
Don’t Repeat Yourself:
Termination of the Skolem Chase
on Disjunctive Existential Rules

Lukas Gerlach

Knowledge-Based Systems Group
Technische Universität Dresden, Germany

08.10.2020



Motivation

Reasoning over Knowledge Bases

Expressivity of Disjunctive Existential Rules
E�ciency of the Skolem Chase (ASP Solvers)

1 26



Motivation

Reasoning over Knowledge Bases
Expressivity of Disjunctive Existential Rules

E�ciency of the Skolem Chase (ASP Solvers)

1 26



Motivation

Reasoning over Knowledge Bases
Expressivity of Disjunctive Existential Rules
E�ciency of the Skolem Chase (ASP Solvers)

1 26



Knowledge Bases

Definition
A knowledge base is a pair 〈R, I〉 of a rule set R and an instance I.

Definition
An instance is a set of function free facts (ground atoms).

Definition
A (disjunctive existental) rule ρ is an expression of the form

∀~x∀~y.[Bρ(~x,~y)→
∨n

i=1
∃~zi.Hiρ(~xi,~zi)]

where Bρ and Hiρ are conjunctions of atoms without function
symbols or constants; ~x,~y, and ~zi are pairwise disjoint lists of
variables; and

⋃n
i=1~xi = ~x.

2 26



Knowledge Bases

Definition
A knowledge base is a pair 〈R, I〉 of a rule set R and an instance I.

Definition
An instance is a set of function free facts (ground atoms).

Definition
A (disjunctive existental) rule ρ is an expression of the form

∀~x∀~y.[Bρ(~x,~y)→
∨n

i=1
∃~zi.Hiρ(~xi,~zi)]

where Bρ and Hiρ are conjunctions of atoms without function
symbols or constants; ~x,~y, and ~zi are pairwise disjoint lists of
variables; and

⋃n
i=1~xi = ~x.

2 26



Knowledge Bases

Definition
A knowledge base is a pair 〈R, I〉 of a rule set R and an instance I.

Definition
An instance is a set of function free facts (ground atoms).

Definition
A (disjunctive existental) rule ρ is an expression of the form

∀~x∀~y.[Bρ(~x,~y)→
∨n

i=1
∃~zi.Hiρ(~xi,~zi)]

where Bρ and Hiρ are conjunctions of atoms without function
symbols or constants; ~x,~y, and ~zi are pairwise disjoint lists of
variables; and

⋃n
i=1~xi = ~x.

2 26



Querying Knowledge Bases

Definition
A boolean conjunctive query (BCQ) is an expression of the form
∃~z.ϕ(~z) where ϕ is a conjunction of function free atoms.

Example
Consider the following instance I, rule set R and BCQ σ:

I := {Pizza(myPizza) }

R := {Pizza(x)→ InFridge(x) ∨ ∃z.(Service(z) ∧ Delivers(z, x)) }
σ := ∃z.(Service(z) ∧ Delivers(z,myPizza))

Is σ entailed by 〈R, I〉?

3 26



Querying Knowledge Bases

Definition
A boolean conjunctive query (BCQ) is an expression of the form
∃~z.ϕ(~z) where ϕ is a conjunction of function free atoms.

Example
Consider the following instance I, rule set R and BCQ σ:

I := {Pizza(myPizza) }

R := {Pizza(x)→ InFridge(x) ∨ ∃z.(Service(z) ∧ Delivers(z, x)) }
σ := ∃z.(Service(z) ∧ Delivers(z,myPizza))

Is σ entailed by 〈R, I〉?

3 26



Querying Knowledge Bases

Definition
A boolean conjunctive query (BCQ) is an expression of the form
∃~z.ϕ(~z) where ϕ is a conjunction of function free atoms.

Example
Consider the following instance I, rule set R and BCQ σ:

I := {Pizza(myPizza) }
R := {Pizza(x)→ InFridge(x) ∨ ∃z.(Service(z) ∧ Delivers(z, x)) }

σ := ∃z.(Service(z) ∧ Delivers(z,myPizza))

Is σ entailed by 〈R, I〉?

3 26



Querying Knowledge Bases

Definition
A boolean conjunctive query (BCQ) is an expression of the form
∃~z.ϕ(~z) where ϕ is a conjunction of function free atoms.

Example
Consider the following instance I, rule set R and BCQ σ:

I := {Pizza(myPizza) }
R := {Pizza(x)→ InFridge(x) ∨ ∃z.(Service(z) ∧ Delivers(z, x)) }
σ := ∃z.(Service(z) ∧ Delivers(z,myPizza))

Is σ entailed by 〈R, I〉?

3 26



Querying Knowledge Bases

Definition
A boolean conjunctive query (BCQ) is an expression of the form
∃~z.ϕ(~z) where ϕ is a conjunction of function free atoms.

Example
Consider the following instance I, rule set R and BCQ σ:

I := {Pizza(myPizza) }
R := {Pizza(x)→ InFridge(x) ∨ ∃z.(Service(z) ∧ Delivers(z, x)) }
σ := ∃z.(Service(z) ∧ Delivers(z,myPizza))

Is σ entailed by 〈R, I〉?

3 26



How to solve this in general?

Definition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K if, for each
first order model M of K, there exists a substitution θ such that
ϕθ ⊆ M.

Problems:
1. The number of models may be infinite.
2. Individual models may be infinite in size.

Proposition
BCQ entailment is undecidable [Beeri and Vardi, 1981].

4 26



How to solve this in general?

Definition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K if, for each
first order model M of K, there exists a substitution θ such that
ϕθ ⊆ M.

Problems:
1. The number of models may be infinite.
2. Individual models may be infinite in size.

Proposition
BCQ entailment is undecidable [Beeri and Vardi, 1981].

4 26



How to solve this in general?

Definition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K if, for each
first order model M of K, there exists a substitution θ such that
ϕθ ⊆ M.

Problems:
1. The number of models may be infinite.
2. Individual models may be infinite in size.

Proposition
BCQ entailment is undecidable [Beeri and Vardi, 1981].

4 26



Do we really need every model?

Definition
A universal model set [Bourhis et al., 2016] of a knowledge base
K is a set of models U , such that for each model M for K there
exists a homomorphism from some model in U to M.

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

We study an algorithm that should compute a finite universal
model set containing only finite models.

5 26



Do we really need every model?

Definition
A universal model set [Bourhis et al., 2016] of a knowledge base
K is a set of models U , such that for each model M for K there
exists a homomorphism from some model in U to M.

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

We study an algorithm that should compute a finite universal
model set containing only finite models.

5 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇒":
If σ is entailed by K, then it is entailed for every model of K.

6 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇐":
Consider a model M of K.

1. For each model U in some universal model set U of K, there
exists a substitution θ with ϕθ ⊆ U.

2. By (1): There exists a model U ∈ U such that there exists a
homomorphism τ from U to M.

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆ M.
4. By (3): σ is entailed by K.

7 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇐":
Consider a model M of K.

1. For each model U in some universal model set U of K, there
exists a substitution θ with ϕθ ⊆ U.

2. By (1): There exists a model U ∈ U such that there exists a
homomorphism τ from U to M.

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆ M.
4. By (3): σ is entailed by K.

7 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇐":
Consider a model M of K.

1. For each model U in some universal model set U of K, there
exists a substitution θ with ϕθ ⊆ U.

2. By (1): There exists a model U ∈ U such that there exists a
homomorphism τ from U to M.

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆ M.
4. By (3): σ is entailed by K.

7 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇐":
Consider a model M of K.

1. For each model U in some universal model set U of K, there
exists a substitution θ with ϕθ ⊆ U.

2. By (1): There exists a model U ∈ U such that there exists a
homomorphism τ from U to M.

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆ M.

4. By (3): σ is entailed by K.

7 26



Do we really need every model?

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

Proof.
"⇐":
Consider a model M of K.

1. For each model U in some universal model set U of K, there
exists a substitution θ with ϕθ ⊆ U.

2. By (1): There exists a model U ∈ U such that there exists a
homomorphism τ from U to M.

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆ M.
4. By (3): σ is entailed by K.

7 26



Do we really need every model?

Definition
A universal model set [Bourhis et al., 2016] of a knowledge base
K is a set of models U , such that for each model M for K there
exists a homomorphism from some model in U to M.

Proposition
A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K i� it is
entailed by each model in some universal model set of K.

We study an algorithm that should compute a finite universal
model set containing only finite models.

8 26



Chasing a Universal Model Set

General Chase Procedure
Input: Knowledge Base K
Procedure: Apply rules in K exhaustively, until no new facts
are obtained. Consider the head disjuncts individually by
branching out on them.
Output: Universal Model Set of K

Questions
1. How to apply rules?
2. Do we indeed obtain a finite set of finite models?

9 26



Chasing a Universal Model Set

General Chase Procedure
Input: Knowledge Base K
Procedure: Apply rules in K exhaustively, until no new facts
are obtained. Consider the head disjuncts individually by
branching out on them.
Output: Universal Model Set of K

Questions

1. How to apply rules?
2. Do we indeed obtain a finite set of finite models?

9 26



Chasing a Universal Model Set

General Chase Procedure
Input: Knowledge Base K
Procedure: Apply rules in K exhaustively, until no new facts
are obtained. Consider the head disjuncts individually by
branching out on them.
Output: Universal Model Set of K

Questions
1. How to apply rules?

2. Do we indeed obtain a finite set of finite models?

9 26



Chasing a Universal Model Set

General Chase Procedure
Input: Knowledge Base K
Procedure: Apply rules in K exhaustively, until no new facts
are obtained. Consider the head disjuncts individually by
branching out on them.
Output: Universal Model Set of K

Questions
1. How to apply rules?
2. Do we indeed obtain a finite set of finite models?

9 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.

In the context of a fact set F, the trigger λ is:
active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,

obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ),

and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Definition
A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ.
In the context of a fact set F, the trigger λ is:

active if Bρθ ⊆ F,
obsolete if sk(Hiρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ), and
applicable to F if it is active and not obsolete.

If λ is applicable to F, then the application of λ on F is defined as
the set of fact sets:

λ(F) := { F ∪ sk(Hiρ)θ | 1 ≤ i ≤ branch(ρ) }

Those applications can be implemented using ASP-solvers.

10 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.

11 26



How to apply rules?

Example
Consider the following instance and rule set:

I := {Pizza(myPizza) }
ρ := Pizza(x)→ InFridge(x) ∨ (Service(f z(x)) ∧ Delivers(f z(x), x))

myPizza : Pizza

myPizza : Pizza, InFridge

myPizza : Pizza

f z(myPizza) : Service

Delivers

The BCQ ∃z.(Service(z) ∧ Delivers(z,myPizza)) is not entailed.
11 26



Chasing a Universal Model Set

General Chase Procedure
Input: Knowledge Base K
Procedure: Apply rules in K exhaustively, until no new facts
are obtained. Consider the head disjuncts individually by
branching out on them.
Output: Universal Model Set of K

Questions
1. How to apply rules?
2. Do we indeed obtain a finite set of finite models?

12 26



Do we indeed obtain a finite set of finite models?

Not always: The chase may not terminate on a knowledge base.

Definition
A knowledge base K is terminating if no new facts can be
obtained at some point in the chase computation.
A rule set R is terminating if 〈R, I〉 is terminating for every
instance I.

Problem: Knowledge base termination and rule set termination
are undecidable [Beeri and Vardi, 1981, Deutsch et al., 2008,
Gogacz and Marcinkowski, 2014].

Example
The following rule set is not terminating.

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))

13 26



Do we indeed obtain a finite set of finite models?

Not always: The chase may not terminate on a knowledge base.

Definition
A knowledge base K is terminating if no new facts can be
obtained at some point in the chase computation.

A rule set R is terminating if 〈R, I〉 is terminating for every
instance I.

Problem: Knowledge base termination and rule set termination
are undecidable [Beeri and Vardi, 1981, Deutsch et al., 2008,
Gogacz and Marcinkowski, 2014].

Example
The following rule set is not terminating.

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))

13 26



Do we indeed obtain a finite set of finite models?

Not always: The chase may not terminate on a knowledge base.

Definition
A knowledge base K is terminating if no new facts can be
obtained at some point in the chase computation.
A rule set R is terminating if 〈R, I〉 is terminating for every
instance I.

Problem: Knowledge base termination and rule set termination
are undecidable [Beeri and Vardi, 1981, Deutsch et al., 2008,
Gogacz and Marcinkowski, 2014].

Example
The following rule set is not terminating.

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))

13 26



Do we indeed obtain a finite set of finite models?

Not always: The chase may not terminate on a knowledge base.

Definition
A knowledge base K is terminating if no new facts can be
obtained at some point in the chase computation.
A rule set R is terminating if 〈R, I〉 is terminating for every
instance I.

Problem: Knowledge base termination and rule set termination
are undecidable [Beeri and Vardi, 1981, Deutsch et al., 2008,
Gogacz and Marcinkowski, 2014].

Example
The following rule set is not terminating.

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))

13 26



Do we indeed obtain a finite set of finite models?

Not always: The chase may not terminate on a knowledge base.

Definition
A knowledge base K is terminating if no new facts can be
obtained at some point in the chase computation.
A rule set R is terminating if 〈R, I〉 is terminating for every
instance I.

Problem: Knowledge base termination and rule set termination
are undecidable [Beeri and Vardi, 1981, Deutsch et al., 2008,
Gogacz and Marcinkowski, 2014].

Example
The following rule set is not terminating.

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))

13 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?
MFA is not defined for rule sets with disjunctions.

Why not use RMFA?
RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?
MFA is not defined for rule sets with disjunctions.

Why not use RMFA?
RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?

MFA is not defined for rule sets with disjunctions.

Why not use RMFA?
RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?
MFA is not defined for rule sets with disjunctions.

Why not use RMFA?
RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?
MFA is not defined for rule sets with disjunctions.

Why not use RMFA?

RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

Definition
Acyclicity Notions are su�cient conditions for rule set
termination.

Existing notions:
MFA [Cuenca Grau et al., 2013] - Skolem Chase
RMFA [Carral et al., 2017] - Restricted Chase

Why not use MFA?
MFA is not defined for rule sets with disjunctions.

Why not use RMFA?
RMFA is not sound for the disjunctive skolem chase. (We can still
use some ideas.)

14 26



Better safe than sorry

General idea of MFA: Compute chase on critical instance I?R and
check for cyclic terms.

Theorem
A rule set R without disjunctions is terminating if and only if
〈R, I?R〉 is terminating [Marnette, 2009].
This approach does not work for disjunctive existential rules.

Example
Consider the rule set R and its critical instance I?R:

R = {Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x))) }
I?R = {Pizza(?), Last(?),NextOrder(?, ?) }

The knowledge base 〈R, I?R〉 is terminating but R is not.

15 26



Better safe than sorry

General idea of MFA: Compute chase on critical instance I?R and
check for cyclic terms.

Theorem
A rule set R without disjunctions is terminating if and only if
〈R, I?R〉 is terminating [Marnette, 2009].

This approach does not work for disjunctive existential rules.

Example
Consider the rule set R and its critical instance I?R:

R = {Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x))) }
I?R = {Pizza(?), Last(?),NextOrder(?, ?) }

The knowledge base 〈R, I?R〉 is terminating but R is not.

15 26



Better safe than sorry

General idea of MFA: Compute chase on critical instance I?R and
check for cyclic terms.

Theorem
A rule set R without disjunctions is terminating if and only if
〈R, I?R〉 is terminating [Marnette, 2009].
This approach does not work for disjunctive existential rules.

Example
Consider the rule set R and its critical instance I?R:

R = {Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x))) }
I?R = {Pizza(?), Last(?),NextOrder(?, ?) }

The knowledge base 〈R, I?R〉 is terminating but R is not.

15 26



Better safe than sorry

General idea of MFA: Compute chase on critical instance I?R and
check for cyclic terms.

Theorem
A rule set R without disjunctions is terminating if and only if
〈R, I?R〉 is terminating [Marnette, 2009].
This approach does not work for disjunctive existential rules.

Example
Consider the rule set R and its critical instance I?R:

R = {Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x))) }
I?R = {Pizza(?), Last(?),NextOrder(?, ?) }

The knowledge base 〈R, I?R〉 is terminating but R is not.

15 26



Naive Fix

Treat disjunctions as conjunctions.

Proposition
Consider a rule set R and a rule set R′ that results from R by
replacing disjunctions with conjunctions. If R′ is terminating,
then R is terminating.

Though, this is not satisfactory.

Example
The following rule set is terminating but it does not terminate if
we replace the disjunction by a conjunction:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

16 26



Naive Fix

Treat disjunctions as conjunctions.

Proposition
Consider a rule set R and a rule set R′ that results from R by
replacing disjunctions with conjunctions. If R′ is terminating,
then R is terminating.

Though, this is not satisfactory.

Example
The following rule set is terminating but it does not terminate if
we replace the disjunction by a conjunction:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

16 26



Naive Fix

Treat disjunctions as conjunctions.

Proposition
Consider a rule set R and a rule set R′ that results from R by
replacing disjunctions with conjunctions. If R′ is terminating,
then R is terminating.

Though, this is not satisfactory.

Example
The following rule set is terminating but it does not terminate if
we replace the disjunction by a conjunction:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

16 26



Naive Fix

Treat disjunctions as conjunctions.

Proposition
Consider a rule set R and a rule set R′ that results from R by
replacing disjunctions with conjunctions. If R′ is terminating,
then R is terminating.

Though, this is not satisfactory.

Example
The following rule set is terminating but it does not terminate if
we replace the disjunction by a conjunction:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

16 26



Generalise Obsoleteness

How to improve upon the naive fix?

Problem: Obsoleteness is too restrictive.
Can we identify triggers that are obsolete independent of the
starting instance?

Definition
A trigger 〈ρ, θ〉 is blocked if it is obsolete w.r.t. to the set of facts
that are "necessarily involved" in the derivation of Bρθ.

Theorem
In the context of a rule set: If a trigger λ is blocked, then λ is not
applicable to any fact set occurring in the chase on any instance.

17 26



Generalise Obsoleteness

How to improve upon the naive fix?

Problem: Obsoleteness is too restrictive.
Can we identify triggers that are obsolete independent of the
starting instance?

Definition
A trigger 〈ρ, θ〉 is blocked if it is obsolete w.r.t. to the set of facts
that are "necessarily involved" in the derivation of Bρθ.

Theorem
In the context of a rule set: If a trigger λ is blocked, then λ is not
applicable to any fact set occurring in the chase on any instance.

17 26



Generalise Obsoleteness

How to improve upon the naive fix?

Problem: Obsoleteness is too restrictive.
Can we identify triggers that are obsolete independent of the
starting instance?

Definition
A trigger 〈ρ, θ〉 is blocked if it is obsolete w.r.t. to the set of facts
that are "necessarily involved" in the derivation of Bρθ.

Theorem
In the context of a rule set: If a trigger λ is blocked, then λ is not
applicable to any fact set occurring in the chase on any instance.

17 26



Generalise Obsoleteness

How to improve upon the naive fix?

Problem: Obsoleteness is too restrictive.
Can we identify triggers that are obsolete independent of the
starting instance?

Definition
A trigger 〈ρ, θ〉 is blocked if it is obsolete w.r.t. to the set of facts
that are "necessarily involved" in the derivation of Bρθ.

Theorem
In the context of a rule set: If a trigger λ is blocked, then λ is not
applicable to any fact set occurring in the chase on any instance.

17 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),Pizza(f z(?)), Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.

To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),Pizza(f z(?)), Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.

The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),Pizza(f z(?)), Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),

NextOrder(?, f z(?)),Pizza(f z(?)), Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),

Pizza(f z(?)), Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),Pizza(f z(?)),

Last(f z(?)) }

18 26



Generalise Obsoleteness

What does "necessarily involved" mean?

Example
Consider the following rule set:

ρ1 : Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

Consider the trigger 〈ρ1, { x 7→ f z(?) }〉.
To derive f z(?), 〈ρ1, { x 7→ ? }〉 was applied before.
The following fact set has necessarily been involved:

{Pizza(?),NextOrder(?, f z(?)),Pizza(f z(?)), Last(f z(?)) }

18 26



Compute a generalized Chase result

Definition
For a rule set R, we define DMFA(R) to be the smallest fact set
such that I?R ⊆ DMFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R
that is active w.r.t. DMFA(R) and not blocked, we have
sk(Hiρ)θ ⊆ DMFA(R) for all 1 ≤ i ≤ branch(ρ).

Definition
R is DMFA if DMFA(R) does not contain a cyclic term.

Theorem
If a rule set R is DMFA, then R is terminating.

19 26



Compute a generalized Chase result

Definition
For a rule set R, we define DMFA(R) to be the smallest fact set
such that I?R ⊆ DMFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R
that is active w.r.t. DMFA(R) and not blocked, we have
sk(Hiρ)θ ⊆ DMFA(R) for all 1 ≤ i ≤ branch(ρ).

Definition
R is DMFA if DMFA(R) does not contain a cyclic term.

Theorem
If a rule set R is DMFA, then R is terminating.

19 26



Compute a generalized Chase result

Definition
For a rule set R, we define DMFA(R) to be the smallest fact set
such that I?R ⊆ DMFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R
that is active w.r.t. DMFA(R) and not blocked, we have
sk(Hiρ)θ ⊆ DMFA(R) for all 1 ≤ i ≤ branch(ρ).

Definition
R is DMFA if DMFA(R) does not contain a cyclic term.

Theorem
If a rule set R is DMFA, then R is terminating.

19 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.

Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.
2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.
3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over

the chase sequence).
4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.
Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.
2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.
3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over

the chase sequence).
4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.
Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.

2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.
3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over

the chase sequence).
4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.
Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.
2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.

3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over
the chase sequence).

4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.
Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.
2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.
3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over

the chase sequence).

4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Theorem
If a rule set R is DMFA, then R is terminating.

Proof.
We show that R is not DMFA if R is not terminating.
Let σ be a mapping over constants with σ(c) := ?
for all constants c.

1. There exists an instance I such that 〈R, I〉 is not terminating.
2. By (1): The chase sequence of 〈R, I〉 contains a cyclic term t.
3. By (2): The cyclic term σ(t) is in DMFA(R) (via induction over

the chase sequence).
4. By (3): R is not DMFA.

20 26



Compute a generalized Chase result

Example
R:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

DMFA(R):

? : Pizza, Last

NextOrder
f z(?) : Pizza

, Last

NextOrder
f z(f z(?)) : Pizza

NextOrder

21 26



Compute a generalized Chase result

Example
R:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

DMFA(R):

? : Pizza, Last

NextOrder

f z(?) : Pizza

, Last

NextOrder
f z(f z(?)) : Pizza

NextOrder

21 26



Compute a generalized Chase result

Example
R:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

DMFA(R):

? : Pizza, Last

NextOrder
f z(?) : Pizza

, Last

NextOrder

f z(f z(?)) : Pizza

NextOrder

21 26



Compute a generalized Chase result

Example
R:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

DMFA(R):

? : Pizza, Last

NextOrder
f z(?) : Pizza, Last

NextOrder

f z(f z(?)) : Pizza

NextOrder

21 26



Compute a generalized Chase result

Example
R:

Pizza(x)→ Last(x) ∨ (NextOrder(x, f z(x)) ∧ Pizza(f z(x)))
NextOrder(y, x)→ Last(x)

DMFA(R):

? : Pizza, Last

NextOrder
f z(?) : Pizza, Last

NextOrder
f z(f z(?)) : Pizza

NextOrder

21 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

22 26



Hierarchy of Acyclicity Notions

Disjunctive Existential Rule Sets

Terminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

RMFA

MFA

DMFA

Example
The following singleton rule set is contained in the blank space:

P(y, x) ∧ Q(y)→ ∃z.(P(x, z) ∧ P(z, x))

22 26



Complexity of the DMFA Check

Theorem
Checking if a rule set R is DMFA is 2ExpTime-complete.

Proof. (Sketch)
(Membership): We compute DMFA(R) step by step. The number of
facts without cyclic terms is at most doubly exponential.
Therefore, there are at most doubly exponentially many steps of
which each is computable in 2ExpTime.
(Hardness): Reduction from MFA (MFA and DMFA coincide for rule
sets without disjunctions)
[Cuenca Grau et al., 2013, Calì et al., 2010].

23 26



Complexity of the DMFA Check

Theorem
Checking if a rule set R is DMFA is 2ExpTime-complete.

Proof. (Sketch)
(Membership): We compute DMFA(R) step by step.

The number of
facts without cyclic terms is at most doubly exponential.
Therefore, there are at most doubly exponentially many steps of
which each is computable in 2ExpTime.
(Hardness): Reduction from MFA (MFA and DMFA coincide for rule
sets without disjunctions)
[Cuenca Grau et al., 2013, Calì et al., 2010].

23 26



Complexity of the DMFA Check

Theorem
Checking if a rule set R is DMFA is 2ExpTime-complete.

Proof. (Sketch)
(Membership): We compute DMFA(R) step by step. The number of
facts without cyclic terms is at most doubly exponential.

Therefore, there are at most doubly exponentially many steps of
which each is computable in 2ExpTime.
(Hardness): Reduction from MFA (MFA and DMFA coincide for rule
sets without disjunctions)
[Cuenca Grau et al., 2013, Calì et al., 2010].

23 26



Complexity of the DMFA Check

Theorem
Checking if a rule set R is DMFA is 2ExpTime-complete.

Proof. (Sketch)
(Membership): We compute DMFA(R) step by step. The number of
facts without cyclic terms is at most doubly exponential.
Therefore, there are at most doubly exponentially many steps of
which each is computable in 2ExpTime.

(Hardness): Reduction from MFA (MFA and DMFA coincide for rule
sets without disjunctions)
[Cuenca Grau et al., 2013, Calì et al., 2010].

23 26



Complexity of the DMFA Check

Theorem
Checking if a rule set R is DMFA is 2ExpTime-complete.

Proof. (Sketch)
(Membership): We compute DMFA(R) step by step. The number of
facts without cyclic terms is at most doubly exponential.
Therefore, there are at most doubly exponentially many steps of
which each is computable in 2ExpTime.
(Hardness): Reduction from MFA (MFA and DMFA coincide for rule
sets without disjunctions)
[Cuenca Grau et al., 2013, Calì et al., 2010].

23 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment. The number of
sets of fact sets is at most triply exponential. Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.
Thus, BCQ entailment is in coN2ExpTime.
(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment.

The number of
sets of fact sets is at most triply exponential. Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.
Thus, BCQ entailment is in coN2ExpTime.
(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment. The number of
sets of fact sets is at most triply exponential.

Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.
Thus, BCQ entailment is in coN2ExpTime.
(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment. The number of
sets of fact sets is at most triply exponential. Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.

Thus, BCQ entailment is in coN2ExpTime.
(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment. The number of
sets of fact sets is at most triply exponential. Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.
Thus, BCQ entailment is in coN2ExpTime.

(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Complexity of BCQ entailment for DMFA Ruleset

Theorem
Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

Proof. (Sketch)
(Membership): We consider BCQ non-entailment. The number of
sets of fact sets is at most triply exponential. Since it su�ces to
guess one fact set in each chase step, we end up in N2ExpTime by
using a similar step by step computation as for the DMFA check.
Thus, BCQ entailment is in coN2ExpTime.
(Hardness): Reduction from the word problem of
N2ExpTime-bounded turing machines similar to the proof for
RMFA [Carral et al., 2017, Calì et al., 2010].

24 26



Results

DMFA is a novel acyclicity notions tailored towards the
disjunctive skolem chase.

DMFA is in between MFA and RMFA (as expected).
Checking DMFA is 2ExpTime-complete and checking BCQ
entailment for a rule set that is DMFA is
coN2ExpTime-complete.

25 26



Results

DMFA is a novel acyclicity notions tailored towards the
disjunctive skolem chase.
DMFA is in between MFA and RMFA (as expected).

Checking DMFA is 2ExpTime-complete and checking BCQ
entailment for a rule set that is DMFA is
coN2ExpTime-complete.

25 26



Results

DMFA is a novel acyclicity notions tailored towards the
disjunctive skolem chase.
DMFA is in between MFA and RMFA (as expected).
Checking DMFA is 2ExpTime-complete and checking BCQ
entailment for a rule set that is DMFA is
coN2ExpTime-complete.

25 26



Future Work

In theory:
1. Develop a cyclicity notion for the disjunctive skolem chase.

2. Refine notions to capture as many rule sets as possible.
In practice:

1. Evaluate DMFA on real world knowledge bases.
2. Use an ASP based implementation of the disjunctive skolem

chase for reasoning with description logics.

26 / 26



Future Work

In theory:
1. Develop a cyclicity notion for the disjunctive skolem chase.
2. Refine notions to capture as many rule sets as possible.

In practice:
1. Evaluate DMFA on real world knowledge bases.
2. Use an ASP based implementation of the disjunctive skolem

chase for reasoning with description logics.

26 / 26



Future Work

In theory:
1. Develop a cyclicity notion for the disjunctive skolem chase.
2. Refine notions to capture as many rule sets as possible.

In practice:
1. Evaluate DMFA on real world knowledge bases.

2. Use an ASP based implementation of the disjunctive skolem
chase for reasoning with description logics.

26 / 26



Future Work

In theory:
1. Develop a cyclicity notion for the disjunctive skolem chase.
2. Refine notions to capture as many rule sets as possible.

In practice:
1. Evaluate DMFA on real world knowledge bases.
2. Use an ASP based implementation of the disjunctive skolem

chase for reasoning with description logics.

26 / 26



References I

Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley.

Adrian, W. T., Alviano, M., Calimeri, F., Cuteri, B., Dodaro, C., Faber,
W., Fuscà, D., Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., and
Zangari, J. (2018).
The ASP system DLV: advancements and applications.
Künstliche Intell., 32(2-3):177–179.

Aho, A. V., Beeri, C., and Ullman, J. D. (1979).
The theory of joins in relational databases.
ACM Trans. Database Syst., 4(3):297–314.

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., and
Ricca, F. (2019).
Evaluation of disjunctive programs in WASP.
In [Balduccini et al., 2019], pages 241–255.



References II

Baget, J., Leclère, M., Mugnier, M., and Salvat, E. (2011).
On rules with existential variables: Walking the decidability
line.
Artif. Intell., 175(9-10):1620–1654.

Balduccini, M., Lierler, Y., and Woltran, S., editors (2019).
Logic Programming and Nonmonotonic Reasoning - 15th
International Conference, LPNMR 2019, volume 11481 of Lecture
Notes in Computer Science. Springer.
Beeri, C. and Vardi, M. Y. (1981).
The implication problem for data dependencies.
In [Even and Kariv, 1981], pages 73–85.

Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P.,
Santoro, D., and Tsamoura, E. (2017).
Benchmarking the chase.
In [Sallinger et al., 2017], pages 37–52.



References III

Bourhis, P., Leclère, M., Mugnier, M., Tison, S., Ulliana, F., and
Gallois, L. (2019).
Oblivious and semi-oblivious boundedness for existential rules.
In [Kraus, 2019], pages 1581–1587.

Bourhis, P., Manna, M., Morak, M., and Pieris, A. (2016).
Guarded-based disjunctive tuple-generating dependencies.
ACM Trans. Database Syst., 41(4):27:1–27:45.

Bourhis, P., Morak, M., and Pieris, A. (2013).
The impact of disjunction on query answering under
guarded-based existential rules.
In [Eiter et al., 2013], pages 539–551.

Calì, A., Gottlob, G., and Pieris, A. (2010).
Query answering under non-guarded rules in datalog+/-.
In [Hitzler and Lukasiewicz, 2010], pages 1–17.



References IV

Calvanese, D., Lenzerini, M., and Motwani, R., editors (2002).
Database Theory - ICDT 2003, 9th International Conference,
volume 2572 of Lecture Notes in Computer Science. Springer.
Carral, D., Dragoste, I., and Krötzsch, M. (2017).
Restricted chase (non)termination for existential rules with
disjunctions.
In [Sierra, 2017], pages 922–928.

Carro, M., King, A., Saeedloei, N., and Vos, M. D., editors (2016).
Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, volume 52 of OASICS.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D.,
Motik, B., and Wang, Z. (2013).
Acyclicity notions for existential rules and their application to
query answering in ontologies.
J. Artif. Intell. Res., 47:741–808.



References V

Deutsch, A., Nash, A., and Remmel, J. B. (2008).
The chase revisited.
In [Lenzerini and Lembo, 2008], pages 149–158.

Deutsch, A. and Tannen, V. (2003).
Reformulation of XML queries and constraints.
In [Calvanese et al., 2002], pages 225–241.

Eiter, T., Glimm, B., Kazakov, Y., and Krötzsch, M., editors (2013).
Informal Proceedings of the 26th International Workshop on
Description Logics, volume 1014 of CEUR Workshop Proceedings.
CEUR-WS.org.
Esparza, J., Fraigniaud, P., Husfeldt, T., and Koutsoupias, E.,
editors (2014).
Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, volume 8573 of Lecture Notes in
Computer Science. Springer.



References VI

Even, S. and Kariv, O., editors (1981).
Automata, Languages and Programming, 8th Colloquium, volume
115 of Lecture Notes in Computer Science. Springer.
Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005).
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T.,
and Wanko, P. (2016).
Theory solving made easy with clingo 5.
In [Carro et al., 2016], pages 2:1–2:15.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012a).
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.



References VII

Gebser, M., Kaufmann, B., and Schaub, T. (2012b).
Multi-threaded ASP solving with clasp.
Theory Pract. Log. Program., 12(4-5):525–545.

Gogacz, T. and Marcinkowski, J. (2014).
All-instances termination of chase is undecidable.
In [Esparza et al., 2014], pages 293–304.

Grahne, G. and Onet, A. (2018).
Anatomy of the chase.
Fundam. Inform., 157(3):221–270.

Hitzler, P. and Lukasiewicz, T., editors (2010).
Web Reasoning and Rule Systems - Fourth International
Conference, RR 2010, volume 6333 of Lecture Notes in Computer
Science. Springer.
Kraus, S., editor (2019).
Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019. ijcai.org.



References VIII

Lenzerini, M. and Lembo, D., editors (2008).
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2008. ACM.

Maier, D., Mendelzon, A. O., and Sagiv, Y. (1979).
Testing implications of data dependencies.
ACM Trans. Database Syst., 4(4):455–469.

Marnette, B. (2009).
Generalized schema-mappings: from termination to tractability.
In [Paredaens and Su, 2009], pages 13–22.

Paredaens, J. and Su, J., editors (2009).
Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2009. ACM.

Rudolph, S., Krötzsch, M., and Hitzler, P. (2012).
Type-elimination-based reasoning for the description logic
shiqbs using decision diagrams and disjunctive datalog.
Logical Methods in Computer Science, 8(1).



References IX

Sallinger, E., den Bussche, J. V., and Geerts, F., editors (2017).
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017. ACM.

Sierra, C., editor (2017).
Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017. ijcai.org.



Technical References

The sources of the presentation can be found on Gitlab:
https://gitlab.com/m0nstR/defence-grosser-beleg

The presentation uses the Focus Theme for Latex Beamer
https://github.com/elauksap/focus-beamertheme
which was obtained from Latex Templates
http://www.latextemplates.com/template/
focus-presentation

https://gitlab.com/m0nstR/defence-grosser-beleg
https://github.com/elauksap/focus-beamertheme
http://www.latextemplates.com/template/focus-presentation
http://www.latextemplates.com/template/focus-presentation

	Appendix

