
Piecewise Testable Languages and
Nondeterministic Automata∗

Tomáš Masopust

Fakultät Informatik, Technische Universität Dresden, Germany and
Institute of Mathematics CAS, Czech Republic
tomas.masopust@tu-dresden.de

Abstract
A regular language is k-piecewise testable if it is a finite boolean combination of languages of the
form Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and 0 ≤ n ≤ k. Given a DFA A and k ≥ 0, it is an NL-
complete problem to decide whether the language L(A) is piecewise testable and, for k ≥ 4, it is
coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the
depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable,
then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some
form of nondeterminism does not violate this upper bound result. Specifically, we define a class
of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of
a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We
provide an application of our result, discuss the relationship between k-piecewise testability and
the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Automata, Logics, Languages, k-piecewise testability, Nondeterminism

1 Introduction

A regular language L over an alphabet Σ is piecewise testable if it is a finite boolean
combination of languages of the form

La1a2...an
= Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗

where ai ∈ Σ and n ≥ 0. If L is piecewise testable, then there exists a nonnegative integer k
such that L is a finite boolean combination of languages Lu, where the length of u ∈ Σ∗ is at
most k. In this case, the language L is called k-piecewise testable.

Piecewise testable languages are studied in semigroup theory [2, 3, 25] and in logic over
words [9, 26] because of their close relation to first-order logic FO(<). They actually form
the first level of the Straubing-Thérien hierarchy [24, 32]. This hierarchy is closely related to
the dot-depth hierarchy [6], see more in [21]. They are indeed studied in formal languages
and automata theory [19], recently mainly in the context of separation [26, 34]. Although
the separability of context-free languages by regular languages is undecidable, separability
by piecewise testable languages is decidable [8] (even for some non-context-free families).
Piecewise testable languages form a strict subclass of star-free languages, that is, of the
limit of the above-mentioned hierarchies or, in other words, of the languages definable by
LTL logic. They are investigated in natural language processing [10, 27], in cognitive and
sub-regular complexity [28], in learning theory [11, 20], and in databases in the context of
XML schema languages [7, 13, 14]. They have been extended from words to trees [4, 12].

∗ This work was supported by the DFG in project DIAMOND (Emmy Noether grant KR 4381/1-1).

© Tomáš Masopust;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
3.

00
36

1v
2

 [
cs

.F
L

]
 1

0
M

ar
 2

01
6

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Piecewise Testable Languages and Nondeterministic Automata

Recently, the complexity of computing the minimal k and/or bounds on k for which a
piecewise testable language is k-piecewise testable was studied in [13, 18, 19], motivated by
applications in databases and algebra and logic. However, the knowledge of such a k that is
either minimal or of reasonable size is of interest in many other applications as well. The
complexity to test whether a piecewise testable language is k-piecewise testable was shown
to be coNP-complete for k ≥ 4 if the language is given as a DFA [18] and PSPACE-complete
if the language is given as an NFA [22]. The complexity for DFAs and k < 4 is discussed in
detail in [22]. The best upper bound on k known so far is given by the depth of the minimal
DFA [19].

In this paper, we define a class of NFAs, called ptNFAs, that characterizes piecewise
testable languages. This characterization is based on purely structural properties, therefore it
is NL-complete to check whether an NFA is a ptNFA (Theorem 5). We show that the depth
of ptNFAs also provides an upper bound on k-piecewise testability (Theorem 8) and that
this new bound is up to exponentially lower than the one given by minimal DFAs (Section 3
and Theorem 14). We further show that this property does not hold for general NFAs, and
that the gap between k-piecewise testability and the depth of NFAs can be arbitrarily large
(Theorem 12). The opposite implication of Theorem 8 does not hold. We give a non-trivial
application of our result in Section 5, where we also provide more discussion. Finally, in
Section 6, we discuss the complexity of k-piecewise testability for ptNFAs.

The paper is organized as follows. Section 2 presents basic notions and definitions, fixes
the notation, and defines the ptNFAs. Section 3 motivates and demonstrates Theorem 8 on a
simple example. Section 4 then proves Theorem 8 and the related results. Section 5 provides
a non-trivial application and further discussion. Section 6 recalls the known complexity
results and discusses the complexity of the related problems for ptNFAs. Section 7 concludes
the paper.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory, see, e.g., [1]. The cardinality of
a set A is denoted by |A| and the power set of A by 2A. An alphabet, Σ, is a finite nonempty
set; the elements of an alphabet are called symbols or letters. The free monoid generated
by Σ is denoted by Σ∗. A word over Σ is any element of Σ∗; the empty word is denoted by
ε. For a word w ∈ Σ∗, alph(w) ⊆ Σ denotes the set of all letters occurring in w, and |w|a
denotes the number of occurrences of letter a in w. A language over Σ is a subset of Σ∗. For
a language L over Σ, let L = Σ∗ \ L denote the complement of L.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, I, F), where Q
is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states, and · : Q× Σ→ 2Q is the transition function that can
be extended to the domain 2Q × Σ∗ by induction. The language accepted by A is the set
L(A) = {w ∈ Σ∗ | I · w ∩ F 6= ∅}. In what follows, we usually omit · and write simply Iw
instead of I · w.

A path π from a state q0 to a state qn under a word a1a2 · · · an, for some n ≥ 0, is a
sequence of states and input symbols q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for
all i = 0, 1, . . . , n − 1. The path π is accepting if q0 ∈ I and qn ∈ F . We use the notation
q0

a1a2···an−−−−−−→ qn to denote that there exists a path from q0 to qn under the word a1a2 · · · an.
A path is simple if all states of the path are pairwise distinct. The number of states on the
longest simple path of A, starting in an initial state, decreased by one (i.e., the number of
transitions on that path) is called the depth of the automaton A, denoted by depth(A).

T. Masopust 3

The NFA A is complete if for every state q of A and every letter a in Σ, the set q · a is
nonempty, that is, in every state, a transition under every letter is defined.

Let A = (Q,Σ, ·, I, F) be an NFA, and let p be a state of A. The sub-automaton of A
induced by state p is the automaton Ap = (reach(p),Σ, ·p, p, F ∩ reach(p)) with state p being
the sole initial state and with only those states of A that are reachable from p; formally,
reach(p) denotes the set of all states reachable from state p in A and ·p is a restriction of ·
to reach(p)× Σ.

The NFA A is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every state q in Q and
every letter a in Σ. Then the transition function · is a map from Q× Σ to Q that can be
extended to the domain Q × Σ∗ by induction. Two states of a DFA are distinguishable if
there exists a word w that is accepted from one of them and rejected from the other. A DFA
is minimal if all its states are reachable and pairwise distinguishable.

Let A = (Q,Σ, ·, I, F) be an NFA. The reachability relation ≤ on the set of states is
defined by p ≤ q if there exists a word w in Σ∗ such that q ∈ p · w. The NFA A is partially
ordered if the reachability relation ≤ is a partial order. For two states p and q of A, we
write p < q if p ≤ q and p 6= q. A state p is maximal if there is no state q such that p < q.
Partially ordered automata are sometimes also called acyclic automata.

An NFA A = (Q,Σ, ·, I, F) can be turned into a directed graph G(A) with the set of
vertices Q, where a pair (p, q) in Q × Q is an edge in G(A) if there is a transition from
p to q in A. For Γ ⊆ Σ, we define the directed graph G(A,Γ) with the set of vertices
Q by considering all those transitions that correspond to letters in Γ. For a state p, let
Σ(p) = {a ∈ Σ | p ∈ p · a} denote the set of all letters under which the NFA A has a self-loop
in state p. Let A be a partially ordered NFA. If for every state p of A, state p is the unique
maximal state of the connected component of G(A,Σ(p)) containing p, then we say that the
NFA satisfies the unique maximal state (UMS) property.

An equivalent notion to the UMS property for minimal DFAs has been introduced in the
literature. A DFA A over Σ is confluent if, for every state q of A and every pair of letters
a, b in Σ, there exists a word w in {a, b}∗ such that (qa)w = (qb)w.

We adopt the notation La1a2···an = Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗ from [19]. For two words
v = a1a2 · · · an and w ∈ Lv, we say that v is a subsequence of w or that v can be embedded
into w, denoted by v 4 w. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u 4 v, |u| ≤ k}. For two words
w1, w2, define w1 ∼k w2 if and only if subk(w1) = subk(w2). Note that ∼k is a congruence
with finite index.

The following is well known.

I Fact 1 ([29]). Let L be a regular language, and let ∼L denote the Myhill congruence [23].
A language L is k-piecewise testable if and only if ∼k⊆∼L. Moreover, L is a finite union of
∼k classes.

We will use this fact in several proofs in the form that if L is not k-piecewise testable,
then there exist two words u and v such that u ∼k v and |L ∩ {u, v}| = 1.

I Fact 2. Let L be a language recognized by the minimal DFA A. The following is equivalent.
1. The language L is piecewise testable.
2. The minimal DFA A is partially ordered and confluent [19].
3. The minimal DFA A is partially ordered and satisfies the UMS property [33].

We now define a special class of nondeterministic automata called ptNFAs. The name
comes from piecewise testable, since, as we show below, they characterize piecewise testable
languages. And indeed include all minimal DFAs recognizing piecewise testable languages.

ArXiv

4 Piecewise Testable Languages and Nondeterministic Automata

0 1 2a b

a, b a a, b

Figure 1 Confluent automaton accepting a non-piecewise testable language

I Definition 3. An NFA A is called a ptNFA if it is partially ordered, complete and satisfies
the UMS property.

The reason why we use the UMS property in the definition of ptNFAs rather than the
notion of confluence is simply because confluence does not naturally generalize to NFAs, as
shown in Example 4 below.

I Example 4. Consider the automaton depicted in Figure 1. The notion of confluence is not
clear for NFAs. If we consider the point of view that whenever the computation is split, a
common state can be reached under a word over the splitting alphabet, then this automaton
is confluent. However, it does not satisfy the UMS property and its language is not piecewise
testable; there is an infinite sequence a, ab, aba, abab, . . . that alternates between accepted
and non-accepted words, which implies that there is a non-trivial cycle in the corresponding
minimal DFA and, thus, it proves non-piecewise testability by Fact 2.

Note that to check whether an NFA is a ptNFA requires to check whether the automaton is
partially ordered, complete and satisfies the UMS property. The violation of these properties
can be tested by several reachability tests, hence its complexity belongs to coNL=NL. On
the other hand, to check the properties is NL-hard even for minimal DFAs [5]. Thus, we
have the following.

I Theorem 5. It is NL-complete to check whether an NFA is a ptNFA.

3 Motivation and an Example

Considering applications, such as XML, where the alphabet can hardly be considered as fixed,
the results of [18] (cf. Theorem 17 below) say that it is intractable to compute the minimal k
for which a piecewise testable language is k-piecewise testable, unless coNP=P. This leads to
the investigation of reasonably small upper bounds. Recall that the result of [19] says that k
is bounded by the depth of the minimal DFA. However, applications usually require to work
with NFAs, which motivates the research of this paper. Another motivation comes from a
simple observation that, given several DFAs, a result of an operation can lead to an NFA
that in some sense still have the DFA-like properties, see more discussion below. Moreover, it
seems to be a human nature to use a kind of nondeterminism, for instance, to reuse already
defined parts as demonstrated here on a very simple example.

Let L0 = {ε} be a language over the alphabet Σ0 = {a0}. Assume that the language Li

over Σi is defined, and let Li+1 = Li ∪ Σ∗i ai+1Li over Σi+1 = Σi ∪ {ai+1}, where ai+1 is a
new symbol not in Σi. We now construct the NFAs for the languages Li,

Ai = ({0, 1, . . . , i}, {a0, a1, . . . , ai}, ·, {0, 1, . . . , i}, {0})

where ` · aj = ` if i ≥ ` > j ≥ 0 and ` · a` = {0, 1, . . . , `− 1} if i ≥ ` ≥ 1. The automaton A3
is depicted in Figure 2. The dotted transitions are to “complete” the NFA in the meaning
that ` · a 6= ∅ for any state ` and letter a.

T. Masopust 5

0123 sa3 a2 a1

a3

a3

a2

a0, a1, a2 a0, a1 a0

a3

a2, a3

a0, a1, a2, a3

Σ3

Figure 2 Automaton A3; the dotted transitions depict the completion of A3

Although the example is very simple, the reader can see the point of the construction in
nondeterministically reusing the existing parts.

Now, to decide whether the language is piecewise testable and, if so, to obtain an upper
bound on its k-piecewise testability, the known results for DFAs say that we need to compute
the minimal DFA. Doing so shows that Li is piecewise testable. However, the minimal DFA
for the language Li is of exponential size and its depth is 2i+1 − 1, cf. [22], which implies
that Li is (2i+1− 1)-piecewise testable. Another way is to use the PSPACE algorithm of [22]
to compute the minimal k. Both approaches are basically of the same complexity.

This is the place, where our result comes into the picture. According to Theorem 8
proved in the next section, the easily testable structural properties say that the language Li

is (i+ 1)-piecewise testable. This provides an exponentially better upper bound for every
language Li than the technique based on minimal DFAs. Finally, we note that it can be
shown that Li is not i-piecewise testable, so the bound is tight.

4 Piecewise Testability and Nondeterminism

In this section, we establish a relation between piecewise testable languages and nondetermin-
istic automata and generalize the bound given by the depth of DFAs to ptNFAs. We first
recall the know result for DFAs.

I Theorem 6 ([19]). Let A be a partially ordered and confluent DFA. If the depth of A is k,
then the language L(A) is k-piecewise testable.

This result is currently the best known structural upper bound on k-piecewise testability.
The opposite implication of the theorem does not hold and we have shown in [22] (see also
Section 3) that this bound can be exponentially far from the minimal value of k. This
observation has motivated our investigation of the relationship between piecewise testability
and the depth of NFAs. We have already generalized a structural automata characterization
for piecewise testability from DFAs to NFAs as follows.

I Theorem 7 ([22]). A regular language is piecewise testable if and only if it is recognized
by a ptNFA.

We now generalize Theorem 6 to ptNFAs and discuss the relation between the depth of
NFAs and k-piecewise testability in more detail. An informal idea behind the proof is that
every ptNFA can be “decomposed” into a finite number of partially ordered and confluent

ArXiv

6 Piecewise Testable Languages and Nondeterministic Automata

DFAs. We now formally prove the theorem by generalizing the proof of Theorem 6 given
in [19].

I Theorem 8. If the depth of a ptNFA A is k, then the language L(A) is k-piecewise testable.

The proof of Theorem 8 follows directly from Lemmas 9 and 11 proved below.

I Lemma 9. Let A be a ptNFA with I denoting the set of initial states. Then the language
L(A) =

⋃
i∈I L(Ai), where every sub-automaton Ai is a ptNFA.

Based on the previous lemma, it is sufficient to show the theorem for ptNFAs with a
single initial state. We make use of the following lemma.

I Lemma 10 ([19]). Let ` ≥ 1, and let u, v ∈ Σ∗ be such that u ∼` v. Let u = u′au′′ and
v = v′av′′ such that a /∈ alph(u′v′). Then u′′ ∼`−1 v

′′.

I Lemma 11. Let A be a ptNFA with a single initial state and depth k. Then the language
L(A) is k-piecewise testable.

Proof. Let A = (Q,Σ, ·, i, F). If the depth of A is 0, then L(A) is either ∅ or Σ∗, which are
both 0-piecewise testable by definition. Thus, assume that the depth of A is ` ≥ 1 and that
the claim holds for ptNFAs of depth less than `. Let u, v ∈ Σ∗ be such that u ∼` v. We
prove that u is accepted by A if and only if v is accepted by A.

Assume that u is accepted byA and fix an accepting path of u inA. If alph(u) ⊆ Σ(i), then
the UMS property ofA implies that i ∈ F . Therefore, v is also accepted in i. If alph(u) 6⊆ Σ(i),
then u = u′au′′ and v = v′bv′′, where u′, v′ ∈ Σ(i)∗, a, b ∈ Σ \ Σ(i), and u′′, v′′ ∈ Σ∗. Let
p ∈ i ·a be a state on the fixed accepting path of u. Let Ap = (reach(p),Σ, ·p, p, F ∩ reach(p))
be a sub-automaton of A induced by state p. Note that Ap is a ptNFA. By assumption, Ap

accepts u′′ and the depth of Ap is at most `− 1.
If a = b, Lemma 10 implies that u′′ ∼`−1 v

′′. By the induction hypothesis, u′′ is accepted
by Ap if and only if v′′ is accepted by Ap. Hence, v = v′av′′ is accepted by A.

If a 6= b, then u = u′au′′0bu
′′
1 and v = v′bv′′0av

′′
1 , where b /∈ alph(u′au′′0) and a /∈ alph(v′bv′′0).

Then

u′′ = u′′0bu
′′
1 ∼`−1 v

′′
0av

′′
1 = v′′

because, by Lemma 10,

sub`−1(u′′0bu′′1) = sub`−1(v′′1) ⊆ sub`−1(v′′0av′′1) = sub`−1(u′′1) ⊆ sub`−1(u′′0bu′′1) . (*)

If p ∈ i · b, the induction hypothesis implies that v′′ is accepted by Ap, hence v = v′bv′′ is
accepted by A.

If p /∈ i · b, let q ∈ i · b. By the properties of A, there exists a word w ∈ {a, b}∗ such that
pw = qw = r, for some state r. Indeed, there exists w1 and a unique maximal state r with
respect to {a, b} such that pw1 = {r} and a, b ∈ Σ(r). By the UMS property, there exists
w2 such that qw1w2 = {r}. Let w = w1w2. We now show that wu′′ ∼`−1 u

′′ by induction
on the length of w. There is nothing to show for w = ε. Thus, assume that w = xw′, for
x ∈ {a, b}, and that w′u′′ ∼`−1 u

′′. Notice that (*) shows that u′′ ∼`−1 v
′′
1 ∼`−1 v

′′ ∼`−1 u
′′
1 .

This implies that sub`−1(v′′1) ⊆ sub`−1(av′′1) ⊆ sub`−1(v′′0av′′1) = sub`−1(v′′) = sub`−1(v′′1),
which shows that av′′1 ∼`−1 v

′′
1 . Similarly we can show that bu′′1 ∼`−1 u

′′
1 . If x = a, then

w′u′′ ∼`−1 u
′′ ∼`−1 v

′′
1 implies that aw′u′′ ∼`−1 av

′′
1 ∼`−1 v

′′
1 ∼`−1 u

′′. Similarly, if x = b,
then w′u′′ ∼`−1 u′′ ∼`−1 u′′1 implies that bw′u′′ ∼`−1 bu′′1 ∼`−1 u′′1 ∼`−1 u′′. Therefore,
wu′′ ∼`−1 u

′′. Analogously, wv′′ ∼`−1 v
′′.

T. Masopust 7

0

1′2′. . .

i′

1 2 . . .

i

a
a a

a

a

a
aa

a

aa

Figure 3 The NFA of depth i recognizing Li

Finally, using the induction hypothesis (of the main statement) on Ap, we get that u′′ is
accepted by Ap if and only if wu′′ is accepted by Ap, which is if and only if u′′ is accepted
by Ar. Since u′′ ∼`−1 v

′′, the induction hypothesis applied on Ar gives that u′′ is accepted
by Ar if and only if v′′ is accepted by Ar. However, this is if and only if wv′′ is accepted by
Aq. Using the induction hypothesis on Aq, we obtain that wv′′ is accepted by Aq if and only
if v′′ is accepted by Aq. Together, the assumption that u′′ is accepted by Ap implies that v′′
is accepted by Aq. Hence v = v′bv′′ is accepted by A, which completes the proof. J

In other words, the previous theorem says that if k is the minimum number for which a
piecewise testable language L is k-piecewise testable, then the depth of any ptNFA recognizing
L is at least k.

It is natural to ask whether this property holds for any NFA recognizing the language
L. The following result shows that it is not the case. Actually, for any natural number `,
there exists a piecewise testable language such that the difference between its k-piecewise
testability and the depth of an NFA is at least `.

I Theorem 12. For every k ≥ 3, there exists a k-piecewise testable language that is recognized
by an NFA of depth at most

⌊
k
2
⌋
.

Proof. For every i ≥ 1, let Li = ai + a2i+1 · a∗. We show that the language Li is (2i+ 1)-
piecewise testable and that there exists an NFA of depth at most i recognizing it.

The minimal DFA for Li consists of 2i+ 1 states {0, 1, . . . , 2i+ 1}, where 0 is the initial
state, i and 2i+ 1 are accepting, p · a = p+ 1 for p < 2i+ 1, and (2i+ 1) · a = 2i+ 1. The
depth is 2i+ 1, which shows that Li is (2i+ 1)-piecewise testable. Notice that a2i ∼2i a

2i+1,
but a2i does not belong to Li, hence Li is not 2i-piecewise testable.

The NFA for Li consists of two cycles of length i+ 1, the structure is depicted in Figure 3.
The initial state is state 0 and the solely accepting state is state i. The automaton accepts Li.
Indeed, it accepts ai and no shorter word. After reading ai, the automaton is in state i or i′.
In both cases, the shortest nonempty path to the single accepting state i is of length i+ 1.
Thus, the automaton accepts a2i+1, but nothing between ai and a2i+1. Finally, using the
self-loop in state i′, the automaton accepts aia∗ai+1 = a2i+1a∗. The depth of the automaton
is i. J

4.1 Piecewise Testability and the Depth of NFAs
Theorem 8 gives rise to a question, whether the opposite implication holds true.

Notice that although the depth of ptNFAs is more suitable to provide bounds on k-
piecewise testability, the depth is significantly influenced by the size of the input alphabet.
For instance, for an alphabet Σ, the language L =

⋂
a∈Σ La of all words containing all letters

of Σ is a 1-piecewise testable language such that any NFA recognizing it requires at least
2|Σ| states and is of depth |Σ|, cf. [22].

ArXiv

8 Piecewise Testable Languages and Nondeterministic Automata

Considering the opposite direction of Theorem 8, it was independently shown in [18, 22]
that, given a k-piecewise testable language over an n-letter alphabet, the tight upper bound
on the depth of the minimal DFA recognizing it is

(
k+n

k

)
− 1. In other words, this formula

gives the tight upper bound on the depth of the ∼k-canonical DFA [22] over an n element
alphabet. A related question on the size of this DFA is still open, see [17] for more details.

We recall the result for DFAs.

I Theorem 13 ([18, 22]). For any natural numbers k and n, the depth of the minimal DFA
recognizing a k-piecewise testable language over an n-letter alphabet is at most

(
k+n

k

)
− 1.

The bound is tight for any k and n.

It remains open whether this is also a lower bound for NFAs or ptNFAs.

5 Application and Discussion

The reader might have noticed that the reverse of the automaton Ai constructed in Section 3
is deterministic and, when made complete, it satisfies the conditions of Fact 2. Since, by
definition, a language is k-piecewise testable if and only if its reverse is k-piecewise testable,
this observation provides the same upper bound i+1 on k-piecewise testability of the language
L(Ai). However, this is just a coincidence and it is not difficult to find an example of a
ptNFA whose reverse is not deterministic.

Since both the minimal DFA for L and the minimal DFA for LR provide an upper bound
on k, it could seem reasonable to compute both DFAs in parallel with the hope that (at
least) one of them will be computed in a reasonable (polynomial) time. Although this may
work for many cases (including the case of Section 3), we now show that there are cases
where both the DFAs are of exponential size.

I Theorem 14. For every n ≥ 0, there exists a (2n+ 1)-state ptNFA B such that the depth
of both the minimal DFA for L(B) and the minimal DFA for L(B)R are exponential with
respect to n.

Proof sketch. The idea of the proof is to make use of the automaton Ai constructed in
Section 3 to build a ptNFA Bi such that L(Bi) = L(Ai) · L(Ai)R. Then L(Bi) = L(Bi)R

and it can be shown that the minimal DFA recognizing the language L(Bi) requires an
exponential number of states compared to Bi. Namely, the depth of both the minimal DFA
for L(Bi) and the minimal DFA for L(Bi)R are of length at least 2i+1 − 1. J

The previous proof provides another motivation to investigate nondeterministic automata
for piecewise testable languages. Given several DFAs, the result of a sequence of operations
may result in an NFA that preserves some good properties. Namely, the language L(Bi)
from the previous proof is a result of the operation concatenation of a language LR with L,
where L is a piecewise testable language given as a DFA.

It immediately follows from Theorem 8 that the language L(Bi) is (2i + 1)-piecewise
testable. This result is not easily derivable from known results, which are either in PSPACE
or require to compute an exponentially larger minimal DFA, which anyway provides only the
information that the language L(Bi) is k-piecewise testable for some k ≥ 2i+1 − 1.

Even the information that the language L(Bi) = LR ·L, for a piecewise testable language
L, does not seem very helpful, since, as we show in the example below, piecewise testable
languages are not closed under the concatenation even with its own reverse.

T. Masopust 9

I Example 15. Let L be the language over the alphabet {a, b, c} defined by the regular
expression ab∗ + c(a+ b)∗. The reader can construct the minimal DFA for L and check that
the properties of Fact 2 are satisfied. In addition, the depth of the minimal DFA is two,
hence the language is 2-piecewise testable. Since the properties of Theorem 18 (see below)
are not satisfied, the language L is not 1-piecewise testable.

On the other hand, the reader can notice that the sequence ca, cab, caba, cabab, cababa, . . .
is an infinite sequence where every word on the odd position belongs to L ·LR, whereas every
word on the even position does not. This means that there exists a cycle in the minimal DFA
recognizing L · LR, which shows that L · LR is not a piecewise testable language according
to Fact 2. The reader can also directly compute the minimal DFA for L · LR and notice a
non-trivial cycle in it.

To complete this part, we show that the language L(Bi) is not (2i)-piecewise testable.
Thus, there are no ptNFAs recognizing the language L(Bi) with depth less then 2i+ 1.

I Lemma 16. For every i ≥ 0, the language L(Bi) is not 2i-piecewise testable.

6 Complexity

In this section, we first give an overview of known complexity results and characterization
theorems for DFAs and then discuss the related complexity for ptNFAs.

Simon [29] proved that piecewise testable languages are exactly those regular languages
whose syntactic monoid is J -trivial, which shows decidability of the problem whether a
regular language is piecewise testable. Later, Stern proved that the problem is decidable in
polynomial time for languages represented as minimal DFAs [30], and Cho and Huynh [5]
showed that it is NL-complete for DFAs. Trahtman [33] improved Stern’s result by giving an
algorithm quadratic in the number of states of the minimal DFA, and Klíma and Polák [19]
presented an algorithm quadratic in the size of the alphabet of the minimal DFA. If the
language is represented as an NFA, the problem is PSPACE-complete [15] (see more details
below).

By definition, a regular language is piecewise testable if there exists k such that it is
k-piecewise testable. It gives rise to a question to find such a minimal k. The k-piecewise
testability problem asks, given an automaton, whether it recognizes a k-piecewise testable
language. The problem is trivially decidable because there are only finitely many k-piecewise
testable languages over a fixed alphabet. The coNP upper bound on k-piecewise testability
for DFAs was independently shown in [13, 22].1 The coNP-completeness for k ≥ 4 was
recently shown in [18]. The complexity holds even if k is given as part of the input. The
complexity analysis of the problem for k < 4 is provided in [22]. We recall the results we
need later.

I Theorem 17 ([18]). For k ≥ 4, to decide whether a DFA represents a k-piecewise testable
language is coNP-complete. It remains coNP-complete even if the parameter k ≥ 4 is given
as part of the input. For a fixed alphabet, the problem is decidable in polynomial time.

It is not difficult to see that, given a minimal DFA, it is decidable in constant time
whether its language is 0-piecewise testable, since it is either empty or Σ∗.

1 Actually, [13] gives the bound NEXPTIME for the problem for NFAs where k is part of the input. The
coNP bound for DFAs can be derived from the proof omitted in the conference version. The problem is
formulated in terms of separability, hence it requires the NFA for the language and for its complement.

ArXiv

10 Piecewise Testable Languages and Nondeterministic Automata

I Theorem 18 (1-piecewise testability DFAs, [22]). Let A = (Q,Σ, ·, i, F) be a minimal DFA.
Then L(A) is 1-piecewise testable if and only if (i) for every p ∈ Q and a ∈ Σ, paa = pa and
(ii) for every p ∈ Q and a, b ∈ Σ, pab = pba. The problem is in AC0.

It is not hard to see that this result does not hold for ptNFAs. Indeed, one can simply
consider a minimal DFA satisfying the properties and add a nondeterministic transition that
violates them, but not the properties of ptNFAs. On the other hand, the conditions are still
sufficient.
I Lemma 19 (1-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a complete NFA. If
(i) for every p ∈ Q and a ∈ Σ, paa = pa and (ii) for every p ∈ Q and a, b ∈ Σ, pab = pba,
then the language L(A) is 1-piecewise testable.

Note that any ptNFA A satisfying (i) must have |pa| = 1 for every state p and letter a. If
pa = {r1, r2, . . . , rm} with r1 < r2 < . . . < rm, then paa = pa implies that {r1, . . . , rm}a =
{r1, . . . , rm}. Then r1 ∈ r1a and the UMS property says that r1a = {r1}. By induction,
we can show hat ria = {ri}. Consider the component of G(A,Σ(r1)) containing r1. Then
r1, . . . , rm all belong to this component. Since r1 is maximal, r1 is reachable from every ri

under Σ(r1) ⊇ {a}. However, the partial order r1 < . . . < rm implies that r1 is reachable
from ri only if ri = r1. Thus, |pa| = 1. However, A can still have many initial states, which
can be seen as a finite union of piecewise testable languages rather then a nondeterminism.

The 2-piecewise testability characterization for DFAs is as follows.
I Theorem 20 (2-piecewise testability DFAs, [22]). Let A = (Q,Σ, ·, i, F) be a minimal
partially ordered and confluent DFA. The language L(A) is 2-piecewise testable if and only
if for every a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with |w|a ≥ 1,
sba = saba for every b ∈ Σ ∪ {ε}. The problem is NL-complete.

It is again sufficient for ptNFAs.
I Lemma 21 (2-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a ptNFA. If for every
a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with |w|a ≥ 1, sba = saba for
every b ∈ Σ ∪ {ε}, then the language L(A) is 2-piecewise testable.

Considering Theorem 17, the lower bound for DFAs is indeed a lower bound for ptNFAs.
Thus, we immediately have that the k-piecewise testability problem for ptNFAs is coNP-hard
for k ≥ 4. We now show that it is actually coNP-hard for every k ≥ 0. The proof is split
into two lemmas.

The proof of the following lemma is based on the proof that the non-equivalence problem
for regular expressions with operations union and concatenation is NP-complete, even if one
of them is of the form Σn for some fixed n [16, 31].
I Lemma 22. The 0-piecewise testability problem for ptNFAs is coNP-hard (even if the
alphabet is binary).

It seems natural that the (k + 1)-piecewise testability problem is not easier then the
k-piecewise testability problem. We now formalize this intuition. We also point out that our
reduction introduces a new symbol to the alphabet.
I Lemma 23. For k ≥ 0, k-piecewise testability is polynomially reducible to (k+ 1)-piecewise
testability.

Together, since the k-piecewise testability problem for NFAs is in PSPACE [22], we have
the following result.
I Theorem 24. For k ≥ 0, the k-piecewise testability problem for ptNFAs is coNP-hard and
in PSPACE.

T. Masopust 11

The case of a fixed alphabet. The previous discussion is for the general case where the
alphabet is arbitrary and considered as part of the input. In this subsection, we assume that
the alphabet is fixed. In this case, it is shown in the arxiv versions v1–v4 of [17] that the
length of the shortest representatives of the ∼k-classes is bounded by the number

(
k+2c−1

c

)c,
where c is the cardinality of the alphabet. This gives us the following result for 0-piecewise
testability for ptNFAs.

I Lemma 25. For a fixed alphabet Σ with c = |Σ| ≥ 2, the 0-piecewise testability problem
for ptNFAs is coNP-complete.

Proof. The hardness follows from Lemma 22, since it is sufficient to use a binary alphabet.
We now prove completeness. Let A be a ptNFA over Σ of depth d recognizing a nonempty

language (this can be checked in NL). Then the language L(A) is d-piecewise testable by
Theorem 8. This means that if v ∼d u, then either both u and v are accepted or both are
rejected by A. Now, the language L(A) 6= ∅ is not 0-piecewise testable if and only if L(A)
is non-universal. Since Σ is fixed, the shortest representative of any of the ∼d-classes is of
length less than

(
d+2c−1

c

)c = O(dc), which is polynomial in the depth of A. Thus, if the
language L(A) is not universal, then the nondeterministic algorithm can guess a shortest
representative of a non-accepted ∼d-class and verify the guess in polynomial time. J

We can now generalize this result to k-piecewise testability.

I Theorem 26. Let Σ be a fixed alphabet with c = |Σ| ≥ 2, and let k ≥ 0. Then the problem
to decide whether the language of a ptNFA A over Σ is k-piecewise testable is coNP-complete.

Note that this is in contrast with the analogous result for DFAs, cf. Theorem 17, where
the problem is in P for DFAs over a fixed alphabet. In addition, the hardness part of the
previous proof gives us the following corollary, which does not follow from the hardness proof
of [18], since the proof there requires a growing alphabet.

I Corollary 27. The k-piecewise testability problem for ptNFAs over an alphabet Σ is coNP-
hard for k ≥ 0 even if |Σ| = 3.

The case of a unary alphabet. Since Lemma 25 (resp. Lemma 22) requires at least two
letters in the alphabet to prove coNP-hardness, it remains to consider the case of a unary
alphabet. We now show that the problem is simpler, unless P=coNP. Namely, a similar
argument as in the proof of Lemma 25, improved by the fact that the length of the shortest
representatives of ∼k-classes is bounded by the depth of the ptNFA, gives the following
result.

I Theorem 28. The k-piecewise testability problem for ptNFAs over a unary alphabet is
decidable in polynomial time. The result holds even if k is given as part of the input.

In contrast to this, we now show that the problem is coNP-complete for general NFAs.

I Theorem 29. Both piecewise testability and k-piecewise testability problems for NFAs over
a unary alphabet are coNP-complete.

The complexity of k-piecewise testability for considered automata is summarized in
Table 1. Note that the precise complexity of k-piecewise testability for ptNFAs is not yet
known in the case the alphabet is consider as part of the input even for k = 0.

ArXiv

12 Piecewise Testable Languages and Nondeterministic Automata

Unary alphabet Fixed alphabet Arbitrary alphabet
k ≤ 3 k ≥ 4

DFA P P [18] NL-complete [22] coNP-complete [18]
ptNFA P coNP-complete PSPACE & coNP-hard
NFA coNP-complete PSPACE-complete [22] PSPACE-complete [22]

Table 1 Complexity of k-piecewise testability – an overview

7 Conclusion

In this paper, we have defined a class of nondeterministic finite automata (ptNFAs) that
characterize piecewise testable languages. We have shown that their depth (exponentially)
improves the known upper bound on k-piecewise testability shown in [19] for DFAs. We have
discussed several related questions, mainly in comparison with DFAs and NFAs, including the
complexity of k-piecewise testability for ptNFAs. It can be noticed that the results for ptNFAs
generalize the results for DFAs in the sense that the results for DFAs are consequences of
the results presented here. This, however, does not hold for the complexity results.

The length of a shortest proof over an arbitrarily alphabet. It is an open question what is
the complexity of k-piecewise testability if the alphabet is consider as part of the input. Notice
that the results of [17] give a lower bound on the maximal length of the shortest representative
of a class. Namely, let Lk(n) denote the maximal length of the shortest representatives of
the ∼k-classes over an n-element alphabet. Then (Ln(k) + 1) logn > (k

n)n−1 log(k
n). Setting

k = n2 then gives that Ln(n2) > nn−1. Thus, the representative can be of exponential length
with respect to the size of the alphabet. However, how many states does a ptNFA require to
exclude such a representative while accepting every shorter word?

Acknowledgements. We thank the authors of [13] and [18] for providing us with full
versions of their papers.

References
1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 J. Almeida, J. C. Costa, and M. Zeitoun. Pointlike sets with respect to R and J. Journal

of Pure and Applied Algebra, 212(3):486–499, 2008.
3 J. Almeida and M. Zeitoun. The pseudovariety J is hyperdecidable. RAIRO – Theoretical

Informatics and Applications, 31(5):457–482, 1997.
4 M. Bojanczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. Logical

Methods in Computer Science, 8(3), 2012.
5 S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical

Computer Science, 88(1):99–116, 1991.
6 R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and

System Sciences, 5(1):1–16, 1971.
7 W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular languages

by subsequences and suffixes. In ICALP, volume 7966 of LNCS, pages 150–161, 2013.
8 W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable separ-

ability by piecewise testable languages. In FCT, volume 9210 of LNCS, pages 173–185,
2015.

T. Masopust 13

9 V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic
over finite words. Int. Journal of Foundations of Computer Science, 19(3):513–548, 2008.

10 J. Fu, J. Heinz, and H. G. Tanner. An algebraic characterization of strictly piecewise
languages. In TAMC, volume 6648 of LNCS, pages 252–263. 2011.

11 P. García and J. Ruiz. Learning k-testable and k-piecewise testable languages from positive
data. Grammars, 7:125–140, 2004.

12 P. García and E. Vidal. Inference of k-testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(9):920–925, 1990.

13 P. Hofman and W. Martens. Separability by short subsequences and subwords. In ICDT,
volume 31 of LIPIcs, pages 230–246, 2015.

14 Š. Holub, G. Jirásková, and T. Masopust. On upper and lower bounds on the length of
alternating towers. In MFCS, volume 8634 of LNCS, pages 315–326, 2014.

15 Š. Holub, T. Masopust, and M. Thomazo. Alternating towers and piecewise testable sep-
arators. CoRR, abs/1409.3943, 2014.

16 H. B. Hunt III. On the Time and Tape Complexity of Languages. PhD thesis, Department
of Computer Science, Cornell University, Ithaca, NY, 1973.

17 P. Karandikar, M. Kufleitner, and Ph. Schnoebelen. On the index of Simon’s congruence
for piecewise testability. Information Processing Letters, 115(4):515–519, 2015.

18 O. Klíma, M. Kunc, and L. Polák. Deciding k-piecewise testability. Submitted.
19 O. Klíma and L. Polák. Alternative automata characterization of piecewise testable lan-

guages. In DLT, volume 7907 of LNCS, pages 289–300, 2013.
20 L. Kontorovich, C. Cortes, and M. Mohri. Kernel methods for learning languages. Theor-

etical Computer Science, 405(3):223–236, 2008.
21 M. Kufleitner and A. Lauser. Around dot-depth one. International Journal of Foundations

of Computer Science, 23(6):1323–1340, 2012.
22 T. Masopust and M. Thomazo. On the complexity of k-piecewise testability and the depth

of automata. In DLT, volume 9168 of LNCS, pages 364–376, 2015.
23 J. Myhill. Finite automata and representation of events. Technical report, Wright Air

Development Center, 1957.
24 D. Perrin and J.-E. Pin. First-order logic and star-free sets. Journal of Computer and

System Sciences, 32(3):393–406, 1986.
25 D. Perrin and J.-E. Pin. Infinite words: Automata, semigroups, logic and games, volume

141 of Pure and Applied Mathematics. 2004.
26 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise

testable and unambiguous languages. In MFCS, volume 8087 of LNCS, pages 729–740,
2013.

27 J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and S. Wibel. On
languages piecewise testable in the strict sense. In MOL, volume 6149 of LNAI, pages
255–265, 2010.

28 J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel. Cognitive and sub-regular
complexity. In FG, volume 8036 of LNCS, pages 90–108, 2013.

29 I. Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, Department of Applied
Analysis and Computer Science, University of Waterloo, Canada, 1972.

30 J. Stern. Complexity of some problems from the theory of automata. Information and
Control, 66(3):163–176, 1985.

31 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary
report. In STOC, pages 1–9. ACM, 1973.

32 W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System
Sciences, 25(3):360–376, 1982.

ArXiv

14 Piecewise Testable Languages and Nondeterministic Automata

012 −1 −2 sa1

a0a0, a1

a2

a2 a1

a0 a0, a1

a2

a2

a2

a0

a1

a2

Σ2

Figure 4 Automaton B2 (without dotted transitions) and its completion (with dotted transitions)

33 A. N. Trahtman. Piecewise and local threshold testability of DFA. In FCT, volume 2138
of LNCS, pages 347–358, 2001.

34 L. van Rooijen. A combinatorial approach to the separation problem for regular languages.
PhD thesis, LaBRI, University of Bordeaux, France, 2014.

8 Proofs of Section 4

I Lemma 9. Let A be a ptNFA with I denoting the set of initial states. Then the language
L(A) =

⋃
i∈I L(Ai), where every sub-automaton Ai is a ptNFA.

Proof. Indeed, L(A) =
⋃

i∈I L(Ai) holds. It remains to show that every Ai is partially order,
complete, and satisfies the UMS property. However, Ai is obtained from A by removing
the states not reachable from i and the corresponding transitions. Since A is complete and
partially ordered, so is Ai. If the UMS property was not satisfied in Ai, it would not be
satisfied in A either, hence Ai satisfies the UMS property. J

9 Proofs of Section 5

I Theorem 14. For every n ≥ 0, there exists a (2n+ 1)-state ptNFA B such that the depth
of both the minimal DFA for L(B) and the minimal DFA for L(B)R are exponential with
respect to n.

Proof. The idea of the proof is to make use of the automaton Ai constructed in Section 3 to
build a ptNFA Bi such that L(Bi) = L(Ai) · L(Ai)R. Then L(Bi) = L(Bi)R and we show
that the minimal DFA recognizing the language L(Bi) requires an exponential number of
states compared to Bi. Thus, for every i ≥ 0, we define the NFA

Bi = ({−i, . . . ,−1, 0, 1, . . . , i}, {a0, a1, . . . , ai}, ·, Ii,−Ii)

with Ii = {0, 1, . . . , i} and the transition function · defined so that j ·a` = j if i ≥ |j| > ` ≥ 0,
` · a` = {0, 1, . . . , ` − 1}, and −j · a` = −` if 0 ≤ j < ` ≤ i. Automaton B2 is depicted in
Figure 4.

Notice that L(Bi−1) ⊆ L(Bi) and that Bi has 2i + 1 states. The reader can see that
L(Bi) = L(Bi)R. Moreover, making the NFA Bi complete (the dotted lines in Figure 4),
results in a ptNFA. Therefore, the language L(Bi) is piecewise testable by Theorem 7.

We now define a word wi inductively by w0 = a0 and w` = w`−1a`w`−1, for 0 < ` ≤ i.
Then |wi| = 2i+1 − 1 and we show that every prefix of wi of even length belongs to L(Bi)
and every prefix of odd length does not.

T. Masopust 15

Indeed, ε belongs to L(B0) ⊆ L(Bi). Let v be a prefix of wi of even length. If |v| < 2i− 1,
then v is a prefix of wi−1 and v ∈ L(Bi−1) ⊆ L(Bi) by the induction hypothesis. If |v| > 2i−1,
then v = wi−1aiv

′, where v′ is a prefix of wi−1 of even length. The definition of Bi and the
induction hypothesis then imply that there is a path i

wi−1−−−→ i
ai−→ (i − 1) v′−→ 0. Thus, v

belongs to L(Bi).
We now show that any prefix w of wi of odd length does not belong to L(Bi). Since

w begins and ends with a0 and there is neither an a0-transition to nor from state 0, it
cannot be accepted either by or from state 0. Therefore, if w is accepted by Bi, there
must be an accepting computation starting from an initial state q0 ∈ {1, . . . , i} and ending
in an accepting state qf ∈ {−1, . . . ,−i}. It means that w can be written as w = ua`ajv,
where q0

ua`−−→ 0 ajv−−→ qf . By the construction, both ` and j are different from 0, which is a
contradiction with the structure of wi, since a0 is on every odd position.

These properties imply that the prefixes of wi alternate between accepting and non-
accepting states of the minimal DFA for L(Bi). Since the language L(Bi) is piecewise testable,
the minimal DFA does not have any non-trivial cycles. Thus, the word wi forms a simple
path in the minimal DFA recognizing the language L(Bi), which shows that the depth of the
minimal DFA is of length at least 2i+1 − 1. J

I Lemma 16. For every i ≥ 0, the language L(Bi) is not 2i-piecewise testable.

Proof. Let wi = wi−1aiwi−1 be the word as defined in the proof of Theorem 8, and let w′i
denote its prefix without the last letter, that is, wi = w′ia0. We show that w′ia0(w′i)R ∼2i

w′i(w′i)R. Combining this with the observation that w′ia0(w′i)R does not belong to L(Bi) and
w′i(w′i)R belongs to L(Bi) then implies that L(Bi) is not 2i-piecewise testable.

Indeed, w′i(w′i)R 4 w′ia0(w′i)R, therefore we need to show that if w ∈ sub2i(w′ia0(w′i)R),
then w ∈ sub2i(w′i(w′i)R). If w can be embedded into w′ia0(w′i)R without mapping a0 of w to
the a0 between w′i and (w′i)R, then the claim holds. Thus, assume that w = ua0v is such that
the a0 must be mapped to the a0 between w′i and (w′i)R. Thus, u must be embedded into
w′i. We show by induction on i that the length of u must be at least i. It obviously holds for
i = 0. Assume that the claim holds for i− 1 and consider w′ia0 = wi−1aiw

′
i−1a0. Since the

a0 of w must be mapped to the last letter of w′ia0 and alph(wi−1ai) = {a0, a1, . . . , ai}, there
must be a nonempty prefix u1 of u, i.e., u = u1u

′, such that u1 is embedded into wi−1ai and
it forces the first letter of u′ to be embedded to w′i−1a0 in w′ia0. We now have that u′a0 is
embedded into w′i−1a0 such that a0 must be mapped to the last letter of w′i−1a0. By the
induction hypothesis, the length of u′ is at least i− 1. Since u1 is nonempty, we obtain that
the length of u = u1u

′ is at least i.
Since the word w′ia0 is a palindrome, the same argument applies to v. Together, we

have that |w| = |u| + 1 + |v| ≥ 2i + 1, which is a contradiction with the assumption that
|w| ≤ 2i. J

10 Proofs of Section 6

I Lemma 19 (1-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a complete NFA. If
(i) for every p ∈ Q and a ∈ Σ, paa = pa and (ii) for every p ∈ Q and a, b ∈ Σ, pab = pba,
then the language L(A) is 1-piecewise testable.

Proof. Consider the minimal DFA D constructed from A by the standard subset construction
and minimization. We show that D satisfies the properties of Theorem 18, which then implies
the claim. Because every state of D is represented by a nonempty subset of states of A,

ArXiv

16 Piecewise Testable Languages and Nondeterministic Automata

let X ⊆ Q be a state of D. Then, we have that Xaa =
⋃

p∈X paa =
⋃

p∈X pa = Xa

and, similarly, that Xab =
⋃

p∈X pab =
⋃

p∈X pba = Xba. Theorem 18 then completes the
proof. J

I Lemma 21 (2-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a ptNFA. If for every
a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with |w|a ≥ 1, sba = saba for
every b ∈ Σ ∪ {ε}, then the language L(A) is 2-piecewise testable.

Proof. Consider the minimal DFA D obtain from A by the standard subset construction and
minimization. Since any ptNFA recognizes a piecewise testable language, see Theorem 7, D is
confluent and partially ordered. We now show that it satisfies the properties of Theorem 20.

Again, the states of D are represented by nonempty subsets of A. Let I ⊆ Q denote
the initial state of D. Let a ∈ Σ, and let w ∈ Σ∗ be such that |w|a ≥ 1. Denote Iw = S

and consider any b ∈ Σ ∪ {ε}. Then, since sba = saba in A, Sba =
⋃

s∈S sba =
⋃

s∈S saba =
Saba. J

I Lemma 22. The 0-piecewise testability problem for ptNFAs is coNP-hard.

Proof. We reduce the complement of CNF satisfiability. Let U = {x1, x2, . . . , xn} be a
set of variables and ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕm be a formula in CNF, where every ϕi is a
disjunction of literals. Without loss of generality, we may assume that no clause ϕi contains
both x and ¬x. Let ¬ϕ be the negation of ϕ obtained by the de Morgan’s laws. Then
¬ϕ = ¬ϕ1 ∨ ¬ϕ2 ∨ . . . ∨ ¬ϕm is in DNF. For every i = 1, . . . ,m, define βi = βi,1βi,2 . . . βi,n,
where

βi,j =


0 + 1 if xj and ¬xj do not appear in ¬ϕi

0 if ¬xj appears in ¬ϕi

1 if xj appears in ¬ϕi

for j = 1, 2, . . . , n. Let β =
⋃m

i=1 βi. Then w ∈ L(β) if and only if w satisfies some ¬ϕi. That
is, L(β) = {0, 1}n if and only if ¬ϕ is a tautology, which is if and only if ϕ is not satisfiable.
Note that by the assumption, the length of every βi is exactly n.

We construct a ptNFAM as follows (the transitions are the minimal sets satisfying the
definitions). The initial state ofM is state 0. For every βi, we construct a deterministic path
consisting of n+ 1 states {qi,0, qi,1, . . . , qi,n} with transitions qi,`+1 ∈ qi,` · βi,` and qi,0 = 0.
In addition, we add n+1 states {α1, α2, . . . , αn+1} and transitions α`+1 ∈ α` ·a, for ` < n+1
and α0 = 0, and αn+1 ∈ αn+1 · a, where a ∈ {0, 1}. This path is used to accept all words of
length different from n. Finally, we add n states {r1, . . . , rn} and transitions ri+1 ∈ ri · a, for
i < n, and αn+1 ∈ rn · a, where a ∈ {0, 1}. These states are used to completeM by adding a
transition from every state q to r1 under a if a is not defined in q. They ensure that any word
of length n that does not belong to L(β) is not accepted byM. The accepting states ofM
are the states {0, q1,n, . . . , qm,n} ∪ {α1, . . . αn+1} \ {αn}. Notice thatM is partially ordered,
complete and satisfies the UMS property. Indeed, the UMS property is satisfied since the
only state with self-loops is the unique maximal state αn+1. The automaton accepts the
language L(M) = L(β) ∪ {w ∈ {0, 1}∗ | |w| 6= n}.

By Theorem 7, the language is piecewise testable. It is 0-piecewise testable if and only if
L(M) = {0, 1}∗, which is if and only if L(β) = {0, 1}n. J

I Lemma 23. For k ≥ 0, k-piecewise testability is polynomially reducible to (k+ 1)-piecewise
testability.

T. Masopust 17

Mk

Ik

i1

i2

i′1

i′2

ak+1

Σk

ak+1

Σk

ak+1

Figure 5 The ptNFAMk+1 constructed from the ptNFAMk with two initial states Ik = {i1, i2}

Proof. Let Lk over Σk be a piecewise testable language recognized by a ptNFAMk with
the set of initial states Ik = {i1, . . . , i`}. We construct the language Lk+1 over the alphabet
Σk+1 = Σk ∪ {ak+1}, where ak+1 /∈ Σk, as depicted in Figure 5. Namely,Mk+1 recognizing
the language Lk+1 is constructed fromMk by adding self-loops under ak+1 to every state of
Mk and adding, for every initial state i ofMk, a new state i′ that contains self-loops under
all letters from Σk and goes to the initial states i ofMk under ak+1. The initial states of
Mk+1 are the new states i′, the accepting states are the accepting states ofMk. Notice that
the automatonMk+1 is a ptNFA. We now prove that Lk is k-piecewise testable if and only
if Lk+1 is (k + 1)-piecewise testable.

Assume that Lk is k-piecewise testable. Let x, y ∈ Σ∗k+1 be two words such that x ∼k+1 y.
Since k + 1 ≥ 1, we have that alph(x) = alph(y). If ak+1 /∈ alph(x), then neither x nor
y belongs to Lk+1. Thus, assume that ak+1 appears in x and y. Then x = x′ak+1x

′′ and
y = y′ak+1y

′′, where ak+1 /∈ alph(x′y′). By Lemma 10, x′′ ∼k y
′′. By construction, the words

x′′ and y′′ are read inMk extended with the self-loops under ak+1. Let p : Σ∗k+1 → Σ∗k denote
a morphism such that p(ak+1) = ε and p(a) = a for every a ∈ Σk. Since no ak+1-transition
changes the state in any computation ofMk, the sets of states reachable by x and y inMk+1
are exactly those reachable by p(x′′) and p(y′′) in Mk. Since Lk is k-piecewise testable,
either both contain an accepting state or neither does. Hence x is accepted if and only if y is
accepted, which shows that Lk+1 is (k + 1)-piecewise testable.

On the other hand, assume that Lk is not k-piecewise testable. Then there exist words x
and y such that x ∼k y and |Lk ∩ {x, y}| = 1. Let w ∈ Σ∗k be such that subk+1(w) = {u ∈
Σ∗k | |u| ≤ k + 1}. Then, wak+1x ∼k+1 wak+1y and |Lk+1 ∩ {wak+1x,wak+1y}| = 1. This
shows that Lk+1 is not (k + 1)-piecewise testable. J

I Remark (Parallel composition). A morphism p : Σ∗ → Σ∗o, for Σo ⊆ Σ, defined as p(a) = a,
for a ∈ Σo, and p(a) = ε, otherwise, is called a (natural) projection. Arguments similar to
those used in the proof of Lemma 23 show that piecewise testable languages are closed under
inverse projection. A parallel composition of languages (Li)n

i=1 over the alphabets (Σi)n
i=1 is

defined as ‖n
i=1 Li =

⋂n
i=1 p

−1(Li), where p : (
⋃n

i=1 Σi)∗ → Σ∗i is a natural projection. As
a consequence, piecewise testable languages are closed under parallel composition. On the
other hand, note that piecewise testable languages are not closed under natural projection.

I Theorem 26. Let Σ be a fixed alphabet with c = |Σ| ≥ 2, and let k ≥ 0. Then the problem
to decide whether the language of a ptNFA A over Σ is k-piecewise testable is coNP-complete.

Proof. Let d denote the depth of A. Then the language L(A) is d-piecewise testable. If
k ≥ d, then the answer is Yes. Thus, assume that k < d. Notice that if u ∼d v, then u ∼k v,

ArXiv

18 Piecewise Testable Languages and Nondeterministic Automata

M0

I0

i1

i2

i1,k· · ·i1,2i1,1

i2,k· · ·i2,2i2,1

a

Σ0

a

Σ0

a

a a a

Σ0 Σ0

a a a

Σ0 Σ0

Figure 6 The ptNFAMk constructed from a ptNFAM0 with two initial states

but the opposite does not hold. If L(A) is not k-piecewise testable, then there exist two
words x ∈ L(A) and y /∈ L(A) such that x ∼k y. This means that x 6∼d y, hence we can
guess the minimal representatives of the x/∼d

and y/∼d
classes that are of length O(dc),

see the discussion above, which is polynomial in the depth of A, and check that x ∈ L(A)
and y /∈ L(A), and that x ∼k y. The last step requires to test all words up to length k for
embedding in both words. However, it is at most kck words, which is a constant.

To prove hardness, we reduce 0-piecewise testability to k-piecewise testability, k ≥ 1.
First, notice that the proof of Lemma 23 cannot be used, since the alphabet there grows
proportionally to k. However, the proof here is a simple modification of that proof. Let
M0 over Σ0 be a ptNFA. Construct the ptNFAMk over the alphabet Σ = Σ0 ∪ {a}, where
a /∈ Σ0, as depicted in Figure 6. Namely,Mk is constructed fromM0 by adding self-loops
under a to every state ofM0, and by adding k new states ij,1, . . . , ij,k for every initial state
ij ofMk. Every ij,` contains self-loops under all letters from Σ0 and ij,` goes to ij,`+1 under
a, for 1 ≤ ` < k − 1, and ij,k goes to the initial states ij ofM0 under a. The initial states
ofMk are the states ij,1, the accepting states are the accepting states of M0. Note that
Mk is a ptNFA. We now prove that L(Mk) is k-piecewise testable if and only if L(M0) is
0-piecewise testable.

Assume that L(M0) is 0-piecewise testable. Let x, y ∈ Σ∗ be two words such that x ∼k y.
If ak 64 x, then x /∈ L(Mk), and x ∼k y implies that ak 64 y, hence y /∈ L(Mk) either.
Thus, assume that ak 4 x and ak 4 y. Then x = x1ax2a . . . xkax

′′ and y = y1ay2a . . . ykay
′′,

where a /∈ alph(x1 · · ·xky1 · · · yk). By Lemma 10 applied k-times, x′′ ∼0 y
′′. Notice that, by

construction, the words x′′ and y′′ are read inM0 extended with the self-loops under a and
the sets of states reachable by x and y inMk are exactly those reachable by x′′ and y′′ in
M0. Let p : Σ∗ → Σ∗0 denote a morphism such that p(a) = ε and p(b) = b for b ∈ Σ0. Since
no a-transition changes the state in any computation ofM0, the sets of states reachable by
x′′ and y′′ inM0 are exactly those reachable by p(x′′) and p(y′′), respectively. Since L(M0)
is 0-piecewise testable, either both contain an accepting state or neither does. Together, x is
accepted byMk if and only if y is accepted byMk, which shows that L(Mk) is k-piecewise
testable.

On the other hand, assume that L(M0) is not 0-piecewise testable. Then there are two
words x ∈ L(M0) and y /∈ L(M0). Let w ∈ Σ∗0 be such that subk(w) = {u ∈ Σ∗0 | |u| ≤ k}.
Then, we have that (wa)kx ∼k (wa)ky and |L(Mk) ∩ {(wa)kx, (wa)ky}| = 1. This shows
that L(Mk) is not k-piecewise testable. J

T. Masopust 19

I Corollary 27. The k-piecewise testability problem for ptNFAs over an alphabet Σ is coNP-
hard for k ≥ 0 even if |Σ| = 3.

Proof. It is shown in Lemma 22 that 0-piecewise testability for ptNFAs is coNP-hard for a
binary alphabet. The hardness proof of the previous theorem then shows that, for any k ≥ 1,
k-piecewise testability is coNP-hard for a ternary alphabet. J

I Theorem 28. The k-piecewise testability problem for ptNFAs over a unary alphabet is
decidable in polynomial time. The result holds even if k is part of the input.

Proof. Let A be a ptNFA of depth d. Then the language L(A) is d-piecewise testable by
Theorem 8 and the minimal representatives of ∼d-classes are of length at most d; there are
at most d+ 1 equivalence classes. If k ≥ d, then the language L(A) is k-piecewise testable,
since every d-piecewise testable language is also (d+ 1)-piecewise testable. If k < d, then
the language L(A) is not k-piecewise testable if and only if there are two words of length at
most d that are ∼k-equivalent and only one of them is accepted. Since all words of length
less than k are ∼k-equivalent only with itself and all unary words of length at least k are
∼k-equivalent, it can be checked in polynomial time whether there is a word of length at
least k + 1 and at most d with a different acceptance status than ak. J

I Theorem 29. Both piecewise testability and k-piecewise testability problems for NFAs over
a unary alphabet are coNP-complete.

Proof. We first show that to check piecewise testability for NFAs over a unary alphabet is in
coNP. To do this, we show how to check non-piecewise testability in NP. By Fact 2, we need
to check that the corresponding DFA is partially ordered and confluent. However, confluence
is trivially satisfied because there is no branching in a DFA over a single letter. Partial order
is violated if and only if there exist three words a`1 , a`2 and a`3 with `1 < `2 < `3 such that
I · a`1 = I · a`3 6= I · a`2 and one of these sets is accepting and the other is not (otherwise
they are equivalent). The lengths are bounded by 2n, where n denotes the number of states
of the NFA, and can be guessed in binary. The fast matrix multiplication can then be used
to compute resulting sets of those transitions in polynomial time.

Thus, we can check in coNP whether the language of an NFA is piecewise testable. If
so, then it is 2n-piecewise testable, since the depth of the minimal DFA is bounded by 2n,
where n is the number of states of the NFA. Let M be the transition matrix of the NFA. To
show that it is not k-piecewise testable, we need to find two ∼k-equivalent words such that
exactly one of them belongs to the language of the NFA. Since every class defined by a`, for
` < k, is a singleton, we need to find k < ` ≤ 2n such that ak ∼k a

` and only one of them
belongs to the language. This can be done in nondeterministic polynomial time by guessing
` in binary and using the matrix multiplication to obtain the reachable sets in Mk and M `

and verifying that one is accepting and the other is not.
We now show that both problems are coNP-hard. To do this, we use the proof given

in [31] showing that universality is coNP-hard. We recall it here for convenience.
Let ϕ be a formula in 3CNF with n distinct variables, and let Ck be the set of literals

in the kth conjunct, 1 ≤ k ≤ m. The assignment to the variables can be represented as a
binary vector of length n. Let p1, p2, . . . , pn be the first n prime numbers. For a natural
number z congruent with 0 or 1 modulo pi, for every 1 ≤ i ≤ n, we say that z satisfies ϕ if
the assignment (z mod p1, z mod p2, . . . , z mod pn) satisfies ϕ. Let

E0 =
n⋃

k=1

pk−1⋃
j=2

0j · (0pk)∗

ArXiv

20 Piecewise Testable Languages and Nondeterministic Automata

that is, L(E0) = {0z | ∃k ≤ n, z 6≡ 0 mod pk and z 6≡ 1 mod pk} is the set of natural numbers
that do not encode an assignment to the variables. For each conjunct Ck, we construct
an expression Ek such that if 0z ∈ L(Ek) and z is an assignment, then z does not assign
the value 1 to any literal in Ck. For example, if Ck = {x1,r,¬x1,s, x1,t}, for 1 ≤ r, s, t ≤ n

and r, s, t distinct, let zk be the unique integer such that 0 ≤ zk < prpspt, zk ≡ 0 mod pr,
zk ≡ 1 mod ps, and zk ≡ 0 mod pt. Then

Ek = 0zk · (0prpspt)∗ .

Now, ϕ is satisfiable if and only if there exists z such that z encodes an assignment to ϕ and
0z /∈ L(Ek) for all 1 ≤ k ≤ m, which is if and only if L(E0 ∪

⋃m
k=1Ek) 6= 0∗.

The proof shows that universality is coNP-hard for NFAs over a unary alphabet. Let
pn# = Πn

i=1pi. If z encodes an assignment of ϕ, then, for any natural number c, z+c·pn# also
encodes an assignment of ϕ. Indeed, if z ≡ xi mod pi, then z+ c · pn# ≡ xi mod pi, for every
1 ≤ i ≤ n. This shows that if 0z /∈ L(Ek) for all k, then 0z(0pn#)∗ ∩ L(E0 ∪

⋃m
k=1Ek) = ∅.

Since both languages are infinite, the minimal DFA recognizing the language L(E0∪
⋃m

k=1Ek)
must have a non-trivial cycle. Therefore, if the language is universal, then it is k-piecewise
testable, for any k ≥ 0, and if it is non-universal, then it is not piecewise testable. This
proves coNP-hardness of k-piecewise testability for every k ≥ 0. J

	1 Introduction
	2 Preliminaries and Definitions
	3 Motivation and an Example
	4 Piecewise Testability and Nondeterminism
	4.1 Piecewise Testability and the Depth of NFAs

	5 Application and Discussion
	6 Complexity
	7 Conclusion
	8 Proofs of Section ??
	9 Proofs of Section ??
	10 Proofs of Section ??

