Analyzing the Computational Complexity of
Abstract Dialectical Frameworks via
Approximation Fixpoint Theory

Hannes Strass®*, Johannes Peter Wallner?

“Computer Science Institute, Leipzig University
Augustusplatz 10, 04109 Leipzig, Germany
bInstitute of Information Systems, Vienna University of Technology
Favoritenstrafie 9-11, 1040 Vienna, Austria

Abstract

Abstract dialectical frameworks (ADF's) have recently been proposed as a versatile generalization
of Dung’s abstract argumentation frameworks (AFs). In this paper, we present a comprehensive
analysis of the computational complexity of ADFs. Our results show that while ADFs are one
level up in the polynomial hierarchy compared to AFs, there is a useful subclass of ADF's which
is as complex as AFs while arguably offering more modeling capacities. As a technical vehicle, we
employ the approximation fixpoint theory of Denecker, Marek and Truszczynski, thus showing
that it is also a useful tool for complexity analysis of operator-based semantics.

Keywords: abstract dialectical frameworks, computational complexity, approximation fixpoint
theory

1. Introduction

Formal models of argumentation are increasingly being recognized as viable tools in know-
ledge representation and reasoning [5]. A particularly popular formalism are Dung’s abstract
argumentation frameworks (AFs) [24]. AFs treat arguments as abstract entities and natively
represent only attacks between them using a binary relation. Typically, abstract argumenta-
tion frameworks are used as a target language for translations from more concrete languages.
For example, the Carneades formalism for structured argumentation [35] has been translated
to AFs [45]; Caminada and Amgoud [13] and Wyner et al. [47] translate rule-based defeasible
theories into AFs. Despite their popularity, abstract argumentation frameworks have limitations.
Most significantly, their limited modeling capacities are a notable obstacle for applications: ar-
guments can only attack one another. Furthermore, Caminada and Amgoud [13] observed how
AF's that arise as translations of defeasible theories sometimes lead to unintuitive conclusions.

To address the limitations of abstract argumentation frameworks, researchers have proposed
quite a number of generalizations of AFs [12]. Among the most general of those are Brewka
and Woltran’s abstract dialectical frameworks (ADFs) [9]. ADFs are even more abstract than
AFs: while in AFs arguments are abstract and the relation between arguments is fixed to attack,

*Corresponding author
Email addresses: strass@informatik.uni-leipzig.de (Hannes Strass), wallnerQdbai.tuwien.ac.at
(Johannes Peter Wallner)

Preprint submitted to Artificial Intelligence 20th May 2015

in ADFs also the relations are abstract (and called links). The relationship between different
arguments (called statements in ADFs) is specified by acceptance conditions. These are Boolean
functions indicating the conditions under which a statement s can be accepted when given
the acceptance status of all statements with a direct link to s (its parents). ADFs have been
successfully employed to address the shortcomings of AFs: Brewka and Gordon [8] translated
Carneades to ADFs and for the first time allowed cyclic dependencies amongst arguments; for
rule-based defeasible theories we [41, 43] showed how ADFs can be used to deal with the problems
observed by Caminada and Amgoud [13].

There is a great number of semantics for AF's already, and many of them have been generalized
to ADFs. Thus it might not be clear to potential ADF users which semantics are adequate
for a particular application domain. In this regard, knowing the computational complexity of
semantics can be a valuable guide. However, existing complexity results for ADFs are scattered
over different papers, miss several semantics and some of them present upper bounds only. In this
paper, we provide a comprehensive complexity analysis for ADFs. In line with the literature, we
represent acceptance conditions by propositional formulas as they provide a compact and elegant
way to represent Boolean functions.

Technically, we base our complexity analysis on the approximation fixpoint theory (AFT) by
Denecker, Marek and Truszczytiski [18, 19, 20]. This powerful framework provides an algebraic
account of how monotone and nonmonotone two-valued operators can be approximated by mono-
tone three- or four-valued operators. (As an example of an operator to be approximated, think
of the two-valued van Emden-Kowalski consequence operator from logic programming.) AFT
embodies the intuitions of decades of KR research; we believe that this is very valuable also for
relatively recent languages (such as ADFs), because we get the enormously influential formaliz-
ations of intuitions of Reiter and others for free. (As a liberal variation on Newton, we could say
that approximation fixpoint theory allows us to take the elevator up to the shoulders of giants
instead of walking up the stairs.) In fact, approximation fixpoint theory can be and partially has
already been used to define some of the semantics of ADFs [11, 40]. There, we generalized vari-
ous AF and logic programming semantics to ADFs using AFT, which has provided us with two
families of semantics, that we call — for reasons that will become clear later — approximate and
ultimate, respectively. Intuitively speaking, both families approximate the original two-valued
model semantics of ADFs, where the ultimate family is more precise in a formally defined sense.
The present paper employs approximating operators for complexity analysis and thus shows that
AFT is also well-suited for studying the computational complexity of formalisms.

Along with providing a comparison of the approximate and ultimate families of semantics,
our main results can be summarized as follows. We show that: (1) the computational com-
plexity of ADF decision problems is one level up in the polynomial hierarchy from their AF
counterparts [28]; (2) the ultimate semantics are almost always as complex as the approximate
semantics, with the notable exceptions of two-valued stable models, and conflict-free and naive
semantics; (3) there is a certain subclass of ADFs, called bipolar ADFs (BADFs), which is of the
same complexity as AFs, with the single exception of skeptical reasoning for naive semantics.
Intuitively, in bipolar ADF's all links between statements are supporting or attacking. To form-
alize these notions, Brewka and Woltran [9] gave a precise semantical definition of support and
attack. In our work, we assume that the link types are specified by the user along with the ADF.
We consider this a harmless assumption since the existing applications of ADFs produce bipolar
ADFs where the link types are known [8, 41]. This attractiveness of bipolar ADFs from a KR
point of view is the most significant result of the paper: it shows that BADFs offer — in addition
to AF-like and more general notions of attack — also syntactical notions of support without any
increase in computational cost.

In BADFs, support for a statement s can be anything among “set support” (all statements

in a certain set must be accepted for the support to become active) or “individual support” (at
least one statement supporting s must be accepted for the support to become active). In the
same vein, BADFs offer “set attack” (all statements in a certain set must be accepted for the
attack to become active) and the traditional “individual attack” known from AF's (at least one
statement attacking s must be accepted for the attack to become active). Naturally, in BADFs
all these different notions of support and attack can be freely combined.

Previously, Brewka et al. [10] translated BADFs into AFs for two-valued semantics and
suggested indirectly that the complexities align.! Here we go a direct route, which has more
practical relevance since it immediately affects algorithm design. Our work was also inspired
by the complexity analysis of assumption-based argumentation by Dimopoulos et al. [23] — they
derived generic results in a way similar to ours.

Our complexity results aligning AFs and BADFs are especially remarkable with regard to
expressiveness in the model-theoretic sense. While it remains elusive what kinds of sets of two-
valued interpretations the class of AFs can express exactly [4], we know that even bipolar ADFs
can express strictly more than that (at least all C-antichains), and general (non-bipolar) ADFs
can express any set of two-valued interpretations with the two-valued model semantics [42]. This
shows that AFs (under stable extension/labelling semantics) — while being of equal computational
complexity — are strictly less expressive than ADFs (under model semantics, one of the ADF
counterparts of AF stable semantics).

We also provide results on the existence of certain types of interpretations in a general setting.
For example, it follows from our results that any approximating operator in a complete partial
order always possesses preferred and naive interpretations. This generalizes a corresponding
result by Dung [24] about the existence of AF preferred extensions to finite and infinite ADFs,
logic programs, default theories, and beyond [19]. The conflict-free (and naive) semantics that
we consider here is — strictly speaking — also a novel contribution of this paper, as previous defin-
itions of conflict-freeness were either two-valued [9] or direct generalizations of the corresponding
three-valued AF notion [40]. The definition we use here is simpler, more intuitive and still a
generalization of AFs’ conflict-free sets.

One important proof technique of this paper is to employ ADFs’ acceptance conditions’
representation via propositional formulas and to partially evaluate them. For a propositional
formula ¢ over vocabulary P and X CY C P we define the partial valuation of ¢ by (X,Y) as

e XY = olp/t i pe X][p/f:pe P\Y]

Intuitively, the pair (X,Y") represents a partial interpretation of P where all elements of X are
true and all elements of P\ Y are false.? The partial evaluation of ¢ with (X,Y) takes the
two-valued part of (X,Y) and replaces the evaluated variables by their truth values. Naturally,
©XY) s a formula over the vocabulary Y \ X, that is, only contains variables that have no
classical truth value (true or false) in the pair (X,Y). In particular, for any total interpretation
(X, X), the partial evaluation ©XX) is a Boolean expression consisting only of truth constants
and connectives and thus has a fixed truth value (either true or false).

We will show that approximate and ultimate ADF operators (and thus all of the operator-
based ADF semantics) can be defined in terms of partial evaluations of acceptance formulas.
For example, in the new three-valued conflict-free semantics that we introduce, a statement s
can only be set to true in an interpretation (X,Y’) if the partial evaluation of its acceptance

formula with the interpretation — the formula gogX’Y) — is satisfiable. Symmetrically, s can only

1 Additionally, in contrast to Brewka et al. [10], we use a revised version of the stable model semantics [40, 11].
2Equivalently, the pair (X,Y) represents a three-valued interpretation where all elements of Y\ X are undefined.

be set to false in (X,Y) if gagX’Y) is refutable. For the three-valued admissible semantics, the
(X,Y)

justification standards are higher. There, setting s to true is only justified if ¢s is irrefutable
(a tautology), setting s to false is only justified if <ng’Y) is unsatisfiable. This logical view

of (argumentation) semantics thus provides a novel perspective on different, graded notions of
acceptability.

The paper proceeds as follows. We first provide the background on approximation fixpoint
theory, abstract dialectical frameworks and the necessary elements of complexity theory. In the
section afterwards, we define the relevant decision problems, survey existing complexity results,
use examples to illustrate how operators revise ADF interpretations and show generic upper
complexity bounds along with some other useful preparatory technical results. In the main
section on complexity results for general ADFs, we back up the upper bounds with matching
lower bounds; the section afterwards does the same for bipolar ADFs. We end with a brief
discussion of related and future work. This paper is a revised and extended version of [44].

2. Background

A complete lattice is a partially ordered set (poset) (L,C) where every subset S of L has
a least upper bound | |S € L and a greatest lower bound []S € L. In particular, a complete
lattice has a least (L) and a greatest (T) element.> An operator O : L — L is monotone if for
all z C y we find O(z) C O(y). An x € L is a fizpoint of O if O(x) = x; an x € L is a prefizpoint
of O if O(z) C z and a postfixpoint of O if x C O(z). Due to a fundamental result by Tarski
and Knaster, for any monotone operator O on a complete lattice, the set of its fixpoints forms a
complete lattice itself [17, Theorem 2.35]. In particular, its least fixpoint Ifp(O) exists.

In this paper, we will be concerned with more general algebraic structures: complete partially
ordered sets (CPOs). A CPO is a partially ordered set (C, <) with a <-least element where each
directed subset D C C has a least upper bound | | D € C. A set is directed iff it is nonempty and
each pair of elements has an upper bound in the set. Clearly every complete lattice is a complete
partially ordered set, but not necessarily vice versa. Fortunately, complete partially ordered sets
still guarantee the existence of (least) fixpoints for monotone operators.

Theorem 2.1 ([17, Theorem 8.22]). In a complete partially ordered set (C, <), any <-monotone
operator O : C' — C' has a least fixpoint.

2.1. Approzimation Fizpoint Theory

Denecker et al. [18] introduce the important concept of an approximation of an operator.
In the study of semantics of knowledge representation formalisms, elements of lattices represent
objects of interest. Operators on lattices transform such objects into others according to the
contents of some knowledge base. Consequently, fixpoints of such operators are then objects
that are fully updated — informally, the knowledge base can neither increase nor decrease the
amount of information in a fixpoint.

To study fixpoints of operators O, Denecker et al. study their approzimation operators O.*
When O operates on a set L, its approximation O operates on pairs (z,y) € L x L. Such a pair
(z,y) can be seen as representing a set of lattice elements by providing a lower bound z and
an upper bound y. Consequently, (x,y) approximates all z € L such that 2 C 2z C y. We will

3When dealing with different structures at the same time, we sometimes index LI,T1, L, T to indicate to which
structure they belong. For example, L, refers to the C-least element of the lattice (L, C).
4The approximation of an operator O is typographically indicated by a calligraphic O.

restrict our attention to consistent pairs — those where x C y, that is, the set of approximated
elements is nonempty; we denote the set of all consistent pairs over L by L°. A pair (z,y) with
x =y is called exact — it “approximates” a single element of the original lattice.

It is natural to order approximating pairs according to their information content. Formally,
for z1,x9,y1,y2 € L define the information ordering

(1,y1) <i (x2,y2) iff 21 C 29 and y2 C 4y

This ordering and the restriction to consistent pairs leads to a complete partially ordered set
(L€, <;), the consistent CPO. For example, the trivial pair (L, T) consisting of C-least | and
C-greatest lattice element T approximates all lattice elements and thus contains no information
— it is the least element of the CPO (L€, <;); exact pairs (x,x) are the maximal elements of
(LC7 Sz)

To define an approximation operator O : L® — L€, one essentially has to define two functions:
a function O’ : L¢ — L that yields a revised lower bound (first component) for a given pair;
and a function 0" : L¢ — L that yields a revised upper bound (second component) for a given
pair. Accordingly, the overall approximation is then given by O(z,y) = (O’ (x,y), 0" (x,y)) for
(z,y) € L°. The operator O : L¢ — L° is approximating iff it is <;-monotone and it satisfies
O'(xz,2) = O"(x,z) for all x € L, that is, O assigns exact pairs to exact pairs. Such an O then
approzimates an operator O : L — L on the original lattice iff O’(x,z) = O(x) for all x € L.

The main contribution of Denecker et al. [18] was the association of the stable operator to
an approximating operator. Their original definition was four-valued; in this paper we are only
interested in two-valued stable models and simplified the definitions. For an approximating
operator O on a consistent CPO, a (two-valued) fixpoint (z,z) € L° of O is a (two-valued) stable
model of O iff x is the least fixpoint of the operator O’ (-, z) defined by w — O’ (w, z) for w C x.
This general, lattice-theoretic approach yields a uniform treatment of the standard semantics
of the major nonmonotonic knowledge representation formalisms — logic programming, default
logic and autoepistemic logic [19].

In subsequent work, Denecker et al. [20] presented a general, abstract way to define the most
precise — called the ultimate — approximation of a given operator O. Most precise here refers to a
generalization of <; to operators, where for Oy, Oy, they define Oy <; O iff for all (z,y) € L¢ it
holds that O;(z,y) <; O2(z,y). Denecker et al. [20] showed that the most precise approximation
of O is Up : L¢ — L° with

Uolw,y) = ([T10() | 2 C 2Ly}, [{OG) |2 C 2 Cy})

where [] denotes the greatest lower bound and | | the least upper bound in the complete lattice
(L, C).

2.2. Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph whose nodes represent state-
ments or positions which can be accepted or not. The links represent dependencies: the status
of a node s only depends on the status of its parents (denoted par(s)), that is, the nodes with a
direct link to s. In addition, each node s has an associated acceptance condition C specifying
the exact conditions under which s is accepted. Cj is a function assigning to each subset of
par(s) one of the truth values t, f. Intuitively, if for some R C par(s) we have C5(R) = t, then s
will be accepted provided the nodes in R are accepted and those in par(s) \ R are not accepted.

Definition 2.1. An abstract dialectical framework is a tuple E = (S, L, C') where

e S is a set of statements (positions, nodes),

o L. C S x Sisaset of links,

e C ={C},cs is a collection of total functions Cy : 2P47(5) — {t £}, one for each statement
s. The function Cy is called acceptance condition of s.

It is often convenient to represent acceptance conditions by propositional formulas. In particular,
we will do so for the complexity results of this paper. There, each Cj is represented by a
propositional formula ¢, over par(s). Then, clearly, Cs(R N par(s)) = tiff R = 5. Furthermore,
throughout the paper we will denote ADFs by = and tacitly assume that = = (S, L, C') unless
stated otherwise.

Brewka and Woltran [9] introduced a useful subclass of ADFs called bipolar: Intuitively,
in bipolar ADFs (BADFSs) each link is supporting or attacking (or both). Formally, a link
(r,s) € L is supporting in = iff for all R C par(s), we have C5(R) =t implies Cs(RU {r}) = t;
symmetrically, a link (r, s) € L is attacking in Z iff for all R C par(s), we have C{(RU{r}) =t
implies Cs(R) =t. An ADF Z = (S, L, C) is bipolar iff all links in L are supporting or attacking;
we use Lt to denote all supporting and L™ to denote all attacking links of L in =. For an s € S
we define attz(s) = {x | (z,s) € L™} and supp=(s) = {x | (z,s) € L*}. In this paper we assume
that L™ and L~ are given with a BADF, that is, the link types are known.

Example 2.1 (Adapted from [9, Example 6]). Consider a scenario where we want to decide
whether we go for a swim. We do so if there is no rain, or it is hot. It is warm, but not hot, and
there are clouds indicating that it might rain. However the reliable weather forecast predicts
wind that will blow away the clouds. Using the vocabulary S = {clouds, wind, rain, hot, swim},
we devise the bipolar ADF Dgyim = (S, LT U L™, C) shown below to model this deliberation
process. Here, statements are depicted as nodes, edges represent links and acceptance conditions
are written as propositional formulas next to the statements.

Pswim = —rain V hot

Supporting and attacking links are designated using the labels + and —; this is however only for
illustration as the polarity of the links can be read off the acceptance formulas. The statement
rain, for example, is supported by the statement clouds and attacked by the statement wind.
According to @4, the attack from wind is stronger than the support from clouds. That is, as
soon as we accept wind, we must reject rain. On the other hand, swim is attacked by rain and
supported by hot. Here, by ©swim, the support from hot is stronger than the attack from rain;
or put another way, the missing attack from rain is stronger than the missing support from hot.
This effectively means that rejecting rain leads to accepting swim.

The semantics of ADFs can be defined using approximating operators. For two-valued se-
mantics of ADFs we are interested in sets of statements, that is, we work in the complete lattice

(A,C) = (2°,C). To approximate elements of this lattice, we use consistent pairs of sets of state-
ments and the associated consistent CPO (A€, <;) — the consistent CPO over S-subset pairs. Such
a pair (X,Y) € A¢ can be regarded as a three-valued interpretation where all elements in X are
true, those in Y\ X are unknown and those in S\ 'Y are false. (This allows us to use “pair” and
“interpretation” synonymously from now on.) The following definition specifies one particular
way to revise a given three-valued interpretation.

Definition 2.2 ([40, Definition 3.1]). Let = be an ADF. Define the operator Gz : 2% x 25 — 29 x 29
by

GXY) = (G(X,Y), G, X))
GL(X,)Y)={se S | 3B C par(s),Cs(B) =t,BC X, (par(s)\ B)NY =0}

In a nutshell, statement s is included in the revised lower bound iff the input pair provides
sufficient reason to do so, given acceptance condition Cs. To obtain some more intuition, it is
instructive to look at the operator’s behavior on consistent and inconsistent input pairs separ-
ately. Let = be an ADF over statements S and let X C Y C S. Then (X,Y) is a consistent
pair, and by definition, for s € S, we have s € GL(X,Y) if and only if there is some B C par(s)
with C4(B) = t (that is, B E ¢s), B € X and (par(s) \ B)NY = (. We can think of this
B as a two-valued interpretation of the parents of s. The last condition entails that s has no
parents in Y \ B. Since B C X this furthermore entails that s has no parents in Y \ X, that
is, no parents that are undecided according to the pair (X,Y"). But this means that the formula

ng’y) is a Boolean expression consisting only of truth constants and connectives. By B = s,

the expression cng’Y) evaluates to true. For the converse pair (Y, X), which is not necessarily
consistent, but still needed to compute a new upper bound, the reasoning is slightly more in-
volved. Now we have s € GL(Y, X) if and only if there is some B C par(s) with B |= ¢, BCY
and (par(s)\ B) N X = 0. Again thinking of B as a two-valued interpretation of par(s), the
last condition entails that B must contain the true parents of s, that is, par(s) N X C B. Con-
dition B C Y means that any statement that is false in (X,Y) must be false in B. Altogether
s € GL(Y, X) if and only if there is a two-valued interpretation B of par(s) that evaluates ¢, to
true and coincides with (X,Y’) whenever (X,Y") assigns t or f.

Although the operator is defined for all pairs (including inconsistent ones), its restriction to
consistent pairs is well-defined since it maps consistent pairs to consistent pairs. This operator
defines the approximate family of ADF semantics according to Table 1. Several of the abstract,
operator-based semantics defined in Table 1 are quite recent, and inspired by semantics from
logic programming and abstract argumentation [40].5

Based on the three-valued operator Gz, a two-valued one-step consequence operator for ADFs
can be defined by G=(X) = GL(X, X). Alternatively, for = = (5, L, C') we could specify

Ge(X)={s eS| X F s}

The general result of Denecker et al. [20] (Theorem 5.6) then immediately defines the ultimate
approximation of Gz as the operator U given by U&(X,Y) = (L(X,Y), U (X,Y)) with

W(X,)Y)={s€ S| forall ZC S with X CZ CY we have Z = p,}
W(X,Y)={se€ S| forsome Z C S with X CZ CY we have Z |= p;}

5To be precise, we used a slightly different technical setting there. The results can however be transferred to
the present setting [20, Theorem 4.2].

Kripke-Kleene semantics Ifp(O) grounded pair

conflict-free pair (z,y) z C O"(z,y) and O'(z,y) Cy conflict-free pair
M-conflict-free pair (z,y) (z,y) is <;-maximal conflict-free | naive pair
admissible/reliable pair (z,y) (z,y) <; O(z,y) admissible pair
three-valued supported model (z,y) | (z,y) = O(:r y) complete pair
M-supported model (z,y) (z,y) is <;-maximal admissible preferred pair
two-valued supported model (z, x) (z,x) = (:r x) model
two-valued stable model (z, x) z = lfp(O'(-,z)) stable model

Table 1: Operator-based semantical notions (and their argumentation names on the right)
for a complete lattice (L,C) and an approximating operator O : L — L¢ on the consistent
CPO (L¢,<;). While an approzimating operator always possesses three-valued (post-)fizxpoints,
two-valued fixpoints need not exist. Clearly, any two-valued stable model is a two-valued supported
model is a preferred pair is a complete pair is an admissible pair; furthermore the grounded pair
is a complete pair. Any two-valued supported model is also a naive pair is a conflict-free pair.

Incidentally, Brewka and Woltran [9] already defined this operator, which was later used to
define the ultimate family of ADF semantics according to Table 1 [11].° In this paper, we will
refer to the two families of three-valued semantics as “approximate ¢” and “ultimate ¢” for o
among conflict-free, naive, admissible, grounded, complete, preferred and stable. For two-valued
supported models (or simply models), approximate and ultimate semantics coincide (since the
two approximating operators Gz and U approximate the same two-valued operator Gz).

Our definition of conflict-free pairs differs from the one given in [40], but is still a valid
generalization of the notion of conflict-free sets for AFs [24].7 We chose this definition because it
is symmetric and easier to work with. An AF F' = (A, R) is a pair with A asetand RC Ax Aa
binary relation on A. A set S C A is conflict-free in F if for all a,b € S it holds that (a,b) ¢ R.
The associated ADF of F' is given by = = (4, R, C) with ¢, = A\, 4cg b for a € A.

Proposition 2.2. Let F = (A, R) be an AF, E be its associated ADF and O € {Gz,l&}.

1. For each conflict-free set X C A, there exists Y C A such that (X,Y) is a conflict-free pair
of O.

2. For each conflict-free pair (X,Y"), its lower bound X is a conflict-free set.

Proof. We make use of the fact that for any P,(Q) C A, we have O(P, Q) = (Ur(Q),Up(P)), which
follows from [40, Proposition 4.1], where Up(S) = {a € A | S does not attack a} for S C A.

1. Let X C A be conflict-free. Define Y = Up(X). Since X is conflict-free,
X CY =Up(X)=0"(X,Y)
Furthermore Ur is C-antimonotone, whence X C Upr(X) implies
O'(X,Y)=Ur(Y)=Ur(Ur(X)) CUr(X) =Y

2. Let (X,Y) be a conflict-free pair. Then X C O"(X,Y) = Up(X), whence X is a conflict-
free set. U

6Technically, Brewka et al. [11] represented interpretations not by pairs (X,Y) € A but by mappings
v:S — {t,f,u} into the set of truth values t (true), f (false) and u (undefined or unknown or undecided).
Clearly the two representations are interchangeable.

7Strictly speaking, our definition of conflict-free pairs is a new contribution of this paper. We present it in the
background for readability.

Although Table 1 defines two-valued stable models also for the ultimate operator, Brewka
et al. [11] have their own tailor-made definition of two-valued stable models. There, a two-
valued model (M, M) is a stable model of an ADF == (S,L,C) iff M is the lower bound of
the ultimate grounded semantics of the reduced ADF ZM = (M, LN (M x M),CM) where the

reduced acceptance formula for an s € M is given by the partial evaluation ¢§®’M).8 It is not
hard to prove that the definition of two-valued stable models given by Brewka et al. [11] coincides
with Denecker et al.’s ultimate two-valued stable models. We start with an easy observation.

Lemma 2.3. Let ¢ be a propositional formula over vocabulary S, and let A, B, C', D be sets
with ACBCSandCCDCS.

(C,D)
(SD(A,B)> _ (P(AUC,BOD)

For the actual result (in particular for its proof), it is helpful to recall that the stable models
of Brewka et al. [11] are models by definition.

Proposition 2.4. The stable model semantics as defined by Brewka et al. [11] coincides with
the ultimate two-valued stable model semantics of Denecker et al. [20].

Proof. Let 2= (S,L,C) be an ADF and M C S be a model of 2. We show that (M, M) is a
Brewka et al.-stable-model of Z if and only if (M, M) is an ultimate two-valued stable model
of =. First, it is easy to see that M is the lower bound of the ultimate grounded semantics of
the reduced ADF ZM = (M, LN (M x M),CM) if and only if (M, M) is the ultimate grounded
semantics of =M. Furthermore, M is a model of =, whence it is a model of ZM. Thus all
acceptance formulas in M are satisfiable and for any X C M we get U\ (X, M) = M. That is,
during computation of the least fixpoint of Usa, the upper bound remains constant at M. Now
for any X C M and s € S, we have

s € UL(X, M) iff o5M) s a tautology

(X, M)
iff (@@’M)) is a tautology
I.ICFS € Z/{EIJM(X,M)

So in the complete lattice (2™, C), the operators UL(-, M) and Ul (-, M) coincide. Therefore,
their least fixpoints coincide. (I

We close this section by illustrating some of the ultimate semantics using the example seen
earlier. In the introduction, we already hinted at the fact that deciding whether a given statement
s is contained in the lower or upper bound of the ultimate revision of a given pair (X,Y’) can
be regarded as checking whether the partially evaluated acceptance formula @EX’Y) is irrefutable
(lower bound) or satisfiable (upper bound), respectively. For illustration purposes, we now make

use of this fact here.

Example 2.1 (Continued). The deliberation in Dy, quite clearly yields that we should go
for a swim, since the ultimate grounded pair is given by

g = ({clouds, wind, swim} , { clouds, wind, swim?})

8S0 the reduct EM really is an ADF since all acceptance formulas mention only statements from M.

corresponding to the two-valued interpretation [11]
{clouds — t, wind — t, rain — £, hot — £, swim — t}

In words, there are clouds and it is not hot, there will be wind and no rain, and we should go
for a swim. Since the ultimate grounded interpretation is already two-valued (an exact pair),
this interpretation is also the unique two-valued model of the ADF Dy, as well as its single
ultimate complete and ultimate preferred interpretation. There are 16 ultimate admissible and
50 ultimate conflict-free interpretations, but it is more interesting to look at the ultimate naive
interpretations:

71 = ({clouds, wind, swim} , { clouds, wind, swim}) = g

(
fig = ({clouds, rain, swim} , S)
fi3 = ({clouds, rain} , { clouds, wind, rain})
(

fiy = ({clouds, wind} , {clouds, wind, rain})

The first pair is the single two-valued model. In the second pair, intuitively, it rains, but we go
for a swim nonetheless (it is undecided whether it is hot and so there is a slight chance that our
swim is justified by it being hot). In the third pair there is rain, there might be wind, it is not
hot, and we do not swim; in the fourth pair, it is hot and unclear whether there is rain, but we
do not go for a swim. In order to illustrate more technically why the pair i3 (for example) is
naive, that is, <;-maximal conflict-free, we can have a look at the partially evaluated acceptance
conditions:

n3 _
Pelouds — t
n3
Puwind = t
wiaBin — (CZO’LLdS A ﬁwind)({clouds,rain},{clouds,wind,rain}) —t A —wind = —wind
ng __
Phot = f

W?ﬁnm — (—w“ain V. hot)({clouds,rain},{clouds,wind,rain}) ——tvVf=f

Setting clouds and rain to true is justified since their respective partially evaluated acceptance
formulas are satisfiable. Symmetrically, setting hot and swim to false is justified since their
partially evaluated acceptance formulas are refutable. Setting wind to undecided need not be
justified at all. This shows that ng is conflict-free. To show that it is also naive, we have to show
that all pairs 7’ with n3 <; 7/ are not conflict-free. The only two candidates are

1’ = ({clouds, wind, rain} , { clouds, wind, rain})

1" = ({clouds, rain} , { clouds, rain})

For i/, we get @%m =t A =t = f, thus in 7’ setting rain to true is not justified, since its partially
evaluated acceptance formula is unsatisfiable. For 7", setting wind to false is unjustified in
general since its acceptance formula is a tautology.

2.3. Complexity theory

We assume familiarity with the complexity classes P, NP and coNP, as well as with polynomial
reductions and hardness and completeness for these classes (see [37] for a comprehensive intro-
duction to complexity theory). We also make use of the polynomial hierarchy, that can be defined

(using oracle Turing machines) as follows: £ =TI = Al =P, ©F | = NPZ’{?7 nr, = coNPEf}7

10

Aﬁ_l =P fori > 0. For complete problems of the polynomial hierarchy we use here mainly
satisfiability of quantified Boolean formulas (QBFs). The problem QBF; ,-TRUTH denotes the
problem of deciding satisfiability of a given closed QBF in prenex form, starting with quantifier
Q € {3,V} and i quantifier alternations. For i > 0 it holds that QBF; 3-TRUTH is ¥}-complete
and QBF; ,-TRUTH is II7-complete.

As a somewhat non-standard polynomial hierarchy complexity class, we use DZP , a general-
ization of the complexity class DP to the polynomial hierarchy. A language is in DP iff it is the
intersection of a language in NP and a language in coNP. Generally, a language is in Df-) iff it is
the intersection of a language in X and a language in IIF. The canonical problem of DP = Df
is SAT-UNSAT, the problem to decide for a given pair (¢1,12) of propositional formulas whether
1 is satisfiable and v is unsatisfiable. Obviously, by definition ¥F 17 C DZP C Af-j_l for all
1> 0.

3. Preparatory Considerations

This section sets the stage and provides several technical preparations that will simplify our
complexity analysis that follows afterwards. We first introduce some notation to make formally
precise what decision problems we will analyze (Section 3.1). We then briefly recapitulate the
currently known complexity results for ADFs in Section 3.2. Next, in Section 3.3 we study the
relationship between the approximate and ultimate operator, where it will turn out that the
operators are quite similar, yet subtly different. Section 3.4 provides two quite general existence
results. They guarantee that approximating operators on CPOs always possess preferred and
naive pairs, which will have an impact on the problem of deciding the existence of non-trivial
pairs for these semantics. Since several of our hardness results use similar reduction techniques,
we introduce some of them in Section 3.5 and prove properties that we will later use in hardness
proofs. In Section 3.6 we analyze the complexity of computing the two operators we consider
in this paper. Since the semantics that we study are defined within the framework of approx-
imation fixpoint theory, knowing the complexity of operator computation is a valuable guide for
investigating the operator-based semantics. Finally, in Section 3.7 we give generic results on up-
per bounds for operator-based semantics that only make use of upper bounds for the respective
operators.

3.1. Notation and decision problems
For a set S, let
e (A <;) be the consistent CPO of S-subset pairs,
e O an approximating operator on (A¢, <;).

In the following we tacitly assume that from a given approximation operator O one can infer the
context CPO and the underlying set S, unless noted otherwise.

Let A be the set of all approximation operators, such that each is defined on some consistent
CPO of S-subset pairs for some set S. We define decision problems with two parameters. The
first is a set of approximation operators Z C A. In addition to A we are interested in this paper
in the following sets of operators.

e G={G | Eis an ADF},
o U ={lk| = is an ADF}

11

That is, the sets contain approximate, respectively ultimate operators for each possible ADF.
When restricted to bipolar ADFs we denote the corresponding sets with BG = {G= | Z is a BADF}
and BU = {l& | E is a BADF}. Clearly we have G, U C A and thus also BG, BU C A. The se-
mantics is the second parameter of our decision problems. Let o € {cfi, nai, adm, com, grd,
pre, 2su, 2st} be a semantics among conflict-free, naive, admissible, complete, grounded, pre-
ferred, two-valued supported and two-valued stable semantics, respectively. We first consider the
verification problem, which asks if for a given operator a given pair is a o-pair, respectively a
o-model.

Problem: VerZ
Instance: An approximation operator O € Z and a pair (X,Y) € A°.
Question: Is (X,Y) a o-model/pair of O7

For instance Vergdm asks whether for a given approximate operator Gz and (X,Y’) € A€, does it
hold that (X,Y) <; G=(X,Y)? The next decision problem asks whether there exists a non-trivial
o-pair/model, that is, one that is different from (0, .5).

Problem: ExistsZ
Instance: An approximation operator O € T.
Question: Does there exist a o-model/pair (X,Y) of O such that (X,Y) # (0, 5)?

The remaining two decision problems define query-based reasoning. The credulous acceptance
problem asks whether an element s € S is in X of at least one o-pair/model (X,Y) of a given
operator, while skeptical acceptance asks if this is the case for all o-pairs/models.

Problem: CredZ
Instance: An approximation operator O € 7 and s € S.
Question: Does there exist a o-model/pair (X,Y") of O such that s € X7

Problem: SkeptZ
Instance: An approximation operator O € Z and s € S.
Question: Does it hold that for all o-models/pairs (X,Y) of O we have s € X7

We now introduce auxiliary decision problems, which aid us in showing the computational
complexity of revising the lower and upper bounds for a given approximation operator and pair.
The first asks whether an element is in the revised lower bound (respectively upper bound) for
a given pair.

Problem: Elem? (resp. ElemZ”)
Instance: An approximation operator O € Z, a pair (X,Y) € A and s € S.
Question: Does it hold that s € O'(X,Y)? (resp. s € O"(X,Y))

Let o € {C,D}. The next decision problem considers all combinations of asking whether
for a given pair and approximation operator the given set is a subset/superset of the revised
lower /upper bound.

Problem: RevBoundf/
Instance: An approximation operator O € Z, a pair (X,Y) € A¢ and a set B C S.
Question: ifo=C: Is BC O'(X,Y)?

if o= 2: Is O'(X,Y) C B?

Similarly, RevBoundZ” denotes the variant for the revision of the upper bound (O). For instance
RevBoundg' denotes the problem of checking whether for an approximation operator O € Z,
B C S and a given pair (X,Y) € A¢ we have O (X,Y) C B, that is, if the set is a superset of
the revised upper bound (indicated by -”).

12

3.2. FExisting results

We briefly survey — to the best of our knowledge — all existing complexity results for abstract
dialectical frameworks. For general ADFs and the ultimate family of semantics, Brewka et al.
[11] have shown the following:

e VerY isin P, Exists%,, is NP-complete, (Proposition 5)
° Veri’dm is coNP-complete, (Proposition 10)
. Verzlrd and Ver! are DP-complete, (Theorem 6, Cor. 7)
e VerY, is in DP, (Proposition 8)
e Exists4,, is X2'-complete. (Theorem 9)

For bipolar ADFs, Brewka and Woltran [9] showed that Verbl is in P (Proposition 15). So
particularly for BADFSs, this paper will greatly illuminate the complexity landscape.

3.3. Relationship between the operators

Since L& is the ultimate approximation of G= for an ADF = it is clear that forany X CY C S
we have G=(X,Y) <; U&(X,Y). In other words, the ultimate revision operator produces new
bounds that are at least as tight as those of the approximate operator. More explicitly, the ulti-
mate new lower bound always contains the approximate new lower bound: GL(X,Y) CUL(X,Y);
conversely, the ultimate new upper bound is contained in the approximate new upper bound:
W(X,Y)CGY(X,Y). Somewhat surprisingly, it turns out that the revision operators for the
upper bound coincide.

Lemma 3.1. Let == (S,L,C) be an ADF and X CY C S.

E(X)Y) =1 (X,Y)

Proof. Let s € S. We will use that for all B,X,P C S, we find (P\B)NX =0 if PNX C B.
Now

s € G(X,Y) iff 3B : B C par(s)NY and Cs(B) =t and (par(s)\ B)N X =0
iff 3B : par(s)N X C B C par(s)NY and Cs(B) =t
if 37 : X CZ CY and Cs(Z N par(s)) =t
iff s € U(X,Y) O

The operators for computing a new lower bound are demonstrably different, since we can find
= and (X,Y) with 24(X,Y) € G5(X,Y), as the following ADF shows.

Example 3.1. Consider the ADF D = ({a},{(a,a)},{ps}) with one self-dependent statement
a that has acceptance formula ¢, = aV —a. In Figure 1, we show the relevant CPO and the
behavior of approximate and ultimate operators: we see that Gp(0, {a}) <; Up(®, {a}), which
shows that in some cases the ultimate operator is strictly more precise.

So in a sense the approximate operator cannot see beyond the case distinction aV —a. As we
will see shortly, this difference really amounts to the capability of tautology checking.

13

operator visualization: - ~~

approximate > - - o _ ~<_ N

ultimate - - - - ~ . S - U

\/

(0, {a}

(0. {a,b})

Figure 1: Hasse diagrams of consistent CPOs for the ADFs from Ezample 3.1 (left) and Fx-
ample 3.2 (right). Solid lines represent the information ordering <;. Directed arrows express
how revision operators map pairs to other pairs. For pairs where the revisions coincide, the ar-
rows are densely dashed and violet. When the operators revise a pair differently, we use a dotted
red arrow for the ultimate and a loosely dashed blue arrow for the approximate operator. Ezact
(two-valued) pairs are the <;-mazimal elements. For those pairs, (and any ADF =) it is clear
that the operators Us and Gz coincide since they approximate the same two-valued operator Gs.
In Example 3.1 on the left, we can see that the ultimate operator maps all pairs to its only fiz-
point ({a},{a}) where a is true. The approzimate operator has an additional fizpoint, (0,{a}),
where a is unknown. In Example 3.2 on the right, the major difference between the operators is
whether statement a can be derived given that b has truth value unknown. This is the case for
the ultimate, but not for the approximate operator. Since there is no fixrpoint in the upper row
(showing the two-valued operator Gg), the ADF E does not have a two-valued model. Each of
the revision operators has however exactly one three-valued fixpoint, which thus constitutes the
respective grounded, preferred and complete semantics.

Example 3.2. ADF E = ({a,b},{(b,a), (b,0)},{va, ¢s}) has acceptance formulas ¢, = bV —b
and ¢, = —b. So b is self-attacking and the link from b to a is redundant. In Figure 1, we show
the relevant CPO and the behavior of the operators Ug and Gg on this CPO.

The examples show that the approximate and ultimate families of semantics really are differ-
ent, save for one straightforward inclusion relation in case of admissible.

Corollary 3.2. For any ADF Z it holds that an admissible pair of G= is an admissible pair of Uks.
Let o € {com, grd, pre}. There exist ADFs =, 25, =3 such that:

1. there is an admissible pair of Ug, that is not an admissible pair of Gz, ;
2. there is a o-pair of Ug, that is not a o-pair of Gz,; and
3. there is a o-pair of Gz, that is not a o-pair of U,

Proof. To show that an approximate admissible pair is always an ultimate admissible pair it
suffices to consider the fact that Gz <; Us. For the remaining claims, we use £1 = 29 = =3 = F
from Example 3.2 as a witness:

14

1. In Example 3.2, ({a},{a,b}) is ultimate admissible but not approximate admissible.

2 & 3. In Example 3.2, we have: (1) approximate grounded, preferred and complete semantics co-
incide; (2) ultimate grounded, preferred and complete semantics coincide; (3) approximate
grounded and ultimate grounded semantics are different with no subset relation either way:.

O

3.4. Ezxistence results

We next present two general theorems that guarantee the existence of certain pairs for ap-
proximating operators on CPOs. By CPOs here we do not only refer to S-subset CPOs (A€, <;),
but in fact to arbitrary CPOs (L€ <;) containing consistent pairs of elements of a complete
lattice (L,C). Both results make use of the axiom of choice — the second one directly, and the
first one in the form of Zorn’s lemma. The first result says that for each admissible pair there is
a preferred pair containing at least as much information. This significantly generalizes a result
by Dung ([24, Theorem 11]) to general operators.

Theorem 3.3. Let (L,C) be a complete lattice and O an approximating operator on the
CPO (L€, <;). For each admissible pair a € L€, there exists a preferred pair p € L¢ with a <; p.

Proof. Let a € L® with a <; O(a). Define the set of all O-admissible pairs that contain at least
as much information as a,

C:{E\&giéandégiO(E)}

We show that (C,<;) is a CPO. Clearly a € C is the least element of the poset (C,<;). Now
let D C C be directed and € = | |;. D be its least upper bound in L°. We show e € C, that
is, a <; € and e <; O(e). Since D is directed, it is non-empty, so there is some z € D, whence
a <; z <; e. Now for each Z € D, we have zZ <; € since € Iis an upper bound of D. Since O is
<,;-monotone, we have O(z) <; O(e). Since Z € D C C, by definition zZ <; O(z). In combination,
z <; O(2) <; O(e). Thus O(€) is an upper bound of D. Since € is the least upper bound of D,
we have € <; O(e).

Thus (C, <;) is a CPO and therefore each ascending chain has an upper bound in C. By
Zorn’s lemma, C has a <;-maximal element p € C, which by a <; p is the desired preferred
pair. (I

Theorem 3.3 directly leads to the next result, which considerably simplifies the complexity
analysis of deciding the existence of non-trivial pairs for admissibility-based semantics.

Lemma 3.4. Let (L,C) be a complete lattice and O an approximating operator on the CPO (L€, <;).
The following are equivalent:

1. O has a non-trivial admissible pair.
2. O has a non-trivial preferred pair.
3. O has a non-trivial complete pair.

Proof. “(1) = (2)”: Let (L, Tr) <; (z,y) <; O(x,y). By Theorem 3.3, there is a preferred
pair (p,q) € L* for which (L1, Tr) <i (z,y) <i (p,q)-

“(2) = (3)”: By [40, Theorem 3.10], every preferred pair is complete.
“(3) = (1)”: Any complete pair is admissible (Table 1). O

15

This directly shows the equivalence of the respective decision problems, that is, it holds that
ExistsA, = Exists;;‘re = Exists?, .. Recall that A contains all approximation operators defined on
some consistent CPO of S-subset pairs for some set S. Regarding decision problems for querying,
skeptical reasoning with respect to admissibility is trivial, that is, (¢, S) is always an admissible
pair in any ADF. Furthermore, credulous reasoning with respect to admissible, complete and
preferred semantics coincides.
= CredZ

pre*

Lemma 3.5. Let Z € {G,U}. It holds that CredZ, = CredZ,

adm com

Proof. Let = be an ADF, O € {Gz,U&} and s € S. Assume (X,Y) with s € X is admissible w.r.t.
O, then there exists a (X', Y") with (X,Y) <; (X',Y") which is preferred with respect to O and
where s € X' by Theorem 3.3. Since any preferred pair is also complete and any complete pair
is also admissible the claim follows. O

For semantics based on conflict-freeness, an existence result similar to Theorem 3.3 holds.
The proof is inspired by the proof of [7, Theorem 1] (see also [17, Theorem 8.23], in particular for
the concept of “roofs”), and sufficiently complicated. The major part of the proof is concerned
with showing that there is a chain of conflict-free elements that starts with the given conflict-free
element, and that this chain is itself a CPO. Again, the result is not restricted to subset-CPOs.

Theorem 3.6. Let (L,C) be a complete lattice and O an approximating operator on the
CPO (L¢,<;). For each conflict-free pair ¢ € L€, there exists a naive pair i € L with ¢ <; 7.

Proof. Let ¢ € L¢ be conflict-free. Define the set
D={ael’|c<;a}

Clearly (D, <;) is a CPO with least element ¢. (Its least upper bound is given by Up = Upe.)
For any conflict-free pair a € D that is not naive, by definition there exists a conflict-free pair
@’ € D such that a <; a’. Thus by the axiom of choice, there exists a function f : D — D with

ar— < .
a otherwise

{d’ if @ is conflict-free, but not naive
Clearly f is increasing, that is, for alla € D we have a <; f(a). Furthermore, f(a) is conflict-free
iff @ is conflict-free. Thus a conflict-free pair a is a fixpoint of f iff a is naive. We proceed to
show that such a fixpoint exists.
We look at the smallest f-closed sub-CPO of (D, <;), that is, the smallest set F' C D such
that f(F) C F and (F,<;) is a CPO. Clearly its least element is L p = ¢, the least element of D.
We call an element 4 € F a roof iff for all v € F with v <; 4 we have f(v) <; @. For each
pair u € F, we show that if u is a roof, then the set

Zﬁ:{@€F|T)§iﬂorf(ﬂ)§iz7}

is an f-closed sub-CPO of (F,<;). So let 4 € F be a roof and consider Zy. We have to show
that f(Za) g Zﬂ and (Zﬂ7 <1) is a CPO.

f(Zy) € Zy: Let v € Zz. Then v <; u or f(u) <; v. We have to show f(v) € Zy, that is,
f@) <;aor f(u) <; f(v). If f(u) <; v, then since f is increasing we get f(u) <; v <; f(?).
If v <; @, then since @ is a roof we get f(v) <; 4. If v = @ then f(u) <; f(v) is clear.

16

(Za,<;) is a CPO: L € Z; is the least element of the poset (Zz,<;). Let E C Zy be directed
and € = | | E be its least upper bound in (F,<;). We have to show € € Zg, that is, e <; U
or f(u) <; e. By assumption,

Za=2ZLUZr with ZL ={v € F | 0 <, 4} and ZL = {v € F | f(u) <; v}

Define E' = ENZ. and E" = EN Z. Clearly @ is an upper bound of E' and f(u) is a
lower bound of E"; moreover ¢ is an upper bound of E". Thus if E™ # () then f(u) <;
and we are done. Otherwise E" = (), then E = E' and 4 is an upper bound of E. Since &
is the least upper bound of E, we get e <; u.

Thus if u € F is a roof then (Zy,<;) with Zyz C F is an f-closed sub-CPO of (D, <;). Since
(F, <) is the least f-closed sub-CPO of (D, <;), we get ' C Zy and thus Zyz = F for each roof
u € F. Now we show that each pair u € F is a roof. Define the set U = {u € F' | u is a roof}.
We show that (U, <;) is an f-closed sub-CPO of (F, <;).

fU)CU: Let w € U. Then for all v € F with v <; 4 we have f(v) <; u. We have to show
f(u) € U, that is, for all v € F with v <; f(u) we have f(v) <; f(u).
Let v € F with v <; f(@). Since v € F = Zg, we find that v <; @ or f(a) <;
that f(u) <; v is impossible by presumption. If v <; @ then we have f(v) <; u <
presumption. If v = @ then f(v) <; f(@) is clear.

v. Note
i f(ﬂ) by

(U,<;) is a CPO: Lp is trivially a roof, whence L € U. Now let W C U be directed and let
W = || W be the least upper bound of W in F. We show w € U, that is, for all v € F
with 0 <; w we have f(v) <; w.
Let v € F with v <; w. If for all z € W we had z <; v, then v would be an upper bound
of W, whence w <; U contrary to assumption. Thus there is a z € W with zZ £; v. Now
z € W C U is a roof, and we have v € F = Z, that is, v <; z or f(Z) <; 0. Due to
z <; f(z) and z £; v we get v <; z; additionally, Z <; W since w is an upper bound of W.
Now if v = Z then ¥ is a roof and w <; ¥ or f(v) <; w, where the first is impossible by
presumption. Finally, if v <; Z then Z being a roof implies that f(v) <; z <; .

Thus (U, <;) with U C F is an f-closed sub-CPO of (D, <;). Since (F,<;) is the least f-closed
sub-CPO of (D, <;), we have F C U, that is, F = U.

Now we show that F' is a chain, that is, for all u,v € F we find u <; v or v <; u: since 4 is a
roof, v € F = Zz whence v <; @ or i <; f(u) <; v. Now F is a CPO and a chain, it therefore
has a least upper bound in F, that is, a greatest element T = | | F'. Since f is increasing, we
have Tr <; f(TF); since F is f-closed, f(TF) € F; since T is the greatest element of F', we
find f(Tp) <; Tp. Thus Tp is a fixpoint of f. It remains to show that T is conflict-free. In
fact, all elements of F' are conflict-free: assume there were a v € F' that was not conflict-free,
then f~1(v) = {v} by definition and (F \ {v},<;) would be an f-closed proper sub-CPO of F,
contradiction. Consequently, n = T with¢= Lp <; Tr =0 is our desired naive pair. O

From the last part of the proof it might seem that the desired naive pair is uniquely determ-
ined. This is however not the case — the application of the axiom of choice in the beginning gives
us an arbitrary chain of conflict-free pairs, there might be many more in (L€, <;).

As in the case of admissible-based semantics, the existence of non-trivial naive pairs is then
equivalent to the existence of non-trivial conflict-free pairs.

Lemma 3.7. Let (L,C) be a complete lattice and O an approximating operator on (L€, <;).
The following are equivalent:

17

1. O has a non-trivial conflict-free pair.
2. O has a non-trivial naive pair.

Proof. “(1) = (2)”: Let (x,y) be non-trivial and conflict-free, that is, in particular let (L, Tp) <; (z,y).
By Theorem 3.6, there exists a naive pair (p,q) € L with (Lr, Tr) <; (z,y) <; (p,q).

“(2) = (1)”: Any naive pair is conflict-free (Table 1). O

Again, this directly shows the equivalence of the respective decision problems, that is, it holds
that Exists“c“ﬁ = Existsy\ ;.
We finally prove a useful technical result that gives some insight into the structure of sets
of conflict-free interpretations, namely, that such sets are downward-closed with respect to the

CPO ordering. Notably, again, this result holds for arbitrary approximating operators.

Lemma 3.8. Let (L, C) be a complete lattice and O an approximating operator on the CPO (L, <;).
If (x,y) € L is conflict-free for O, then so is any (u,v) <; (z,y).

Proof. Let (x,y) € L¢ be conflict-free for O and (u,v) <; (x,y). First observe that this means
xC O0"(x,y), O'(x,y) Cy and u C z C y C v. Now since O is approximating, it is in particular
<;-monotone and thus O(u,v) <, O(x,y), that is,

O'(u,v) EO'(w,y) and O"(z,y) C O (u,v)

Combining all of the above, it follows that

whence (u,v) is conflict-free for O. O

3.5. Reductions and Encoding Techniques

In the sequel we apply several reductions for showing complexity-analytic results. In this
section we present recurring reductions as well as certain “encoding schemes” that will prove
useful. First we show that statements with self-conflicting acceptance conditions are always
undecided in all conflict-free pairs.

Lemma 3.9. Let E = (S,L,C) be an ADF, O € {Gg,lk}, s € S and ¢, = —s. For every
conflict-free pair (X,Y) of O it holds that s € (Y \ X).

Proof. Assume (X,Y) is conflict-free for O. By definition of conflict-free pairs we have X C
O"(X,Y) and O'(X,Y) C Y. We prove that s cannot be true or false in this pair. Suppose
s € X. We now show that this implies s ¢ O"(X,Y). We have X = @, = —s. It follows
that for any Z with X C Z C'Y we have Z [~ ¢4 and thus s ¢ O"(X,Y) (approximate and
ultimate operators coincide on the revised upper bound; see also Lemma 3.1). This implies that
X € O"(X,Y) which is a contradiction to the definition of conflict-freeness.

Suppose now that s € (S\Y). We show that this implies s € GL(X,Y) and thus also
s € UL(X,Y) (the ultimate operator is at least as precise). Using the definition of the approximate
operator, we have) C X, par(s) = {s}, ({s}\0)NY =0, and § = ps, and thus it follows that
s € GL(X,Y). This implies that O'(X,Y) ¢ Y which is again a contradiction to conflict-
freeness. O

18

Self-attacking conditions can also be used to express integrity constraints in the following
sense. If o, = s A ¢ for some formula ¢ then s is never assigned the value true in a conflict-
free pair. Depending on the formula ¢ there might be cases under which s is assigned false or
undecided, but we can exclude one truth value. We formalize this notion in the following Lemma.
Note that the first item in the Lemma refers to both operators, while the second item refers only
to the ultimate operator.

Lemma 3.10. Let = = (5, L,C) be an ADF, O € {Gz,lE}, s € S and ¢ a formula over S.
o If ps = s A ¢ then there is no conflict-free pair (X,Y) of O such that s € X.
o If p; =~V ¢ then there is no conflict-free pair (X,Y’) of Us such that s € (S\Y).

Proof. Suppose the contrary of the first item, i.e. that there is a conflict-free pair (X,Y) of O
such that s € X. By definition it holds that X C O”(X,Y). Since for all Z with X C Z C Y
it holds that s € Z, it follows that Z = ¢, and thus s ¢ U (X,Y) and, due to Lemma 3.1, also
s ¢ G (X,Y), which is a contradiction.

Suppose the contrary of the second item, i.e. that there is a conflict-free pair (X,Y) of Us
such that s € (S\Y). Then for all Z with X C Z CY it holds that Z |= . This implies that
s € UL(X,Y) and therefore UL(X,Y) € Y, which is a contradiction. O

The next technique is similar to the previous one and makes sure that if a certain statement
s is undecided in an admissible pair we can infer that a particular set {p,-p} of statements must
also be undecided. In this way undecidedness is “propagated” if we cannot assign a different
value than undecided to the statement.

Lemma 3.11. Let £ = (S,L,C) be an ADF, O € {G=,lE}, s,p,-p € S with
® ©, =5\ —-p and
® pp="SAp.

If (X,Y) is an admissible pair for O and s € (Y \ X), then p,-p € (Y \ X).

Proof. Assume (X,Y) with s € (Y \ X) is admissible for O. We begin with the case for O = Us.
It holds that X C X U{s} CY, XU{s} F~ ¢, and X U{s} ~ ¢.,. Thusp,-p ¢ UL(X,Y). Since
X CUL(X,Y) we can infer that p,-p ¢ X.

Suppose p € (S\Y). By definition of admissibility we have p ¢ UL (X,Y). Then for all
Z with X C Z CY we have Z = ,. It holds that Z W= ¢, iff s € Z or -p € Z. Consider
the case Z = X. Since s ¢ X (by assumption), for X [~ ¢, to hold it must be the case that
-p € X. This is a contradiction, as shown above (-p ¢ X). Therefore p ¢ (S\Y) and it follows
that p € (Y \ X). The proof that also -p € (Y \ X) holds is analogous.

For the approximate operator just observe that if p,-p ¢ UL(X,Y"), then this implies that
p,-p & GL(X,Y), since Gz <; U (the ultimate operator is more precise). The remaining proof is
analogous to the one for the ultimate operator, since the revisions of the upper bound coincide
for both operators (Lemma 3.1). O

Self-supporting statements can be used to enforce the existence of preferred pairs, which
assign true or false to this statement. This is in particular useful to “generate” preferred pairs
for each two-valued valuation on a set of variables.

Lemma 3.12. Let = = (5, L,C) be an ADF, O € {Gz,lE}, s € S and s = s. It holds that
e there exist two preferred pairs (X,Y) and (X',Y") of O such that s € X and s € (S\Y’),

19

e for all preferred pairs (X,Y) of O it is the case that s ¢ (Y \ X).

Proof. Consider an arbitrary admissible pair (X,Y) for O with s € (Y \ X). Such a pair exists,
since (0, S) is a trivial admissible pair for O. We have (X,Y) <; O(X,Y) by admissibility. Since
both pairs (X U{s},Y) and (X,Y \ {s}) are strictly more informative than (X,Y") it holds that
O(X,Y) <, O(X U{s},Y) and O(X,Y) <; O(X,Y \ {s}) (O is <;-monotone). We now show
that both such pairs are admissible for O. Consider the first pair (X U {s},Y). We know that
(X,Y) <; O(X U{s},Y) (<, is transitive) and thus can infer both X C O'(X U {s},Y) and
O"(X U{s},Y) CY. For showing that (X U {s},Y) is admissible, we only need to show that
X U{s} CO(XU{s},Y) holds. To see that s € O'(X U{s},Y) consider the two operators. For
O = Uk just consider that for any Z with X U{s} C Z CY it holds that Z |= ¢s = s. The case
for O = G is similar. The set {s} is a subset of X, no parent of s is assigned undecided in the
pair (X U{s},Y) and the set {s} satisfies @;.

The proof that (X,Y \ {s}) is admissible for O proceeds analogous, just consider that for any
Z with X C Z C Y \ {s} it holds that Z |~ o,.

This means that for any admissible pair which assigns undecided to s, there exists a strictly
more informative admissible pair such that s is assigned true or false. Therefore s cannot be
assigned undecided in a preferred pair, since this pair would not be <;-maximal. ([l

We now define reductions used in multiple proofs as well as showing some properties of in-
terest. The reductions are defined as functions taking sets of (propositional) variables and a
formula and mapping them to an ADF. We generally use the sets P, @), R for propositional vari-
ables and use x,y, z as “gadget” statements in the constructed ADF. Without loss of generality
we assume that {z,y,z} N (PUQU R) = 0. As usual, links of the ADFs are defined implicitly.

Reduction 3.1. Let ¢ be a propositional formula over the vocabulary P. Define RED; (P,) =
(PU{z}, L,C) with

e ¢, = —p for p € P; and
d Wz:¢-

This simple ADF can be used to decide satisfiability of ¥ or determining if ¢ is a tautology
using one of the relevant operators.

Lemma 3.13. Let ¢ be a propositional formula over the vocabulary P and = = RED(P,).
Further let O € {Gz,U&}. We find that

1. for every conflict-free pair (X,Y) of O it holds that P C (Y \ X),
z e Us(D, PU{z}) iff ¢ is a tautology,

2z € O"(0,PU{z}) iff ¢ is satisfiable,

z ¢ O"(0, P) iff ¢ is unsatisfiable,

({z}, P U{z}) is conflict-free for O iff v is satisfiable,

6. OB, PU{z})=0(0,P).

Proof. Note that U = G by Lemma 3.1.

1. The first item follows immediately from Lemma 3.9.

2. The formula v is defined over the vocabulary P. By definition we have z € UL(D, P U {z})
iff for all Z with 0 C Z C P U{z} we have Z |= ¢, = 1. Clearly if z € UL(0, P U {z}),
then all two-valued interpretations over P are then satisfying assignments of 1, thus v is
a tautology in this case. For the converse direction assume that 1) is a tautology. Then for
all Z with) C Z C P we have Z [= 1. Since z does not occur in ¢, = 1 we know that for
all Z with) C Z C P U{z} it holds that Z |= 1 and thus z € Us(0, P U {z}).

Lk N

20

3. If z € O"(0, P U{z}), then by definition we can infer that there exists a Z such that
0 CZ CPU{z} and Z = . Then Z)\ {z} is a satisfying assignment of 1, therefore
1 Is satisfiable. For the other direction assume that v is satisfiable. Then there exists a
Z with) € Z C P and Z = v. Clearly we have Z C P U {z} and thus it holds that
2€O0"(0,PU{z}).

4. Follows analogously as the previous item. Note that z is not in the vocabulary of v, and
if z ¢ O"(0, P), then by definition we know that for all Z with) C Z C P it holds that
Z Y= ¢, = 1. For the other direction, if ¢ is unsatisfiable, then for all Z with) C Z C P
it holds that Z 1), and thus z ¢ O" (0, P).

5. The pair ({z}, PU{z}) is conflict-free for O iff {z} C O"({z}, PU{z}) and O'({z}, PU{z}) C
P U{z}. The latter is trivially true. The former holds iff v is satisfiable as shown in the
third item proven above.

6. Lastly, O, P U{z}) = O(0), P) holds since z does not occur in any acceptance condition.

(I

Note that the lemma even implies that ({z}, PU{z}) is naive for O iff ¢ is satisfiable, since the
elements of P are undecided in any conflict-free pair. The following more involved construction
incorporates several techniques we introduced above.

Reduction 3.2. Let ¢ be a propositional formula over the vocabulary PUQ. Define RED, (P, Q,) =
(PU-PUQU{z},L,C) with -P={-p | p € P} and

® ¢, =2z A—pforpeP;
e v, =-zA-pfor-pe-P;
e ¢, =g for ¢ € Q; and

o ., =z A\

An ADF constructed by RED; has a non-trivial admissible pair with respect to both operators
iff the quantified Boolean formula (QBF) IPVQ is true.

Lemma 3.14. Let ¢ be a propositional formula over the vocabulary PUQ, Z = RED2(P, Q, v)
and O € {Gz,Ue}. It holds that

e (0,PU-PUQU{z}) is the only admissible pair of O iff APVQ1) is false,
e there exists an admissible pair (X,Y) of O with z € (S\Y) iff IPVYQ is true.

Proof. Consider an arbitrary admissible pair (X,Y) of O. By Lemma 3.9 we know that for
all ¢ € Q it holds that ¢ € (Y \ X). Due to Lemma 3.11 we know that if z € (Y \ X) then
p,-p € (Y \ X) for all p € P and -p € -P. Due to Lemma 3.10 we know that z is never assigned
true in an admissible pair. Therefore if there exists a non-trivial admissible pair for O, then z
must be assigned to false in such a pair. Also, due to Lemma 3.1 we have U = GY.

Assume the QBF APVQ1 is true. Then there exists a P’ C P such that for all Q' C) we have
P'UQ E. Let M = P'U{-p | p € P\ P'}. We now show that the pair (M, MUQ) is admissible
for O. It is easy to see that for p € P and -p’ with p’ € P\ P’ we have p,-p’ € O'(M,M U Q).
The corresponding acceptance conditions are satisfied by M since z ¢ M and the complementary
statements (p and -p) are assigned a complementary truth value. Also, (M, M U Q) assigns all
variables in the respective acceptance conditions a truth value different from undecided. Further
(P\PHYNO'"M,MUQ)=0and {-p|pe P}NO"(M,MUQ) =0, since the corresponding

21

acceptance conditions evaluate to false under all interpretations between the lower bound M and
upper bound M U Q. It remains to show that z ¢ O"(M, M UQ). By assumption we know that
for any Z with M C Z C M UQ we have Z |= v (since P = MNP and M NQ = (). Therefore
Z ¥~ ¢,. Thus z ¢ O"(M,M U Q).

Now we show the other direction. Assume that there exists a non-trivial admissible pair
(X,Y) for O. By the observations in the beginning of the proof, we can directly infer two
important facts: (i) z € (S\Y), and (ii) g € (Y \ X) for all ¢ € Q. By admissibility and (i), it
follows that z ¢ O"(X,Y) and thus for all Z with X C Z CY we have Z [~ ¢,. Since z ¢ Y
this means that Z [~ —) and thus Z |= 1. Let P’ = X N P. We now consider the two-valued
valuations assigning P’ to true, P\ P’ to false and any two-valued assignment on). Consider
Z with P' C Z C (P'UQ). For all such Z it holds that there is a Z' with X C Z/ C'Y and
ZUX =2Z" Since Z' =1, then also ZU X =1 and Z =+ (X \ Z contains no variables of 9,
see also (ii)). Therefore for all Q' C Q we have P' U Q' |= ¢ and thus IPVQ1 is true.

The second item in the Lemma follows directly, since if the QBF is true then z is false in an
admissible pair of O and vice versa. O

While the previously introduced reductions are mostly used to show hardness results, we also
use reductions for membership results. One general core construction is below.

Reduction 3.3. Let = be an ADF. Assume that S = {s1,...,,} andset P = {t;,u;,b; j | 1 < 1,5 <n}.
For each statement s;, the propositional variable ¢; indicates that s; is true, while u; indicates

that s; is not false. Thus the truth values of the ¢; and u; determine a four-valued interpretation

(T,U). The b; ; are used to guess parents that are needed to derive the acceptance of statement

s; in one operator application step; more precisely, b; ; indicates that s; is a parent of s; that is
“needed” to infer u;. By y; we denote the acceptance formula of s;; by <p§ we denote ¢; where

each s; has been replaced by ¢;; by ©? we denote ¢; where each s; has been replaced by b, ;.

Now define the formulas (with underlying intuitions on the right)

brcy = /\ (t: = ug) (T,U) is a consistent pair
s; €S
(bf" = /\ (uj — t5) s; has no undecided parents
rjEpar(s;)
o = /\ ((t; = bij) A (bij — uy)) guesses for s; are consistent with (7, U)
rj€par(s;)
dp = /\ (t: & (9 A G2)) G(T,U) =T
$; €S
ru = /\ (i & (9] A 8))) G(T,U) =U
s; €S
¢)cfp = ¢pr A ¢fpu A ¢T§U gE(T7 U) = (Ta U) and T - U

Finally, set RED3(Z) = ¢cfp.

The main property of this encoding is that it correctly captures consistent fixpoints of the
approximate operator.

Lemma 3.15. Let = be an ADF over statements S and ¢ = RED3(E).

1. From each model of ¢, we can read off a consistent fixpoint of Gz;

22

2. conversely, for each consistent fixpoint of Gz, there is a model of ¢cfp.
Proof. 1. Let I C P be such that I |= ¢cfp. Define a three-valued pair (T,U) (the associated
pair of 1) and a sequence By, ..., B, by setting
e s;cTifft;el ands; € U iff u; € I, and
® 5, € B; I'H'bid‘ el.

We have to show T' C U and G=(T,U) = (T, U).

For the first part, let s; € T. Then t; € I by definition. Since I |= ¢, in particular
I ¢rcuy, that is, I = /\sieS(ti — w;). Thus I |= u; and by definition s; € U.

For the second part, we have

s € GL(T,U) iff T |= p; and par(s;) NU C par(s;)NT
iff T = ! and T |= ¢2
iff I'f= of A §2

iff I =t (since I |= ¢gp1)
iff s, €T

Hence GL(T,U) = T. Similarly, for the upper bound we have

s; € GL(U,T) iff B; = ; and par(s;) \ B; C S\T and B; CU

if Il and I N ((=bi; — ~t;) A (bij = uy))
SjES

T =@} and T N ((t; = bij) A (bij = uy))
s;€8
iff I = ¢f and I = ¢
iff It (97 A g)) (since I = ¢rpu)
iff I =,
iff s; €U
Hence U = GL(U,T) and in combination G=(T,U) = (T, U).
2. Let G=(T,U) = (T,U) with T C U. Define an interpretation I C P as follows:
e Sett, € [iffs; €T andu; € I iff s; € U.

e Since GL(U,T) = U, we have for each 1 < i < n that s; € U iff there is a B; C par(s;)
with B; = ¢i, par(s;) \ B; C S\ T and B; C U. Now pick such a B; for each s; € S
and set b@j el jESj € B;.

We have to show I |= ¢efp. Since T C U, it is clear that I |= ¢rcy since for all i, s; € T
implies s; € U. For the operator applications, we get, for any s; € S,
ITetiffs,eT
iff s; € GL(T,U)
iff T = ¢; and par(s;) NU C par(s;)) NT
iff I'= ! and T = ¢2
iff 1= i N7

23

Thus I |= ¢, For the upper bound, for any s; € S,

I ’:Ui lﬂ'Sl eU
iff s; Egé(U,T)
iff B; = ¢; and par(s;)\ B C S\ T and B; CU

iff I = Lpli’ and I = /\ ((=bsj = —t) A (bij — uj))
s_jES

1=l and I = N ((t = big) A (bij = u)))
s; €S

iff 1= P and I = o]
Hence I |= ¢y and in total I |= ¢rpl A drou A P

3.6. Operator complezities
We next analyze the computational complexity of deciding whether a single statement is
contained in the lower or upper bound of the revision of a given pair. This then leads to
the complexity of checking whether current lower/upper bounds are pre- or postfixpoints of
the revision operators for computing new lower/upper bounds, that is, whether the revisions
represent improvements in terms of the information ordering. Intuitively, these results describe
how hard it is to “use” the operators and lay the foundation for the rest of the complexity
results. Formally we express these notions via the decision problems Elem? and RevBoundZ
with o € {C, D}, respectively with Z" in the superscript. Recall that Elem? (ElemZ") denotes
the decision problem of verifying if a given element (statement) is contained in the revision of
the lower (upper) bound of a given operator and pair. With Z’ we denote the operators for
revising the lower bound and with Z” the operators for revising the upper bound. The problem
RevBound? asks whether for a given pair (X,Y) we can compare a given set B via o with the
revised lower bound of this pair. For instance RevBou nd%l denotes the problem of verifying that
for a given (X,Y), BC S and Gz € G we have GL(X,Y) C B.
Proposition 3.16. Let 7 € {G,U}. It holds that
1. Elem9’ s in P,
2. Elem” is coNP-complete,
3. Elem?" is NP-complete.
Proof. Let Z be an ADF, s € S and X CY CS.
1. ElemY is in P: Since X C Y, we have that whenever there exists a B C X N par(s) with
Cys(B) =t and par(s) \ B C S\'Y, we know that B = X N par(s): Assume there is an
r € (X Npar(s)) \ B. Then r € par(s) and r ¢ B, whence r € par(s)\ B C S\Y. By
re X CY wegetr¢ S\Y, contradiction. Thus B = X N par(s). Now
s € GL(X,Y) iff there exists B C X N par(s) with Cs(B) =t and par(s)\ BC S\Y
iff Co(X Npar(s)) =t and par(s) \ X C S\Y
iff Cs(X Npar(s)) =t and (Y \ X) N par(s) =0
For acceptance functions represented by propositional formulas, Cs(X N par(s)) = t can

be decided in polynomial time, since we only have to check whether X |= @s. It can be
decided in quadratic time whether there is an undecided parent r € par(s) withr € Y\ X.

24

2. Elem”’ is coNP-complete:
in coNP: To decide that s ¢ U(X,Y), we guess a Z with X C Z C Y and verify that
Z ¥ ps.
coNP-hard: We provide a reduction from the problem of determining if a given proposi-
tional formula 1) is a tautology. Let 1 be an arbitrary formula over vocabulary P.
Construct =4 = RED1(P, %) as defined in Reduction 3.1. By Lemma 3.13 it follows
that 2 € U (0, P U {z}) iff ¢ is a tautology.

3. Elem?” is NP-complete: Due to Lemma 3.1 we know that GZ(X,Y) = U/ (X,Y).
-

in NP: To decide that s € U (X,Y), we guess a Z with X C Z C Y and verify that
Z E s
NP-hard: For hardness, we provide a reduction from SAT. Let 1) be a propositional for-

mula over vocabulary P. Construct =, = RED;(P,1) as defined in Reduction 3.1.
By Lemma 3.13 it follows that z € U (0, P U {z}) iff 1) is satisfiable. O

These results can also be formulated in terms of partial evaluations of acceptance formulas:
We have s € GL(X,Y) iff the partial evaluation QDSX’Y) is a formula without variables that evalu-
ates to t. Similarly, we have s € GY(X,Y) = U/'(X,Y) iff the partial evaluation gogX’Y) is satis-
fiable. Under standard complexity assumptions, computing a new lower bound with the ultimate

operator is harder than with the approximate operator. This is because, intuitively, s € U4 (X,Y)

iff the partial evaluation gogX’Y) is a tautology. The results for Elem straightforwardly lead to

the complexity of revising lower /upper bounds for both operators. Note that the results depend
crucially on restricting revision to consistent pairs (X,Y") (those with X C Y) — for otherwise we
could apply G4 (X,Y) = G4(Y, X) and use the polynomial-time computable approximate lower
bound operator GZ on an inconsistent pair (Y, X) to compute GL(Y, X) = GZ(X,Y).

Lemma 3.17. Let T € {G,U} and B € {L,U}. It holds that

RevBoundg and RevBoundg are in P,
RevBoundg/ is in NP,
RevBound?' is in coNP,

RevBound? is in NP,

_// . .
RevBoundZ is in coNP.

DAl

Proof. All results build upon Proposition 3.16. Since the revised lower bound w.r.t. G= can be
computed in polynomial time for any ADF = we can immediately infer the complexity of the
corresponding problems RevBound%/ and RevBoundgC;/.

Let == (S,L,C) be an ADF, O € {Gz,l&}, BC S and X CY C S. Deciding whether B C
UL(X,Y) can be decided via |B| independent checks for each b € B whether b € Ui(X,Y).
Fach of these are checks in coNP and combining them yields again a check in coNP. Therefore
RevBound?' is in coNP. Likewise deciding whether B C O"(X,Y) can be decided via |B|
independent checks b € B, each of them in NP, yielding again a combined problem in NP. Thus
RevBoundZ” is in NP.

For UL(X,Y) C B we can decide for each s € (S\ B) whether s ¢ UL(X,Y). If this is
the case for all s, then it holds that U.(X,Y) C B. Deciding whether s ¢ U(X,Y') holds is a
complementary problem to one in coNP, thus combining several of them yields a problem in NP.
This directly shows that RevBound%/ is in NP. The proof that RevBound%N is in coNP proceeds

analogously. O

25

3.7. Generic upper bounds

We now show generic upper bounds for the computational complexity of the considered
problems. This kind of analysis is in the spirit of the results by Dimopoulos et al. [23, Section 4].
The first item is furthermore a straightforward generalization of [20, Theorem 6.13].

Theorem 3.18. Let Z C A be a set of approximation operators, each defined on a CPO on
S-subset pairs for some finite set S. Further let Elem” be in IIY and Elem?" be in ©F.

1.

S otk W N

The least fixpoint of an O € I can be computed in polynomial time with a polynomial
number of calls to a $F-oracle.
Ver%ﬁ is in ©F; Credfﬁ is in ©F;

I ioinDP- T iy P,
Ver; .. is in D; ; Cred . is in X5 ;
VerZ, —isinIIY; Cred, isin X ,;
T s in DF- I isinyP .
Verg,,, is in D;; Credy,,,, is in X 4;
T oo TP .- R T oo TIP
Very,. is in 11, 1; Cred,, is in 3 1; Skept,,, is in II; 5.

Proof. Let A=2% and O be an approximating operator on (A¢, <;), the consistent CPO of
S-subset pairs. Further let (X,Y) € A and s € S.

Using the same line of reasoning as in the proof of Lemma 3.17 we can immediately infer that
under the assumptions of the current theorem that RevBoundy is in I RevBoundZ' is in nr,

"o, . "o, .
RevBoundZ is in X', RevBound% is in I17.

1.

For any (V,W) € A® we can use the oracle to compute an application of Q' by simply
asking whether z € O'(V,W) for each z € S. This means we can compute with a linear
number of oracle calls the sets O'(V,W) and O"(V, W), thus the pair O(V,W). Hence we
can compute the sequence (0, 5) <; O(0,S) <; O(O(D,S)) <; ... which converges to the
least fixpoint of O after a linear number of operator applications (and thus a polynomial
number of oracle calls).

Verfﬁ is in ©F, since we can verify if a given pair is conflict-free for a given operator if the
lower bound is a positive instance of RevBound%” and the upper bound a positive instance
RevBoundg together with the pair and operator as input. These are two independent checks
in X} For Credl it suffices to verify that the pair ({s} ,) is conflict-free. (If ({s},S) is not
conflict-free, by Lemma 3.8 there is no conflict-free pair (X,Y") with ({s},95) <; (X,Y).)

For VerZ . we first have to decide Verfﬁ, which can be done in . To verify that (X,Y)
is naive, that is, <;-maximal, we do the following: Assume that Y\ X = {s1,...,8m}
and construct the pairs p; = (X U{s;},Y) and g, = (X,Y \ {s;}) for 1 <i < m. It follows
from Lemma 3.8 that the pair (X,Y) is naive iff none of the 2m pairs p1, .. ., Dm, Qs - - - s m
is conflict-free. Since Verfﬁ is in ©F and the pairs can be verified independently of each
other, we need to solve at most 2m < 2 - |S| independent X" problems to show that (X,Y)
is not naive. Thus showing that (X,Y) is <;-maximal is in I, and together with showing
conflict-freeness of (X,Y) in X the containment in DY follows. CredZ ; coincides with
Credfﬁ by Lemma 3.7.

VerL, isinIIF, since we can verify if a given pair is admissible for a given operator if the

)

lower bound is a positive instance of RevBoundg and the upper bound a positive instance
RevBoundg/ together with the pair and operator as input. These are two independent

checks in _Hf. For Credgdm, we guess a pair (X1,Y7) with s € X7 and check if it is
admissible.

26

5. Verl isin D}, since we can verify if a given pair is admissible for a given operator in

P, By determining if the lower bound is a positive instance of RevBou ndg and the upper

bound a positive instance of RevBoundg/ together with the pair and operator as input we
can infer that the given pair is a fix point of the operator. These are two independent
checks in ¥.F, thus combined yields a check in DY. CredZ, = CredZ, by Lemma 3.5.

com adm
6. For Verzzwe, we show that the co-problem is in Zﬁ_l. To show that (X,Y) is not a preferred

pair, we can show that (1) (X,Y) is not a complete pair, which can be decided in DF; or
(2) that there is a complete pair (X1,Y7) with (X,Y) <; (X1,Y1), which can be done by
guessing (X,Y1) and showing in DY that (X1,Y1) is complete.

Cred?, : coincides with credulous reasoning w.r.t. admissibility, see Lemma 3.5.

Skept%re: Consider the co-problem, i.e. deciding whether there exists a preferred pair
(X1,Y1) with X, N{a} = 0. We guess such a pair (X;,Y1) and check if it is preferred.

Naturally, the capability of solving the functional problem of computing the grounded se-
mantics allows us to solve the associated decision problems.

Corollary 3.19. Under the assumptions of Theorem 3.18, the problems Vergmz and Existsfrd are

: AP
in A7,

4. Complexity of General ADFs

Due to the coincidence of G and ' (Lemma 3.1), the computational complexities of decision
problems that concern only the upper bound operator also coincide. This will save both work
and space in the subsequent developments. Additionally, for all containment results (except for
the grounded semantics and existence of non-trivial approximate conflict-free pairs), we can use
Theorem 3.18 and need only show hardness.

4.1. Conflict-free semantics

For an ADF = and an operator O € {Gz,lE}, a pair (X,Y) is conflict-free by definition if and
only if X C O0”(X,Y) and O'(X,Y) C Y. For the ultimate operator U&, this intuitively means
the following:

e For every statement s € X that is set to true, its partially evaluated acceptance formula

@gx’y) must be satisfiable.

e For every statement s € S\Y that is set to false, its partially evaluated acceptance formula

(X,Y)

Vs must be refutable.
So roughly, conflict-freeness dictates that the pair must not make truth value assignments that
are completely absurd in that a statement is set to true in the pair although its acceptance
formula is unsatisfiable with respect to the pair (or symmetrically set to false while the formula
is a tautology).

For the approximate operator Gz, the requirement for setting statements to false is weaker
than for the ultimate operator. (The requirement for setting statements to true is the same since
G =U.) For the approximate operator, a statement s € S can be set to false in a pair (X,Y)
as long as it is not the case that the formula ng’Y) is a Boolean expression consisting of truth
values and connectives that evaluates to true. Conversely, the statement can be set to false if

either (1) the formula ang’Y) is a Boolean expression consisting of truth values and connectives

that evaluates to false, or (2) the formula ¢§X’Y) contains variables.

27

Example 4.1. Consider the ADF D = (S, L,C) with S = {a,b} and L and C given by ¢, = —a
and ¢, = aV-a. For any pair (X,Y) with a € X, that is, any pair that sets a to true, we have that

<p((lX7Y) = =t = f is unsatisfiable. Thus such a pair is not ultimate conflict-free. Symmetrically,

for any pair (X,Y) with a ¢ Y, we find that got(lX’Y) = —f =t is irrefutable, and the pair is also
not ultimate conflict-free. So our only chance is to set a to undecided, that is, a € Y and a ¢ X.
For statement b, we see that wg{b}’{a7b}) = a V —a is satisfiable, whence ({b}, {a,b}) is ultimate

conflict-free. For the pair (0, {a}) where b is false, we see that 4,01()@’{@})

= a V —a is a tautology,
whence the pair is not an ultimate conflict-free pair. However, @ég’{a}) = aV —a is an expression

containing variables, whence (@), {a}) is an approximate conflict-free pair.

This intuition based on satisfiability and refutability will help us in obtaining complexity
results for semantics based on the property of being conflict-free. To begin with, to verify that
a pair is conflict-free, we obviously have to solve a combined satisfiability /refutability problem.

Proposition 4.1. Consider any T € {G,U}. Verfﬁ is NP-complete.

Proof. Membership follows from Theorem 3.18. For hardness, we provide a reduction from SAT
by Reduction 3.1. Let v be a formula over vocabulary P. Let 2 = RED{(P,) and O € {Gz,Us}.
Due to Lemma 3.13 we have that the pair ({z}, PU{z}) is conflict-free for O iff ¢ is satisfiable..]

For deciding whether there exists a non-trivial ultimate conflict-free pair, we can reduce the
propositional satisfiability problem back and forth.

Proposition 4.2. Existslfﬁ is NP-complete.

Proof. in NP: We can guess a non-trivial pair (X,Y) and the witnesses that verify conflict-
freeness of (X,Y) in one sequence of independent guesses. More formally, we reduce Existsﬁ’ﬁ
to SAT. Let 2 = (S, L, C) be an ADF. We define a formula ¢= such that Ug has a non-trivial
conflict-free pair iff p= is satisfiable.

Assume S = {s1,...,8,} and define the vocabulary of pz as
P = {SE,Sfapi,j | 1 S Zaj S TL}

For 1 <i,j < n, denote by ¢; the acceptance formula ¢,, where each occurrence of s; has
been replaced by pj;. Intuitively, atom p;; Is used to guess a truth value for s; in the
acceptance formula of s;. Now define

t,i
P = st = | @i A /\ Di,j
1<j<n
£
Pep = st = | i A /\ Pi g
1<j<n
ti . £
v =\ (wcﬁ A s@cﬁ)
1<i<n
Pnt = (52 \ Sf)
1<i<n
Y= = Pcfi A ©nt

We have to show that Ug has a non-trivial conflict-free pair iff = is satisfiable.

28

if: Let I C P be a model for p=. Define the pair (X,Y) by

X={s;|stel,1<i<n}
YV={s;|si¢l,1<i<n}

Since in particular I is a model for pn, there is ani € {1,...,n} such that s; € X or

s; € Y, that is, (X,Y) is non-trivial. It remains to show that (X,Y) is conflict-free.

X CUW(X,Y): Let s; € X. By definition st € I and thus I is a model for ¢;. Define
J ={s; | pji € I}. For each 1 <k < n, we have that s, € X implies s} € I and
thus pi; € I, whence sy, € J; likewise s, ¢ Y implies s¥ € I and thus pi,; ¢ I
whence si, ¢ J. Now I is a model for @;, thus J is a model for gpg’y).

W(X,Y)CY: Let s; € S\ Y. By definition sf € I and I falsifies ;. As above, we
can define J and show that it is compatible with (X,Y"). Consequently, J falsifies
o2,

only if: Let (X,Y) be a non-trivial conflict-free pair. Define an interpretation I of P as
follows. For each s; € X set st to true, st to false, and p;; to true for all 1 < j < n;
for each s; € S\Y set st to true, st to false, and p; ; to false for all 1 < j < n. (There
exists at least one such s; since (X,Y’) is non-trivial.) Now let s, € S.

(XY
k

o Ifs, € X, we have s, € U (X,Y), whence @) is satisfiable. Let I, be a model
(X,Y)

for @s,."’ and note that I, CY \ X. Now for each s; € Y \ X, set p; € I iff
s;j € Ii,. Clearly I satisfies ¢, by construction. Since we already defined py, ; to
be true for all 1 < j < n, we find that I is a model for cpzjéc Since 52 is false, I is

also a model for goiff

o If s, € S\'Y, we have s, ¢ U:(X,Y), whence <pg
I}, be a falsification of <p§ff’y> and for s; € Y\ X set pj € I iff s; € I,. Then I
falsifies . Again, I is a model for wi}éﬂ and cpz;éc

o If s, € Y\ X, we set st and si to false in I and for s; € Y \ X the p;j, arbitrary
in I. Clearly I is a model for gat/; and cpiff

i_(’y) is refutable. As above, let

Hence I is a model for ¢.5; since (X,Y) is non-trivial, I is also a model of pn. Thus
I is a model for ¢z.

NP-hard: We provide a reduction from SAT. Let 1) be a propositional formula over vocabulary
P # (. Define an ADF Ey, = (S, L,C) with S = PU{z} (where z ¢ P), v, = —p forp € P
and ¢, = =z A). We have to show that Ug, has a non-trivial conflict-free pair iff 1 is
satisfiable.

if: If 4 is satisfiable, then — is refutable and @g@,P) = —f A =) is refutable. Thus z ¢
U, (0, P), whence § C U (0, P) and Ug| (3, P) C P and (@, P) is non-trivial (z ¢ P)
and conflict-free.

only if: Let (X,Y") be conflict-free and non-trivial. Then X # () orY C S. Clearly conflict-
freeness implies that PN X =0 and P CY. Soz € X orz ¢ Y. If 2 € X then
(X,Y) = ({2}, 5) and by conflict-freeness z € Ug/ ({2}, 5). Then e
is satisfiable, contradiction. Thus X = () and z ¢ Y, that is, (X,Y) = (0, P). Since
(@, P) is conflict-free, z ¢ Z’{E/w (@, P). Thus <p§@’P) = —f A —) is refutable, that is, —)
is refutable whence 1) is satisfiable. (I

29

Since there exists a non-trivial conflict-free pair if and only if there exists a non-trivial naive
pair (Lemma 3.7), we have this easy consequence.

U

nat

Corollary 4.3. Exists! . is NP-complete.

Fortunately, credulous reasoning over conflict-free pairs is not harder than just guessing a
pair where the desired statement is true.

Proposition 4.4. Consider any T € {G,U}. Credfﬁ is NP-complete.

Proof. in NP: Let & = (S, L,C) be an ADF with S = {s1,...,8,} and 1 < k < n. Intuitively,
we can guess a pair (X,Y) with s € X along with the witnesses showing that (X,Y) is
conflict-free. More formally, we reduce the problem to SAT. For the ultimate operator, we
can adapt the construction of Proposition 4.2. We use the formula ¢ .5 as above and define

E= QN sz, As above, we can show that there is a conflict-free pair (X,Y') with s, € X
if and only if = is satisfiable.

NP-hard: We provide a reduction from SAT. Let 1) be a propositional formula over vocabulary
P. Define an ADF Z = RED;(P,v) as in Reduction 3.1. Due to Lemma 3.13 we know that
there is a conflict-free pair (X,Y") with z € X if and only if ¢ is satisfiable. O

Again, Lemma 3.7 yields the same complexity for the naive semantics.

Corollary 4.5. Consider any T € {G,U}. CredZ . is NP-complete.

nas

To verify that a given pair is naive, we have some more work to do. Recalling that a pair
is naive iff it is conflict-free and <;-maximal with respect to being conflict-free, we can see that
to verify naivety we have to verify conflict-freeness (in NP) and verify that there is no properly
<;-greater conflict-free pair (in coNP).

Proposition 4.6. Let O € {G,U}. Ver® . is DP-complete.

nai

Proof. Containment follows from Theorem 3.18, so it suffices to show DP-hardness. We use a
reduction from SAT-UNSAT. Let (¢,1) be a tuple of propositional formulas over vocabularies
Py and Py, respectively, with Py N Py = (). Construct an ADF D as follows:

S=PUPU{z,y,z}
wp=p forpe PLUP,

Yz = QN -z
Py =9Vz
Pz =%

Furthermore, define the pair n = ({z,y},S). We now show that 7 is naive for O iff ¢ is satisfiable
and 1) is unsatisfiable. (Notice that the proof only uses O" and thus works for O = G and O = U.)

if: Let ¢ be satisfiable and 1) be unsatisfiable. We show that 7 is naive for O. We first show
that n is conflict-free for O:

e ©" = ¢ A —z is satisfiable by presumption whence s € O"(7);
e ¢y =1V z is satisfiable whence s € 0" (n).

30

It remains to show that all 6 with i <; 0 are not conflict-free. Clearly, setting ap € PyUP,
to true or false in n violates conflict-freeness. Furthermore, x and y are already set, so the
only two choices are setting z to true or false. If we set z to true, that is, consider the pair
({z,y, 2}, S), then we observe that the formula cp;{r’y’z}’s) = ¢ A\t is unsatisfiable whence
x ¢ O"({x,y,2},S5) and the pair is not conflict-free. So the only remaining candidate is
setting z to false, that is, the pair 6 = ({x,y},S\{z}). Since 1) is unsatisfiable and does not
mention x,y, 2, also ¢ = V f is unsatisfiable. Thus y ¢ O"(0) and o is not conflict-free.
It follows that n is naive for O.

only if: Let nn be naive for O. Assume to the contrary that ¢ is unsatisfiable or v is satisfiable.

1. ¢ is unsatisfiable. Then 7 = ¢ A —z is unsatisfiable and x ¢ O"(n). Thus i is not
conflict-free, in contradiction to it being naive.

2. 9 is satisfiable. Define the pair 0 = ({x,y},S \ {z}). Since @ does not mention
x,y, z, also the formula cpz = V f is satisfiable. Then o is conflict-free with n <; 0,
contradiction.

Thus ¢ is satisfiable and 1 is unsatisfiable. O

For skeptical reasoning, we can do no better than verifying the absence of a naive pair where
the statement in question is not true. The hardness proof proceeds by “laying a trap” for the
conflict-free semantics: setting a statement s to true (for example) in a pair (X,Y) can be
justified locally by the partially evaluated acceptance formula <ng’Y) being satisfiable. However,
the satisfying assignment for statements from Y \ X need not pay respect to what might be
dictated by other parts of the framework. The proof makes use of this and employs two new
statements y and z with acceptance formulas ¢, = z — ¢ for a given QBF matrix ¢ and ¢, = t.
Now setting y to true can be locally justified since ¢, is satisfiable by setting 2 to false. However,
in the case where 1 is unsatisfiable, we cannot set both y and z to true, since the respective partial
evaluation of ¢, would be unsatisfiable, thereby violating conflict-freeness. Consequentially, this
case leads to different kinds of naive pairs (those with y — t and z — u, and those with y — u
and z — t). This reasoning is used in the proof below.

Proposition 4.7. Let O € {G,U}. Skept®,, is TI5-complete.

nas

Proof. in IIY': Let 2= (S, L,C) be an ADF and s € S. We can guess a pair (X,Y) with s ¢ X
and verify in DP that it is naive.

5 -hard: We provide a reduction from the 11 -complete problem of deciding whether a QBF. 2.v"
formula is valid. Let YP3Qi be an instance of QBF,-TRUTH where P,Q # () and
(w.l.o.g.) v mentions at least one p € P and at least one ¢ €). We construct an ADF D,
with a special statement z that is true in each naive pair of Dy, if and only if VP3Qv is
true. Define Dy, = (S, L,C) with

S=PUQU{y,z} withy,z¢ PUQ
pp=pforpeP

g =g for g € Q

oy =219

pr =1t

31

if: Let YP3Qv be true; then for each M C P, the formula ¢(M-MYQ) js satisfiable. In
particular, for all M C N C P, the formula /(M NYQ) jg satisfiable. We show that for
each pair (X,Y) that is conflict-free for Dy, we can set z to true without violating
conflict-freeness. Since z cannot be set to false by definition, it follows that z is true
in every naive pair of Dy,.
Let (X,Y) be conflict-free for Dy. By definition of ¢, we have z € O'(X,Y) CY.
Furthermore, all ¢ € Q) are undefined in (X,Y), that is, @ C Y \ X. We have to show
that (X U{z},Y) is conflict-free for D,. Since z € Y, the pair is consistent.

e Let t € X. By the assumption that (X,Y) is conflict-free, @&X’Y) is satisfiable.

Ift € P, then @EXU{Z}’Y) = @%X’Y) is satisfiable. The case t € () is impossible.
If t =y, then @EXU{Z}’Y) = cpéxu{z}’y) =t — pXY) = p(XY) g satisfiable by
assumption. The case t = z is trivial.

o Let fe S\Y. If f € P, then QD;XU{Z}’Y) = QDSCX’Y) and f ¢ O'(X U{z},Y) since
f¢ O(X,Y). Thecases f € Q and f = z are impossible. If f = y, theny ¢ O'(X,Y).

1. For O =Up,,, this means that Lp@(,X’Y) = (z —)XY s refutable. Then the

formula p(3Y) = p(XULzhY) = ¢ 4 (XU{z1Y) = goz(,XU{z}’Y) is refutable and
thusy ¢ Up (X U{z},Y).
2. For O = (p,,, the formula ¢§XU{Z}’Y) = (z —) XU=LY) contains variables
(¢ contains at least oneq € Q €Y \ X by presumption) whencey ¢ Gy, (X U{z},Y).

only if: Let M C P be such that the formula ¢»™-MY®Q) js unsatisfiable. We show that the
pair (M U{y},MUQU/{y,z}) with z ¢ M is naive. Clearly, the pair is conflict-free
for statements among P U Q U {z}. The formula pMOtHMOQU=N — oy 4y (M.MUQ)
is satisfiable (set z to false) whencey € O"(M U{y}, M UQU{y,z}). Thep € P are
all set to true or false, and none of the ¢ €) can be set to true or false; our only
possibility is to set z to true or false. Setting z to false is obviously not conflict-free
by definition. For the pair (M U{y,z},M UQ U {y, z}), we have that

SO?SMU{y,Z},MUQU{yJ}) —t - ¢(Mu{y72},MUQU{y7Z}) = 77[,(M7MUQ)

is unsatisfiable whence z ¢ O"”(M U {y, z} , M U Q U {y, z}) and the pair is not conflict-
free. Therefore, (M U{y},M UQU {y,z}) is a naive pair where z is not true. O

Recalling that deciding existence of non-trivial ultimate conflict-free pairs is NP-hard, we can
show that deciding existence of non-trivial approzimate conflict-free pairs is (potentially) easier.
The reason lies in the smaller precision of the approximate operator, as witnessed in Example 4.1.

Proposition 4.8. Existsgﬁ is in P.

Proof. Let £ = (S,L,C) be an ADF. If S = () then there is no non-trivial pair at all, so assume
S £ 0.
(0,5\{s})

1. There is an s € S such that the formula s contains variables. Then by definition
of G=, we have s ¢ GL(0, S\ {s}) and thus (0, S \ {s}) is conflict-free and non-trivial.

2. For all s € S, the formula ¢§®’S\{S}) is an expression consisting only of connectives and
truth values. Then for each s € S the expression apgm’s\{s}) has a fixed truth value, which
can be computed in polynomial time.

32

(a) Thereisans € S such that <p§@’5\{5}> = f. Then by definition of Gz, we have s ¢ GL(0,S \ {s})
and thus (0, S\ {s}) is conflict-free and non-trivial.

(b) For all s € S, we find ""**Y) =t Then we consider the truth value of o\"*}*9) for
all s € S, which is computable in polynomial time.

({s}.9) ({s}.9)

i. There is an s € S for which we find s =t. In particular, ps is sat-
isfiable, whence s € G&({s},S). Thus the pair ({s},S) is conflict-free and non-
trivial.

ii. For all s € S, we find <p§{3}’s) =f. Then for each s € S, we have p; = —s and
(0,.S) is the only conflict-free pair. O

As usual, Lemma 3.7 yields the same bounds for the existence of non-trivial approximate
naive pairs.

Corollary 4.9. Exists? . is in P.

nat

However, these two results are the only ones where the complexities of the approximate and
ultimate operators differ for semantics based on conflict-freeness.

4.2. Admissibility-based semantics

We begin our complexity analysis of admissibility-based semantics by introducing and recall-
ing some basic concepts of these semantics and the corresponding operators. By definition, a
pair (X,Y) with X CY is admissible for operator O iff (X,Y) <; O(X,Y’). Since the operators
under consideration are <;-monotone, we can directly infer that if (X,Y") is admissible then it
holds that O(X,Y) <, O(O(X,Y)). This means that (i) applying operator O to an admissible
pair yields again an admissible pair, and (ii) iterative applications of @ to an admissible pair
(X,Y) always yield pairs (X', Y”) such that (X,Y) <; (X’,Y”). In more detail, (ii) implies that a
statement assigned to true or false in (X,Y") will keep this assignment if the operator is applied,
while undecided statements may change their assignment. If (X,Y) is a fixpoint of O (i.e. a
complete pair of O), then the application of O also does not change the undecided statements.

Most complexity results in the following mainly rely on the operator for the upper bound
U" = G"”, which is the same for both approximate and ultimate operators (Lemma 3.1). We also
make use of the reductions from Section 3.5.

The first problem we analyze is the verification problem for admissible semantics. As before
for most problems we need only show hardness since Theorem 3.18 shows membership.

Proposition 4.10. Consider any T € {G,U}. VerZ, is coNP-complete.

adm

Proof. We provide a reduction from the problem of deciding whether a given formula 1 over
vocabulary P is unsatisfiable. Let ADF = = RED;(P,v) as defined in Reduction 3.1 and
O € {G,lk}. The pair (0, P) is admissible for O iff = ¢ U (0, P) iff 1 is unsatisfiable due
to Lemma 3.13. (|

For verifying if a given pair is complete the complexity increases to DP compared to just
checking admissibility. Briefly put, the coNP part decides whether the given pair is a postfixpoint
and the additional NP check is used to decide whether the pair is prefixpoint. Together they
decide whether the pair is a fixpoint.

Proposition 4.11. Consider any Z € {G,U}. VerZ is DP-complete.

com

33

Proof. For T = U this was proven in [11, Corollary 7]. However, the following reduction works
for both operators.

We provide a reduction from the DP-complete problem of determining whether a given formula
¢ is satisfiable and a given formula 1) is unsatisfiable. Let ¢ and i be arbitrary formulas over
the disjoint vocabularies P; and P; respectively. Let P = P; U P,. Construct the following ADF
=E=(PU{y,z},L,C).

o pp=pforpeP,
b (Py:_‘y/\(b;
® v, =1.

Let O € {Gs,U}. We now prove that (0, P U {y}) = O, P U {y}) iff ¢ is satisfiable and 1 is
unsatisfiable.
Independent of ¢ and) we know due to Lemma 3.10 that for any conflict-free pair of O that

y is not assigned to true. Further for all p € P we have p € U (0, PU{y}), since cpl(jm’PU{y}) =pis

satisfiable. Further p ¢ U(0, PU{y}), since %()Q),Pu{y}) = p is refutable. Thusp ¢ GL(0, PU{y}),
since the ultimate operator is at least as precise than the approximate operator.
Consider the following two cases:

1. Let ¢ be satisfiable. Clearly @;@,Pu{y}) is satisfiable and thus y € U (0, P U {y}).
2. Let v be unsatisfiable. It follows immediately that z ¢ UL (0, P U {y}).

Therefore (0, P U {y}) is complete for O if ¢ is satisfiable and v is unsatisfiable.

For the other direction assume that ¢ is unsatisfiable or 1 is satisfiable. For the first case
suppose ¢ is unsatisfiable. Then y ¢ UZ(0, P U {y}) and (0, P U {y}) is not complete. For the
second case suppose) is satisfiable. Then z € U'(0, P U {y}) and likewise (), P U {y}) is not
complete. (I

Next, we analyze the complexity of verifying that a given pair is the approximate (ultimate)
Kripke-Kleene semantics or grounded pair of an ADF E, that is, the least fixpoint of G= (I&). It
turns out that verifying if a given pair is grounded has the same complexity as verifying if the pair
is complete. For both operators showing membership is the tricky part. For G we reduce the steps
of the operator computation into propositional logic. In particular we construct two formulas,
one we check for satisfiability and the other for unsatisfiability. This gives us an interesting,
yet technical proof of membership. For U this result was shown already in [11, Theorem 6],
but the proof was omitted due to space limitations. For sake of completeness we will present
here an alternative proof which will be re-used later for query-based reasoning. The membership
proof is based on a somewhat more involved guess and check algorithm. This algorithm non-
deterministically tries to construct a pair (X,Y’), which is equal or more informative than the
ultimate grounded pair of a given ADF. If the algorithm successfully constructs such a pair with
e.g. s ¢ X, then we can conclude that s is also not true in the ultimate grounded pair. Since the
algorithm is based on guess and check this provides us with a procedure showing that deciding
whether a statement is not true in the ultimate grounded pair is a problem in NP. Formally we
first prove a technical lemma underlying this algorithm. The following definition specifies a set
of pairs called grd . (=) for an ADF Z=.

Definition 4.1. Let 2 be an ADF and X CY C S. If it holds that

1. for each x € X there exists a Z, s.t. X C Z, CY and Z, E ¢,
2. for each s € S\ 'Y there exists a Zs s.t. X C Z;, CY and Z; [~ @5, and

34

3. for each y € Y \ X there exist two Z?wZz// st. XCZ,CY, X C Z; CY, Z, = ¢, and
Zg// = @y,
then let (X,Y) € grd.,(Z).

The set grd,(Z) has the appealing property that the grounded pair of L is in this set and
all other pairs in the set are more informative than the ultimate grounded pair.

Lemma 4.12. Let = be an ADF, (X,Y) € grd-,(Z) and (L,U) = Ilfp(l&). It holds that

L. (L,U) € grd.,(Z), and

Proof. Let (L,U) be the grounded pair of U, then it is straightforward to show that (L,U) €

grd (2), i.e. that this pair satisfies all three properties of Definition 4.1. For each | € L it holds

that gol(L’U) is tautological, for s € S\ U it holds that gogL’U) is unsatisfiable, and for v € U \ L

it holds that @SLL’U) is satisfiable and refutable. By supposing the contrary one immediately

arrives at a contradiction that (L,U) is the grounded pair (recall that the grounded pair is also

a fixpoint). If gol(L’U) is not tautological, then | ¢ UL(L,U), if o8 s not unsatisfiable, then

s e U(L,U) and if @&L’U) is a tautology or unsatisfiable, then we have in the former case that
u € UL(L,U) and the latter that u ¢ U (L,U).

Assume (X,Y) € grd (), i.e. the pair satisfies all three properties of Definition 4.1, then
we show by induction on n > 1 that UZ(0,S) <; (X,Y), with the usual meaning of iterative
applications of operators, i.e. U2 (X,Y) = UL 1 (U(X,Y)). Note that there exists an i > 0 such
that Ui(0,S) = Ifp(le). For n = 1 and U2 (0, S) = (L1,U;) it holds that if s € Ly then @ is
a tautology, implying that s € X, since otherwise there would exist a two-valued interpretation
which does not satisfy ys. This is due to the fact that if s ¢ X, then by assumption and
by Definition 4.1 there would exist a Z with X C Z C Y, such that Z [~ ¢,. The case for
s € S\Uy is symmetric. Now assume the induction hypothesis (L, Uy,) = U2 (0,S) <; (X,Y) and

to show that US+(0,S) <; (X,Y) holds consider U™ (0, 8) = (Lyt1,Upt1). Ifs € Lygr \ Ly,

then ng"’U") is tautological, which means that s must be in X. Similarly for the statements set

to false. This proves the lemma. ([

This leads us to Algorithm 1 for deciding whether a certain statement s is not true in the
ultimate grounded pair of an ADF =. This is a non-deterministic algorithm, which guesses a
pair (X,Y) with s ¢ X along with witnesses with which we can verify that (X,Y) € grd ().
If this is the case then s ¢ L with (L,U) the grounded pair of Z& (everything assigned to true in
the grounded pair is also true in (X,Y") due to the preceding lemma).

Algorithm 1 Guess & check algorithm for ultimate grounded semantics.

Require: ADF == (S,L,C), s€ S.

Ensure: Return no iff s is not true in Ifp(i&).

: Guess X,Y with X CY C S and s ¢ X

: Guess for each t € Y a set Z; C S; store Z; in T}

: Guess for each f € (S\ X) aset Z; C S; store Zy in F;

: Verify that for each Z; € T we have Z; = @y

: Verify that for each Zy € F we have Z; [~ ¢y;

: If there exists a guess such that all verifications were successful return no;

S U s W N

Clearly, Algorithm 1 requires at most 2 - |S| + 2 guesses of sets. If X = () and Y = S we
guess two sets per © € S. Each such guess can be constructed and checked in polynomial time

35

with respect to the size of the input ADF. This algorithm returns no if there exists a successful
computation path and otherwise terminates without returning no. More formally we show that
the algorithm is correct in the following lemma.

Lemma 4.13. Let Z = (S, L,C) be an ADF, s € S and (L,U) = Ifp(L&). It holds that s ¢ L
iff non-deterministic Algorithm 1 returns no for input ADF E and statement s.

Proof. Assume Algorithm 1 returned no for = and statement s. Then clearly for the guessed
(X,Y) (Line 1) we have s ¢ X and (X,Y) € grd. (E), since witnesses for all three proper-
ties of Definition 4.1 were guessed and successfully verified. By Lemma 4.12 we know that
(L,U) <; (X,Y). Thus s ¢ L.

For the other direction assume that s ¢ L. Due to Lemma 4.12 we know that (L,U) € grd. (Z).
Therefore the non-deterministic Algorithm 1 can guess (L, U) along with witnesses that (L,U) € grd (Z)
and successfully verify these witnesses. Thus there exists a guess (a computation path) such
that Algorithm 1 returns no. O

By Lemma 4.12, we can straightforwardly adapt Algorithm 1 to decide (i.e. return “no”)

e whether a statement is not false in the ultimate grounded pair, by replacing the guessed
pair in Line 1 with (X,Y) such that s € Y; and

e whether a statement is undecided in the ultimate grounded pair, by replacing the guessed
pair in Line 1 with (X,Y) such that s € (Y \ X).

Note that the guess and check algorithm can be adapted to either decide whether a statement
is not true or false in the ultimate grounded pair, or to decide whether a statement is undecided
in the ultimate grounded pair. This gives complementary membership results w.r.t. complexity
regarding the decision problem whether a statement is true or false, or on the other hand, if it
is undecided in the ultimate grounded pair.

We now come to the theorem showing the computational complexity of the verification prob-
lem of grounded semantics for both operators. The proof uses a reduction introduced earlier
— it encodes steps of the approximate operator computation into propositional logic. For the
ultimate operator we make use of Algorithm 1 and Lemma 4.13.

Theorem 4.14. Consider any T € {G,U}. Verfrd is DP-complete.
Proof. Let Z be an ADF and X CY C S. We begin the proof for T = G.

in DP: We provide a reduction to SAT-UNSAT by extending the construction of Reduction 3.3.
We additionally define the formulas

o<, = N\ “tin N\ w (T,U) <; (X,Y)
si¢X si€Y
¢, = N\ tin N\ ~u (T,U) >; (X,Y)
s;i€X $i Y
== ¢Si A ¢Zi (T U) (X7 Y)
¢<, = ¢Si A _'¢Zi (T U) % (Xa Y)
1 = Pefp N\ P= G=(T,U) = (T,U) with T CU and (T,U) = (X,Y)
o = beto A e, G=(T,U) = (T,U) with T C U and (I,U) <, (X,Y)

Intuitively, ¢— will be used to force (X,Y) to be a fixpoint of Gz, and ¢, will be used to
stipulate the existence of a fixpoint with strictly less information than (X,Y).

36

We claim that (1) v is satisfiable iff (X,Y") is a consistent fixpoint of G=, and (2)) is
satisfiable iff there is a fixpoint (T, U) <; (X,Y) of Gz. From this it follows that (i1, 2)
is a positive instance of SAT-UNSAT iff (X,Y) is the Kripke-Kleene semantics of =.

1. 1 is satisfiable iff (X,Y) is a consistent fixpoint of G=.

“if”: Let (X,Y) be a consistent fixpoint of G=. Set (T,U) = (X,Y), then by Lemma 3.15
there is an interpretation I C P with I |= ¢esp,. By definition, we also have I = ¢—,
whence I |= 11 and 1), is satisfiable.

“only if”: Let 1)1 = ¢csp N\ ¢= be satisfiable. Then in particular ¢, is satisfiable and
by Lemma 3.15 there is an interpretation I C P such that its associated pair
(T,U) is a consistent fixpoint of Gz. Since additionally I = ¢—, it follows that
(T.U) = (X.Y).

2. 1)y is satisfiable iff there is a fixpoint (T,U) <; (X,Y) of G=.

“if”: Let (T,U) <; (X,Y) withT C U and Gs(T,U) = (T,U). By Lemma 3.15 we can
define a two-valued interpretation I C P such that I = ¢cfp. It is straightforward
to show that (T,U) <; (X,Y) implies I |= ¢, .

“only if”: Let I C P be an interpretation with I = 1. Since in particular I |= ¢cfp,
Lemma 3.15 yields a consistent fixpoint (T, U) of G=. As above, we can show that
(Tv U) < (Xa Y)

DP-hard: This follows from the proof in Proposition 4.11: The complete pair to verify there
coincides with the Kripke-Kleene semantics of the constructed ADF.

We now proceed to the proof for T =U.

in DP: To decide whether a statement s is not true in the ultimate grounded pair we can directly
use Algorithm 1. The correctness of the algorithm is shown in Lemma 4.13. This is a non-
deterministic algorithm, witnessing that this decision problem is in NP. Therefore deciding
whether s is true in the ultimate grounded pair is in coNP. For deciding whether s is not
false in the ultimate grounded pair a slight adaption of Algorithm 1 (guess (X,Y) with
s € Y) is sufficient to show that this is also a problem in NP, thus the complementary
problem is again in coNP. For deciding whether s is undefined in the ultimate grounded
pair we again slightly adapt the algorithm, such that in the guessed pair we have s € Y \ X
and directly have due to the proof of Lemma 4.13 that the algorithm returns no iff s
is undefined in the ultimate grounded pair. Therefore deciding whether a statement is
undefined in the grounded pair is a problem in NP. Thus combining these checks for all
statements in S for the pair to verify we arrive at an algorithm witnessing that this is a
problem in DP.

DP-hard: For DP-hardness, as for the approximate operator, consider the proof of Proposi-
tion 4.11. The pair given for verification in that proof is complete iff it is the ultimate
grounded pair. O

We next ask whether there exists a non-trivial admissible pair, that is, if at least one statement
has a truth value other than unknown. Clearly, we can guess a pair and perform the coNP-check
to show that it is admissible. The next result shows that this is also the best we can do.

Theorem 4.15. Consider any T € {G,U}. ExistsZ, is X -complete.

adm
Proof. in ©¥': Let O € T. We guess a pair (X,Y) and verify that X CY and (0,5) <; (X,Y)
in polynomial time, and (X,Y) <; O(X,Y’) using the NP oracle (Lemma 3.17, Items 1, 3,
and 5).

37

Y hard: We provide a reduction from the %% -hard problem QBF, 5-TRUTH. Let 3PVQv be a
QBF. Construct = = REDy(P, Q,) as defined in Reduction 3.2. Further let O € {Gz,Us}.
Due to Lemma 3.14 there exists a non-trivial admissible pair of O iff APVQ is true. [

Lemma 3.4 implies the same complexity for the existence of non-trivial complete and preferred
pairs.

Corollary 4.16. Consider any Z € {G,U} and o € {com, pre}. Exists$ is X' -complete.

By corollary to Theorem 4.14, the existence of a non-trivial grounded pair can be decided in
DP by testing whether the trivial pair (,5) is (not) a fixpoint of the relevant operator. The
following result shows that this bound can be improved.

Proposition 4.17. Consider any T € {G,U}. Existsgrd is coNP-complete.

Proof. Let = be an ADF. Obviously, Z has a non-trivial approximate grounded semantics iff
the trivial pair (,S) is not a fixpoint of Gz, so we show that the co-problem (deciding whether
G=(0,S) = (0,5)) is NP-complete.

in NP: We have that G=(0,5) = (0,5) iff 0 C GL(0,S) C 0 and S C GZ(0,S) C S. So mainly we
have to verify GL(0,S) C 0§ and S C G (0, S). By Lemma 3.17, the first part can be decided
in P (item 1) and the second part in NP (item 4).

NP-hard: We give a reduction from SAT. Let 1) be a propositional formula over vocabulary
P. Define an ADF D = (S,L,C) with S =P U{z} for z ¢ P and ¢, =p for p € P and
w, =z A. It is readily verified that by definition every statement has a parent that is
undecided in (0, S) and thus G4(0, S) = 0. Furthermore, P C G.(S, 0) is easy to show. Thus
S C GL(S,0) iff z € G&(S,0) iff there is an M C S with par(z) \ M C S\ 0 and M | ¢, iff
there is an M C S with M = ¢, iff ¢, = z A1) is satisfiable iff ¢ is satisfiable.

For T = U, the proof is analogous to the one above — we show NP-completeness of the comple-
mentary problem.

in NP: We have to verify U(0,S) C 0 and S C UL (D, S). By Lemma 3.17(2) and Lemma 3.17(4),
this can be done in NP.

NP-hard: The construction is the same as for I = G. O

Using the result for existence of non-trivial admissible pairs, the verification complexity for
the preferred semantics is straightforward to obtain, similarly as in the case of AFs [22].

Proposition 4.18. Consider any Z € {G,U}. VerZ, (X,Y) is I1{-complete.

pre

Proof. in IIY’: Let = be an ADF and X CY C S. To show that (X,Y) is not preferred, we
guess a pair (M, N) with (X,Y) <; (M, N) and use the NP oracle to show that (M, N) is
a complete pair (which can be done in DP).

7 -hard: Consider the complementary problem, that is, deciding whether a given pair is not a
preferred pair. Even for the special case of the pair (0, S), Theorem 4.15 shows that this
problem is 25 -hard. O

38

We now move on to query-based reasoning. Similarly as before, we mainly utilize the operator
for the upper bound to show hardness. Due to this reason, and for the sake of uniformity of
proving results for both operators, we slightly deviate from our definition of credulous and
skeptical reasoning and show hardness for the question whether a o-pair exists such that the
given statement is false, respectively ask whether the statement is false in all o-pairs. For the
admissibility-based semantics it is straightforward to see that these problems can be reduced to
each other. For querying statement s in an ADF = consider the modified ADF = with a fresh
statement § and acceptance condition s = —s. Let O € {Gz,lk} and O € {G, U}, It holds
that (X,Y) is admissible for @ with s € (S\Y) iff (X U{8},Y") is admissible for O. Likewise, it
holds that for all preferred pairs (X,Y’) of O we have s € (S\Y) iff in all preferred pairs (X,Y)
of O we have § € X. Further, s is false in the grounded pair of O iff § is true in the grounded
pair of 0.

We now show that on general ADFs credulous reasoning with respect to admissibility is
harder than on AFs. By Lemma 3.5, the same lower bound holds for complete and preferred
semantics.

Proposition 4.19. Consider any Z € {G,U}. CredZ, = is ©%-complete.

m

Proof. Membership is given by Theorem 3.18. Hardness is shown by a reduction from the $% -
hard problem QBF, 5-TRUTH. Let 3PYQ1 be a QBF. Construct = = RED,(P, Q,v) as defined
in Reduction 3.2. Further let O € {Gz,U&}. Due to Lemma 3.14 there exists an admissible pair
(X,Y) of O with z € (S\Y) iff AIPYQY is true. O

For credulous and skeptical reasoning with respect to the grounded semantics, we first observe
that the two coincide since there is always a unique grounded pair. Furthermore, a statement s
is true in the approximate grounded pair iff s is true in the least fixpoint (of G=) iff s is true in all
fixpoints iff there is no fixpoint where s is undecided or false. This condition can be encoded in
propositional logic and leads to the next result. For the ultimate operator we apply Algorithm 1.
For coNP-hardness the proof of [9, Proposition 13] can be easily adapted.

Proposition 4.20. Consider any Z € {G,U}. Both Credgrd and Skeptgrd are coNP-complete.

Proof. For showing the membership result for T = U, consider verifying that a statement s is
not true in the ultimate grounded pair. Algorithm 1 decides this via a guess and check approach.
Thus deciding whether a statement is not true can be done in NP. The complementary problem
decides if a given statement is true in the ultimate grounded pair. This yields coNP membership
for Credz{Td. For hardness the proof for both operators is the same. For showing the results for
T = G consider the following proof.

in coNP: We reduce to unsatisfiability checking in propositional logic. Let 2= = (S, L,C) be an

ADF with S = {s1,...,s,} and assume we want to verify that sy is true in the grounded
pair of = for some 1 < k < n. We again extend Reduction 3.3; additionally define the
formulas

Gep = Gctplp/D' 1 p € P (renamed copy of ¢csp)

¥ = (o A 7tr Aug) V (g, A —uy)

We claim that 1 is unsatisfiable iff there is no consistent fixpoint where sy, is unknown or
false.

1. ¢efp A —tr Ay, Is unsatisfiable iff there is no consistent fixpoint where sj, is undefined:

39

“if”: Let ¢efp N —ti A up, be satisfiable. Then there is an interpretation I C P such
that I |= ¢efp and I |= =ty Auy. Using Lemma 3.15 we can construct a consistent
pair (T, U) and show that it is a fixpoint of G= with s € U \ T.
“only if”: Let T C U C S such that G=(T,U) = (T,U) and s, € U\ T. Lemma 3.15
yields an interpretation I C P such that I = ¢, and I = ity A ug.
2. ¢, N Ty, Is unsatisfiable iff there is no consistent fixpoint where sy, is false: similar.

coNP-hard: Let ¥ be a propositional formula over vocabulary P. Define the ADF D = (S,L,C)
with S = PU{z}, p, = for p € P, and ¢, =)\ ,cp ~p. We show that z is true in the
grounded semantics of Gp iff ¥ is a tautology.

“f”: Let v be a tautology. Then —) is unsatisfiable and p ¢ G/5(0,S) for all p € P.
Obviously ¢, is satisflable whence z € G/3(0,S). Thus G/(0,S) ={z}. Further-
more U, (0,S) =10, since no acceptance condition is a tautology. Therefore also
GL(0,S)=10. Thus Gp(0,S) = (0,{z}). Now since z does not occur in the accept-
ance formula of z, it is clear that Gp(0,{z}) = ({z},{z}) = Gp({z}.{z}). Thus z is
true in the grounded semantics of Gp.

“only if”: Let Ifp(Gp) = (X,Y) and z € X. By the acceptance condition of z and the fact
that (X,Y) is a fixpoint of Gp we get PNY = (. Since X C Y we have (X,Y) = ({2}, {z}).
Assume to the contrary that 1 is not a tautology. Then —i) is satisfiable and
PCY =gG[®,S). Contradiction. O

Regarding skeptical reasoning for the remaining semantics we need only show the results for
complete and preferred semantics, in all other cases the complexity coincides with credulous reas-
oning or is trivial. For complete semantics it is easy to see that skeptical reasoning coincides with
skeptical reasoning under grounded semantics, since the grounded pair is the <;-least complete
pair.

Corollary 4.21. Consider any T € {G,U}. SkeptZ . is coNP-complete.

com

Similar to reasoning on AFs, we step up one level of the polynomial hierarchy by changing
from credulous to skeptical reasoning with respect to preferred semantics, which makes skeptical
reasoning under preferred semantics particularly hard. We apply proof ideas by [27] to prove
1Y -hardness.

Theorem 4.22. Consider any Z € {G,U}. SkeptZ , is 1Y -complete.

pre

Proof. Membership is given by Theorem 3.18. Hardness is shown by a reduction from the TI£ -
hard problem QBFj3,-TRUTH. Let VPAQVRY be a QBF. We define an ADF = as follows:

e S=PUQU-QURU{Sf}, with-Q = {-¢ | ¢ € Q},
e o,=pforpeP,
® p,=fN—-qforqeQ,

® v q="fAnqfor-qe-Q,

wr = forr € R,

pp=~f AN

40

Let O € {Gz,l£}. We now show that all preferred pairs (X,Y) of O have f € S\Y iff VPIQVRY
is true. First observe some helpful facts. For each P’ C P there is a preferred pair (X,Y) of O
with P’ C X and (P\P’) C (S\Y), i.e. for each two-valued valuation on P there exists a preferred
pair assigning to the statements in P exactly these values. In addition for each preferred pair
(X,Y) of O it holds that PN (Y \ X) = (). These two facts are shown in Lemma 3.12. Further
for all admissible pairs (X,Y) of O we have that f ¢ X due to Lemma 3.10 and if f € (Y \ X)
then also (Q U-Q) C (Y \ X) due to Lemma 3.11.

“if”: Assume that the formula is valid. Let P’ C P. For such a P’ we know that there is a
Q' C Q such that for any R' C R we have P’ U Q' UR' = ¢. We now show there is a
preferred pair (X', Y') with X' = PUQ ' U-(Q\ Q') and Y’ = X' UR for O. We set
-QR\NQ) ={q]qge (@Q\Q)} It is easy to see that P" C GL(X",Y") C LL(X",Y").
Likewise since f € S\Y' also Q' C GL(X',Y') C U.(X',Y’). Similarly it follows that
-(Q\ Q) C GL(X"Y') C U(X',Y'). Proving that (S\Y’)\ {f} is not contained in
W (X', Y") proceeds analogous. The statements r € R are always undecided in admissible
pairs for both operators. For proving that (X',Y") is preferred for O, it remains to be
shown that f ¢ GY(X',Y'). For all Z with X' C Z C Y’ we have that Z = 1, since
ZNP=P,ZNQ = Q' and by assumption we know that P' U Q" U R’ |= 1. Therefore
Z W= 5 and thus f ¢ Us(X',Y') and (X',Y’) is admissible for O. Since only R are
undecided in this pair and these statements are undecided in all admissible pairs, we can
conclude that (X',Y") is indeed a preferred pair w.r.t. O.

Now we know that there exists a preferred pair which sets P’ to true and f to false. To see
that there is no preferred pair (X", Y"") which assigns the same values to the statements in
P and f € Y", it suffices to show that for this case then also Q,-Q C Y"\ X", which holds
due to Lemma 3.11. More formally, assume (X",Y") is admissible for O and P’ C X",
(P\P) C(S\Y)and f € (Y'\ X"). We can conclude that Q,-Q C Y" \ X" due
to Lemma 3.11 and thus X" = P" and S\ Y"” = (P\ P’). Hence (X", Y") <; (X',Y') and
the former pair cannot be preferred for O. Summarizing, all preferred pairs set a P’ C P
to true and P\ P’ to false and for each such choice there exists a preferred pair setting f to
false. Further if for such a choice a preferred pair exists with f set to false, we know that
there is no preferred pair with the same assignment to the statements in P and setting f
not to false. Thus any preferred pair of O sets f to false.

“only if”: Assume that in any preferred pair of O we have that f € S\Y. Asin the “if” direction
we know that for any P’ C P there exists a preferred pair (X,Y) with PN (Y \ X) =) and
P’ C X. Since f € S\'Y we have that in any such preferred pair also (QU-Q)N (Y \ X) = 0,
since otherwise it would not be maximal w.r.t. <; by a similar argument as in the proof
of Lemma 3.12. Further we know that RCY \ X. Let Q' = QN X. Thus for any R' C R
we have P’ U Q' U R’ {= ¢y, since f € S\'Y and hence P'U Q" U R’ |= 1. Since for any
P’ C P such a preferred pair exists we can conclude that the QBF is valid. O

4.3. Two-valued semantics

The complexity results we have obtained so far might lead the reader to ask why we bother
with the approximate operator G= at all: the ultimate operator U& is at least as precise and for
all admissibility-based and most conflict-free-based semantics considered up to now, it has the
same computational costs. We now show that for the verification of two-valued stable models,
the operator for the upper bound plays no role and therefore the complexity difference between
the lower bound operators for approximate (in P) and ultimate (coNP-hard) semantics comes to
bear.

41

For the ultimate two-valued stable semantics, Brewka et al. [11] already have some complexity
results: model verification is in DP (Proposition 8), and model existence is X1'-complete (The-
orem 9). We will show next that we can do better for the approximate version.

Proposition 4.23. Let = be an ADF and X CY C S. Checking that X is the least fixpoint of
GL(-,Y) can be done in polynomial time.

Proof. We provide the following polynomial-time decision procedure with input =, X,Y .

1. Set i =0 and Xy = 0.
2. For each statement s € S, do the following:
(a) If par(s)N (Y \ X;) = 0 and Cs(par(s) N X;) = t, then set s € X;41.
. If X411 = X; = X then return “Yes”.
If X1 =X, € X then return “No”.
. If X1 € X then return “No”.
6. Increment i and go to step 2.

T W

Overall, the loop between steps 2 and 6 is executed at most |S| times, since X; C X,; 1 for all
i € N and we can add at most all statements one by one. In each execution of the loop, step 2a
is executed |S| times. The conditions of step 2a, in particular par(s) N X; = s, can be verified
in polynomial time.

It remains to show that X is the least fixpoint of GL(-,Y") iff the procedure returns “Yes”.

“if”: Assume the procedure returned “Yes” on input =, X,Y .

e X is a fixpoint of G5(-,Y), that is, GL(X,Y) = X:

“C”: Let s € GL(X,Y). Then there is a B C X N par(s) such that Cs(B) = t and
par(s)\B C S\Y . As in the proof of Proposition 3.16, we get that B = X Npar(s),
Cs(par(s)NX) =t and par(s)N(Y'\ X) = 0. Since the procedure answered “Yes”,
there was an i € N with X; 11 = X; = X. From step 2a of the procedure, we know
that par(s) N (Y \ X;) = 0 and Cs(par(s) N X;) = t means that s € X;11 = X.

“D”: Let s € X. Since the procedure answered “Yes”, there was an i € N with
Xiy1 = X; = X. Now s € X;41 by step 2a of the procedure means that par(s) N
(Y\ X;) =0 and Cy(par(s) N X;) = t. Thus there exists a B = par(s) N X with
Cs(B) =t and par(s) \ BC S\Y, and s € GL(X,Y).

e X is the least fixpoint: Assume to the contrary that there is some X' C X that is a
fixpoint of GL(-,Y). But then step 4 of the procedure would have detected X,;11 =

X; = X’ C X and returned “No”, contradiction.

“only if”: Let X be the least fixpoint of G5(-,Y) and assume to the contrary that the procedure
answered “No”.

e The procedure answered “No” in step 4. By the argument above, we can show that
there is a fixpoint X' C X, contradiction.

e The procedure answered “No” in step 5. We have X;11 € X for some i € N, that is,
there is some s € X;11 with s ¢ X. Since s € X;11, we have par(s) N (Y \ X;) =0
and Cs(par(s) N X;) = t. Since the procedure did not terminate with X; already, we
know that X; C X. Therefore, par(s) N (Y \ X) = 0 and Cs(par(s) N X) = t. This
means s € GL(X,Y) = X. Contradiction. O

42

In particular, the procedure can decide whether Y is the least fixpoint of G4(-,Y), that is,
whether (Y,Y) is a two-valued stable model of Gz. This yields the next result.

Theorem 4.24. 1. Ver§, is in P, and
2. Existsg,, is NP-complete.

Proof. Let = be an ADF and X C S.

1. We have to verify that X is the least fixpoint of the operator GL(-, X), which can be done
in polynomial time by Proposition 4.23.
2. Deciding whether = has a two-valued stable model is NP-complete:

in NP: To decide whether there is a two-valued stable model, we guess a set X C S and
verify as above that (X, X) is indeed a two-valued stable model.

NP-hard: Carries over from AFs. O

The hardness direction of the second part is clear since the respective result from stable semantics
of abstract argumentation frameworks carries over.

Brewka et al. [11] showed that VerY,, is in DP (Proposition 8). We can improve that upper
bound to coNP: basically the operator for the upper bound (contributing the NP part) is not
really needed. We furthermore also provide a hardness proof for coNP.

Proposition 4.25. VerY,, is coNP-complete.

Proof. in coNP: Given an ADF = = (S, L,C) and a set M C S we first construct the reduct ZM
in polynomial time. Now M is an ultimate two-valued stable model of = iff all statements
in M are true in the grounded semantics of M and (M, M) is a model of Z. Verifying
if a statement is true in the ultimate grounded pair of an ADF is coNP-complete due
to Proposition 4.20. Thus verifying that all statements in M are true in the ultimate
grounded pair is likewise a problem in coNP. Verifying if (M, M) is a model of 2 can be
achieved in polynomial time. This means that Ver,, is in coNP.

coNP-hard: Let 1 be a propositional formula over a vocabulary P. We define an ADF D over
statements P with ¢, = for all p € P. When we apply U}, to the pair (0, P), there are
only two possible outcomes: either i) = ¢@F) = cpg)’P) is a tautology, then p € U}, (0, P)
for all p € P, that is U},(0, P) = P; otherwise 1 is refutable and accordingly U}, (0, P) = 0.
Furthermore, in the former case it follows from <;-monotonicity of Up that P = U, (0, P) C
UL, (P, P). Thus v is a tautology if and only if P is a fixpoint of U/,(-, P) and) is not. Now

P is an ultimate two-valued stable model of D
iff P is the least fixpoint of U}, (-, P)
it U, (0, P) = P =U}, (P, P)
iff ¢ is a tautology O

We now turn to the credulous and skeptical reasoning problems for the two-valued semantics.
We first recall that a two-valued pair (X, X) is a supported model (or model for short) of an ADF
Eiff G2(X, X) = (X, X). Thus it could equally well be characterized by the two-valued operator
by saying that X is a model iff G=(X) = X. Now since & is the ultimate approximation of G=,
also U&(X, X) = (X, X) in this case. Rounding up, this recalls that approximate and ultimate
two-valued supported models coincide. Hence we get the following results for reasoning with this
semantics.

43

Corollary 4.26. Consider anyZ € {G,U}. Cred%,, is NP-complete and SkeptZ,, is coNP-complete.

2su

Proof. The membership parts are clear since Ver, is in P. Hardness carries over from AFs [22].0]

For the approximate two-valued stable semantics, the fact that model verification can be
decided in polynomial time leads to the next result.

Corollary 4.27. Credgst is NP-complete and Skeptgst is coNP-complete.

Proof. The membership parts are clear since Ver§,, is in P. Hardness carries over from AFs [22].0]

For the ultimate two-valued stable semantics, things are bit more complex. The following
result was already presented by Brewka et al. [11], however they had to leave out the proof due
to space restrictions. We present the proof (inspired by the proof of [20, Theorem 6.12]) here for
completeness and since we will need it later on.

Theorem 4.28 ([11, Theorem 9]). Deciding whether a given ADF has an ultimate two-valued
stable model is ¥ -complete.

Proof. Let & = (S,L,C) be an ADF. For membership, we first guess a set M C S. We can
verify in polynomial time that M is a two-valued supported model of Z, and compute the reduct
En. Using the NP oracle, we can compute the grounded semantics (K', K") of the reduct in
polynomial time. It then only remains to check K' = M.

For hardness, we provide a reduction from the ¥¥-complete problem of deciding whether a
QBF, 5-formula is valid. Let 3PVQ be an instance of QBF, 3-TRUTH where ¢ is in DNF and
P,Q # (). We have to construct an ADF D such that D has a stable model iff APVQq is true.

First of all, define-P = {-p | p € P} for abbreviating the negations of p € P. For guessing an
interpretation for P, define the acceptance formulas ¢, = —-p and ¢., = —p for p € P. Define
Y’ as the formula [—p/-p] where all occurrences of ~p have been replaced by -p. Further add a
statement z with @, = =z A =)', an integrity constraint that ensures truth of v’ in any model.
For ¢ € Q we set p, = '. Thus we get the statements S = PU-P U QU {z}. We have to show
that D has a stable model iff APYQ is true.

“if”: Let Mp C P be such that the following formula over vocabulary @ is a tautology:
6= ¢(MPaMPUQ)

We now construct a stable model M = Mp UQU {-p € -P | p ¢ Mp}. We first show that
M is a model of D: For each p € Mp, we have -p ¢ M by definition and hence M |=
p = —-p. Conversely, if p ¢ Mp then -p € M and M = ¢., = —p. For ¢ € (), we have
that ¢, = ¢’ and so we have to show M = 1’. This is however immediate since ¢ (the
partial evaluation of ¢ with M as interpretation for P) is a tautology. Finally, by definition
z & M, and since M =" we get M}~ ¢, = —z A —)’ as required.

To show that M is a stable model, we have to show that all statements in M are true in
the ultimate Kripke-Kleene semantics of the reduct Dy;. The reduct is given by

e Dy = (M, Ly, Chu) with
o p,=—fforpe M,

o o, =~f for-pe M,

o oy =10,

44

The computation of the Kripke-Kleene semantics starts with (0, M) and leads to the first
revision (K|, K{) = Us(0, M). Since the acceptance condition of any p,-p € M is tauto-
logical, we have p,-p € K|, that is, the statements p,-p € M are considered true. For the
next step, the acceptance formula of any q € () can thus be simplified to

(M\Q,M)
(p((ZM\Q,M) _ @x(@,M))

:¢/(M\Q,M)
= [p/f:p¢ M,-p/f:-p¢ M,p/t:pe M,-p/t:-pe M|,

a formula over Q that is equivalent to ¢ = (Mr-MPUQ) ' By presumption, ¢ is a tautology.
Hence at this point all acceptance formulas partially evaluated by (K|, K{J) are tautologies
and thus Us (K|, K{/) = (M, M), which has already been shown to be a fixpoint of Us.

“only if”: Let M C S be an ultimate two-valued stable model of D. We have to show that
3PVYQ is true. Define Mp = MNP and ¢ = ¢pMP-MPUQ) We show that ¢ is a tautology.

First of all, since M is a model of Dy we have z ¢ M: assume to the contrary that z € M,
then M is a model for ¢, = -z A=) = f A=)/, contradiction. Hence M = —z A =)', that
is, M = —v)’. This shows that M |= ', that is, M = ¢, for all ¢ € Q, whence Q C M.
Thus the evaluation of p € P and -p € -P defined by M shows the truth of the formula

MM = [p/t i pe M,-p/t:-pe M,p/f:pd¢ M,-p/f:-p¢ Mg/t :q€ Q]

Now since M is a stable model of D, the pair (M, M) is the ultimate grounded semantics
of the reduct Dy, again given by

e Dy = (M, Ly, Car) with
o o, =—f forpe M,

o o, =f for-pec M,

® Yq :wl(Q)’M)-

To show that ¢ is a tautology, assume to the contrary that ¢ is refutable. As observed
in the “if” part, ¢ is equivalent to the formula @,SM\QM). Thus also ¢, is refutable,
whence q ¢ Up, (0, M) for all ¢ € Q and Uf, (0, M) = M \ Q. Furthermore we know that
Uy (0,M) = M. Now @i\ ™ is refutable and thus Up,, (M \ Q, M) = (M \ Q, M).
Since Q # (), we find that (M, M) is not the least fixpoint of Up,,. Contradiction. O

The hardness reduction in this proof makes use of a statement z that is false in any ultimate
two-valued stable model. This can be used to show the same hardness for the credulous reasoning
problem for this semantics: we introduce a new statement x that behaves just like -z, then x is
true in some model if and only if there exists a model.

Proposition 4.29. The problem CredY,, is X1 -complete.

Proof. in ©£': Let = be an ADF and s € S. We can guess a set X C S with s € X and verify in
coNP that it is an ultimate two-valued stable model.

Y hard: Let 3PYQ1 be a QBEF. We use the same ADF construction as in the hardness proof
of Exists4,, and augment D by an additional statement x with o, = —z. It is clear that in
any model of D, z must be false and so x must be true. So x is true in some two-valued
stable model of D iff D has a two-valued stable model iff APVQ is true. O

45

A similar argument works for the skeptical reasoning problem: Given a QBF VP3Qvy, we
construct its negation IPVQ—1)p, whose associated ADF D has an ultimate two-valued stable
model (where z is false) iff APVQ-) is true iff the original QBF VP3Q is false. Hence VP3IQ
is true iff z is true in all ultimate two-valued stable models of D.

Proposition 4.30. The problem Skept¥,, is I1{'-complete.

Proof. in IIT’: Let = be an ADF and s € S. To decide the co-problem, we guess a set X C S
with s ¢ X and verify in coNP that it is an ultimate two-valued stable model.

II7-hard: Let VP3Qw be a QBF with v in CNF. Define the QBF 3PYQ—) and observe that —)
can be transformed into DNF in linear time. We use this new QBF to construct an ADF D
as we did in the hardness proof of ExistsY,,. As observed in the proof of Proposition 4.29,
the special statement z is false in all ultimate two-valued stable models of D. To show that
VP3Q is true iff z is true in all ultimate two-valued stable models of D, we show that
VP3Q is false iff D has an ultimate two-valued stable model where z is false: YP3Q is
false iff =V P3Q1) is true iff APYQ—) is true iff D has an ultimate two-valued stable model
iff D has an ultimate two-valued stable model where z is false. (I

46

Ly

approximate (G), o| conflict-free naive admissible complete preferred grounded model stable model
o NP-c DP-c coNP-c DP-c nl-c DP-c in P inP
Ver/ (Proposition 4.1) |(Proposition 4.6) |(Proposition 4.10)|(Proposition 4.11)|(Proposition 4.18) (Theorem 4.14) ([11, Prop. 5]) (Theorem 4.24)
in P . P P P coNP-c
. g ips in P 2 -C 2 -C 2 -C . NP-c NP-c
Bxdsts; (Proposition 4.8) (Corollary 4.9) | (Theorem 4.15) |(Corollary 4.16) |(Corollary 4.16) (Proposition 4.17) ([11, Prop. 5]) (Theorem 4.24)
NP-c P > »ic coNP-c
I NP-c 2 2. 2. ol NP-c NP-c
Cred9 (Proposition 4.4) (Corollary 4.5) (Proposition 4.19)|(Proposition 4.19, |(Proposition 4.19,|(Proposition 4.20) (Corollary 4.26) |(Corollary 4.27)
. Lemma 3.5) Lemma 3.5) ‘
nr.c P coNP-c
g .. 27 .. coNP-c 5 -C - coNP-c coNP-c
Skeptg trivial (Proposition 4.7) trivial (Corollary 4.21) | (Theorem 4.22) |(Froposition 4.20)(corollary 4.26) |(Corollary 4.27)
ultimate (U), o conflict-free naive admissible complete preferred grounded model stable model
Vert NP-c DP-c coNP-c DP-c ngc DP-c in P coNP-c .
erg (Proposition 4.1) [(Proposition 4.6) ([11, Prop. 10]) ([11, Cor. 7)) (Proposition 4.18) ([11, Thm. 6]) ([11, Prop. 5]) (Proposition 4.25)
NP-c coNP-c
. NP-c »P ¢ sl e NP-c 5 -c
E U iti 2 2 2 iti 2
xistsy (Proposition 4.2) | (Gorollary 4.3) | (Theorem 4.15) |(Corollary 4.16) |(Corollary 4.16) |(FTOPOsition 41D\ (11 Prop. 5]) | (Theorem 4.28)
" NP-c NP-c »Pc »Poc »Pc coNP-c NP-c P
Cred (Proposition 4.4) (Corollary 4.5) (Proposition 4.19)|(Proposition 4.19, |(Proposition 4.19,|(Proposition 4.20) (Corollary 4.26) (Proposition 4.29)
Lemma 3.5) Lemma 3.5) .
nr_c P coNP-c P
u L 27 . coNP-c 1Is -c o coNP-c 27
Skept, trivial (Proposition 4.7) trivial (Corollary 4.21) (TheoreS 4.22) (Proposition 4.20) (Corollary 4.26) (Proposition 4.30)

Table 2: Complexity results for semantics of Abstract Dialectical Frameworks.

5. Complexity of Bipolar ADFs

In this section, we take a closer look at the special class of ADFs where all links are sup-
porting or attacking, and more importantly the specific link type is known for each link. We
first note that since BADFs are a subclass of ADFs, all membership results from the previous
sections immediately carry over. However, we can show that many problems will in fact become
easier. Intuitively, computing the revision operators is now P-easy because the associated satis-
fiability /tautology problems only have to treat restricted acceptance formulas. In bipolar ADFs,
by definition, if in some three-valued pair (X,Y") a statement s is accepted by a revision operator
(s € O'(X,Y)), it will stay so if we set its undecided supporters to false and its undecided at-
tackers to true. Symmetrically, if a statement is rejected by an operator (s ¢ O”(X,Y)), it will
stay so if we set its undecided supporters to true and its undecided attackers to false. Hence to
decide whether s € O'(X,Y) or s ¢ O"(X,Y) for given operator O, pair (X,Y) and statement
s, we need only look at one single interpretation that can be constructed from the known link
types. This is the key idea underlying the next result. Recall that BG and BU are the restrictions
of the sets of operators G and U respectively to BADF's where the type of each link is known.

Proposition 5.1. Let T € {BG, BU}.

1. ElemZ is in P.
2. ElemZ” is in P.

Proof. Let = be a BADF with L=LTUL™, O € {Gz,l&}, s€ S and X CY C S. It suffices
to show the claims for T = BU, since the result that s € UL (X,Y) is computable in polynomial
time implies that deciding s € GY(X,Y) can likewise be achieved in polynomial time, due to
coincidence of the two operators. Further due to Proposition 3.16 we know that deciding s €
GL(X,Y) is a problem in P.

Recall that for M C S, if a link (z, s) is attacking, then it cannot be the case that M (£~ o
and M U{z} | ¢,. Similarly if (z,s) is supporting, then it cannot be the case that M = ¢, and
M U{z} £ ps. If (z,s) is attacking and supporting then for any M C S we have M | g iff
M U{z} & ps, i.e. a change of the truth value of z does not change the evaluation of ¢;.

Given a consistent pair (X,Y) and s € S we can use a “canonical” interpretation representing
all X C Z CY as follows. Note that the aforementioned “redundant” links, i.e. links in the
intersection Lt N L™ can be disregarded completely and for ease of notation we will assume in
the proof that no such link is present (formally if (x, s) is a redundant link, then we can replace
each © in ¢, uniformly with t or f). Let Z C S, Z' C att=(s) and Z" C supp=(s). Then

sel(Z,2)
iff s cUL(Z\ 2, Z)
iff s e U(Z\ 2,20 2",

The “if” direction is both times trivially satisfied. This can be seen by the easy fact that
if ng’U) is tautological, then so is @gL,’U/) with (L,U) <; (L’,U"). Suppose the first “only if”
does not hold, i.e. the first line holds, but the second is not true. Then there exists a set H with
(Z\ Z') C H C Z such that H ~ ¢s. By assumption Z |= ¢, and since HU (Z' N Z) = Z also
HU(Z'NZ) E s, which is a contradiction, since Z' C attz(s) and thus (Z' N Z) C att=z(s),
which implies that there exists a statement in attz(s) which is not attacking.

Suppose the second only if does not hold, then there exists an H with (Z\ Z') C H C
(Z U Z") such that H [ps. Since we have that (Z\ Z') C (H\ (2" \ Z)) C Z it follows that

H\ (Z"\ Z) = s, which is a contradiction since Z" consists only of supporters of s.

48

Now we set the canonical interpretation as Z = X U (Y \ supp=(s)). Observe that there exists
Z' C att=(s) and Z" C suppz=(s) such that X = Z\ Z' andY = Z U Z", thus s € Ui(Z,Z)
iff s € UL(X,Y). Since we can construct Z in polynomial time if Lt and L~ are known and
deciding s € UL(Z, Z) simply amounts to evaluating a formula under a valuation, the first claim
follows.

Showing the second claim is similar. Let Z C S, Z' C supp=(s) and Z"" C attz(s). Then

sel(Z,7)
iffs e U(Z\ 7', 2)
iffse U (Z\2',202"). O

Using the generic upper bounds of Theorem 3.18, it is now straightforward to show member-
ship results for BADF's with known link types.

Corollary 5.2. Let T € {BG, BU}, semantics o € {adm, com} and 7 € {cfi, nai}. We find that
e VerZ, Verl and Verfm are in P;

T o .
e Very, . is in coNP;

it ExictsZ ; .
e Exists;, Exists,, are in NP;

e CredZ is in P;

Cred? and Cred?, . are in NP;

CredZ

grd> SkeptZ ,, SkeptZ are in P;

T
Exists grd> com

grd?

e Skept? , is in II} .

Proof. Membership is due to Theorem 3.18 and the complexity bounds of the operators in BADFs
in Proposition 5.1, just note that X =TI’ = Dg) =P. Vergrd is in PP = P by Corollary 3.19. For
the existence of non-trivial pairs we can simply guess and check in polynomial time for admissible
pairs and thus also for complete and preferred semantics. (I

Hardness results straightforwardly carry over from AF's.
Proposition 5.3. Let Z € {BG, BU} and semantics o € {adm, com, pre}.
e Verl is coNP-hard;

pre

e ExistsZ and CredZ are NP-hard;

e SkeptZ is IIY-hard.

pre

Proof. Hardness results from AF's for these problems carry over to BADFs as for all semantics
AFs are a special case of BADFs [11, 40]. The complexities of the problems on AFs for ad-
missible and preferred semantics are shown by Dimopoulos and Torres [22], except for the I1Z -
completeness result of skeptical preferred semantics, which is shown by Dunne and Bench-Capon
[27]. The complete semantics is studied by Coste-Marquis et al. [15]. O

49

5.1. Conflict-free semantics

For the semantics based on conflict-freeness, it also becomes P-easy to decide whether non-
trivial interpretations exist. Recall that by Lemma 3.8, any set of conflict-free interpretations
is <;-downward-closed. (That is, whenever (X,Y) is conflict-free then any (X', Y’) <; (X,Y)
is also conflict-free.) This also gives a more intuitive explanation of why VerZ . is in P for
T € {BG,BU}: To verify that a conflict-free pair (X,Y") is also naive, we have to verify that the
set of pairs

{(XU{s},Y), (X, Y\ {s}) | s € Y\ X}

contains no conflict-free pair. This check can be done in polynomial time since there are at most
2-|S| elements in this set and VerZ; is in P.

Proposition 5.4. Let T € {BG, BU}. Exists.; and Exists,,; are in P.

T
Proof. We first note that the two decision problems coincide by Lemma 3.7. To decide ExistsZ

for a given ADF = = (S, L, C'), we have to check for each s € S whether any of the pairs ({s},S)
or (0,8 \ {s}) is conflict-free, which can be done in polynomial time by Corollary 5.2. If one
of these pairs is conflict-free, the answer is yes; if all pairs where exactly one statement is not
undecided are not conflict-free, then there is no non-trivial conflict-free pair. (If there was one,
then by Lemma 3.8 there would be a non-trivial conflict-free pair where exactly one statement
is true or false.) O

For skeptical reasoning amongst naive semantics, we can show that the problem remains hard
even for bipolar ADFs. This is because we can introduce new statements, which allows us to
encode tautology checking of propositional formulas in disjunctive normal form into a bipolar
ADF.

Proposition 5.5. Let T € {BG,BU}. SkeptZ . is coNP-complete.

nat

Proof. in coNP: To verify that a statement s € S does not follow skeptically, we can guess a pair
(X,Y) with s ¢ X and verify in P that it is naive.

coNP-hard: We reduce from tautology checking. Let ¥ = 11 V ...V ¥, be a propositional
formula in DNF over vocabulary P. Assume additionally (and without loss of generality)
that there is no disjunct v; that contains both p and —p for some p € P. (If there is such

a disjunct, we can remove it without changing the models of 1.) We construct a bipolar
ADF D = (S, L,C) as follows:

SZPU{Z,d1,...,dn}

Yp=Dp (peP)
o, = Vi (1<i<n
(pz:dl\/...\/dn

We show that z is contained in all naive pairs of D iff v is a tautology.

“if”: Let ¢ be a tautology. Given an M C P, define a set Ny, as follows:
Ny =Mu{d; | M =} U{z}

We show that for each M C P, the pair ma; = (Npr, Npar) is naive, and these are the
only naive pairs. We first observe that each such pair is two-valued, and thus the two

50

operators (approximate and ultimate) coincide on it, furthermore we need only show
conflict-freeness to show naivety. It is clear that mys is conflict-free with respect to all
p € P. For 1 <1 <n, conflict-freeness of my; with respect to d; follows by definition.
Since 1 is a tautology, there is at least one d; in each Ny;, and z € N is justified.
Assume there were another naive pair (X,Y) with z ¢ X. First of all, each naive pair
must constitute a two-valued interpretation of the statements in P, for otherwise the
<;-maximality condition would be violated. Now this enforces a fixed truth value for
di,...,d, and thus also for z. As argued above, z € Nj; necessarily holds.

“only if”: Let 1 be refutable. Then there is an M C P such that we find M £ 1; for all
1 <i < n. We show that the pair m = (M, M) is naive for approximate and ultimate
operator. Clearly by presumption, for all 1 < i < n we find that z/JfM’M) is a Boolean

expression that evaluates to false, so having d; ¢ M in the upper bound of the pair m

is justified. Finally, ¢, =dy V ...V d, also evaluates to false, thus justifying z ¢ M.

Thus there is a naive pair (X,Y) = (M, M) with z ¢ X. O

Notably, this result is the only case in which bipolar ADFs are (potentially) more com-
plex than AFs, as in the latter skeptical reasoning over naive pairs can be done in polynomial
time [15].%

5.2. Two-valued semantics

Regarding BADFs and two-valued semantics we first show that there is no hope that the
existence problems for approximate and ultimate two-valued stable models coincide as there are
cases when the semantics differ.

Example 5.1. Consider the BADF F = (S, L, C') with statements S = {a,b, ¢} and acceptance
formulas ¢, =t, ¢» =a Ve and . =aVb. The only two-valued supported model is (S,.5)
where all statements are true. This pair is also an ultimate two-valued stable model, since
U.(0,S) = {a}, and both apl(){a}’s) =t Ve and ") =t Vb are tautologies, whence we have
U.-({a},S)=S5. However, (S,S5) is not an approximate two-valued stable model: although
G (0,5) = {a}, then G4 ({a} , S) = {a} since the partially evaluated formulas ¢\ (*}"*) and o'l
contain free variables. We thus cannot reconstruct the upper bound S and F' has no approximate
two-valued stable models.

So approximate and ultimate two-valued stable model semantics are indeed different. How-
ever, we can show that the respective existence problems have the same complexity.

Proposition 5.6. Let Z € {BG,BU} and semantics o € {2su, 2st}. Verl is in P; ExistsZ is
NP-complete.

Proof. Membership carries over — for supported models from [11, Proposition 5], for approximate
stable models from Theorem 4.24. For membership for ultimate stable models, we can use
Proposition 5.1 to adapt the decision procedure of Proposition 4.23. In any case, hardness
carries over from AFs [22]. O

For credulous and skeptical reasoning over the two-valued semantics, membership is straight-
forward and hardness again carries over from argumentation frameworks.

9To check whether an argument a is skeptically accepted for naive semantics, we only have to check whether
all its attackers are self-attacking: if there is a b that attacks a and is not self-attacking, then the set {b} is
conflict-free, thus there exists a naive set N D {b} with a ¢ N.

o1

Corollary 5.7. Let T € {BG,BU} and semantics o € {2su, 2st}. CredZ is NP-complete; SkeptZ
is coNP-complete.

52

€9

7 e {BG,BU}, o

conflict-free naive admissible complete preferred grounded model stable model
. . . . coNP-c : in P in P
P in P in P in P in P
Verf m (Corollary 5.2, (Proposition 5.6) |(Proposition 5.6)
(Corollary 5.2) (Corollary 5.2) (Corollary 5.2) (Corollary 5.2) Proposition 5.3) (Corollary 5.2)
in P in P NP-c NP-c NP-c o p NP-c NP-c
ExistsZ (Proposition 5.4) |(Proposition 5.4) | (Corollary 5.2, (Corollary 5.2, (Corollary 5.2, (Corollary 5.2) (Proposition 5.6) | (Proposition 5.6)
Proposition 5.3) |Proposition 5.3) |Proposition 5.3) Yo
. . NP-c NP-c NP-c .
P in P in P NP-c NP-c
CredZ m . - (Corollary 5.2, (Corollary 5.2, (Corollary 5.2, - - .
(Corollary 5.2) (Corollary 5.2) Proposition 5.3) |Proposition 5.3) |Proposition 5.3) (Corollary 5.2) (Corollary 5.7) (Corollary 5.7)
coNP-c . mnk-c :
. o P 2 P NP- NP-
Skept’Z trivial (Proposition 5.5) trivial o (Corollary 5.2, o conre coNre

(Corollary 5.2)

Proposition 5.3)

(Corollary 5.2)

(Corollary 5.7)

(Corollary 5.7)

Table 8: Complexity results for semantics of bipolar Abstract Dialectical Frameworks.

6. Discussion

In this paper we studied the computational complexity of abstract dialectical frameworks
using approximation fixpoint theory. We showed numerous novel results for two families of ADF
semantics, the approximate and ultimate semantics, which are themselves inspired by argument-
ation and AFT. We showed that in most cases the complexity increases by one level of the
polynomial hierarchy compared to the corresponding reasoning tasks on AFs. Notable differ-
ences between the two families of semantics lie in the stable model semantics and in semantics
based on conflict-freeness, where the approximate version is easier than its ultimate counterpart.
For the restricted, yet powerful class of bipolar ADFs we proved that for the corresponding
reasoning tasks AFs and BADFs have (almost) the same complexity, with the single exception
of skeptical reasoning among naive pairs. This suggests that many types of relations between
arguments can be introduced without increasing the worst-time complexity. On the other hand,
our results again emphasize that arbitrary (non-bipolar) ADFs cannot be compiled into equi-
valent Dung AFs in deterministic polynomial time, unless the polynomial hierarchy collapses to
the first level. Under the same assumption, ADFs cannot be implemented directly with methods
that are typically applied to AF's, for example answer-set programming [31].

Our results on the complexity of bipolar ADFs led to our extending the ADF system DiA-
MOND [32] with specialized implementation techniques for bipolar ADFs. In the future, we also
plan to accommodate the approximate semantics family into DIAMOND. In another direction of
work, QBF encodings for general ADF's were developed and implemented in the system QADF [21].
For further future work several promising directions are possible. Studying easier fragments of
ADF's as well as parameterized complexity analysis can lead to efficient decision procedures, as
is witnessed for AFs [30, 29]. We also deem it auspicious to use alternative representations of
acceptance conditions, for instance by employing techniques from knowledge compilation [16].

In recent related work, Gaggl et al. [34] analysed the computational complexity of naive-based
ADF semantics as defined by Gaggl and Strass [33]. A detailed comparison of the two types of
semantics and their respective complexities is left for future work. A complexity analysis of other
useful AF semantics would also reveal further insights, for example semi-stable semantics [14] or
ideal semantics [25, 26]. Furthermore in [39, 38] several extension-based semantics for ADFs are
proposed and a complexity analysis would be interesting. Bogaerts et al. [6] recently defined a
new semantics for ADFs (the grounded fixpoint semantics) that is not unlike (ultimate) stable
models. This similarity is also backed up by their initial complexity analysis, and a more detailed
study might be interesting future work. Another recent new ADF semantics are the F-stable
models defined by Alviano and Faber [1]; the complexity of that semantics is as yet unexplored.

For semantical analysis, it would be useful to consider principle-based evaluations for ADFs [2].
Furthermore it appears natural to compare (ultimate) ADF semantics and ultimate logic pro-
gramming semantics [20] in approximation fixpoint theory, in particular with respect to compu-
tational complexity. Finally, we want to apply the general operator splitting results of Vennekens
et al. [46] to abstract argumentation and compare them to the stand-alone results obtained for
AFs [3] and ADFs [36].

Acknowledgements. This research was supported by DFG (project BR 1817/7-1) and FWF (pro-
ject 11102). We thank several anonymous reviewers for helpful feedback.

References

[1] Mario Alviano and Wolfgang Faber. Stable model semantics of abstract dialectical frame-
works revisited: A logic programming perspective. In Proceedings of the Twenty-Fourth

54

[10]

[11]

[13]

[14]

International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina,
July 2015. In press.

Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence, 171(10-15):675-700, 2007.

Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and
Wolfgang Faber, editors, Proceedings of the Eleventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), volume 6645 of LNCS, pages 40—
53. Springer, 2011.

Ringo Baumann, Wolfgang Dvoidk, Thomas Linsbichler, Hannes Strass, and Stefan Woltran.
Compact Argumentation Frameworks. In Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan, editors, Proceedings of the Twenty-First European Conference on Artificial In-
telligence (ECAI), pages 69—74. 10S Press, 2014.

Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in Artificial Intelligence.
Artificial Intelligence, 171(10-15):619-641, July 2007. ISSN 0004-3702.

Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their applic-
ations in knowledge representation. Artificial Intelligence, 224:51-71, 2015.

Nicolas Bourbaki. Sur le théoréme de Zorn. Archiv der Mathematik, pages 434-437, 1949/50.

Gerhard Brewka and Thomas F. Gordon. Carneades and Abstract Dialectical Frame-
works: A Reconstruction. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and
Guillermo Ricardo Simari, editors, Proceedings of the Third International Conference on
Computational Models of Argument (COMMA 2010), volume 216 of FAIA, pages 3-12. I0S
Press, 2010.

Gerhard Brewka and Stefan Woltran. Abstract Dialectical Frameworks. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, Proceedings of the Twelfth International
Conference on Principles of Knowledge Representation and Reasoning (KR 2010), pages
102-111. AAAI Press, 2010.

Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the Semantics of Abstract
Dialectical Frameworks and Standard AFs. In Toby Walsh, editor, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI 2011), pages 780-785. 1J-
CAI/AAAI 2011.

Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and Stefan
Woltran. Abstract Dialectical Frameworks Revisited. In Francesca Rossi, editor, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pages
803-809. IJCAI/AAAI, 2013.

Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of Dung frameworks
and their role in formal argumentation. IEEFE Intelligent Systems, 29(1), 2013. Special Issue
on Representation and Reasoning.

Martin W.A. Caminada and Leila Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171(5-6):286-310, 2007.

Martin W.A. Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable Semantics.
Journal of Logic and Computation, 22(5):1207-1254, 2012.

55

[15]

Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric Argumentation
Frameworks. In Lluis Godo, editor, Proceedings of the Eighth FEuropean Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005),
volume 3571 of LNCS, pages 317-328. Springer, 2005.

Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. Journal of Artificial
Intelligence Research, 17:229-264, 2002.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, second edition, 2002.

Marc Denecker, Victor W. Marek, and Miroslaw Truszczyriski. Approximations, Stable
Operators, Well-Founded Fixpoints and Applications in Nonmonotonic Reasoning. In Logic-
Based Artificial Intelligence, pages 127-144. Kluwer Academic Publishers, 2000.

Marc Denecker, Victor W. Marek, and Miroslaw Truszczynski. Uniform Semantic Treatment
of Default and Autoepistemic Logics. Artificial Intelligence, 143(1):79-122, 2003.

Marc Denecker, Victor W. Marek, and Miroslaw Truszczyniski. Ultimate approximation
and its application in nonmonotonic knowledge representation systems. Information and

Computation, 192(1):84-121, 2004.

Martin Diller, Johannes P. Wallner, and Stefan Woltran. Reasoning in Abstract Dialectical
Frameworks using quantified Boolean formulas. In Simon Parsons, Nir Oren, and Chris
Reed, editors, Proceedings of the Fifth International Conference on Computational Models
of Argument (COMMA 2014), volume 266 of FAIA, pages 241-252. IOS Press, 2014.

Yannis Dimopoulos and Alberto Torres. Graph Theoretical Structures in Logic Programs
and Default Theories. Theoretical Computer Science, 170(1-2):209-244, 1996.

Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. On the computational complexity
of assumption-based argumentation for default reasoning. Artificial Intelligence, 141(1/2):
57-78, 2002.

Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77
(2):321-358, 1995.

Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation. Artificial Intelligence, 171(10):642-674, 2007.

Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence,
173(18):1559-1591, 2009.

Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in Finite Argument Systems.
Artificial Intelligence, 141(1/2):187-203, 2002.

Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
85—104. Springer, 2009.

Wolfgang Dvorak, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artificial Intelligence, 186:157-173, 2012.

56

[30]

Wolfgang Dvorak, Matti Jarvisalo, Johannes P. Wallner, and Stefan Woltran. Complexity-
Sensitive Decision Procedures for Abstract Argumentation. Artificial Intelligence, 206:53—
78, 2014.

Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Answer-set programming encodings for
argumentation frameworks. Argument and Computation, 1(2):147-177, 2010.

Stefan Ellmauthaler and Hannes Strass. The DIAMOND System for Computing with
Abstract Dialectical Frameworks. In Simon Parsons, Nir Oren, and Chris Reed, editors,
Proceedings of the Fifth International Conference on Computational Models of Argument
(COMMA 2014), volume 266 of FAIA, pages 233-240. 10S Press, 2014.

Sarah A. Gaggl and Hannes Strass. Decomposing Abstract Dialectical Frameworks. In
Simon Parsons, Nir Oren, and Chris Reed, editors, Proceedings of the Fifth International
Conference on Computational Models of Argument (COMMA 2014), volume 266 of FAIA,
pages 281-292. IOS Press, 2014.

Sarah A. Gaggl, Sebastian Rudolph, and Hannes Strass. On the computational complexity
of naive-based semantics for abstract dialectical frameworks. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), 2015. In

press.

Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades model of argument
and burden of proof. Artificial Intelligence, 171(10-15):875-896, 2007.

Thomas Linsbichler. Splitting abstract dialectical frameworks. In Simon Parsons, Nir Oren,
and Chris Reed, editors, Proceedings of the Fifth International Conference on Computational
Models of Argument (COMMA 2014), volume 266 of FAIA, pages 357-368. IOS Press, 2014.

Christos H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994. ISBN 978-
0-201-53082-7.

Sylwia Polberg. FExtension-based Semantics of Abstract Dialectical Frameworks. In
Sébastien Konieczny and Hans Tompits, editors, Proceedings of the Fifteenth International
Workshop on Non-Monotonic Reasoning (NMR 2014), pages 273-282, 2014.

Sylwia Polberg, Johannes P. Wallner, and Stefan Woltran. Admissibility in the Abstract
Dialectical Framework. In Joao Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre,
and Stefan Woltran, editors, Proceedings of the 14th International Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA 2013), volume 8143 of LNAI, pages 102-118.
Springer, 2013.

Hannes Strass. Approximating operators and semantics for abstract dialectical frameworks.
Artificial Intelligence, 205:39-70, 2013.

Hannes Strass. Instantiating knowledge bases in abstract dialectical frameworks. In Joao
Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre, and Stefan Woltran, editors,
Proceedings of the Fourteenth International Workshop on Computational Logic in Multi-
Agent Systems (CLIMA 2013), volume 8143 of LNAI, pages 86—101. Springer, 2013.

Hannes Strass. The relative expressiveness of abstract argumentation and logic program-
ming. In Sven Koenig and Blai Bonet, editors, Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015), pages 1625-1631, 2015.

57

[43]

[44]

Hannes Strass. Instantiating rule-based defeasible theories in abstract dialectical frameworks
and beyond. Journal of Logic and Computation, 2015. doi: 10.1093/logcom /exv004.

Hannes Strass and Johannes P. Wallner. Analyzing the Computational Complexity of Ab-
stract Dialectical Frameworks via Approximation Fixpoint Theory. In Chitta Baral, Gi-
useppe De Giacomo, and Thomas Eiter, editors, Proceedings of the Fourteenth International
Conference on the Principles of Knowledge Representation and Reasoning (KR 2014), pages
101-110. AAAT Press, 2014.

Bas Van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation. In
Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), pages 1113-1119. IJCAI/AAAI, 2011.

Joost Vennekens, David Gilis, and Marc Denecker. Splitting an operator: Algebraic modu-
larity results for logics with fixpoint semantics. ACM Transactions on Computational Logic,
7(4):765-797, 2006.

Adam Wyner, Trevor J. M. Bench-Capon, and Paul E. Dunne. On the instantiation of
knowledge bases in abstract argumentation frameworks. In Jodo Leite, Tran Cao Son, Paolo
Torroni, Leon van der Torre, and Stefan Woltran, editors, Proceedings of the Fourteenth
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA 2013),
volume 8143 of LNAI, pages 34-50. Springer, 2013.

58

	Introduction
	Background
	Approximation Fixpoint Theory
	Abstract Dialectical Frameworks
	Complexity theory

	Preparatory Considerations
	Notation and decision problems
	Existing results
	Relationship between the operators
	Existence results
	Reductions and Encoding Techniques
	Operator complexities
	Generic upper bounds

	Complexity of General ADFs
	Conflict-free semantics
	Admissibility-based semantics
	Two-valued semantics

	Complexity of Bipolar ADFs
	Conflict-free semantics
	Two-valued semantics

	Discussion

