
Finite and algorithmic model theory : Lecture 5

Plan for today :

(1) Logical reductions
(2) Rank K - types
(3) Proof of E -F games
(4) Cgaifman graphs and Cmt) - Hanf equivalence
(5) How to use Hanf - locality instead of E- F games .



Lemma : Connectivity is not F0[ { E } ] - definable .

8 If § is of odd size <⇒ G is connected
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Proof :

Assume that there is a formula y C- F0[ {E3 ]
that expresses connectivity .

Define as follow : É÷÷÷• y is a Succ of succ of ✗
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• x is second - to - loot
and y is the first elem
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.sc is the last elem and y is the second one
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is of odd size
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P-ankk-ty.pe# eqr ( y ) = # nested quantifiers
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Lemma : There are only finitely many F①o[T ] - formulae .

How many F0m[ i ] formulae I have ? Finitely many .

Assume that I FOn[ r ] / = finite

qr ✗ 4<-14 / son )£n+^



Lemma : There are only finitely many FOK [T] formulae
[ up to equivalence ] .

A - finite structure a c- A -

an element

tpr.CA , a) ={y( x) / 54.1--4 (a)
,
qr( a) It}

1- of c- An -
an n - element tuple

""" "

ftp..ca ,
) . { y(E) / At plñ ) , qr( a) Ek}

types

Rank k - types are finite B
•
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k - rank type of a in 53 is t ye Foul -17
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Back - Forth equivalence between sit and B.

A- =k 33 off A and B are back - and - forth k - equivalent .
-

1) k=0 A =o B off A and B satisfy the some atomic

sentences

2) K > 0 A =k+n B off :

( forth ) for all a c- A there is to c- B such that

( Aia ) =k ( B , b)

( back ) for all be B there is a c- A such that

c Et ,
a) In ( B. b)

.



Proof of E- F games : the following conditions one equivalent :

(1) A and 33 agree on all formulae with qr Em .

(2) 57 Em 33 ( duplicator / it has the winning strategy in E- Fgone)

(3) A =m 33

Proof by induction on m . ""1° m = 0 $8

2° m > 0 (2) <⇒ (3)

(3) ⇒ (2)

Assume that A "man B . Goal : A =m+^ Be .
We play a game and spoiler selects a in A

oud we need to reply with lot B.
By ( forth ) we can find 6GB such that (Aia) 1k (B)b) .

By inductive assumption 47 , a) =w (B. b) , so we know how
to play the game further .
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3.3 Games and the Expressive Power of FO

And now it is time to see why games are important. For this, we need a crucial
definition of quantifier rank.

Definition 3.8 (Quantifier rank). The quantifier rank of a formula qr(ϕ)
is its depth of quantifier nesting. That is:

• If ϕ is atomic, then qr(ϕ) = 0.

• qr(ϕ1 ∨ ϕ2) = qr(ϕ1 ∧ ϕ2) = max(qr(ϕ1), qr(ϕ2)).

• qr(¬ϕ) = qr(ϕ).

• qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

We use the notation FO[k] for all FO formulae of quantifier rank up to k.

In general, quantifier rank of a formula is different from the total of num-
ber of quantifiers used. For example, we can define a family of formulae by
induction: d0(x, y) ≡ E(x, y), and dk ≡ ∃z dk−1(x, z) ∧ dk−1(z, y). The quan-
tifier rank of dk is k, but the total number of quantifiers used in dk is 2k − 1.
For formulae in the prenex form (i.e., all quantifiers are in front, followed by
a quantifier-free formula), quantifier rank is the same as the total number of
quantifiers.

Given a set S of FO sentences (over vocabulary σ), we say that two σ-
structures A and B agree on S if for every sentence Φ of S, it is the case that
A |= Φ⇔ B |= Φ.

Theorem 3.9 (Ehrenfeucht-Fräıssé). Let A and B be two structures in a
relational vocabulary. Then the following are equivalent:

1. A and B agree on FO[k].

2. A ≡k B.

We will prove this theorem shortly, but first we discuss how this is useful
for proving inexpressibility results.

Characterizing the expressive power of FO via games gives rise to the
following methodology for proving inexpressibility results.

Corollary 3.10. A property P of finite σ-structures is not expressible in FO
if for every k ∈ N, there exist two finite σ-structures, Ak and Bk, such that:

• Ak ≡k Bk, and

• Ak has property P, and Bk does not.
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Proof. Assume to the contrary that P is definable by a sentence Φ. Let k =
qr(Φ), and pick Ak and Bk as above. Then Ak ≡k Bk, and thus if Ak has
property P , then so does Bk, which contradicts the assumptions. !

We shall see in the next section that the if of Corollary 3.10 can be re-
placed by iff ; that is, Ehrenfeucht-Fräıssé games are complete for first-order
definability.

The methodology above extends from sentences to formulas with free vari-
ables.

Corollary 3.11. An m-ary query Q on σ-structures is not expressible in FO
iff for every k ∈ N, there exist two finite σ-structures, Ak and Bk, and two
m-tuples $a and $b in them such that:

• (Ak,$a) ≡k (Bk,$b), and

• $a ∈ Q(Ak) and $b )∈ Q(Bk). !

We next see some simple examples of using games; more examples will
be given in Sect. 3.6. An immediate application of the Ehrenfeucht-Fräıssé
theorem is that even is not FO-expressible when σ is empty: we take Ak

to contain k elements, and Bk to contain k + 1 elements. However, we have
already proved this by a simple compactness argument in Sect. 3.1. But we
could not prove, by the same argument, that even is not expressible over
finite linear orders. Now we get this for free:

Corollary 3.12. even is not FO-expressible over linear orders.

Proof. Pick Ak to be a linear order of length 2k, and Bk to be a linear order
of length 2k +1. By Theorem 3.6, Ak ≡k Bk. The statement now follows from
Corollary 3.10. !

3.4 Rank-k Types

We now further analyze FO[k] and introduce the concept of types (more pre-
cisely, rank-k types).

First, what is FO[0]? It contains Boolean combinations of atomic formu-
las. If we are interested in sentences in FO[0], these are precisely atomic
sentences: that is, sentences without quantifiers. In a relational vocabulary,
such sentences are Boolean combinations of formulae of the form c = c′ and
R(c1, . . . , ck), where c, c′, c1, . . . , ck are constant symbols from σ.

Next, assume that ϕ is an FO[k + 1] formula. If ϕ = ϕ1 ∨ ϕ2, then both
ϕ1,ϕ2 are FO[k + 1] formulae, and likewise for ∧; if ϕ = ¬ϕ1, then ϕ1 ∈
FO[k + 1]. However, if ϕ = ∃xψ or ϕ = ∀xψ, then ψ is an FO[k] formula.
Hence, every formula from FO[k + 1] is equivalent to a Boolean combination
of formulae of the form ∃xψ, where ψ ∈ FO[k]. Using this, we show:
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Lemma 3.13. If σ is finite, then up to logical equivalence, FO[k] over σ con-
tains only finitely many formulae in m free variables x1, . . . , xm.

Proof. The proof is by induction on k. The base case is FO[0]; there are
only finitely many atomic formulae, and hence only finitely many Boolean
combinations of those, up to logical equivalence. Going from k to k +1, recall
that each formula ϕ(x1, . . . , xm) from FO[k + 1] is a Boolean combination of
∃xm+1ψ(x1, . . . , xm, xm+1), where ψ ∈ FO[k]. By the hypothesis, the number
of FO[k] formulae in m + 1 free variables x1, . . . , xm+1 is finite (up to logical
equivalence) and hence the same can be concluded about FO[k + 1] formulas
in m free variables. !

In model theory, a type (or m-type) of an m-tuple $a over a σ structure A

is the set of all FO formulae ϕ in m free variables such that A |= ϕ($a). This
notion is too general in our setting, as the type of $a over a finite A describes
(A,$a) up to isomorphism.

Definition 3.14 (Types). Fix a relational vocabulary σ. Let A be a σ-
structure, and $a an m-tuple over A. Then the rank-k m-type of $a over A

is defined as
tpk(A,$a) = {ϕ ∈ FO[k] | A |= ϕ($a)}.

A rank-k m-type is any set of formulae of the form tpk(A,$a), where |$a |= m.
When m is clear from the context, we speak of rank-k types.

In the special case of m = 0 we deal with tpk(A), defined as the set of
FO[k] sentences that hold in A. Also note that rank-k types are maximally
consistent sets of formulae: that is, each rank-k type S is consistent, and for
every ϕ(x1, . . . , xm) ∈ FO[k], either ϕ ∈ S or ¬ϕ ∈ S.

At this point, it seems that rank-k types are inherently infinite objects, but
they are not, because of Lemma 3.13. We know that up to logical equivalence,
FO[k] is finite, for a fixed number m of free variables. Let ϕ1($x), . . . ,ϕM ($x)
enumerate all the nonequivalent formulae in FO[k] with free variables $x =
(x1, . . . , xm). Then a rank-k type is uniquely determined by a subset K of
{1, . . . , M} specifying which of the ϕi’s belong to it. Moreover, testing that $x
satisfies all the ϕi’s with i ∈ K and does not satisfy all the ϕj ’s with j )∈ K
can be done by a single formula

αK($x) ≡
∧

i∈K

ϕi ∧
∧

j $∈K

¬ϕj . (3.3)

Note that αK($x) itself is an FO[k] formula, since no new quantifiers were
introduced.

Furthermore, all the αK ’s are mutually exclusive: for K )= K ′, if A |=
αK($a), then A |= ¬αK′($a). Every FO[k] formula is a disjunction of some of
the αK ’s: indeed, every FO[k] formula is equivalent to some ϕi in the above
enumeration, which is the disjunction of all αK ’s with i ∈ K.

Summing up, we have the following.
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Theorem 3.15. a) For a finite relational vocabulary σ, the number of differ-
ent rank-k m-types is finite.

b) Let T1, . . . , Tr enumerate all the rank-k m-types. There exist FO[k] for-
mulae α1($x), . . . ,αr($x) such that:

• for every A and $a ∈ Am, it is the case that A |= αi($a) iff tpk(A,$a) = Ti,
and

• every FO[k] formula ϕ($x) in m free variables is equivalent to a disjunction
of some αi’s.

Thus, in what follows we normally associate types with their defining for-
mulae αi’s (3.3). It is important to remember that these defining formulae for
rank-k types have the same quantifier rank, k.

From the Ehrenfeucht-Fräıssé theorem and Theorem 3.15, we obtain:

Corollary 3.16. The equivalence relation ≡k is of finite index (that is, has
finitely many equivalence classes).

As promised in the last section, we now show that games are complete for
characterizing the expressive power of FO: that is, the if of Corollary 3.10 can
be replaced by iff.

Corollary 3.17. A property P is expressible in FO iff there exists a number
k such that for every two structures A, B, if A ∈ P and A ≡k B, then B ∈ P.

Proof. If P is expressible by an FO sentence Φ, let k = qr(Φ). If A ∈ P ,
then A |= Φ, and hence for B with A ≡k B, we have B |= Φ. Thus, B ∈ P .

Conversely, if A ∈ P and A ≡k B imply B ∈ P , then any two structures
with the same rank-k type agree on P , and hence P is a union of types, and
thus definable by a disjunction of some of the αi’s defined by (3.3). !

Thus, a property P is not expressible in FO iff for every k, one can find
two structures, Ak ≡k Bk, such that Ak has P and Bk does not.

3.5 Proof of the Ehrenfeucht-Fräıssé Theorem

We shall prove the equivalence of 1 and 2 in the Ehrenfeucht-Fräıssé theorem,
as well as a new important condition, the back-and-forth equivalence. Before
stating this condition, we briefly analyze the equivalence relation ≡0.

When does the duplicator win the game without even starting? This hap-
pens iff (∅, ∅) is a partial isomorphism between two structures A and B. That
is, if $c is the tuple of constant symbols, then cA

i = cA
j iff cB

i = cB
j for every

i, j, and for each relation symbol R, the tuple (cA
i1 , . . . , c

A
ik

) is in RA iff the
tuple (cB

i1 , . . . , cB
ik

) is in RB. In other words, (∅, ∅) is a partial isomorphism
between A and B iff A and B satisfy the same atomic sentences.



36 3 Ehrenfeucht-Fräıssé Games

We now use this as the basis for the inductive definition of back-and-forth
relations on A and B. More precisely, we define a family of relations +k on
pairs of structures of the same vocabulary as follows:

• A +0 B iff A ≡0 B; that is, A and B satisfy the same atomic sentences.

• A +k+1 B iff the following two conditions hold:

forth: for every a ∈ A, there exists b ∈ B such that (A, a) +k (B, b);

back: for every b ∈ B, there exists a ∈ A such that (A, a) +k (B, b).

We now prove the following extension of Theorem 3.9.

Theorem 3.18. Let A and B be two structures in a relational vocabulary σ.
Then the following are equivalent:

1. A and B agree on FO[k].

2. A ≡k B.

3. A +k B.

Proof. By induction on k. The case of k = 0 is obvious. We first show the
equivalence of 2 and 3. Going from k to k + 1, assume A +k+1 B; we must
show A ≡k+1 B. Assume for the first move the spoiler plays a ∈ A; we find
b ∈ B with (A, a) +k (B, b), and thus by the hypothesis (A, a) ≡k (B, b).
Hence the duplicator can continue to play for k moves, and thus wins the
k + 1-move game. The other direction is similar.

With games replaced by the back-and-forth relation, we show the equiva-
lence of 1 and 3. Assume A and B agree on all quantifier-rank k+1 sentences;
we must show A +k+1 B. We prove the forth case; the back case is identical.
Pick a ∈ A, and let αi define its rank-k 1-type. Then A |= ∃xαi(x). Since
qr(αi) = k, this is a sentence of quantifier-rank k+1; hence B |= ∃xαi(x). Let
b be the witness for the existential quantifier; that is, tpk(A, a) = tpk(B, b).
Hence for every σ1 sentence Ψ of qr(Ψ) = k, we have (A, a) |= Ψ iff (B, b) |= Ψ ,
and thus (A, a) and (B, b) agree on quantifier-rank k sentences. By the hy-
pothesis, this implies (A, a) +k (B, b).

For the implication 3 → 1, we need to prove that A +k+1 B implies that A

and B agree on FO[k+1]. Every FO[k+1] sentence is a Boolean combination
of ∃xϕ(x), where ϕ ∈ FO[k], so it suffices to prove the result for sentences of
the form ∃xϕ(x). Assume that A |= ∃xϕ(x), so A |= ϕ(a) for some a ∈ A. By
forth, find b ∈ B such that (A, a) +k (B, b); hence (A, a) and (B, b) agree
on FO[k] by the hypothesis. Hence, B |= ϕ(b), and thus B |= ∃xϕ(x). The
converse (that B |= ∃xϕ(x) implies A |= ∃xϕ(x)) is identical, which completes
the proof. !
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Fig. 3.3. Reduction of parity to connectivity

3.6 More Inexpressibility Results

So far we have used games to prove that even is not expressible in FO, in
both ordered and unordered settings. Next, we show inexpressibility of graph
connectivity over finite graphs. In Sect. 3.1 we used compactness to show that
connectivity of arbitrary graphs is inexpressible, leaving open the possibility
that it may be FO-definable over finite graphs. We now show that this cannot
happen. It turns out that no new game argument is needed, as the proof uses
a reduction from even over linear orders.

Assume that connectivity of finite graphs is definable by an FO sentence
Φ, in the vocabulary that consists of one binary relation symbol E. Next,
given a linear ordering, we define a directed graph from it as described below.
First, from a linear ordering < we define the successor relation

succ(x, y) ≡ (x < y) ∧ ∀z
(

(z ≤ x) ∨ (z ≥ y)
)

.

Using this, we define an FO formula γ(x, y) such that γ(x, y) is true iff one of
the following holds:

• y is the successor of the successor of x: ∃z
(

succ(x, z) ∧ succ(z, y)
)

, or

• x is the predecessor of the last element, and y is the first element:
(

∃z (succ(x, z) ∧ ∀u(u ≤ z))
)

∧ ∀u(y ≤ u), or

• x is the last element and y is the successor of the first element (the FO
formula is similar to the one above).

Thus, γ(x, y) defines a new graph on the elements of the linear ordering; the
construction is illustrated in Fig. 3.3.

Now observe that the graph defined by γ is connected iff the size of the
underlying linear ordering is odd. Hence, taking ¬Φ, and substituting γ for
every occurrence of the predicate E, we get a sentence that tests even for
linear orderings. Since this is impossible, we obtain the following.

Corollary 3.19. Connectivity of finite graphs is not FO-definable.


