverer

n4 : Pizza
SameDeliverer

SameDeliverer

. . . . . .. . .

The restricted chase and it yields a universal model.
The core chase and it yields a universal core model.

Without alternative matches, the restricted chase also yields a universal core model.
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Some Rule Set Classifications

R ∈ CTres
∀∃

For the rule set R and all starting fact sets, some restricted chase sequence terminates.

CTres
∀∀ ⊂ CTres

∀∃ ⊂ CTcore
∀

Each of these classes is undecidable.

R ∈ AM∀∃

For the rule set R and all starting fact sets, some restricted chase sequence does not
have an alternative match.

AM∀∀ ⊂ AM∀∃

AM∀∃ is undecidable whereas AM∀∀ is decidable.
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Relations between Rules [Krötzsch, 2020]

Definition
A rule ρ restrains a rule ρ′, written ρ ≺� ρ′, if the application of ρ after ρ′ may introduce an
alternative match for ρ′.

Proposition

Consider a chase. If for each rule ρ, all rules ρ′ with ρ′ ≺� ρ are applied exhaustively
before ρ, then the chase does not have an alternative match.

Proposition

A rule set R does not have restraining relations iff R ∈ AM∀∀.

If we respect restraining relations, we find a restricted chase sequence that yields a core.
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Relations between Rules [Krötzsch, 2020]

Definition
A rule ρ′ positively relies on a rule ρ, written ρ ≺4 ρ′, if the application of ρ may allow ρ′ to
be applied.

Definition
The downward closure ρ↓� of a rule ρ is the set containing each rule ρ′ for that we find
ρ′((≺4)∗◦ ≺�)+ρ, i.e. ρ′ directly or indirectly restrains ρ.

Definition
A rule set is core-stratified if for every rule ρ, we have ρ /∈ ρ↓�.
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The Power of Core Stratification
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Core-Stratification is sufficient for AM∀∃

Pizza(x)→ ∃z.SameDeliverer(x , z) ∧ Pizza(z)
WeeklyOrder(y , x)→ ∃z.WeeklyOrder(x , z)

Pizza(x) ∧WeeklyOrder(x , y)→ Pizza(y) ∧ SameDeliverer(x , y)

We find ρ3 ≺� ρ1, ρ2 ≺4 ρ3, ρ3 ≺4 ρ1 and ρi ≺4 ρi for every i ∈ {1,2,3 }.
Thus, we have ρ1↓� = { ρ2, ρ3 } and ρ2↓� = ρ3↓� = ∅.

Theorem
If a rule set R is core stratified, then R ∈ AM∀∃.

(Originally R ∈ CTres
∀∀ is also required [Krötzsch, 2020].)
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Avoiding Alternative Matches when Chasing

Pizza(x)→ ∃z.SameDeliverer(x , z) ∧ Pizza(z) (R2)
WeeklyOrder(y , x)→ ∃z.WeeklyOrder(x , z) (R1)

Pizza(x) ∧WeeklyOrder(x , y)→ Pizza(y) ∧ SameDeliverer(x , y) (R1)

order1 : Pizza

order2

: Pizza

WeeklyOrder

SameDeliverer

n3

:Pizza

WeeklyOrder

SameDeliverer

. . .

unhappyOrder : Pizza

n4 : Pizza
SameDeliverer

. . .
λ1

1, λ
1
2, λ

1
3, λ

1
4, . . . [, λ

2
1, λ

2
2, . . . ]

This is a transfinite chase sequence on a restrained partitioning.
Observation: ρ1 applications could be done earlier: λ1

1, λ
1
2, λ

2
1, λ

1
3, λ

1
4, λ

2
2, . . .
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Restricted and Core Chase coincide

Theorem
For a rule set R ∈ AM∀∃, we have R ∈ CTres

∀∃ iff R ∈ CTcore
∀ .

Corollary

A transfinite chase sequence on a restrained partitioning terminates (yielding a finite
universal core model) iff a finite universal (core) model exists.

Theorem
For a rule set R ∈ AM∀∀, we have R ∈ CTres

∀∀ iff R ∈ CTres
∀∃ iff R ∈ CTcore

∀ .

(CTres
∀∀ is decidable for single-head guarded existential rules.)
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Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:

S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .
Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.

ρ2 restrains ρ1 and no infinite fair sequence exists.
However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b)

,S(n1,n2,b),S(n2,b,b), . . .
Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.

ρ2 restrains ρ1 and no infinite fair sequence exists.
However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b)

, . . .
Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.

ρ2 restrains ρ1 and no infinite fair sequence exists.
However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.

ρ2 restrains ρ1 and no infinite fair sequence exists.
However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.
Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021

10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

The problem of the Fairness Theorem [Gogacz et al., 2020]:

S(a,b,b)
ρ1 := S(x , y , y)→ ∃z.S(x , z, y) ∧ S(z, y , y)
ρ2 := S(x , y , z)→ S(z, z, z)

By ρ1, we obtain:
S(a,n1,b),S(n1,b,b),S(n1,n2,b),S(n2,b,b), . . .

Any application of ρ2 yields S(b,b,b) and blocks all (further) applications of ρ1.
ρ2 strongly restrains ρ1 and no infinite fair sequence exists.

However: There are also single-head rules that restrain each other.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
10/16



Decidability of CTres
∀∀

Proposition (Fairness Theorem [Gogacz et al., 2020])
For a rule set of only single-head rules, if there exists an unfair non-terminating restricted
chase sequence, then there exists a fair non-terminating restricted chase sequence.

Theorem
For a rule set without strong restraining relations, if there exists an unfair non-terminating
restricted chase sequence, then there exists a fair non-terminating restricted chase
sequence.

Conjecture

Consider a guarded rule set R without strong restraining relations. It is decidable if
R ∈ CTres

∀∀ .

(We obtain decidability for CTcore
∀ for guarded rule sets without restraining relations.)
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Computing Cores for Non-Core-Stratified Rule Sets

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
12/16



Computing Cores directly with Alternative Matches

Pizza(x)→ ∃z.SameDeliverer(x , z) ∧ Pizza(z)
WeeklyOrder(y , x)→ ∃z.WeeklyOrder(x , z)

Pizza(x) ∧WeeklyOrder(x , y)→ Pizza(y) ∧ SameDeliverer(x , y)

order1 : Pizza

n1 : Pizza
SameDeliverer

n2 : Pizza
SameDeliverer

. . .

order2 : Pizza
WeeklyOrder

SameDeliverer

n3:Pizza
WeeklyOrder

. . .
n4 : Pizza

SameDeliverer

. . .

SameDeliverer

Problem: Alternative Matches do not always yield an endomorphism over the fact set.
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Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P
n2

Q
n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P

n2

Q
n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P
n2

Q

n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P
n2

Q
n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P
n2

Q
n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



Compute Cores directly with Alternative Matches
→ ∃z.P(z)

P(x)→ ∃z.Q(x , z)
Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y)

Q(x , y) ∧ S(x , z)→ S(x , y)

c

n1 : P
n2

Q
n3 : P

Q

S
Q

S

n4 : P
Q

S

Problem: After remappings of nulls, other remappings may be necessary
that are not captured by alternative matches.

Lukas Gerlach Chase-Based Computation of Cores for Existential Rules 16.09.2021
14/16



The Hybrid Chase
P(x)→ ∃z.Q(x , z) (R1)

Q(x , y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P(z) ∧ S(z, y) (R2)
Q(x , y) ∧ S(x , z)→ S(x , y) (R1)

The hybrid chase on a relaxed restrained partitioning is defined like the
transfinite chase but uses the core chase in the last sequence.

c

a : P

S

n2

Q

S

n3 : P

Q

S
Q

S

n4 : P
Q

S

Nulls that are introduced before the last sequence can be treated as constants.
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Summary

Results:
• Restricted and core chase coincide for core-stratified rule sets.
• Conjecture: Slightly larger fragment of guarded rules for which CTres

∀∀ is decidable.
• Ideas for more efficient computation of universal core models for arbitrary rule sets.

Open Questions / Future Work:
• Is AM∀∃ decidable for (single-head) guarded existential rules?
• Is CTres

∀∃ decidable for (single-head) guarded existential rules?
• Verify decidability of CTres

∀∀ for guarded rules without strong restraining relations.
• Implement/Evaluate/Improve core computation heuristic and hybrid chase.
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Carral, D., Krötzsch, M., Marx, M., Ozaki, A., and Rudolph, S. (2018).
Preserving constraints with the stable chase.
In [Kimelfeld and Amsterdamer, 2018], pages 12:1–12:19.

Deutsch, A., Nash, A., and Remmel, J. B. (2008).
The chase revisited.
In [Lenzerini and Lembo, 2008], pages 149–158.



References V

Esparza, J., Fraigniaud, P., Husfeldt, T., and Koutsoupias, E., editors (2014).
Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of
Lecture Notes in Computer Science. Springer.

Even, S. and Kariv, O., editors (1981).
Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July
13-17, 1981, Proceedings, volume 115 of Lecture Notes in Computer Science.
Springer.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005).
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124.



References VI

Fagin, R., Kolaitis, P. G., and Popa, L. (2003).
Data exchange: getting to the core.
In [Neven et al., 2003], pages 90–101.

Gogacz, T. and Marcinkowski, J. (2014).
All-instances termination of chase is undecidable.
In [Esparza et al., 2014], pages 293–304.

Gogacz, T., Marcinkowski, J., and Pieris, A. (2020).
All-instances restricted chase termination.
In [Suciu et al., 2020], pages 245–258.

Gottlob, G. and Nash, A. (2008).
Efficient core computation in data exchange.
J. ACM, 55(2):9:1–9:49.



References VII

Grahne, G. and Onet, A. (2018).
Anatomy of the chase.
Fundam. Informaticae, 157(3):221–270.
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