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Preface

Formal models of domain-specific knowledge abound in science and technology.
It is desirable that such models can be managed, exchanged, and interpreted in
computer systems, and the term “ontology” was coined to refer to the respective
modelling artefacts.

A prominent application field for ontologies is the Semantic Web where the
Web Ontology Language OWL is the predominant modelling language. The for-
mal semantics of OWL is largely based on the description logic (DL) family
of knowledge representation formalisms that are well-suited for terminological
modelling. Rule-based knowledge representation languages, in contrast, have a
stronger focus on modelling relationships between instances. Both perspectives
are relevant in applications but the combination of rules and DLs turns out to be
difficult, since vital computational properties such as decidability are lost easily.

The subject of this work is to advance the development of hybrid DL rule lan-
guages based on first-order Horn rules. Reasoning for SWRL — the combination of
DLs with (first-order) datalog — is known to be undecidable, and we identify DL
Rules as anovel class of decidable SWRL fragments that is closely related to DLs.
New decidability results for DLs with role constructors let us include simple role
conjunction and concept products into DL Rules. DL Rules are further extended
with DL-safe variables to arrive at DL+safe rules. The latter generalise DL Rules
and the known approaches of DL-safe rules and role-safe recursive CARIN.

This leads to expressive DL rule languages with high computational complexi-
ties, motivating the study of more restricted languages. We introduce Horn DLs to
generalise the known DL Horn-SH 7@, and show that many of these DLs exhibit
high reasoning complexities in spite of their low data complexity. DLP has been
proposed as a logic in the “expressive intersection” of DLs and datalog. We ques-
tion the meaning of this description, and develop formal design criteria for DLP
that let us specify the largest datalog-expressible fragment of description logics.

Combining these insights, we arrive at a new tractable DL rule language ELP
which extends both DLP and the light-weight DL EL, although the union of
these languages is intractable. ELP incorporates DL Rules and a form of DL+safe
rules, and we present a reasoning procedure based on a direct reduction to datalog
that preserves the structure of rules. This also lets us derive a new datalog-based
inferencing procedure for the DL SROEL(T, X) which extends EL.

This work advances the understanding of the relationship of rules and descrip-
tion logics, leading to concrete new knowledge representation formalisms of prac-
tical relevance. DL+safe rules constitute one of the broadest classes of decidable
SWRL fragments known today. ELP provides a tractable DL rule language that
generalises the novel light-weight ontology languages OWL RL and OWL EL as
standardised by W3C, and that has been adopted as the basis for the WSML-DL



v2.0 dialect of the Web Service Modeling Language. Our work also suggests new
rule-based implementation methods for supporting these languages based on a
single inferencing algorithm.
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Chapter 1

Introduction

Ontological modelling is relevant in a number of disciplines — prominent applica-
tion areas include medicine, the life sciences, and the Semantic Web —, and various
ontology languages have been devised as a suitable conceptual basis. Examples
include CycL [Cyc02], LOOM [MB87], KIF [GF92], KRSS [PSS93], F-Logic
[KLW95], Common Logic [ISO07], but also domain-specific languages such as
OBO [DRO6]. A prominent and highly influential representative of such languages
is the Web Ontology Language OWL which became a W3C standard in 2004
[PSHHO4] and which has been updated and extended in 2009 [OWL09]. The for-
mal semantics of OWL is largely based on description logics as an expressive
knowledge representation formalism with a particular emphasis on terminologi-
cal, i.e. schema-level, modelling. Rule languages, in contrast, provide an alterna-
tive paradigm for modelling knowledge' with a stronger focus on instances and
relations between them. The combination of both approaches is desirable but dif-
ficult, and — based on a more precise notion of “rule language” — it will be the
main objective of this work.

The following sections provide a wider perspective and motivation for this
work. Section 1.1 gives a short discussion of ontological modelling in the context
of various historical developments, and discusses its relation to the Semantic Web.
An intuitive introduction of description logics and their history is then provided
in Section 1.2. In Section 1.3, we give an overview of popular uses of the term
“rule,” and outline which meaning the term will have within the remainder of this
work. Section 1.4 explicates the aims and objectives of this work, and Section 1.5
offers some guidance for reading it.

"We generally use the term “knowledge” in the technical sense of “knowledge representation
and reasoning” and especially we do not presuppose or endorse any philosophical theory of knowl-
edge.



INTRODUCTION

1.1 Ontologies and the Semantic Web

In computer science, an ontology is a description of knowledge about a domain of
interest, the core of which is a machine-processable specification with a formally
defined meaning.?> Approaches to knowledge representation and reasoning, and
especially the formalisms that are discussed within this work, provide the formal
underpinnings for the creation and usage of ontologies in this sense. Applica-
tion areas of ontologies include geoscience [Goo05, RP05, SWE, FMC*09], bio-
informatics [Gen00, SAR*07, GGPS03], medicine [RGG*94, SCC97, dCHS*04,
GZBO06], electrical engineering [UD0O7, UGO07], service science [SGAOQ7], and —
maybe most prominently — the Semantic Web [BLHLO1].

The modern usage of ontologies marks the convergence of two strands of sci-
entific and technological development: the description of the world in terms of
abstract models, and the automated calculation with formally specified knowl-
edge. Scientific modelling, the former of the two aspects, can be traced back to
ancient philosophy, and indeed started with fundamental questions that initiated
the philosophical field of Ontology [Sow00]. Yet, the advent of rigorous scientific
models started only in the 18th century with the systematic study of natural phe-
nomena. Classical models include, e.g., the biological classification of the Linnean
taxonomy, the International Classification of Diseases (ICD), or the Dewey Deci-
mal Classification (DDC) for library organisation. These examples also highlight
a development toward using models for communication — the ICD was initially
created for enabling international exchange of mortality statistics — and for organ-
isation and search — an important goal of DDC is to allow users to find a book
in a library. Both aspects have gained further importance in modern information
technologies.

Today, formal models abound in science and technology, and standards have
been devised for their specification. A typical example from computer science
is the Unified Modelling Language UML.?> Models thus also have become com-
putational artefacts that are stored and processed in computer systems, and the
requirement for more “intelligent” automatic evaluation of models was a natural
consequence. In many cases, “intelligent evaluation” has been interpreted as the
capability to draw logical inferences from the given information, which is where
knowledge representation and reasoning comes to the fore as the second main
component of ontology-based applications.

The idea of formal inferencing as a means for simulating and augmenting hu-
man reasoning has a long history which involves Aristotle’s syllogisms, Ramon

2The term is derived from the philosophical discipline of Ontology — the study of existence and
being — since a basic purpose of ontologies in computer science is to describe the existing entities
and their inter-relation.

Shttp://www.uml.org/
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Llull’s “Ars generalis ultima,” and the visionary ideas of Gottfried Leibniz; see
[Sow00] for details. Yet, significant progress toward that goal happened only in the
late 19th century with the systematic development of formal logic. Although the
seminal results of Godel [G6d31] and Turing [Tur37] revealed principal bound-
aries both of logical deduction and of practical computation, the development of
electronic computers renewed the interest in knowledge representation and (au-
tomated) reasoning, and the field of Artificial Intelligence (Al) provided the en-
vironment for extended research activities in that area; see, e.g., [RNO3] for an
introduction.

It was soon discovered that computational complexity is a major limiting fac-
tor for automated deduction, destroying the hope that the rapid growth of com-
puting power would suffice to solve all practically relevant reasoning problems as
long as they were at least decidable. Continued research revealed the fundamental
conflict between maximising the expressive power of a knowledge representation
formalism on the one side, and minimising the computational complexity of the
relevant reasoning problems for this formalism on the other. This basic trade-off
between expressiveness and computational feasibility has consequences for the
design of modelling languages, and thus relates knowledge representation and
reasoning to formal modelling.

Ontological modelling — though not always with that particular name — has
been done in various contexts and applications. The expert systems of the 1980s
were mostly based on rule languages for modelling knowledge, whereas Cyc be-
came known as a major effort for creating a huge and complex ontology based
on a more expressive knowledge representation language [LG90]. Notable mod-
elling efforts have also been made in life sciences and medicine, leading to on-
tologies of significant practical impact. Prominent clinical and health care ontolo-
gies include GALEN (around 25,000 atomic concepts [RGG*94]), SNOMED-CT
(around 300,000 atomic concepts [JS08]), and the NCI Thesaurus of the US Na-
tional Cancer Institute (around 25,000 concepts [dCHS*04]). However, the most
prominent use of ontologies to date relates to a more recent activity of establishing
a Semantic Web.

The Semantic Web has been conceived as an extension of the World Wide Web
that allows computers to intelligently search, combine, and process Web content
based on the meaning that this content has to humans [BLHLO1, SBLHO06]. In
the absence of human-level artificial intelligence, this can only be accomplished
if the intended meaning (i.e. the semantics) of Web resources is explicitly spec-
ified in a format that is processable by computers. For this it is not enough to
store data in a machine-processable syntax — every HTML page on the Web is
machine-processable in a sense — but it is also required that this data is endowed
with a formal semantics that clearly specifies which conclusions should be drawn

3
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from the collected information.* Clearly, this would be an impossible endeavour
when aiming at all human knowledge found on the Web, given that it is often
hard enough for humans to even agree on the contents of a certain document, not
to mention formalising it in a way that is meaningful to computers. In reality,
of course, the purpose of the Semantic Web is rather to enable machines to ac-
cess more information that hitherto required human time and attention to be used.
While this is a reasonable goal from a practical viewpoint, it also means that “Se-
mantic Web” does not refer to a concrete extension of the World Wide Web, but
rather to an ideal toward which the Web evolves over time. At the same time, any
progress in this field can similarly be useful in applications that are not closely
related to the Web.

Realising the above-mentioned goals makes it necessary to address a num-
ber of difficult challenges that are not addressed by classical Web technologies.
This is where topics of formal modelling and automated deduction come into
play. Expressing human knowledge in a formally specified language is a classi-
cal modelling task. The rich experiences gathered within this domain through-
out history are an important guide in identifying relevant modelling structures up
to the present day. The most recently developed Semantic Web language OWL
2 (see below), for instance, has been influenced by feature requests from mod-
elling use cases in life sciences. Moreover, semantic technologies can draw from
modelling methodologies, software applications, and corresponding user-interface
paradigms that have been developed for supporting humans in the task of con-
structing models.

How knowledge is to be modelled also depends, of course, on the intended
usage of the constructed model. On the Semantic Web, one would like computer
programs to draw conclusions from given information, so that aspects of formal
knowledge representation and reasoning become relevant. In the first place, the
insights gathered in this field help in understanding the fundamental difficulties
and limits that one has to be aware of when constructing reasoning systems. On
the practical side, semantic technologies can build on algorithms and tools that
were developed for solving relevant inferencing problems.

The above discussion views the development of the Semantic Web as an ap-
proach of incorporating knowledge modelling and automatic deduction into the
Web. Conversely, it is also true that semantic technologies introduce aspects and
features of Web applications into the domain of formal modelling and knowl-
edge representation. Most basically, the Web introduces a notion of distributed,

“Note that, indeed, the term “semantics” occurs with two distinct interpretations in the previous
two sentences. In the first sense, it refers to the meaning that texts in a human language have: this
is the usage common in linguistics. In the second sense, it refers to the formal interpretation of a
computer language: this is the usage common in computer science. Both notions of the term are
found in discussions of the Semantic Web.
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heterogeneous, yet inter-linked information that is novel to the other disciplines.
Whereas Web data is indeed independently published and maintained in many
sources, it is still universally accessible based on global addressing schemes and
standardised protocols. More specifically, the Web emphasises the importance of
clearly specified, standardised languages that can be used to exchange data across
software boundaries. Although there are some examples of earlier standardisa-
tion activities around knowledge representation formalisms,®> the Semantic Web
clearly has increased the practical importance of standardisation in this area. These
activities have also facilitated tool interoperability and information exchange in
application areas beyond the Web.

As of today, the most prominent standards for semantic technologies are the
Resource Description Framework RDF [MMO04, KC04, BecO4, Hay04], enabling
the exchange of factual data, the SPARQL language for querying such data [PS08,
BBO08, CFT08], and the Web Ontology Language OWL for modelling complex
schematic knowledge [OWLO09]. As the name suggests, OWL is most relevant
for ontological modelling, although some of its modelling features were already
introduced by RDF Schema [BG04]. This work is closely related to the knowledge
representation formalism that provides the formal underpinning for a significant
part of the OWL standard — description logics (DLs) — which will be introduced
in more detail in Section 1.2.

The OWL standard has first been published in 2004, and an updated and ex-
tended version has recently been released under the name OWL 2.° The new stan-
dard is fully compatible with the old one, i.e. with “OWL 1,” but it provides a
number of additional features both on the technical and on the logical level. We
will not introduce the syntactic details and formal intricacies of OWL 2 herein,
see [HKP*09, HKR09, HKRSO08] for a detailed introduction. This work relates to
the so-called direct semantics of OWL 2 which is based on the description logic
SROIQ, and it is generally more convenient to use the syntax of DL or first-order
logic for our purposes.

A particular aspect that is worth special emphasis, however, is the inclusion of
tractable sub-languages — so-called profiles — into OWL 2 [MCH*09]. The three
profiles that are provided are called OWL EL, OWL RL, and OWL QL. Their
purpose is to provide “maximal” sub-languages of OWL 2 for which standard
reasoning problems can be solved in polynomial time. It should be noted that the
union of any two of the languages does no longer have this property. The fact that
these profiles have been introduced in OWL 2 witnesses the increased demand
for tractable formalisms, and it illustrates the practical impact that research on

>The most prominent example is the logic programming language Prolog that is covered by
the ISO/IEC 13211 standard, cf. [DEDC96].

6See [OWLO09] for an overview; the main technical specifications are [MPSP09, MPSC09,
SHKG09, PSM09, Sch09b, MCH*(09]
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the worst-case complexity of important reasoning problems has within this field.
Establishing complexity results for new and extended knowledge representation
languages will also be a major topic of this work.

1.2 Description Logics

Description logics (DLs) are among the most important formalisms for ontologi-
cal modelling today, which is also due to their central role for the semantics of the
Web Ontology Language OWL. DLs have developed as a family of related knowl-
edge representation languages ranging from light-weight formalisms for which
common inference tasks can be solved in polynomial time to highly expressive
logics for which reasoning is undecidable. A major design goal for description
logics, however, typically is to retain decidability of standard inferencing tasks
such as checking knowledge base satisfiability. Another common feature of the
overwhelming majority of today’s description logics is that they can be consid-
ered as fragments of first-order logic (with equality),” although a different syntax
is commonly used for DLs.

Theories of a DL are usually called knowledge bases, which specifically avoids
any informal connotations that the general term “ontology” often has, as discussed
in Section 1.1. DL knowledge bases describe models that are based on individual
elements, classes of which elements can be instances, and binary relationships
between the elements. These three types of semantic entities are syntactically de-
noted by means of individual names, concept names, and role names, which es-
sentially correspond to constants, and unary and binary predicates in first-order
logic.® Some DLs have been extended with datatypes, thus introducing notions of
sorted logic, but these approaches will not be considered within this work.

Basic statements that can be formulated with this vocabulary include:

— assertions such as City(ulm) (“The element denoted by ulm is in the class
denoted by city” i.e. “Ulm is a city”), or locatedIn(dresden, germany)
(“Dresden is located in Germany”),

— concept inclusions such as Capital C City (“capitals are cities”), and

— role inclusions such as captialOf C locatedIn (“a capital of some country
is always located within this country”).

"Exceptions include, e.g., DLs that include operators for specifying transitive closure that are
rarely considered today.

8Some application areas use other terms, and especially OWL uses the terms “class” and “prop-
erty” to refer to concepts and roles. In this work,“class” always refers to the semantic entity that a
concept describes, i.e. to a set of individuals within a model.

6
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Here we adopt the convention of capitalising concept names. In addition, DLs
provide many operators for combining concept names into complex concept ex-
pressions, the semantics of which is derived from the semantics of the individual
components. Basic operators include the Boolean constructors 1 (intersection), LI
(union), and — (negation). Role restrictions further allow us to describe classes
based on binary relationships of individual elements. For example, the concept
JdcitizenOf.EUCountry describes the class of all things that are citizens of some
EU country, while V citizenOf.EUCountry refers to those things that are citi-
zens of nothing but EU countries (including, as usual in first-order logic, the things
that are not citizens of anything). Combining these expressive features, it can be
stated that people who have nothing but EU citizenships are either EU citizens or
have no citizenship at all:

Person VY citizenOf.EUCountry C EUCitizen Ll —-dcitizenOf. T.

Here, the operator T denotes the class of all elements, so -4 citizenOf. T refers
to things without any citizenship. Further constructors are introduced in Chapter 3.
DLs typically provide much less features for creating complex role expressions
than for creating complex concept expressions. A basic example are inverse roles,
as in the concept expression J citizenOf .Person that describes the class of all
things that have some citizen who is a person. More advanced role constructors
are less common, but will be relevant for various parts of this work; see Chapter 5
for a detailed discussion. A construct that is available in many modern DLs, and
in particular in (all profiles of) OWL 2, are so-called complex role inclusions that
allow us to state that, whenever two individuals are connected with a chain of
relations, they must also be directly related by some other relation. For example,
we can formulate that the brother of someone’s father is her uncle:

hasFather o hasBrother C hasUncle.

Expressions of this kind significantly increase the modelling power of DLs, and
can easily lead to higher reasoning complexities or even to undecidability. At the
same time, complex role inclusions provide an important basis for some of the
approaches of modelling rules in description logics that are discussed in this work.

Historically, description logics developed out of semantic networks [Qui68]
and frame logics [Min74] in the mid-1980s. The knowledge representation lan-
guage KL-ONE [BS85] and the frame logic ¥L [BL84] are often considered to
be the first description logics. However, it was soon discovered that KL.-ONE
leads to undecidable inferencing problems [SS89], and that fundamental reason-
ing tasks tend to be computationally intractable even in very simple DLs like ALC
[SSS91]; see [DLNS96, BCM*07] for an overview of related results.

7
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Yet, the actual implementation of inferencing engines has been a major goal of
DL research since its early days, and numerous systems have been proposed. The
initial implementation for KL-ONE was soon succeeded by various early DL rea-
soners such as Loom [MB87], Krypron [BPL85], NikL [KBR86], Back [QK90],
Crassic [BBMR89], and Kris [BH91]. Many of these early systems were not only
very efficient and scalable but also, unfortunately, incomplete. Namely, the struc-
tural inferencing algorithms that they applied are insufficient for discovering all
logical inferences in all but the most basic DLs. Later implementations overcame
this problem by employing fableaux algorithms. Examples of modern systems that
are based on this idea include FaCT++ [THO6], Pellet [SPG*07], and RacerPro
[HMOT1]. In spite of the high worst-case complexities of the underlying reasoning
problems, it turned out that many practical problems can be solved by using such
highly optimised and well-engineered implementations. More recently, alternative
approaches have been proposed to address common problems in tableau-based
systems, such as the relatively poor handling of large amounts of instance data.
Examples include resolution-based algorithms as in KAON2 [MSO06], the hyper-
tableau system HermiT [MSHO07, MSHO8], approaches based on type elimination
[RKHO08d, RKHO8c], and recent “consequence-based” approaches [Kaz(09a].

Moreover, a number of light-weight description logics have been studied in re-
cent years to address the emerging requirements for reasoning with very large on-
tologies. Notable approaches include the description logics EL£" [BBLO05], DL-
Lite [CGL*07], and DLP [GHVDO03] which provide the formal background for
the OWL 2 profiles OWL EL, OWL QL, and OWL RL, respectively. Both EL*
and DLP are studied and extended within this work as part of the general strug-
gle for more expressive yet tractable knowledge representation languages. DLP
— Description Logic Programs — are of additional interest since they have been
proposed as a language within the “intersection” of description logics and rule
languages. We will see that the actual relationship between DL and rules is signif-
icantly more complicated — the term “intersection” is rather not adequate here —,
but DLP still provides an inspiration for our studies.

1.3 Whatis a Rule?

Rule-based modelling has a long tradition in knowledge representation and rea-
soning, and a plethora of different rule formalisms have been proposed. What
these formalisms have in common is not so much their formal background — of
which some rule languages have very little — but rather a common metaphor for
modelling knowledge. In the broadest sense, a rule could be any statement which
says that a certain conclusion must be valid whenever a certain premise is satis-
fied, i.e. any statement that could be read as a sentence of the form “if ...then

8
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..”? Typical representatives are rules in logic programming, association rules in
databases, or production rules as they occur in various business rules systems. In
this work, we will confine ourselves to concrete kinds of first-order Horn logic
rules that will be defined more accurately. Yet it is worth noting that the term
“rule” as such refers rather to a knowledge modelling paradigm than to a partic-
ular formalism or language. And it is also this paradigm that makes rules attrac-
tive in many applications, since users sometimes find it more natural to formulate
knowledge in terms of rules than in terms of other kinds of ontological axioms.

But the difference between rules and ontologies is not merely pedagogical. In
the cases we consider, rules can often help to express knowledge that cannot be
formulated in description logics. At the same time, there are also various features
of DL that rule languages do not provide, so a natural question to ask is how the
strengths of DL and of rules can be combined. It turns out that this is indeed pos-
sible, but that the added power often also comes at the price of higher complexity
and more difficult implementation.

It has been noted that rules of any type should consist at least of a premise and
a conclusion, with the intuitive meaning that in any situation where the premise
applies the conclusion must also hold. Such a general description comprises some,
if not all, DL axioms. Consider, e.g., the “rule” that, if a person is the author of a
book then she is a (member of the class) book author. This can surely be expressed
in DL: using the syntax introduced in Section 1.2, we can write

Person M dauthorOf.Book C Bookauthor.

It has already been mentioned that DLs can usually be considered as fragments of
first-order predicate logic. Indeed, it turns out that we can equivalently write the
above statement as a predicate logic formula (see Section 3.2 for formal details):

VYx.(Person(x) A dy.(author0£f(x,y) A Book(y)) — Bookauthor(x)).
Using standard semantic equivalences of first-order logic, we thus obtain:
VxVy.(Person(x) A authorO£f(x,y) A Book(y) — Bookauthor(x)).

This formula is a logical implication with universally quantified variables, hence
it comes close to our vague idea of a “rule.” The universal quantifiers express the
fact that the implication is applicable to all individuals that satisfy the premise.
But defining “first-order logic rules” to be arbitrary first-order logic implications
would not say much since every first-order logic formula can be rewritten to fit

°Instead of the terms “premise” and “conclusion” it is also common to speak of “precondition”
and “postcondition,” “body” and “head,” or “precedent” and “antecedent” of a rule. We use these
terms interchangeably.
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that syntactic form. One therefore typically restricts to so-called Horn rules: im-
plications with conjunctions of atomic formulae as their body and head. Using
the term “rule” as a synonym for “first-order Horn implication” has become com-
mon practice in connection with the Semantic Web, as witnessed by formalisms
such as the Semantic Web Rule Language [HPSB*04], Description Logic Rules
[KRHO8a], DL-safe rules [MSS05], and the Rule Interchange Format (RIF-Core
[BHK*09]), most of which will also be discussed in more detail within this work.

While a main focus of this work are (extensions of) the rule languages men-
tioned above, it should be noted that there are a number of rather different interpre-
tations of the term “rule” outside of first-order logic. Among the most popular rule
formalisms in computer science is certainly logic programming [L1088], which is
closely associated with the Prolog programming language and its various deriva-
tives and extensions [DEDC96, CMO03]. At first glance, Prolog rules appear to be
very similar to first-order logic implications that merely use a slightly different
syntax, putting the precondition to the right of the rule. The example above would
read as follows in Prolog:

Bookauthor(X) : - Person(X), authorO£f(X, Y), Book(Y).

Basic Prolog indeed has the same expressiveness as first-order Horn logic, and
can equivalently be interpreted under a first-order logic semantics. But there are
many extensions of Prolog that introduce features beyond first-order logic, such as
operational plug-ins (e.g., for arithmetic functions) and non-monotonic inferences
which derive new results from the fact that something else can not be derived.
Logic programming in this form, as the name suggests, has been conceived as a
way of specifying and controlling powerful computations, and not as an ontology
language for direct interchange on the Web. Two ontologies from different sources
can usually be merged simply by taking the union of their axioms (meaningful or
not), whereas two independent Prolog programs can hardly be combined without
carefully checking manually that the result is still a program that can be suc-
cessfully executed by the employed logic programming engine. The use of logic
programming in combination with ontologies can still be quite useful, but most of
the research that has been conducted in this field is beyond the scope of this work
(see Section 4.3 for an overview).

A related rule formalism that has also been proposed as an ontology lan-
guage is F-Logic [KLW95]. While F-Logic incorporates a Prolog-like rule syn-
tax that is evaluated under a non-monotonic semantics in current systems, its core
is the frame syntax for defining classes and instances from which it derives its
name. F-Logic is closely related to the upcoming Rule Interchange Format, espe-
cially to the Basic Logic Dialect RIF-BLD [BKO09]. The latter does not include
non-monotonic features, and can be evaluated under a first-order logic seman-
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tics that allows for a combination of RIF-BLD with OWL and the rule-based ex-
tensions considered within this work (see also [dB09]). We are more interested
in (onto)logical expressiveness, and will not discuss the technical details of this
combination within this work.

Yet another kind of rules that is very relevant in practice is known as produc-
tion rules, such as Event Condition Action Rules or business rules. Rule languages
of this type apply a more operational interpretation of rules, i.e. they view rules
as program statements that can be executed actively. For ontology languages like
OWL, the semantics of an ontology is not affected by the order in which ontolog-
ical axioms are considered. In contrast, for rules with an operational semantics it
can be crucial to know which rule is executed first, and part of the semantics of
production rules is concerned with the question of precedence between rules. A
popular evaluation strategy for production rule systems is known as the Rete Algo-
rithm [For82]. Many different kinds of production rule engines are used in practice
and many rule engines implement their own customised semantic interpretations
of rules that do not follow a shared published semantics. As such, production rules
again are hard to interchange between different systems, and the ongoing work on
the W3C Rule Interchange Format is among the first efforts to allow for the kind
of interoperability that a common semantic standard can offer [dSMPHO09]. Yet
it is currently unclear how production rule engines should best be combined with
ontology-based systems, and we shall not pursue this endeavour in the remainder
of this work.

Besides the interpretation of “rule” in these diverse approaches, the term can
also have an even more general meaning in the context of knowledge represen-
tation. In particular, a “deduction rule” or “rule of inference” is sometimes un-
derstood as an instruction of how to derive additional conclusions from a logical
theory. In this sense, the rule is not part of the encoded knowledge, but rather a
component of algorithms that are used to process this knowledge. It can be argued
that the deduction rules of virtually any calculus could be expressed as logical
rules of some suitable logic. But this logic is typically required to be very expres-
sive, making it difficult or impossible to implement general-purpose reasoners that
can process the logical theory that was derived from a set of deduction rules. Since
we are interested in semantic technologies that represent knowledge in a machine-
processable way, the topic of this work is rules in the earlier sense, i.e. axioms for
representing ontological knowledge in the form of a rule.

1.4 Aims and Objectives

The discussion in Section 1.3 illustrates that rule-based formalisms are highly rel-
evant in various application areas of formal or semi-formal knowledge modelling.

11
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In spite of the rather wide interpretation of the term ‘“rule” that is common in
various areas, many of these approaches — especially the ones that are related to
logic programming and deductive databases — also provide a clearly defined for-
mal semantics with well-understood relationships to first- and higher-order logic.
It therefore seems natural to apply selected rule-based approaches to ontological
modelling tasks as discussed in Section 1.1, e.g. in the context of the Semantic
Web.

This simple conclusion, however, disregards the fact that a large part of to-
day’s ontological models are based on description logics as introduced in Sec-
tion 1.2. There are various reasons why DLs have become a predominant mod-
elling formalism in many areas, including their strong focus on terminological,
i.e. schema-level, modelling. Rule languages, in contrast, are typically superior
for modelling relationships between instances, and more scalable when handling
large data sets. Much research has been conducted in recent years to reconcile
both approaches,!'” yet many basic questions remain open even when restricting to
rules with a first-order semantics.

The principal objective of this work therefore is to advance the development
of hybrid knowledge representation formalisms that combine aspects of rules and
description logics. The two main motivations underlying this goal are apparent
from the above discussion:

1. Extending the expressiveness and practical applicability of DL-based ontol-
ogy languages by incorporating features of rule-based formalisms

2. Increasing the interoperability between rule languages and description logics

It has been mentioned before that there is often a trade-off between expressiveness
and practical applicability, and we therefore must aim for a suitable balance be-
tween the two. Indeed, the combination of function-free first-order Horn logic — a
simple rule language known as (monotonic) datalog [AHV94] — with description
logics has been proposed as (the logical core of) the Semantic Web Rule Language
(SWRL) [HPSB*04], but reasoning in SWRL already turns out to be undecidable.

To address these challenges within this work, we pursue three related, and of-
ten intertwined, strands of research which define concrete goals for the remainder
of this work:

Discovering and extending decidable fragments of SWRL While reasoning in
the unrestricted combination of DL and datalog is generally undecidable,
SWRL still defines a fragment of first-order logic that is useful as a frame-
work for studying rule extensions of description logics. A concrete research

10See Section 4.3 for a general overview.
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question then is: Which non-trivial fragments of SWRL allow for decid-
able reasoning, and what is the worst-case complexity of reasoning in these
cases?

Identifying and characterising rule fragments of DLs A further approach that
is dual to the first one in a certain sense is to study the commonalities of
description logics and rules. Related research questions in this case are:
How can DLs be restricted so as to recover certain positive characteristics
of first-order Horn logic? How does this restriction affect reasoning com-
plexities? Is it possible to characterise the “intersection” of DL and datalog
as a fragment of first-order logic? These questions relate to Horn DLs and
Description Logic Programs (DLP).

Developing tractable hybrid knowledge representation languages Recent ap-
plications of ontologies face an ever increasing amount of data which has in-
spired research on tractable knowledge representation formalisms for which
reasoning can be achieved in polynomial time. Given the additional focus
on instance data that rules provide, the search for tractable yet expressive
formalisms is of special importance in this context.

A summary of our contributions in each of these areas is given in Chapter 10.

Studying worst-case complexities in the context of this work allows us to com-
pare hardness — in a computational sense — of standard inference tasks to hardness
of well-known description logics, and thus helps to understand the theoretical ex-
pressivity of our approaches in relation to other knowledge representation lan-
guages. To some extent, complexity measures can also hint at the feasibility of
implementing efficient reasoning algorithms in practice, though worst-case com-
plexity is generally too coarse a measure to obtain conclusive results in this re-
spect.

1.5 Guide to the Reader

An overview of the chapters of this work and their mutual dependencies is given
below. Many chapters provide extensive informal discussions to augment the rig-
orous formal parts. Nevertheless, intuitive explanations are generally in danger of
over-simplification and ambiguity, and the reader is thus advised to refer to the
according definitions, theorems, or — for material beyond the scope of this work —
to the given literature for precise authoritative statements. We also explicitly point
out if a section is largely introductory in nature, so that experts might want to skip
it and refer back to it if needed. A comprehensive index is provided to support this
style of reading.

13



INTRODUCTION

2 Basic Definitions — Chapter dependencies

------- » Re-use of results

v

Introduction to
Description Logics

Main objectives

4 Combining Description
Logics with Datalog

Extending DLs with
Role Constructors
7 The Datalog Fragment 9 Extending DL Rules
of Description Logic with DL-Safe Variables Tractable Knowledge

Representation Languages

6 Horn Logic Fragments 8 Description Logic
of Description Logics Fragments of Datalog

Rule Fragments of Decidable Fragments
Description Logics of SWRL

Figure 1.1: Dependencies between chapters and relation to main objectives

This work contains proofs. Readers who are only interested in the results can
safely skip these parts by continuing with the narrative beyond the subsequent
O symbol. Moreover, a number of complex proofs have been split into separate
lemmata which can also be skipped as parts of the proof. Statements that are
marked as theorem or proposition, in contrast, are considered to be interesting as
results in their own right.

The dependencies between the individual chapters, and the relationship to the
main objectives as explained in Section 1.4 is illustrated in Fig. 1.1. The synopsis
of the chapters is as follows:

Chapter 2 This chapter briefly reviews first-order logic and makes some remarks
on complexity theory that can safely be skipped by knowledgeable read-
ers. However, Section 2.2 introduces emulation as a new notion that con-
veniently describes semantic correspondences encountered throughout this
work.

Chapter 3 This chapter formally introduces DLs by presenting the description
logic SROZQ (and our notation for it) as a basis for large parts of this
work. We also clarify the relationship of DLs to first-order logic and other
logics, and give an overview of DL nomenclature.

14
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Chapter 4 This chapter introduces datalog as a first-order rule language and de-
fines its combination with SROZQ that we will call SWRL throughout this
work. Moreover, an extended summary of related works is provided in Sec-
tion 4.3 and 4.4.

Chapter 5 The topic of this chapter are extensions of description logics with role
constructors, which also play an important role for aligning the expressive-
ness of rules and DLs. New results are derived for highly expressive DLs,
but also for the tractable description logic SROEL(M, X) for which reason-
ing is reduced to inferencing in datalog.

Chapter 6 This chapter provides a general definition of Horn description log-
ics based on existing work for Horn-SHZ@Q, and establishes a number of
complexity results for Horn DLs. The related proofs — a PSpack tableaux
procedure and various reductions of halting problems for (alternating) Tur-
ing machines — are among the technically most interesting arguments in
this work. We also discuss the light-weight Horn DL RL which is closely
related to OWL 2 RL [MCH*09].

Chapter 7 This chapter characterises the largest datalog-expressible fragment of
SROIQ, thus extending the existing DLP formalism [GHVDO03]. An ex-
tended discussion is provided to arrive at a suitable definition of “largest”
and “datalog-expressible.” Establishing either property for the defined lan-
guage DLP requires intricate proofs that utilise model-theoretic properties
that distinguish datalog from Horn logic with function symbols.

Chapter 8 Description Logic Rules are defined and studied within this chapter.
DL Rules provide an interesting family of decidable SWRL fragments that
can be expressed in description logics by means of computationally simple
yet not necessarily obvious encodings. This new approach is generalised to
a large class of DLs, including DLs with the additional role operators of
Chapter 5.

Chapter 9 DL Rules are applied within this chapter to arrive at a generalisa-
tion of DL-safe rules [MSSO05] which we call DL+safe rules. We study the
complexity of this extended formalism and introduce the tractable hybrid
knowledge representation language ELP.

Chapter 10 This final chapter concludes by summarising and discussing the ob-
tained results, and by providing an outlook to future work.

We point out that there is a clear distinction between chapters that provide
introductory or preliminary information — Chapters 1, 2, 3, 4, and 10 —, and chap-
ters that contain novel results — Chapters 5, 6, 7, 8, 9. Each chapter starts with a
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more detailed overview of its contents, and chapters with novel results provide a
concluding summary and a discussion of related works.
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Chapter 2

Basic Definitions

This chapter mostly introduces basic definitions and results that are required in
later parts of this work, but it also introduces a novel notion of emulation that we
will use frequently for describing a particular kind of semantic correspondence
between logical theories or knowledge bases.

We begin by recalling first-order logic with equality in Section 2.1, discuss im-
portant types of logical correspondences in Section 2.2, and conclude with some
brief remarks on complexity theory in Section 2.3.

2.1 First-Order Logic with Equality

In this section, we give a brief introduction to first-order logic with equality (de-
noted as FOL.) which constitutes the overarching semantic framework for the
knowledge representation formalisms that are studied within this work. Our main
goal is to provide a concise reference for basic notions and notations that are used
in later chapters. Readers without prior knowledge on first-order logic may wish
to consider a more extended introductory text, e.g. the textbook [Fit96].

Definition 2.1.1 A signature (I, F, P, V) of first-order logic with equality (FOL.)
consists of a set of individual names (or constant symbols or simply constants) I,
a set of function symbols F, a set of predicate names (or predicate symbols or just
predicates) P, and a set of variable names V, all of which are mutually disjoint
and finite. The function ar : F U P — N associates a natural number ar(p) with
each function or predicate symbol p € F U P that defines the (unique) arity of p.

Based on a FOL., signature (I, F, P, V), we define the following notions. The
set of terms is defined to be the smallest set such that

— ifr eI UV, then tis a term, and
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— if f € F with ar(f) = n, and if #,...,1t, are terms, then f(¢,...,¢,) is also a
term.

Terms are used as arguments for predicates to form atomic formulae. An atom is
an expression of the form P(t,...,t,) with P € P and ar(P) = n, or an expression
of the form ¢t ~ s, where t,,...,t,,t, s are terms. The set of FOL. formulae is
defined to be the smallest set that contains all atoms, and such that:

— T and L are formulae,
— if ¢ is a formula, then so is —¢ (negation),

— if ¢ and ¢ are formulae, then so are (¢ A ) (conjunction), (¢ V ¥) (disjunction),
and (¢ — ¥) (implication),

— if ¢ is a formula, and x € V, then Vx.¢ (universal quantification) and dx.¢
(existential quantification) are formulae.

A literal is an atom or the negation of an atom.

A subformula is a substring of a formula that is again a formula. An occurrence
of a variable x in a formula ¢ is bound if it is contained in a subformula of the
form Ox. of ¢ with O € {4,V}. A sentence (or closed formula) is a formula
that contains only bound occurrences of variables. A theory of FOL. is a set of
sentences. &

We explicitly introduce T and L to represent true and false syntactically. As
usual, parentheses will be omitted when no confusion is likely. Moreover, we will
often not mention the signature explicitly if irrelevant or clear from the context.
Note that we assume variables to be part of the signature, and that we generally
assume signatures to be finite. This is relevant when studying the worst-case com-
plexity of related reasoning problems, since Turing machines — the primary vehi-
cles for complexity considerations — require finite alphabets for representing in-
puts. This does not imply that we cannot introduce additional symbols as needed,
and in particular we assume that the underlying signature is extended whenever
new symbols are required in a syntactic construction. The semantics of first-order
logic is defined as follows.

Definition 2.1.2 A FOL. interpretation I is a tuple (A, 1), consisting of a non-
empty interpretation domain A* and an interpretation function - . The domain is
a set of individuals that defines the (abstract) world within which all symbols are
interpreted. Symbols of the signature are interpreted as follows:

— If a € Lis an individual name, then a? € AZ.

- If f € F is a function symbol of arity ar(f) = n, then fZ is a function from
(ATy"to AL
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— If P € P is a predicate of arity ar(P) = n, then P¥ C (A?)".

Here, (AY)" denotes the set of n-tuples of elements of AZ. A variable assignment
Z for I is amapping Z : V — A’. Given an element 6 € A’ and a variable x € V,
we write Z{x — 6} to denote the variable assignment that assigns x to ¢, and that
agrees with Z on all other variables.

Given an interpretation 7 and a variable assignment Z for 7, the interpretation

1< of a term ¢ is inductively defined as follows:

— IfteXIthen < =+,
- Ift € V then /< = Z(¢).
— Ift= f(ty,...,1,) then 12 == 1%, 009,

The truth value ¢**< of a formula ¢ is defined as follows:

— Set T9< := true and L7-< = false.

— For ¢ = P(t1,...,t,), set ¢©Z := true if (tf’z, ., 0%y e PT and o7 = false
otherwise.

— For¢ = t; ~ ty, set o2 = true if 1% = 1%, and ¢*Z := false otherwise.

— For ¢ = ), define o7 := true if y*< = false, and ¢**< := false otherwise.

— For ¢ = (1 A ¢2), define 9% := true if y!< = true for all i € {1,2}, and
(,0[ < = false otherwise.

— For ¢ = (Y1 V i), define o< := true if :,bf’z = true for some i € {1,2}, and

7<= false otherwise.

— For ¢ = (Y1 — ¥»), define ¢*< = true if c,//f < = false or wf’z = true, and
¢?Z = false otherwise.

— For ¢ = Ax.y, define ¢?< := true if there is some § € A’ such that y/-<¥=9 =
true, and set ¢*< = false otherwise.

— For ¢ = Vx.y, define ¢*< = true if, for all 6 € A?, we find that y/-<¥9 =
true, and set ¢*< := false otherwise.

The truth value of sentences does not depend on any variable assignment, so we
can omit assignments in this case. A sentence ¢ is satisfied (or modelled) by I if
¢! = true, and a theory T is satisfied (or modelled) by I if I satisfies all elements
of T. We write J = ¢ and 7 = T in these cases, and say that 7 is a model of ¢ and
T, respectively. &

This model theory leads to the well-known notions of logical consistency and
entailment:
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Definition 2.1.3 Consider theories T and 7.

— T is consistent (or satisfiable) if it has a model and inconsistent (or unsatisfi-
able) otherwise,

— T entails T’, written T = T, if all models of T are also models of 7.

This terminology is extended to formulae by treating them as singleton theories.
A theory or formula that is entailed is also called a logical consequence. <&

The inclusion of equality in FOL. has semantic effects, but does not signifi-
cantly increase expressiveness. A related discussion can be found in Section 4.1.3.

2.2 Semantic Correspondences between Logical
Theories

An important motive for basing knowledge representation languages on formal
logic is the increased level of semantic interoperability that this enables. Indeed, a
formal semantics effectively provides a declarative, implementation-independent
specification of the conclusions that can be drawn from a given logical theory, thus
acting as a standard for tool developers and practitioners. Ideally, logical theories
can thus be used in different tools and in combination with different other theories,
while still preserving their intended meaning. Moreover, even if two theories are
not identical, it is possible that they are equally suitable for a given purpose. In
this section, we formalise conditions that describe various levels of semantic cor-
respondence between two theories, and we discuss when these correspondences
can be relevant in practice.

The most well-known notion of semantic correspondence is semantic equiv-
alence: two theories of first-order logic are semantically equivalent (or simply
equivalent) if they have the same models. This very strong condition also implies
that equivalent theories have exactly the same logical consequences, and thus rep-
resent exactly the same knowledge in terms of formal knowledge representation.
Semantic equivalence in first-order logic is also a modular property in the follow-
ing sense. Given a theory T with a subtheory 7'y C T such that T is equivalent to
T, we find that T is equivalent to (7' \ T1) U T,. A typical application of semantic
equivalence are syntactic transformations on logical theories, e.g. when replac-
ing (p — q) by (=p V ¢). It is common to extend the notion of equivalence to
(sub)formulae, and we can thus state that the latter two formulae are semantically
equivalent.

A much weaker form of correspondence is equisatisfiability: two theories are
equisatisfiable if they are either both satisfiable or both unsatisfiable. Obviously,
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equivalent theories are also equisatisfiable, while the converse is not true. Indeed,
equisatisfiability provides only a very loose correspondence between theories, and
it certainly does not preserve logical consequences. For example, every logical
theory is equisatisfiable to {} (the empty theory) or to {p A —p} (an inconsis-
tent theory). Equisatisfiability thus is not useful for exchanging formally encoded
knowledge, but rather for devising algorithms for satisfiability checking. If an in-
ference engine is only interested in a theory’s satisfiability then it is viable to apply
satisfiability-preserving transformations to simplify the problem, even if semantic
equivalence is not preserved. Common inference tasks such as query answering
or entailment checking can often be reduced to satisfiability checking, so that eq-
uisatisfiability plays an important réle in many inferencing algorithms.

Equivalence and equisatisfiability constitute the two main types of correspon-
dences that are typically considered in formal logic. This classification of semantic
correspondences, however, is arguably too coarse for capturing various levels of
semantic similarity. In particular, many syntactical transformations introduce aux-
iliary signature symbols that are not used in any of the considered theories — we
will typically call such symbols fresh. As a classical example, the Skolemisation
of the formula x.P(c, x) is the formula P(c, s.), where s, is a fresh (Skolem) con-
stant. It is well-known that the original formula and the Skolemised version are
equisatisfiable, but the same could be said for the empty theory. A more accurate
description of the situation would be to say that both theories are “semantically
equivalent up to the interpretation of s.” — this is the idea underlying the next
definition that is closely related to the well-known concept of a conservative ex-
tension.

Definition 2.2.1 Given FOL. theories 7 and 7’ with signatures . and .¥”, then
T’ semantically emulates T if

(1) . extends ., i.e. the sets of constants, functions, predicates, and variables
of . are (not necessarily proper) supersets of the respective sets of .7,

(2) every model of 7’ becomes a model of T when restricted to the interpreta-
tions of symbols from ., and

(3) for every model J of T there is a model 7 of T’ that has the same domain
as 7, and that coincides with J on all symbols of .7 <o

Note that, in contrast to equivalence and equisatisfiability, semantic emulation
is not a symmetric relation, since one of the theories introduces additional “in-
ternal” symbols to its signature. It would be possible to establish more general
notions that are based on arbitrary incomplete mappings between two signatures,
but we found the basic definition above to be adequate to cover a large amount of
semantic correspondences that occur within this work. It is usually not necessary
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to mention the signatures of 7 and 7" explicitly, since it is always possible to find
minimal signatures for 7" and 7’ that satisfy condition (1) of Definition 2.2.1.

Our notion of semantic emulation closely relates to the well-known concept
of semantic conservative extensions: one could indeed say that 7’ semantically
emulates 7 iff T’ is semantically conservative over 7. We use another termi-
nology herein since it is more naturally extended to related concepts below, and
since it avoids confusion with a stricter version of conservative extension that as-
sumes a theory to be a (syntactic) superset of the theory it extends conservatively
[LWWO7].

Given a situation as in Definition 2.2.1, we find that a first-order formula ¢
over . is a logical consequence of 7 if and only if it is a logical consequence
of T”. This illustrates how strong this form of correspondence is, and it hints at
the practical relevance of this condition for knowledge representation: whenever
a theory T’ semantically emulates a theory 7', we find that 77 and T encode the
same information about the symbols in T, and in particular that 7’ cannot be
distinguished from 7 in any application that restricts to those symbols. In a sense,
T’ thus really “simulates” the behaviour of T in arbitrary contexts, but possibly
by means of rather different syntactic structures.! If the required “interface” is
restricted not only to a particular set of symbols but also to a particular logic, then
the following definition may seem more natural.

Definition 2.2.2 Let T and 7’ be two FOL. theories, let .% be the signature over
which T is defined, and let £ be some fragment of FOL.. We say that 7" £-
emulates T if for every £ formula ¢ over ., we find that 7" U {¢} and T' U {¢} are
equisatisfiable. <

In particular, this provides us with a notion of FOL.-emulation that describes
a situation where two theories behave equivalent in the context of any first-order
theory over the given signature, thus coinciding with the well-known notion of
conservative extension. To avoid confusion, formal results will always be explicit
about the intended type of emulation, although we will sometimes speak of “emu-
lation” to refer to semantic emulation in informal discussions. It is not hard to see
that semantic emulation implies FOL.-emulation.

Proposition 2.2.3 For any fragment L of first-order logic with equality and the-
ories T and T', if T’ semantically emulates T then T’ L-emulates T.

Proof. It suffices to show the claim for the case that £ is FOL.. Consider two
theories 7’ and T such that 7’ semantically emulates 7. We need to show that
T’ FOL.-emulates 7. A simple induction on the structure of FOL. formulae

"We generally avoid the term “simulation” here since it is already common in the context of
model-theoretic relationships in modal logic [BvBWO06].
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can be used to show that the validity of a FOL. formula ¢ w.r.t. any first-order
interpretation is independent of the interpretation of the signature elements not
occurring in ¢ (7). To show the claim, suppose the conditions of Definition 2.2.1
hold but 7 does not FOL.-emulate 7. Hence, there is a FOL. formula ¢ over
% such that T U {¢} and T’ U {¢} are not equisatisfiable. However, if T U {¢} has
some model 7, then we can apply condition (3) of Definition 2.2.1 to obtain an
extended model 7’ such that 7’ = T”. But since ¢ contains only symbols that are
interpreted in the same way by 7 and 7', we obtain 7’ = ¢ from (7). Conversely,
if T" U {¢} has a model .7, then condition (2) implies that the restriction 7 of J to
the signature of 7 is such that J = T. As before, (T) implies [ = ¢. O

For completeness, we also show that semantic emulation is strictly stronger
that FOL.-emulation in general. Establishing this result requires some form of
existential statements, and indeed semantic emulation and FOL.-emulation coin-
cide on universal formulae that do not include function symbols [Sch09a].

Proposition 2.2.4 There are signatures Xy C X; and sets T; of sentences over %;
such that Ty FOL.-emulates T\, and T, does not semantically emulate T,.

Proof. Let X, be a signature containing a binary predicate R, nullary function
symbol 0, and a unary function symbol f. Let X£; denote the extension of X, that
additionally contains a nullary function symbol w and a unary predicate symbol
B.
Now let Ty denote the set of the following sentences:

(1)  Vx.R(x, f(x))

2) VxVyVz.R(x,y) ANR(,z) = R(x,2)

3)  VYx.=R(x,x)
Let T, denote the set of sentences with 7y C T, and containing the following
additional sentences:

4 B
(5)  Vx.B(x) > B(f(x))
6)  -Bw)

For the first part of the claim, consider an arbitrary first-order sentence ¢ over
%y. The claim is established by showing that T\, U {¢} is satisfiable iff 7| U {¢}
is. The “if” direction is immediate from 7y C T;. For the “only if” direction, we
show that every model of T\, U {¢} can be extended to a model of T U {¢}.

Let S denote the infinite set of X, sentences S = {R(f'(0), w) | i > 0} where f'
denotes the i-fold application of f (with f°(0) = 0). Then Ty U{p}US is satisfiable
by models over X;. To see this, note that 7y U {¢} is satisfiable over 2, (by the
Coincidence Lemma) and that the interpretation of w is arbitrary for the according
models. Therefore, for any finite set F C §, there is a model Mz = (M, ) of
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To U {¢} with ' = (f¥'(0))! where k = max;(R(f'(0), w) € F). But then My
is also a model of Ty U {¢} U F. By compactness of first-order logic [CK90], we
conclude that Ty U {¢} U S is also satisfiable.

Thus, let N = (N, J) be a model of Ty U {¢} U S. Since B does not occur in
ToU{p}US, we can select N such that B’ = {(f(0))! | i > 0}. We claim that N is
a model of Ty U{p}. By construction, it satisfies T, ¢, and the formulae (4) and (5)
of T,. To see that it also satisfies formula (6), it suffices to note that w’ # (£(0))’
for all i > 0, which can be shown by a simple induction over i using the fact that
N E S. We thus constructed a model of 7'} U {¢} as required.

For the second part of the claim, let M = (M, I) be the structure with M =
{i|i>0}and f/(i) =i+ 1 and R = {(i, j) | i < j}. Itis easy to see that M is a
model of 7). However, M cannot be expanded to a model of T since for (4) and
(5) together imply that B’ = M so that (6) cannot be satisfied. O

In many cases that are considered herein, it is possible to establish semantic
emulation between two theories. There are, however, also interesting examples of
transformation procedures that establish £-emulation for some logical fragment
L that is significantly smaller than FOL.. For example, a typical result is that two
theories entail the same ground facts, i.e. atomic formulae without variable sym-
bols, even though they may not be semantically equivalent. This correspondence
extends to arbitrary Boolean combinations of ground facts, i.e. to all formulae of
variable-free first-order logic FOL‘O;mund. In this work, examples of transformations
that establish FOLE""_emulation can be found in Section 5.4 and in Section 8.5.

2.3 Computational Complexity

Giving an introduction to computational complexity is beyond the scope of this
work, and interested readers are referred to [Pap94] for an extensive textbook
treatment. In this section, we merely point out some basic assumptions, and intro-
duce the main complexity classes that appear in later chapters.

Within this work, complexity is always considered as a characteristic of a class
of decision problems (as opposed, e.g., to counting problems), which in our case
will typically relate to an inference task. The complexity of a class of problems
is measured in terms of the amount of certain resources that are required to solve
problems of that class based on a certain abstract computational model. The clas-
sical model of computation used in this context is the Turing machine — we will
encounter deterministic, non-deterministic, and alternating specimen in this work
— and the most common types of resources are time (the number of computation
steps needed) and space (the number of memory cells that are used).

Any single problem is trivially solved by a suitable Turing machine without
using any resources, by simply returning the answer to that problem as a constant
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output. Hence, one normally considers infinite classes of problems and general
approaches for solving them. In this case, the required amount of resources typ-
ically depends on the size of the input problem. When speaking of the size of a
logical theory we simply refer to the minimal number of symbols that is required
to write this theory in the alphabet provided by its signature, the additional logi-
cal operators, and auxiliary symbols such as parentheses. Description logics (see
Chapter 3) also include numbers; unless otherwise noted, we assume them to be
written in binary notation when calculating the size of a theory.?

The complexity classes considered in this work mainly are P, NP, PSpack,
ExpTime, NExpTiME, and N2ExpTiME. It is known that these classes subsume each
other in the given order, e.g. all problems in P are also in NP, while it is unknown
whether or not any of these (direct) inclusions is strict, although this is com-
monly conjectured. It is known, however, that P € ExpTiMe, NP € NExpTIME,
and NExpTiMe C N2ExpTiME. In any case, experience shows that problems of
higher complexity classes are often significantly harder to implement efficiently
in practice.

Roughly speaking, a class of problems is hard for another class of problems
if any problem of the second class can be solved by reducing it to a problem
of the first class, and where this reduction is ‘“‘significantly easier” than solving
the problem directly. Since the overwhelming majority of complexities that are
studied within this work are above NP, we will mostly consider polynomial-time
reductions for showing hardness. To establish hardness for P, reductions must be
restricted to those running in LoGgSpAcE, but this will rarely be required and usually
be easy to verify.

Further formal definitions, such as the specification of relevant Turing ma-
chines, are provided within the respective sections.

The use of unary encoding of numbers increases the size of the input exponentially, and hence
may have significant effect on complexity measures; however, most results that we will use have
by now been established for binary coding of numbers.

25






Chapter 3

Introduction to Description Logics

The basic expressive features of description logics have already been introduced
in Section 1.2. In this chapter, we provide a more formal introduction to the field,
focussing on the very expressive DL SROZQ that provides a basis for many of
our subsequent investigations. While this chapter provides a sufficient background
for understanding the remaining parts of this work, there are also a number of
more extensive treatments of description logics available that the reader may want
to consult for a more easy-paced introduction. In particular, [ BCM*07] provides
introductory and advanced material on many aspects of DL research, while a text-
book introduction to description logics in the context of Semantic Web technolo-
gies can be found in [HKRO9]. The latter also explains the exact relationship be-
tween DL and OWL (2) that is not detailed here.

Section 3.1 begins this chapter by introducing the syntax and semantics of
SROIQ, and by discussing simplifications and normal forms that are relevant
within this work. The relationship of SROZQ to various other logics, especially to
first-order logic with equality, is explicated in Section 3.2. Based on these consid-
erations, we can then derive a number of other DLs and their names as explained
in Section 3.3.

3.1 The Description Logic SROIQ

We now formally define the syntax and semantics of the widely used description
logic SROZQ that is the basis for many investigations within this work. SRO7Q
requires a number of additional structural restrictions to ensure that standard rea-
soning problems remain decidable. Since those restrictions are not relevant in all
DLs that are considered in this work, we first define a more general description
logic SROITQ™ to which no such restrictions apply.
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3.1.1 Syntax

SROTQ™* and all other DLs considered herein are based on three disjoint sets of
individual names 1, concept names A, and role names N. Throughout this work,
we assume that these basic sets are finite, and consider them to be part of the given
knowledge base when speaking about the “size of a knowledge base.” We further
assume N to be the union of two disjoint sets of simple roles Ny and non-simple
roles N,. Later on, the use of simple roles in conclusions of logical axioms will be
restricted to ensure, intuitively speaking, that relationships of these roles are not
implied by chains of other role relationships. In exchange, simple roles might be
used in SROZ Q axioms where non-simple roles might lead to undecidability.

The approach we take here assumes an a priori declaration of simple and non-
simple role names. A common alternative approach is to derive a maximal set
of simple roles from the structure of a given DL knowledge base. This a pos-
teriori approach of determining the sets N, or Ny is more adequate in practical
applications where it is often not viable to declare simplicity of roles in advance.
Especially if ontologies are dynamic, simplicity of roles may need to be changed
over time to suit the overall structure of axioms. For the investigation of theoret-
ical properties, however, pre-supposing complete knowledge about the names of
simple and non-simple roles can simplify many definitions significantly.

Definition 3.1.1 Consider a DL signature . = (I, A, N) with N = Ng U N,.. The
set R of SROTQ™ role expressions (or simply roles) for . is defined by the
following grammar:

R:=U|N|N"

where U is called the universal role. The set Ry C R of all simple role expressions
is defined to contain all role expressions that contain no non-simple role names.
The set R, of non-simple role expressions is R,, := R\ R;. A bijective function
Inv : R — R is defined by setting Inv(R) := R™, Inv(R") = R, and Inv(U) = U
forall R € N.

The set C of SROTQ™ concept expressions (or simply concepts) for . is
defined by the following grammar:

C:=T|LIA{I}|FR.Self | -C[(CN C)[(CuC)|YRC|IRC|>nRC|<nRC

where n is a non-negative integer. &

Concepts are used to model classes while roles represent binary relationships.
In some application areas of description logics, especially in relation to the Web
Ontology Language OWL, “class” is used as a synonym for “concept.” We will
reserve the former notion for talking about syntactic constructs, and use the lat-
ter for semantic considerations only. For example, a subconcept is a substring of
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a concept expression that is again a concept, while a subclass is a class that is
semantically subsumed by another class, i.e. that describes a subset of instances.
Similarly, it is also common to use the term “property” as a synonym for “role” in
some contexts, but we will not make use of this terminology in this work.

Parentheses are typically omitted if the exact structure of a given concept ex-
pression is clear or irrelevant. Also, we will commonly assume a signature and
according sets of concept and role expressions to be given using the notation of
Definition 3.1.1, mentioning it explicitly only to distinguish multiple signatures
if necessary. Using these conventions, role and concept expressions can be com-
bined into axioms:

Definition 3.1.2 A SROZQ"™* RBox axiom is an expression of one of the follow-
ing forms:

— Rio...oR,ERwhereRy,...,R,,R € Rand where R ¢ R, only if n = 1 and
RleRs,

— Ref(R) (reflexivity), Tra(R) (transitivity), Irr(R) (irreflexivity), Dis(R, R") (role
disjointness), Sym(R) (symmetry), Asy(R) (asymmetry), where R, R’ € R.

A SROIQ™ TBox axiom is an expression of the form C T D or C = D with
C,D € C. A SROIQ™ ABox axiom is an expression of the form C(a), R(a, b), or
a~bwhereCeC,ReR, anda,b el O

RBox axioms of the form R; o ... o R, C R are also known as role inclusion
axioms (RIAs), and a RIA is said to be complex if n > 1. Expressions such as
Ref(R) are called role characteristics. Note that, in our formulation, the universal
role U is introduced as a constant (or nullary operator) on roles, and not as a
“special” role name. In effect, U € R\ N, and in particular U € R,. Treating
U as a simple role deviates from earlier works on SROZQ, but it can be shown
that U can typically be allowed in axioms that are often restricted to simple roles
(cf. Definition 3.1.4) without leading to undecidability or increased worst-case
complexity of reasoning; see Chapter 5 for details. TBox axioms are also known
as terminological axioms or schema axioms, and expressions of the form C & D
are known as generalised concept inclusions (GCls). ABox axioms are also called
assertional axioms, where axioms C(a) are concept assertions, axioms R(a, b) are
role assertions, and axioms a = b are equality assertions.

Many of the above types of axioms can be expressed in terms of other axioms,
so that substantial syntactic simplifications are possible in many DLs. Relevant
abbreviations are discussed in Section 3.1.3 below. Logical theories in description
logic are called knowledge bases:
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Definition 3.1.3 A SROZQ™® RBox (TBox, ABox) is a set of SROTQ™ RBox
axioms (TBox axioms, ABox axioms). A SROJT Q™ knowledge base is the union
of a (possibly empty) SROIQ™ RBox, TBox, and ABox. &

The above definitions still disregard some additional restrictions that are rel-
evant for ensuring decidability of common reasoning tasks. The next definition
therefore introduces SROZQ as a decidable sublanguage of SROTQ™.

Definition 3.1.4 A SROZQ role expression is a SROIQ™ role expression. A
SROIQ concept expression C is a SROTQ™ concept expression such that all
subconcepts D of C that are of the form 3S.Self, >n S.E, or <n S.E are such that
S € Ry is simple.

A SROIQ"™* RBox is regular if there is a strict (irreflexive) total order < on
R such that

— forR ¢ {S,Inv(S)}, wefind S <R iff Inv(S) <R, and

— every RIA is of one of the forms:
RoRLCR, Inv(R) C R,

Rio...oR,CR, RoRjo...oR,CR, Ryo...oR,oRLCR
such that R, Ry,...,R, e R,and R; < Rfori=1,...,n.

A SROIQ RBox is a regular SROZIQ™ RBox that contains role characteristics
of the forms Irr(S), Dis(S, T), and Asy(S ) only for simple role names S, T € N;. A
SROIQ TBox (ABox) is a SROIQ™ TBox (ABox) that contains only SROIQ
concept expressions. A SROJQ knowledge base is the union of a SROZQ RBox,
TBox, and ABox. O

A SROIQ (RBox, TBox, or ABox) axiom is an axiom that occurs within
some SROZQ knowledge base (in the RBox, TBox, or ABox). Note that some
SROIQ"™ role inclusion axioms like, e.g., R o § o R C R cannot be part of any
regular RBox.

3.1.2 Semantics and Inferencing

The semantics of description logics is typically specified by providing a model
theory from which notions like logical consistency and entailment can be derived
in the usual way. These notions are again specified for the most general case of
SROIQ"™ but they can readily be applied to SROZQ as well. The basis for this
approach is the definition of a DL interpretation:

Definition 3.1.5 An interpretation I for a SROIQ"™ signature . = (I, A, N)
is a pair 7 = (A?,-7), where A’ is a non-empty set and -? is a mapping with the
following properties:
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Name Syntax |Semantics

inverse role R {(x,y) € AT x AT | {y,x) € R}

universal role U AT x AT

top T AT

bottom 1 ]

negation -C AT\ Ct

conjunction cnbD |cPnDf

disjunction cub |cfuD?f

nominals {a} {a’)}

univ. restriction |YR.C |{x € AT | (x,y) € R? implies y € C’}

exist. restriction |AR.C |{x € A’ | for some y € AZ, (x,y) € R and y € C?}
Self concept IS .Self[{x e AT | (x,x) € ST}

qualified number |<nS.C |{x € AT |#{y € AT | (x,y) € ST and y € C*} < n}
restriction >nS.C [{xe Al |[#ye AT |{(x,y)e ST andy € C¥} > n}

Figure 3.1: Semantics of role and concept expressions in SROZQ™® for an inter-
pretation 7 with domain A?

— ifa e I then a’ € AZ,
— if A € A then AT C A?,
— if R e Nthen RY C AT x AL.

The mapping -/ is extended to arbitrary role and concept expressions as specified
in Fig. 3.1. %

The set A’ is called the domain of I. We often do not mention an interpreta-
tion’s signature . explicitly if it is irrelevant or clear from the context. We can
now define when an interpretation is a model for some DL axiom.

Definition 3.1.6 Given an interpretation 7 and a SROJQ™ (RBox, TBox, or
ABox) axiom a, we say that I satisfies (or models) a, written I E a, if the
respective conditions of Fig. 3.2 are satisfied. I satisfies (or models) a SROTQ™*
knowledge base KB, denoted as 7 = KB, if it satisfies all of its axioms. In these
situations, we also say that 7 is a model of the given axiom or knowledge base. <

This allows us to derive standard model-theoretic notions as follows:

Definition 3.1.7 Consider SROZQ"™ knowledge bases KB and KB'.

— KB is consistent (satisfiable) if it has a model and inconsistent (unsatisfiable)
otherwise,
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Axiom « Condition for 7 E «

Rio...oR,CR|R o...0oR CR!

Tra(R) ifRT o RT C R

Ref(R) (x,x) € R forall x e AY

Irr(S) (x,xy ¢ S forall x e AY

Dis(S,T) if (x,y) € S then (x,y) ¢ T forall x,y € A¥
Sym(R) if (x,y) € R then (y, x) € R? forall x,y € A¥
Asy(S) if (x,y) € SZ then (y, x) ¢ S7 for all x,y € AL
ccD ¢! cDf

C(a) at e ¢!

R(a,b) (a,b*y e R?

axb al = b’

o on the right-hand side denotes standard composition of binary relations:
RY o T := ((x,2) | {x,y) € RT,{y,z) € T?}

Figure 3.2: Semantics of SROZQ™* axioms for an interpretation 7 with domain
AI

— KB entails KB’, written KB | KB, if all models of KB are also models of
KB'.

This terminology is extended to axioms by treating them as singleton knowledge
bases. A knowledge base or axiom that is entailed is also called a logical conse-
quence. &

Applying this terminology, we can state, e.g., that the axiom T T L is in-
consistent, and that the knowledge base {A C B, B C C} entails the axiom A C C.
Various common properties of first-order logic are readily seen to hold for descrip-
tion logics as well. DLs are monotonic logics: the more axioms a knowledge base
contains, the less models it has, and the more axioms are logical consequences.
In other words, adding information never reduces the amount of logical conse-
quences. A related property is the general intolerance to logical inconsistencies: a
knowledge base that has no models entails all possible axioms.

When description logics are applied as an ontology modelling language, it is
important to discover logical consequences. The (typically automatic) process of
deriving logical consequences is called reasoning or inferencing, and a number of
standard reasoning tasks play a central role in DLs.

Definition 3.1.8 Consider a SROTQ™ knowledge base KB. The standard rea-
soning tasks of description logics are described as follows:

— Inconsistency checking: Is KB inconsistent?
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— Concept subsumption: Given concepts C, D, does KB = C C D hold?

— Instance checking: Given a concept C and individual name a, does KB = C(a)
hold?

— Concept unsatisfiability: Given a concept C, is there no model 7 = KB such
that C* # 0? &

Further reasoning tasks are considered as “standard” in some works. Common
problems include instance retrieval (finding all instances of a concept) and clas-
sification (computing all subsumptions between concept names). We restrict our
selection here to ensure that all standard reasoning tasks can be viewed as decision
problems that have a common worst-case complexity for all logics studied within
this work.

Proposition 3.1.9 The standard reasoning tasks in SROIQ™ can be reduced to
each other in linear time, and this is possible in any fragment of SROIQ™® that
includes axioms of the form A(a) and AT C C L.

Proof. We find that KB is inconsistent if the concept T is unsatisfiable. C is
unsatisfiable in KB if KB = C C L. Given a fresh individual name a, we obtain
KB  C C D if KB U {C(a)} E D(a). For a fresh concept name A, KB | C(a)
if KB U {A(a),A 1 C E L1} is inconsistent. This cyclic reduction shows that all
reasoning problems can be reduced to one another. O

A number of other “non-standard” reasoning tasks have been studied in de-
scription logics. Examples include the computation of explanations for logical
entailments [Kal06, HPS08], and of least common subsumer concepts that gen-
eralise given concept expressions in description logics where union of concepts
is not available [Baa03, BSTO7]. Another practically relevant inference tasks is
conjunctive query answering, as discussed in Section 4.4.

3.1.3 Simplifications and Normal Forms

Description logics have a very rich syntax that often provides many different ways
of expressing equivalent statements. In this section, we introduce a number of sim-
plifications and normal form transformations that allow us to simplify subsequent
presentations. We start by considering simplification for TBox axioms and con-
clude with remarks on simplification of RBox and ABox axioms.

Every SROTQ™ GCI C C D can be expressed as T C —~C LI D, i.e. by stating
that the concept —=C LI D is universally valid. In the following, we will often tacitly
assume that GClIs are expressed as universally valid concepts, and we will use
concept expressions C to express axioms T E C. Nonetheless, we still use C
whenever this notation appears to be more natural for a given purpose. Likewise,
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we consider C = D as an abbreviation for {C C D,D C C}, and omit = as an
atomic constructor for axioms.

It is well known that many DL constructs can be considered as “syntactic
sugar” in the sense that they can readily be expressed in terms of other operators.
Examples are found by applying basic propositional equivalences such as A LI
B = =2(-AnN-B)or T = AU —A. These simplifications are applicable when
dealing with DLs that are characterised by a set of operators which can freely be
combined to form concept expressions. In this work, however, we derive more
complex syntactic restrictions to arrive at DLs that are not closed under typical
propositional equivalences — concrete examples are found in Chapter 6 and 7. We
thus do not exclude any operators from our considerations at this stage, and will
introduce simplifications based on applicable equivalences in later chapters only.

There still are some general simplifications that we can endorse for all parts of
this work:

— Whenever a DL features counting quantifiers, we use >1 R.C instead of dR.C,
and <O R.—C instead of VR.C.

— We exploit commutativity and associativity of M, as given by the equivalences
AMB=BnAand An(BMNC) = (ANB)MC, to generally disregard nesting and
ordering of conjuncts. For example, “a concept of the form dR.A M C with C
arbitrary” is used to refer to concept expressions Br1dR.A (C = B) or BM(B' 1M
dR.A) (C = B B’). This convention introduces some non-determinism, e.g.
if B” = dR.A in the previous example, but the choice will never be essential in
our arguments.

— We exploit commutativity and associativity of L as in the case of M.

These conventions greatly reduce the amount of cases that need to be considered in
definitions. All additional simplifying assumptions will be stated explicitly when
applicable, usually by syntactically transforming axioms. For example, we do re-
spect the nesting structure of M and LI, but we define a normal form transformation
that exploits distributivity to normalise axioms. Namely, the disjunctive normal
form (DNF) of a concept C is obtained by exhaustively replacing subconcepts of
the form (CLUD)ME with (CME)U(DME). Note that we do not distribute Boolean
concept constructors over role restrictions, i.e. our DNF may still contain complex
nested concepts. Moreover, this simple transformation may lead to an exponential
blow-up in the size of the axiom. It is well-known that this can be prevented by
decomposing nested concepts first, but we will not require this for the cases where
we use the disjunctive normal form.

Another well-known normal form is the negation normal form (NNF). While
this standard transformation normalises the uses of negation in concept expres-
sions, it does often not contribute significantly to a simplified presentation. The

34



3.1 Tue DescripTioN Logic SROIQ

C NNF(C) PNNF(C)

T,L1,A,-A,{a}, ~{a},|C C

HR.SeIf, —-3R.Self

=T 1 1

-l T T

-=D NNF(D) PNNF(D)

D, 11D, NNF(D;) m NNF(D,) pNNF(Dl) I pNNF(Dz)
D, uD, NNF(D]) L NNF(Dz) pNNF(Dl) L pNNF(Dz)
=(D; 1 D,) NNF(=D;) LI NNF(=D,) |pNNF(=D;) LI pNNF(=D,)
=(D, U D,) NNF(=D;) M NNF(=D,) |pNNF(=D;) M pNNF(-D,)
<nR.D <n R.NNF(D) <n R.—-pNNF(=D)
-<nR.D >(n + 1) RNNF(=D) >(n + 1) R.pPNNF(=D)
>nR.D >n R.NNF(D) >n R.pNNF(D)

->0R.D L 1

->nRD (n>1) <(n — 1) R.NNF(D) <(n — 1) R.=pNNF(=D)

A a concept name, a an individual name, R a role name, D(; concept expressions

Figure 3.3: Negation normal form transformations for DL concept expressions

reason is that concepts D in expressions <n R.D also occur under a negative polar-
ity, i.e. they behave like negated subexpressions; see also Section 6.1. Therefore a
modified version of negation normal form is more effective for simplifying formal
arguments. Here we define both notions for comparison.

Definition 3.1.10 A SROTQ™® concept expression C is in negation normal form
(NNF) if all subconcepts =D of C are such that D is of the form —A (A a concept
name), —{a}, or =3R.Self.

A SROIQ"™ concept C is in positive negation normal form (pNNF) if

— if <n R.D is a subconcept of C, then D has the form —D’, and

— every other occurrence of = in C is part of a subconcept =D where D is of the
form —A (A a concept name), —{a}, or =9R.Self. &

Every concept expression C can be transformed into a semantically equivalent
concepts expression NNF(C) (pNNF(C)) that is in negation normal form (positive
negation normal form). It is easy to see that this can be achieved in linear time
using the recursive definitions of Fig. 3.3. Also note that, when using 3 and V in
DLs that do not support cardinality restrictions, we find that NNF(C) = pNNF(C)
for all concepts C.

Role expressions and RBox axioms also allow for a number of simplifica-
tions. Sym(R) and Tra(R) are equivalent to R~ C R and R o R C R, respectively.
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Ref(R) is equivalent to T T JR.Self but the latter is not admissible in SROJQ
if R is not simple. As an alternative, Ref(R) can be semantically emulated by
{T C d5.Self, S T R} where S is a fresh simple role name. Irreflexivity Irr(S)
and asymmetry Asy(S) are again equivalently expressed by 15.Self C L and
Dis(S, Inv(S)), respectively. In summary, Dis(S, T') is the only role characteristic
that is not expressible in terms of other constructs in most DLs.

Finally, a number of simplifications can be applied to ABox axioms as well.
Most importantly, DLs that support nominals can typically express ABox asser-
tions as TBox axioms by transforming axioms C(a), R(a, b), a ~ b into {a} C C,
{a} C AR.{b}, and {a} C {b}, respectively. Even without this expressivity, it is possi-
ble to restrict concept assertions in ABoxes to concept names: given a knowledge
base KB with an ABox axiom C(a) and a fresh concept name A, the knowledge
base KB U {A(a),A C C} \ {C(a)} semantically emulates KB. We will explicitly
mention if any of these simplifications is to be used in a given part of this work.

3.2 Relationship of DLs to Other Logics

Description logics have close connections to first-order logic and various frag-
ments thereof. The early development of DLs and their formal semantics had
been driven by the goal of creating a knowledge representation formalism that im-
proves and extends semantic networks and frame-based systems (see Section 1.2).
However, it was soon recognised that DLs are closely related to modal logics
[BVBWO06], which was first articulated by Schild in 1991 [Sch91]. Indeed, univer-
sal and existential quantifiers can be considered as notational variants of modal
box and diamond operators, respectively. The role names in DL then distinguish
distinct underlying frame structures, corresponding to a multi-modal logic with
separate box and diamond for each role.

The correspondence to modal logics extends to various basic description log-
ics, but it does not capture advanced features such as nominals, counting quan-
tifiers, or complex role inclusions, and actually not even ABox assertions. These
discrepancies have been addressed, e.g., by further extending Propositional Dy-
namic Logics (PDLs) — the modal logics studied by Schild — as discussed in
[GL94]. A related approach are hybrid logics that extend modal logics with nom-
inals that allow formulae to refer to individual worlds [BT98, AdRO2].

Another important approach is to interpret DLs as fragments of first-order
logic with equality FOL.. This is achieved by recursively translating DL axioms
and expressions into first-order formulae, as shown in Fig. 3.4 for SROIQ™.
Given a SROIQ™* knowledge base KB, we can then define its first-order transla-
tion m1(KB) = {n(@) | @« € KB}. DL role and concept names are mapped to binary
and unary predicate symbols, and individual names are interpreted in the same
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Role Expressions (¢, # arbitrary first-order variables or individual symbols)

rUt,u)=T
(R, t,u) = R(t,u)if R e N
m(R™,t,u) = n(R, u,t)

Concept Expressions (¢ an arbitrary first-order variable or individual symbol)

a(T,0)=T
(L, f) =1
(A, 1) = A®Y)

n({a},t) =a~t
n(AR.Self, 1) = n(R, t, 1)
n(=C,t) = -n(C,1)
#(C 1D, 1) = n(C, 1) A 1(D, 1)
an(CuD,t)=n(C,t)V n(D,t)
a(YR.C,t) = Yx.(n(R, t, x) = n(C, X))
7(AR.C, 1) = Ax.(n(R, t, x) A 7(C, x))
m(<nR.C,H) = VX1,..., Xpt1- (/\;’:1] ((R, 1, x)) A 7(C, xp) = VL, ?;.IH X & xj)

a(>nR.C,t) = Axy,..., x5 NI (ﬂ(R, Lx) AT(Cox)) AN xi # xj)

=i+l

ABox Axioms

n(C(a) = n(C,a)
n(R(a, b)) = n(R,a,b)
na~b)=a=~b

TBox Axioms

7(C C D) = Vx.(n(C, x) = n(D, x))
#(C = D) =(CC D)Ar(DEC C)

RBox Axioms

aRyo...oR, ET) = VYxi,..., %0 1.( AL, 7(Ri, Xi, Xiv1) = 7(T, X1, Xpi1))
n(Tra(R)) = n(RoRC R)
a(lrr(S)) = Vx.—7x(S, x, x)
n(Ref(R)) = Yx.n(R, x, x)
n(Sym(R)) = Vux, y.(n(R, x,y) = (R, y, x))
A(ASY(R)) = Vx, y.(x(R, x,y) = —(R, y, x))
n(Dis(S,T)) = Vx,y.—n(S, x,y) V -n(T, x,y)

Figure 3.4: Transforming SROTQ™ axioms to first-order logic with equality

way in SROZQ™ and FOL.. Role and concept expressions thus correspond to
first-order formulae with free variables, which is why the transformation function
n takes additional parameters for representing the respective arguments in these

cases.

The following result explains in which sense the direct DL semantics and the
first-order translation agree.

37



INTRODUCTION TO DEScrIPTION LoOGICS

Proposition 3.2.1 Given SROTQ"™ knowledge bases KB and KB’, we find that
KB [ KB’ iff i(KB) £ 7(KB’).

Proof. Similar results have been shown in various works, see e.g. [Mot06]. The
proof is established by showing that every model of 7(KB) can be considered as a
model of KB and vice versa. O

The transformation 7 thus allows us to study the semantic interaction between
DL and other fragments of first-order logic with equality. In the following, we
will often apply notions of first-order logic such as the ones that were introduced
in Section 2.2 to description logic knowledge bases or axioms. Whenever this is
done, we tacitly assume that the according DL axioms have been replaced by their
first-order translation as given by & above.

Due to the limited interaction of quantifiers in DL, it is often possible to repre-
sent axioms in terms of FOL. formulae with at most two variables, thus establish-
ing a correspondence of certain description logics and the two-variable fragment
of first-order logic. This is not possible for SROZQ"™, since number restrictions
and role inclusion axioms require a higher number of variables. For the former
case, this problem can be solved by introducing counting quantifiers into first-
order logic. For example, an expression of the form J.3;x.¢ states that there are
at least three distinct values for x such that ¢ is satisfied. The two-variable frag-
ment of first-order logic with counting quantifiers, usually denoted as C?, is an
important framework for studying the complexity of DLs (see, e.g., Section 5.2 or
9.3).

Finally, another general framework for studying DLs are so-called Guarded
Fragments (GFs) as introduced in [AvBN98]. These fragments provide a general-
isation of various modal, hybrid, and description logics based on the observation
that typical uses of quantifiers in these formalisms involve “guard” formulae that
restrict their applicability [Gra98]. For example, a typical universal role restriction
Vx.R(a, x) = C(x) uses R(a, x) as a guard. However, GFs require all variables that
occur in the filler (C(x) in our example) to occur within a single atom in the guard,
so that complex RIAs are not guarded. Various generalisations of GFs have been
introduced in the literature, but we will not go into further details here.

3.3 Description Logic Nomenclature

SROIQ constitutes one of the most expressive description logics that have been
studied, and it certainly is the most comprehensive DL for which practical imple-
mentations are available today. Many other DLs have been proposed and studied
in the past two decades of research, and a great number of them can be consid-
ered as fragments of SROIQ or SROIQ™. A common goal when restricting
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to simpler logics is to reduce the complexity of inference problems, and to allow
for different algorithmic approaches that are found to yield practical advantages.
Moreover, many basic research questions are significantly harder to answer when
considering SROZQ as a whole, as exemplified by the discussion in Chapter 7.

Fragments of description logics can be defined in various ways. The most ob-
vious method is to restrict the available set of role and concept constructors, and
axiom types. This will be the approach that is elaborated in most detail below. An-
other possibility is to restrict the usage of available constructors within axioms,
e.g. by allowing unions of concepts only on the right-hand side of GClIs as ex-
emplified by the Horn DLs that are studied in Chapter 6. Finally, it is possible to
restrict to a certain set of description logic knowledge bases by imposing struc-
tural restrictions that refer to sets of axioms. Typical examples are the regularity
restrictions that distinguish SROZQ from SROJ Q"™ or the restriction to acyclic
TBoxes that has sometimes been considered in DL research [BCM™*07].

The name that is given to a description logic typically reflects the logical op-
erators that it supports, while further restrictions on the use of these concepts
or on the overall structure of knowledge bases may not be mentioned explic-
itly. Since many combinations of operators are independent from one another,
a general nomenclature has emerged for labelling DLs. Typically, each of the cal-
ligraphic letters of a DL’s name represents a particular feature, while the order
of letters is mostly governed by notational conventions. For example, the 7 in
SROIQ indicates the availability of inverse roles, while Q indicates the availabil-
ity of qualified number restrictions.

In addition, there are a number of DLs whose names have been coined his-
torically without refering to a general naming scheme. Examples that are relevant
in the context of this work include ALC and EL. ALC is the attribute language
with complement' that supports all Boolean operators on concepts (M, LI, =) as
well as universal and existential role restrictions. T and L can be expressed indi-
rectly but are typically included explicitly. The logic £L is the fragment of ALC
that supports only concept conjunction and existential role restrictions.

Figure 3.5 gives an overview of common notations for specific features. To-
gether with the above definitions, this suffices to understand the names of many
common DLs. For example, ALCHO is the extension of ALC with role hier-
archies and nominals, while ALCHOIQ further extends ALCHO with inverse
roles and qualified number restrictions. Unfortunately, not all letters that occur
in DL names have a clearly defined meaning, and features that are very common
in a given line of research may not appear explicitly in the name of a DL at all.
For example, there is no letter for indicating concept intersection. In some cases,

The original source of this name attributes C to “complement” [SSS91] but “complex nega-
tion” might be more accurate given that AL already supports atomic complements.
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Symbol Expressive Feature Example
Z  inverse roles R
O  nominals {a}
U concept union cub
Q  qualified number restrictions <3R.C, >2S.D
N unqualified number restrictions <3R.T,>2S.T
¥ functionality restrictions T C <1 R.T (sometimes “Func(R)”)
H  role hierarchies RCT
R role inclusion axioms RoSCT

Figure 3.5: Nomenclature for important DL features

there have also been diverging definitions that use the same letters. Notably, the
letter R has sometimes been used to denote conjunctions of roles as discussed in
Chapter 5, where we use another notation for this feature. Moreover, the name
FL occurs in a number of basic DLs such as L, which supports only concept
conjunctions, universal role restrictions, T and L. The historic naming has been
motivated since ¥L was introduced as a simple frame language [BL84], and thus
¥ 1is not related to functionality whenever it is followed by L.

Furthermore, the letter S deserves some special discussion. Originally, S was
introduced as an abbreviation for the extension of ALC with transitivity character-
istics for roles. This interpretation is applicable to the DL. SHOZQ and sublogics
thereof such as SHIQ or SHOQ. Role characteristics like symmetry that can be
directly expressed in terms of other constructs are typically not mentioned explic-
itly in this context.

When considering complex role inclusion axioms, however, the letter S has
received a different interpretation. Namely, the DLs R7Q and SRZ@Q both include
ALC and support transitive roles, where the latter already follows from the pres-
ence of R. The difference between R7Q and SRIQ is the availability of various
other features including local reflexivity (Self), disjointness of roles, and various
other role characteristics such as irreflexivity of roles. In the context of R, the let-
ter S has thus been interpreted to refer to “some additional features.” For highly
expressive DLs like SROZQ, both of the above readings of S are applicable. In
all other cases of DLs with SR, we will explicitly clarify which constructs are
available.
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Chapter 4

Combining Description Logics with
Datalog

As discussed in Section 1.3, a large number of rule formalisms have been consid-
ered in knowledge representation and reasoning, and in computer science in gen-
eral. In this chapter, we introduce the well-known rule language datalog which
can be viewed as a fragment of first-order logic but also as a basic logic pro-
gramming dialect. Our focus within this work will mostly be on the former aspect
since it allows us to combine datalog with description logics within the semantic
framework of first-order predicate logic. Indeed, since the semantics of descrip-
tion logics can be captured in terms of first-order logic, it is straightforward —
semantically speaking — to extend this formalism with first-order rule languages.
Yet, as we shall see in many places of this work, much care is needed to preserve
favourable computational properties such as decidability or tractability in such an
extension.

We begin this chapter by giving an extended introduction to the syntax and
semantics of datalog in Section 4.1. Besides providing some basic intuition about
datalog and our first-order perspective on this language, this section also dis-
cusses the use of equality in datalog which is relevant throughout this work (Sec-
tion 4.1.3). Thereafter, in Section 4.2.1, we combine datalog with SROJQ to ob-
tain the (semantic core of) the Semantic Web Rule Language (SWRL) that pro-
vides the basis for many investigations within this work. After identifying the
basic shortcomings of SWRL, we provide an extended overview of the refined
approaches for combining datalog with description logics in Section 4.3 and 4.4,
where we also point out the relationships of these approaches to the contents of
later chapters.
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4.1 Datalog as a First-Order Rule Language

As explained in Section 1.3, a natural way to approach the notion of “rule” in
classical logic is to consider implications, i.e. formulae that have an implication
operator as their outermost connective. Moreover, it makes sense to require that
all variables that appear in a rule are universally quantified, thus expressing the
fact that the implication is applicable to all individuals that satisfy the premise.
However, further restrictions are required to arrive at a meaningful notion of rule
that does not encompass all first-order logic formulae.

In this section, we introduce a particularly restricted rule language known as
datalog. In a nutshell, a datalog rule is a logical implication that may only con-
tain conjunctions, constant symbols, and universally quantified variables, but no
disjunctions, negations, existential quantifiers, or function symbols. We always
consider datalog as a sub-language of first-order logic to which the classical se-
mantics applies. Both syntax and semantics will be explained in more precise
terms below in a fully self-contained way.

Before going into further details, it is worth mentioning that datalog has origi-
nally been developed for querying databases. Rules and queries indeed have much
in common. For example, the following datalog rule can be interpreted as a means
of querying a given database for all book authors:

VYxVy.(Person(x) A authorOf(x, y) A Book(y) — Bookauthor(x)).

In this case, one would assume information about Person, authorOf, and Book
to be stored in a database, while Bookauthor is derived from this data as a “query
result.” It is always possible to regard single rules as descriptions of relevant
“views” on the data, and much work on datalog is related to the use of rules in this
sense.

When considering datalog as a rule language, however, we also want to allow
rules to be applied recursively. This means that the result of a rule can again be
used by other rules to derive further conclusions, continuing until no further con-
clusions can be obtained from any rule. This use of recursion has been an impor-
tant topic in the area of deductive databases as well, and semantic technologies
can build on the results that were obtained in this field. A notable difference to
our treatment is that many database-related applications define datalog based on
a logic programming semantics or with certain “closure axioms.” This is useful
for achieving a closed-world semantics that is desirable for a database: if a fact
is not in the database, it should be concluded that it is false. Such non-monotonic
behaviour, however, is only obtained when extending datalog with further fea-
tures, especially with non-monotonic negation. We do not consider any form of
non-monotonicity in this chapter. For plain datalog, our definitions lead to exactly

42



4.1 DATALOG AS A FIRST-ORDER RULE LANGUAGE

the same deductions as the closed-world approach. See [AHV94, Chapter 12] for
a discussion and comparison of both approaches.

Another characteristic that is often considered in work on deductive databases
is safety of rules which requires that all variables in the head of a rule occur also
in its body. In the cases that we consider, such a restriction is not required, but we
will encounter related notions when studying DL-safety in Chapter 9.

4.1.1 Syntax of Datalog

The following definition introduces central notions regarding the syntax of data-
log. An example datalog program that illustrates this definition is given in Fig. 4.1.

Definition 4.1.1 A signature (I, P, V) for datalog consists of a finite set of indi-
vidual names (or constant symbols) 1, a finite set of predicate names (or predicate
symbols) P, and a finite set of variable names V, all of which are mutually disjoint.
The function ar : P — N associates a natural number ar(P) with each predicate
P € P that defines the (unique) arity of P.

Based on a datalog signature (I, P, V), we define the following notions:

— A datalog ferm is an element ¢ € I U V, 1.e. an individual or variable name.

— A datalog atom is a formula of the form P(z,...,t,) given that t,,...,t, are
datalog terms, and P € P is a predicate name of arity n, i.e. ar(P) = n.

— A datalog rule is a formula of the form
Vx1 ...me.(31 AN /\Bk i H),

where By,..., B; are datalog atoms or T, H is a datalog atom or L, and the
variables xi, ..., x,, are exactly those variables that occur within these atoms.
A rule with k = 1 and By = T is called a fact, and a rule with H = L is called
a constraint.

The premise of a datalog rule is called the rule body while the conclusion is called
the rule head. A set of datalog rules is called a datalog program which hints at the
relationship to logic programming. &

Since all variables in datalog are always universally quantified at the level of
rules, it is common to omit the ¥ quantifiers from datalog rules. Moreover, L in
rule heads is sometimes not written explicitly, and facts T — H are typically
simply given as H. We adopt these simplifications whenever there is no danger
of additional confusion. When clear from the context, we also omit the prefix
“datalog” and simply speak of “terms,” “atoms,” “rules” etc. Finally, we will also

typically leave the specific signature implicit in our considerations: details of the

99 ¢
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(1) Vegetarian(x) A FishProduct(y) — dislikes(x,y)

2) orderedDish(x,y) A dislikes(x,y) — Unhappy(x)

3) orderedDish(x,y) — Dish(y)

(4) dislikes(x,z) A Dish(y) A contains(y,z) — dislikes(x,y)

5 T — Vegetarian(markus)
(6) Happy(x) A Unhappy(x) — L

Figure 4.1: Example datalog program

signature are usually inessential as long as it provides all syntactic symbols of a
given datalog program (with the correct arity).

Figure 4.1 gives an example of a datalog program based on a datalog signature
with set of constant symbols I = {markus} and set of predicate symbols P =
{Dish,Vegetarian, FishProduct, Happy,Unhappy, dislikes, orderedDish}.
It is not hard to read the intended meaning from this set of datalog rules:

(1) “Every vegetarian dislikes all fish products.”!

(2) “Anyone who ordered a dish that he or she dislikes is unhappy.” This rule
shows that not all variables occurring in a rule body need to appear in the
rule head.

(3) “Everything that can be ordered as a dish actually is a dish.”

(4) “If someone dislikes something that is contained in a certain dish, then this
person will also dislike the whole dish.”

(5) “Markus is a vegetarian.”

(6) “Nobody can be happy and unhappy at the same time.”

Note that some of the rules might be more widely applicable than desired. For
example, rule (2) does not require that it was a person who ordered the dish.
In practice, one might add further preconditions to ensure that such implicit as-
sumptions do really hold. For our purposes, however, a simpler formalisation is
preferred over a more correct one.

This example also illustrates that rules can often be read and understood rather
easily, which is one reason why they might sometimes be preferred over other
types of ontological axioms. Yet, some care is needed when dealing with rules:
while the intention of a single rule can seem obvious, there are still many possibly
unexpected conclusions that can be drawn from a set of rules. In particular, one
must be aware that rules in first-order logic “work in both directions™: if a rule

'Some “pesco-vegetarians” might disagree. We follow the historic definition of the Vegetarian
Society here.
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body is true then the rule head must of course also be true, but conversely, if a rule
head is false, then the rule body must also be false. In other words, every rule is
equivalent to its contrapositive: p — q is equivalent to ~g — —p. This may seem
trivial, but it is often not relevant in pure logic programming settings due to the
absence of explicit (classical) negation, and hence it may easily be overlooked in
practice. Assume, e.g., that the following facts are added to the program of Fig. 4.1
(we assume that the new constant symbols have been added to the signature):

Happy(markus)
orderedDish(markus,crépeSuzette)
FishProduct(worcestershireSauce)

With these additional assertions, we can (rightly) conclude that Crépe Suzette
does not contain Worcestershire Sauce: Since Markus is happy, he cannot be un-
happy (6), and hence he did not order any dish he dislikes (2). Thus, since he
ordered Crépe Suzette, Markus does not dislike this dish. On the other hand, as
a vegetarian (5) Markus dislikes Worcestershire Sauce on account of being a fish
product (1). Thus, since Crépe Suzette is a dish (3), and since Markus does not
dislike it, rule (4) ensures us that the crépe does not contain any Worcestershire
Sauce.

The proper formal basis for such derivations is provided by the logical seman-
tics of datalog as specified in the next section.

4.1.2 Semantics of Datalog

As mentioned in the previous section, we consider datalog as a sub-language of
first-order logic, and its formal semantics is already determined by this fact. In this
section, we give a self-contained presentation of the datalog semantics which can
be slightly simplified due to the fact that function symbols and various first-order
logical operators do not need to be addressed. As usual for first-order logic, the
semantics of datalog is model-theoretic, 1.e. it is based on defining which “models”
a datalog program has. A correct conclusion from a datalog program then is any
formula that is satisfied by all models of this program. As usual, a model is a
special kind of interpretation, one that makes a given datalog program true. Hence
we first explain what a datalog interpretation is and what it means for it to satisfy
some datalog rule.

Definition 4.1.2 A datalog interpretation I is a tuple (A?,-7), consisting of a
non-empty interpretation domain A’ and an interpretation function -*. The do-
main is a set of individuals that defines the (abstract) world within which all
symbols are interpreted. The interpretation function establishes the mapping from
symbols into this domain:
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— If a € Iis an individual name, then a’ € A7, i.e. a is interpreted as an element
of the domain.

— If P € P is a predicate symbol of arity ar(P) = n, then P C (A?)", i.e. P is
interpreted as an n-ary relation over the domain.

A variable assignment Z for I is a mapping Z : V — A?. Foratermt e IUV
we write 1< to mean ¥ if t € I, and Z(¢) if t € V. Given an interpretation 7 and
a variable assignment Z for 7, the truth value of a datalog formula is defined as
follows:

— We set T9< = true and 17< = false.

— For a datalog atom P(ty,...,t,), we set P(t,..., t,)< = true if we find that
(%, 605y e PToand P(t, . . ., 1,)"Z = false otherwise.
— For a conjunction By A ... A B, of datalog atoms By, ..., B,, weset (By A ... A

B,)"< = true if Bf’z =trueforalli=1,...,n. Weset (By A...AB,)"< =
false otherwise.

— For a datalog rule B — H, with B an arbitrary conjunction of datalog atoms,
we set (B — H) := true if, for all variable assignments Z for 7, we find that
either BY< = false or H'< = true. We set (B — H)! := false otherwise. <

Note that the truth of a rule does not depend on a particular variable assign-
ment, since the (implicit) universal quantifiers bind all variables in all rules. The
above definition gives rise to the usual notion of model-theoretic satisfiability and
consequence:

Definition 4.1.3 An interpretation I satisfies a datalog rule B — H if (B —
H)! = true, and it satisfies a datalog program if it satisfies all rules of the pro-
gram. A rule (program) that is satisfied by some interpretation is called satisfiable
or consistent, and each satisfying interpretation is called a model for the rule (pro-
gram). A rule is a conclusion (or consequence) of a program if the rule is satisfied
by all models of the program. <

Observe that the definition of semantic consequence includes all types of rules,
so in particular it defines in which cases a certain fact is entailed by a datalog
program. The entailment of facts is by far the most common reasoning problem for
datalog, and many implementations are specifically tailored toward the derivation
of facts.

The above finishes the formal definition of the datalog semantics. To illustrate
the definitions, we describe a particularly interesting model for the example in
Fig. 4.1 and the related facts on page 44. As a domain of interpretation, we pick the
set of constant symbols of the given signature, i.e. AT = {markus, crépeSuzette,
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Vegetarian’ = Happy’ = {markus}
FishProduct’ = {worcestershireSauce}
dislikes’ = {(markus,worcestershireSauce)}
orderedDish’ = {(markus, crépeSuzette)}
Dish’ = {crépeSuzette}
Unhappy’ = contains? =0

Figure 4.2: Example datalog interpretation of predicate symbols

worcestershireSauce}. The mapping - on constant symbols is defined to be
the identity function, i.e. every constant symbol is mapped to itself. The interpre-
tation of the predicate symbols is given in Fig. 4.2. It is straightforward to check
that this interpretation is indeed a model for the given datalog program. For plain
datalog programs that are consistent, it is always possible to construct models in
this particularly simple fashion by just taking the set of constant symbols as inter-
pretation domain, and such models are known as Herbrand models.> Moreover,
it is always possible to find a model that satisfies as few datalog atoms as pos-
sible, such that no other model satisfies less datalog facts. The existence of such
least Herbrand models is of great significance and can be exploited for practical
implementations. Unfortunately, this nice property is lost as soon as we introduce
description logics into the picture.

Even the availability of least Herbrand models does not make inferencing an
easy task, computationally speaking. The following summarises some well-known
complexity results for reasoning in datalog.

Fact 4.1.4 Checking satisfiability of arbitrary datalog programs P is EXpTIME-
complete w.r.t. the size of the program, and P-complete w.r.t. the number of facts
if the non-fact rules are assumed to be fixed (data complexity). Checking satisfi-
ability in the class of datalog programs with at most k variables per rule can be
done in polynomial time w.r.t. #1)*, and is thus P-complete w.r.t. the size of the
program.

The same results hold for the problem of checking the entailment of ground
facts from datalog programs.

See [DEGVO01] for details and proofs. Upper bounds in all cases can be ob-
tained by reducing datalog programs to propositional Horn logic programs by
grounding, i.e. by uniformly replacing the variables of each rule by constant sym-
bols in all possible ways. Grounding is obviously exponential in the number of
variables per rule, and polynomial in the number of constants.

2 After the French mathematician Jacques Herbrand, i.e. pronounced /erbrd/ with H silent
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4.1.3 Equality

An important aspect of first-order logic and thus of description logics is the fact
that different constant symbols may refer to the same semantic individual. In con-
trast, logic programming often adopts the Unique Name Assumption (UNA) that
requires differently named individuals to be distinct. This is also reflected in the
notion of Herbrand models mentioned above which use the set of all constant
symbols as their domain, such that distinct constants represent distinct domain
elements. In this section, we discuss how explicit equality can be introduced into
datalog so as to align it with description logics.

First it must be noted that the semantics of datalog as introduced above does
not make the UNA, so it is indeed possible that distinct constant symbols are
interpreted as the same domain element. This does hardly play a role for the con-
clusions that can be drawn from a datalog program, since datalog provides no way
of stating or checking the equality of two individuals. This is why the least Her-
brand model can still be used for reasoning: models with less domain elements
may exist, but the least Herbrand model is guaranteed to entail the least amount
of positive information.> Datalog does, however, provide a way of asserting the
inequality of two individuals by requiring them to have incompatible properties.
For example, the program {P(a), Q(b), P(x) A Q(x) — L} implies that a and b are
interpreted differently in all models.

A straightforward solution for allowing explicit positive equality assertions in
datalog is to simply consider datalog as a fragment of first-order logic with equal-
ity FOL., and to allow the equality symbol ~ to be used like a binary predicate.
Besides this extension, the above definitions of syntax and semantics of datalog
carry over to this new setting. However, datalog programs with equality may no
longer have (least) Herbrand models. For example, the program {x ~ a} requires
all domain elements to be equal to the interpretation of the constant a, and hence
admits only models with singleton domains. We will see below how the underly-
ing ideas of Herbrand models can still be recovered within this setting.

Another practical problem that we encounter when adding equality to data-
log is the lack of inference engines. While datalog can be processed by almost
any logic programming tool, including a number of dedicated datalog reasoners,
there are hardly any implementations of datalog with equality. Fortunately, it is
well-known that equality can be axiomatised using rules of datalog without equal-
ity; see, e.g., [Fit96]. More formally, given a datalog program P over a signature
(I, P, V), the datalog program P is defined to consist of the following rules:

3Indeed, “least” refers to the amount of positive information as compared to other Herbrand
models, not to the size of the interpretation domain.
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axa foralla el

x%y — y%x

XXRYANYRZ > X=X
P(xy,... Xiy.. s X)) AX; =y, — P(xy,...,v,...,x,) forallPeP

It is well-known that, for all ground atoms ¢ (possibly including the symbol =)
over the signature (I, P, V), we have that P | ¢ in FOL, iff P U P. E ¢ holds
in first-order logic without equality when considering ~ as a new binary pred-
icate [Fit96]. Indeed, it is easy to see that every FOL model of P U P has a
corresponding FOL. model of P that is obtained by factorising the interpretation
domain based on the equivalence relation induced by =, and, conversely, every
FOL.. model of P leads to a FOL model of P U P, that interprets ~ as identity
relation on the domain. In this sense, the relation of P and P U P is close to our
notion of emulation, although the use of different underlying logics is not encom-
passed there. Together with the observation that the size of P. is linearly bounded
in the size of the underlying signature, we can conclude that the worst-case com-
plexity of reasoning in datalog is not increased when adding equality.

This provides us with an alternative perspective on equality as an auxiliary
predicate with a fixed axiomatisation. This view is useful since it allows us to
understand the notion that corresponds to least (Herbrand) models in datalog with
equality. Namely, the “least models” of a datalog program with equality can be
considered to be the models that are obtained by constructing FOL.. models from
least FOL models of the datalog program with axiomatised equality predicate. For
example, the least Herbrand model leads to a canonical model in FOL. which is
obtained as a factorisation of the Herbrand model. We will use this correspondence
in some arguments, and in particular there are cases where it is more convenient
to construct a model by explicitly specifying the extension of ~ instead of dealing
with equivalence classes that are obtained by an according factorisation.

Since both views are essentially equivalent, we freely change between the
FOL and FOL. perspective when considering datalog, and in particular we typi-
cally use = in datalog without specifying which logical framework is to be used.
While the extension of datalog to a fragment of FOL. in this sense does not
increase its modelling power, we point out that an axiomatisation as above is of-
ten not satisfactory for devising efficient implementations. The reason is that a
general-purpose equality theory creates a large number of possible inference pat-
terns that may thwart some common optimisations and that may even lead to non-
termination in some logic programming systems. A common inference method
for datalog and logic programming is resolution, and a number of additional tech-
niques are known to reduce the amount of unnecessary inferences in resolution-
based calculi [BG98]. In many cases, it is also possible to use a more restricted
equality theory without losing consequences.
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4.2 Datalog U Description Logics: SWRL

In this section, we consider the approach of combining all expressive features of
datalog with all expressive features of DL in a rather straightforward way that
was first proposed in [HPS04]. The approach has become popular through the
Semantic Web Rule Language (SWRL, pronounced “swirl”) that was published
as a W3C member submission [HPSB*04]. The original proposal of SWRL also
includes a number of built-in functions for handling datatype values, and it uses
an XML-based syntax that is not discussed here. Yet, it is still closely related to
the formalism that is discussed in this section, and we will use the name “SWRL”
throughout to refer to this language.

4.2.1 Defining SWRL

Even though the paradigm of rule-based modelling is quite different from the on-
tological modelling in description logic, it is not hard to see that a combination
of datalog and DL is indeed meaningful. Both languages can be viewed as sub-
languages of FOL., so the combination of a datalog program with a DL ontology
can always be viewed as a collection of first-order logic formulae with the usual
first-order semantics. So, at least conceptually, there are no major problems. For
clarity, we explicitly define the syntax and semantics of SWRL below.

Definition 4.2.1 A signature of SWRL is a signature of datalog (I, P, V) as in
Definition 4.1.1 with designated disjoint subsets of concept names A C P, simple
role names Ny C P, and non-simple role names N,, C P, such that

— A € A implies ar(A) = 1, and
— R e N UN, implies ar(R) = 2.

In particular, (I, A, N) with N = Ny U N, is a DL signature.

A SWRL atom is a datalog atom over (I, P, V), or an expression of the form
C(x) or R(x,y) where x,y € V, and C € C and R € R are SROTQ™ concept
and role expressions over the signature (I, A, N). SWRL rules and programs are
defined like datalog rules and programs but based on SWRL atoms. A SWRL
program is also called a SWRL rule base.

Interpretations and variable assignments in SWRL are the same as for data-
log, and satisfaction of datalog atoms is defined as before. An interpretation J =
(A?, -7y and a variable assignment Z for T satisfy a SWRL atom of the form C(x)
with C € C if Z(x) € CL. Here, C* denotes the (DL) extension of C under I as
specified in Definition 3.1.5. Similarly, 7 and Z satisfy a SWRL atom of the form
R(x,y) with R € R if (Z(x), Z(y)) € R’. Satisfaction for rules and programs is
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(7) dorderedDish.ThaiCurry(markus)
(8) ThaiCurry C dcontains.FishProduct

Figure 4.3: Description logic axioms extending the datalog program from Fig. 4.1

defined as in Definition 4.1.2 using the extended satisfaction relation for SWRL
atoms. Logical consequence is defined as in Definition 4.1.3. <

Since this definition explicitly allows for datalog predicates of arbitrary arity,
SWRL in this sense clearly is a proper syntactic superset of datalog. This is not
the case for SROTQ™, since we do not explicitly include concept subsumptions,
role inclusion axioms, or other role assertions. However, all of these concepts can
easily be expressed in SWRL:

— concept subsumptions C E D can be expressed by rules C(x) — D(x),

— generalised role inclusion axioms R; o ... o R, C T can be expressed by rules
Ry(x1, x2) A v oo A Ry( Xy Xp1) = T (X1, Xn41),

— role disjointness axioms Dis(R, T') can be expressed by rules (integrity con-
straints) R(x,y) A T(x,y) — L.

The remaining role characteristics symmetry, asymmetry, transitivity, reflexivity,
and irreflexivity can be expressed in SROZQ as explained in Section 3.1.3, hence
can be omitted without losing expressivity. Thus, when specifying SWRL rule
bases,* we will freely use axioms in DL syntax to denote the corresponding SWRL
rules, but we do not need to explicitly consider these cases in formal arguments.

Further note that Definition 4.2.1 does not require all unary and binary predi-
cates to be interpreted as DL concept names and role names, respectively. Later,
in Chapter 9, we will discuss cases where a distinction between DL atoms and
non-DL atoms is indeed useful. For now, it will not be necessary to distinguish
datalog and DL components in SWRL rule bases.

As an example for such a combined knowledge base, consider again the data-
log rules from Fig. 4.1 together with the additional description logic axioms given
in Fig. 4.3 (using DL syntax as explained above). By (7), Markus has ordered
some Thai curry dish, and, according to this example, all Thai curries contain
some fish product. Combining these statements with the rules of Fig. 4.1, we
would intuitively expect the conclusion that Markus is now unhappy. Using the
above semantics, we can support our intuition with a more formal argument.

“We prefer the term “rule base” since it emphasises the relationship to (DL) knowledge bases
avoids the procedural connotation of the term “program” that is common for datalog theories.
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Using the semantics of 4 from Definition 3.1.5, we find that every interpre-
tation 7 that satisfies (7) must have some element e in its domain A’ such that
(markus?, e) € orderedDish’ and ¢ € ThaiCurry’. But if T also satisfies rule
(3), then we must have ¢ € Di sh? as well. This last conclusion can be obtained
as follows: Clearly there is a variable assignment Z with Z(x) = markus’ and
Z(y) = e. Since Z and 7 satisfy the body of rule (3), they must also satisfy its
head. So we obtain Z(y) € Dish’ as claimed. Normally, it is not required to ex-
plain conclusions from rules in that much detail, and one usually just says that
e € Dish’ follows by applying rule (3).

Now if (8) is satisfied, then e € (Jdcontains.FishProduct)’. Again this
means that there must be some element f € A? such that (e, f) € contains’ and
f € FishProduct”. Applying rules (5) and (1), we also know that (markus?, f) €
dislikes”. Thus we can apply rule (4) with a variable assignment Z with Z(x) =
markus’, Z(y) = e, and Z(z) = f to conclude that (markus’,e) € dislikes?’.
Thus, we have established that Markus dislikes the (unnamed) dish e which he
ordered. Therefore rule (2) can be applied to conclude that markus’ € Unhappy”’.

The above conclusions were drawn by assuming merely that 7 satisfies the
rules and axioms (1)—(9), and they are thus valid for an arbitrary model of our
combined knowledge base. In other words, every model of the above rules and
axioms must also satisfy Unhappy(markus), which is therefore a logical conclu-
sion of the knowledge base.

4.2.2 Reasoning in SWRL

The previous section showed how the formal semantics of datalog and description
logics can be used to derive conclusions. The argument we gave there, however,
was still somewhat informal and required some amount of thought on our side.
It would clearly be desirable to automate this process, i.e. to develop software
tools that automatically draw conclusions from SWRL rule bases. Unfortunately,
it turns out that this is not possible: all standard reasoning problems for SWRL
are undecidable, even if further restricting the underlying description logic. Be-
fore providing a simple proof for this result below, we discuss the practical con-
sequences of this situation.

Undecidability of SWRL might be somewhat disappointing since it ensures
us that it is impossible to ever devise a software tool that can compute all con-
clusions from all possible SWRL rule bases. But this formulation also already
hints at two ways of escaping this problem. As a first option, one might be con-
tent with a tool that draws at least some conclusions which are for certain, i.e. an
inferencing program that is sound but incomplete. Alternatively, one can try to
find reasoning methods that are sound and complete, but that cannot be applied to
all possible rule bases. As we will see in the following chapters, both approaches
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are often closely related: having identified a fragment of SWRL rules for which
a sound and complete reasoning algorithm is available, one can devise ways for
modifying arbitrary SWRL rule bases to make them processable by the same al-
gorithm. Such modifications are typically weakenings — the modified rule base is
a logical consequence of the original one — and hence the reasoning algorithm,
while sound and complete for the modified rule base, is still sound but no longer
complete for the original one. Two main approaches for obtaining fragments of
SWRL for which reasoning is decidable are Description Logic Rules (Chapter 8)
and DL-safe Rules (Chapter 9).

In the remainder of this section, we elaborate on the undecidability of SWRL.
There are, in fact, many different ways of illustrating this undecidability, since
many well-known undecidability proofs for description logics are easily adapted
for SWRL rule bases. Examples include the undecidability proof for non-simple
roles in number restrictions [HST99], non-regular role boxes [HS04], and even
the basic undecidability result for KL-ONE — a predecessor of today’s descrip-
tion logics — given in [SS89]. The argument given for SWRL’s undecidability
in [HPSBTOS5] is based on representing an infinite tiling (domino) problem in
SWRL. Intuitively speaking, the undecidability of SWRL is a result of the inter-
play of two features: (1) SWRL does not have a finite model property, so that a rule
base can require the existence of infinitely many domain elements; (2) SWRL can
describe and entail complex, irregular relationships between domain elements.
Item (1) is typical for DLs which can use existential quantifiers to derive new
elements, but attention can typically be restricted to (finite or infinite) DL mod-
els which have a rather regular structure that allows reasoning algorithms to use
blocking approaches to ensure termination. Conversely, in the case of datalog,
irregular relationships between domain elements can be described but the sup-
ply of such elements is naturally limited by the amount of constant symbols that
are used: satisfiable datalog programs always have a finite model — any Herbrand
model. The following proof is given to further illustrate this intuition using the
Post Correspondence Problem as a classical undecidable problem.

Fact 4.2.2 Satisfiability of SWRL rule bases is undecidable.

Proof. The undecidable Post Correspondence Problem (PCP) is described as fol-
lows: given two lists of words u,,...,u, and vy,...,v, over some alphabet X, is
there a sequence of numbers i, ..., (1 <i; <n)suchthatu;, ...u; =v; ...v;?

To reduce this problem to SWRL satisfiability, words are represented by chains
of binary relations. Thus assume there are distinct role names {U,|l < j < n} U
{Vill < j<ntU{R, | o € X} C N. For each word u; = 0j;...0, and corre-
sponding role U;, add arule R, (x1, X2) A ... ARy, (X, Ximi1) = U j(X1, Xpny1), and
likewise for words v;. Moreover, add facts of the form dR,..T(x) for each o € X.
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This construction ensures that every model contains a role chain for all possible
sequences of letters, and that roles U; and V; connect the first and last elements of
each role chain that represents the word u; and v;, respectively.

We wish to ensure that the constructed rule base is unsatisfiable whenever the
given instance of the PCP can be solved. For this it is not adequate to generally
disallow that some sequences of words U and V; connect the same individuals: a
contradiction should only arise if the same indices iy, .. ., iy have been used in the
construction of both sequences. For this, we introduce another set of (distinct) role
names {M|[1 < j < n}U{U, V} C N and facts AM;.T(x) foreach j € {1,...,n}. The
roles M; are markers to record a sequence of words u; and v;. This is implemented
by adding rules of the form U;(x,y) A M;(y,z) — U(x,z) and U;(x,y) AU(y,y") A
M;(y',z) — U(x,z) for each j € {1,...,n}, and likewise for V. Finally, the rule
U(x,y) A V(x,y) — L constraints the models of the rule base as intended.

It is not hard to see that this rule base is unsatisfiable iff the initial instance
of the PCP has a solution. Otherwise, we can find a canonical model 7 in which
the graph structure established by the relationships RZ and MZ is tree-shaped,
i.e. contains no cycles and no parallel edges. In particular, this means that no
two distinct sequences of edges M£ e Mi lead to the same domain element. The
canonical model can further be assumed to contain exactly those relationships U (]j)

and Vé) that are required by the rules with non-empty heads (this can be ensured,
in essence, since the underlying logic is monotonic). It is easy to see that the rule
U(x,y) A V(x,y) — L is also satisfied if a model is constructed like this: Suppose
for a contradiction that it is not, i.e. that there is a tuple in U? N V. An easy
induction over the length of the entailment of U and V7 then shows that there is
a corresponding sequence of words in the original PCP — a contradiction.
Conversely, it is easy to show that, whenever the PCP has a solution sequence,
this sequence will lead to a contradiction in each interpretation of the rule base.
This finishes the proof. m|

We point out that the SWRL rules that are used in the above proof could also be
expressed in SROZQ"™ by using role chains and role disjointness axioms, where
the resulting RBox would not satisfy the regularity constraints of SROZQ. The
proof thus could be adapted to show undecidability of reasoning in SROTQ™.

4.3 Approaches for Combining Rules and DLs

The Semantic Web Rule Language is a rather straightforward approach for com-
bining rule languages and datalog, and its undecidability is clearly a disadvantage.
A variety of further approaches have been considered for combining rules in the
sense of first-order logic or logic programming with DLs. In this section, we pro-
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vide a short survey of related works, and point out the approaches that we are
going to pursue in the remainder of this work.

A first approach for reconciling DL and rules in a decidable fashion was in-
troduced under the name Description Logic Programming (DLP) in [GHVDO03,
Vol04]. In contrast to SWRL, DLP strives to define a common “‘subset” of the DL
SHOIQ and datalog, and thus it is strictly weaker than either formalism. In the
absence of a common syntax, however, it is not obvious how to define the “in-
tersection” of two logical formalisms, and a number of variants of DLP-like lan-
guages have been considered. The most recent incarnation of DLP can be recog-
nised in the OWL 2 profile OWL RL, which can be viewed as an extended version
of DLP for SROZQ. In this work, we encounter similar DLs in Chapter 6 when
considering Horn description logics, and in particular in Section 6.2. Moreover,
we return to the question of how to define the “intersection” of DL and datalog
in Chapter 7, where the logic D L% is introduced as a DLP-type sublanguage of
SROIQ that is maximal in a concrete sense.

Partly inspired by DLP, Motik et al. proposed a reduction of SHZQ knowl-
edge bases to disjunctive datalog programs® that could be used to compute ground
entailments from datalog, and that has been implemented in the KAON2 system
[MS06, Mot06]. Using the terminology of Section 2.2, we can say that the disjunc-
tive datalog program as computed by KAON2 FOLE™™-emulates the original
SHIQ knowledge base where FOLEZ™™ is the variable-free fragment of first-
order logic with equality. It turned out that some knowledge bases could be trans-
lated into non-disjunctive datalog, and that the low reasoning complexity w.r.t. the
number of facts in a datalog program could thus be exploited in these cases. The
corresponding fragment of SHIQ was called Horn-SH7Q [HMSO05]. It is the
basis for our investigation of a number of further Horn DLs in Chapter 6, where
additional related work on these topics can be found.

Some other approaches have focussed on identifying decidable sub-languages
of SWRL. The datalog reduction in KAON2 suggested the combination of SH7ZQ
knowledge bases with additional datalog rules that would simply be added to the
program that is obtained from a transformation. Doing this does, of course, not
capture the semantics of arbitrary SWRL rule bases, but it suffices to derive all
entailments that can be obtained when restricting the applicability of the added
datalog rules to named individuals, i.e. to individuals that are referred to by a con-
stant name of the original knowledge base. A class of SWRL rules for which this
suffices to obtain a complete reasoning procedure has been introduced in [MSS05]
under the name DL-safe rules. Related work is further discussed in Chapter 9,
where we extend this approach by combining it with another family of decidable
SWRL fragments known as Description Logic Rules.

SDisjunctive datalog is the extensions of datalog that allows disjunctions in rule heads.
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Description Logic Rules have first been introduced in [KRHO08a] and, inde-
pendently, in [GSHO8]. The key idea of this approach is to identify fragments of
SWRL that can be expressed (or rather emulated) by DL knowledge bases, but
which may require some non-trivial encodings for this purpose. In this sense, DL
Rules do not actually increase the expressiveness of a description logic, but rather
provide a rule-based perspective that might be more adequate for some applica-
tions. DL Rules are introduced in detail in Chapter 8, and they provide an impor-
tant basis for DL+safe rules, a generalisation of DL-safe rules that is presented in
Chapter 9. The latter chapter also introduces the new light-weight DL-based rule
language ELP [KRHOS8Db].

Other prominent approaches for a first-order integration of DL and datalog
have been CARIN [LR98] and (first-order) DL+log [Ros06], both of which con-
sider certain forms of DL-safety conditions to ensure decidability. See Section 9.6
for a more detailed discussion on how these relate to DL-safe rules and to our
extension thereof. In short, it turns out that our DL+safe rules generalise both
DL-safe rules and recursive role-safe CARIN, while D L+/og remains incompa-
rable.

In addition to these foundational works, the interoperability of DL and rules
also imposes practical challenges. Indeed, the major contribution of the SWRL
member submission [HPSB*04] was not to invent a novel knowledge representa-
tion paradigm, but to specify a structural and syntactic framework for using SWRL
rule base in actual systems. Although not a formal standard, SWRL continues to
be the main rule syntax that is used in current implementations. More recently, ex-
tensions have been proposed to improve the compatibility of SWRL with various
syntactic forms of OWL, and to incorporate an explicit notion of DL-safety into
SWRL rule bases [GHPPS09]. Meanwhile, the W3C initiated an effort for stan-
dardising a so-called Rule Interchange Format (RIF) as a unified framework for
increasing the interoperability of rule-based systems. However, this effort was not
scoped to any particular notion of “rule” and, in consequence, lead to a number of
different rule languages that are only weakly compatible. A language that resem-
bles datalog (though extended with frame-like syntax and some other features)
has been developed under the name RIF Core [BHK*09], and it can further be
extended to the RIF Basic Logic Dialect that encompasses first-order Horn logic.
Both languages use a first-order semantics that is compatible with the rule lan-
guages studied within this work. Moreover, RIF includes a document on RDF and
OWL compatibility [dB09] that suggests a combined semantics of OWL and RIF
that is closely related to SWRL, and that provides a basis for defining DL-safety
in RIF rule bases. However, it remains to be seen to which extent RIF will be
adopted in practical applications.

Besides the close integration of rules and DLs in the framework of SWRL,
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there are further approaches of combining some forms of rule languages with de-
scription logics. Many of those approaches consider rules in the sense of logic
programming (see [L1088] for a textbook introduction), focusing specifically on
the non-monotonic inferencing features of the latter. An important kind of works
are so-called hybrid approaches that use DL knowledge bases as source of back-
ground knowledge that is used by some form of rule base or logic program. A clas-
sical approach of this type is AL-log which semantically resembles SWRL but
does not allow DL atoms in rule heads [DLNS98]. While this can still be viewed
as a restricted form of DL-safe SWRL rules, Eiter et al. introduced dl-programs
as a hybrid formalism for combining answer set programming — a paradigm of
non-monotonic logic programming — with description logics [ELSTO04]. This ap-
proach later has been further generalised to so-called HEx-programs that allow for
more general combinations of higher-order logic programs with externally defined
atoms [EISTOS].

Further approaches provide an even tighter integration of description log-
ics and non-monotonic logic programming paradigms. An example is given by
DL+Ilog that admits a non-monotonic evaluation based on the Gelfond-Lifschitz-
reduct of a disjunctive datalog program for some interpretation, while still allow-
ing DL axioms to be interpreted under an open world semantics [Ros06]. The idea
of integrating closed and open world reasoning by combining DLs and (disjunc-
tive) datalog was further advanced by the introduction of hybrid MKNF knowledge
bases [IMHRS06, MRO7] which introduce the paradigm of Minimal Knowledge
and Negation as Failure into DLs. An alternative approach of interpreting such
hybrid knowledge bases under the well-founded semantics has been presented in
[KAHOS].

4.4 Rules and Conjunctive Queries

Another area that is closely related to the combination of rules and DLs is the
study of conjunctive queries for description logics. Conjunctive queries are a well-
known formalism in the field of databases that can easily be adapted to DL knowl-
edge bases. Using the terminology of this chapter, a conjunctive query (CQ) can
be defined as a SWRL rule

— that contains only DL atoms in its body, and

— that has a non-DL atom of arbitrary arity as its head.

In this sense, CQs are a special kind of non-recursive rules. The predicate name
of the head atom is generally used only in a single query, and hence is inessential.
One is typically interested in the instances of the head predicate of the query that
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are entailed by a given DL knowledge base. Variables that occur in the head of
a query are therefore called distinguished variables, and all other variables are
called non-distinguished.

An answer to a query B — Q(xy,...,x,) over a given DL knowledge base KB
is atuple {ay, ..., a,) of individual names a; € I such that Q(ay,...,a,) is alogical
consequence of KB U {B — Q(xy,...,x,)}. The query entailment problem is the

problem of deciding whether or not a tuple is an answer to a CQ in this sense,
while query answering is the task of finding all such tuples.

We thus find that the entailment of CQs is a special case of entailment check-
ing for SWRL rule bases, and thus closely related to the subject of this work. This
relation is well-known and has been exploited in some works. [Ros06] shows a
close relationship between decidability of D L+log and decidability of conjunc-
tive query answering for the respective DL. [LR98] study non-recursive versions
of CARIN that are closely related to the CQ entailment problem over the given
DL. However, rule languages typically become significantly more complicated
when allowing for recursion, thus requiring additional restrictions that are not rel-
evant for CQs.

Conversely, research in CQs typically considers arbitrary forms of queries, and
studies appropriate restrictions on the DL instead. CQ entailment in this general
form is often a very hard problem indeed. If knowledge bases contain only ABox
information, i.e. assertional data, query entailment corresponds to finding patterns
in a labelled graph, and thus is already NP-complete. For the tractable description
logic EL, CQ entailment becomes PSpace-complete [KRHO7b, KRO7]. This
result requires L to be restricted to regular RBoxes since CQ entailment is
undecidable otherwise.

In fact, CQ complexity often is significantly higher than the complexity of
standard reasoning problems, although there are still a number of open questions
especially regarding conjunctive queries for more expressive DLs. It is known
that CQ entailment for SHZQ is 2ExpTiMe-complete [GLHSO0S8, Lut08]. Omitting
transitive and inverse roles simplifies the problem complexity to ExpTiME [Lut08].
Allowing transitive roles leads to co-NExpTime-hardness, and even to 2ExpTIME-
hardness if role hierarchies are also allowed [ELOS09].

CQ entailment for SHOQ is known to be decidable in 2ExpTiME but it re-
mains open if this is optimal [GHSO08]. As of today, it is unknown whether CQ
entailment for SHOZQ — the DL that is closely related to the 2004 OWL stan-
dard — is decidable, but it has recently been shown that this is the case if the query
contains simple roles only [GRO09]. This result hinges on a decision procedure for
CQ entailment in ALCHOIQb (ALCHOIQ(D) in the notation of Chapter 5)
from which no upper complexity bounds can be obtained.

Of the above approaches, [KRHO7b] is the only one that considers (regular)
RBoxes with general RIAs. Approaches to extend CQs toward expressive DLs
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with RIAs are based on extensions of CQs with regular expressions over roles,
leading to so-called regular path queries [CEOQ7]. This line of research has re-
cently lead to first decidability results for query entailment in DLs that extend SR
[CEOO09].

As of today, CQs and rules still constitute two separate fields of research,
albeit with many touching points. The main thrust of CQ research is currently
aimed at extending CQs to even more expressive DLs, leading to highly complex
yet decidable rule languages in the spirit of DL+Ilog [Ros06]. The focus of this
work, in contrast, is the development of DL rule languages that can directly be
used even with highly expressive DLs while ensuring decidability by restricting
the expressive power of the rule component.
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Chapter 5

Extending Description Logics with
Role Constructors

In rule languages like datalog, the uses of an atom in a rule does not depend
on the arity of the atom’s predicate. In description logics, in contrast, concept
expressions are typically much richer than role expressions. For example, the rule
C(x) A D(x) — E(x) can be expressed by the concept inclusion axiom CM D C E,
whereas the rule R(x,y) A S(x,y) — T(x,y) is not expressible in SROZQ. This
fundamental imbalance in expressive power restricts the interoperability of DLs
and rules, and the objective of this chapter therefore is to investigate the use of
more expressive role constructors in description logics.

In DL history, Boolean constructors (negation, conjunction, disjunction) on
roles have occurred and have been investigated sporadically in many places, but
have never been integrated into the mainstream of researched languages nor in-
fluenced standardisation efforts. Concept products of the form C x D have been
suggested as a means of describing a role that relates all instances of C to all in-
stances of D, leading to another role constructor that has not been adopted in many
approaches. In this chapter, we show that such constructors can — sometimes with
appropriate restrictions — be incorporated into several of the most prominent DL
languages, thereby significantly enhancing expressivity without increasing worst-
case complexity of standard reasoning problems.

To illustrate this gain in expressivity, we give some examples of the modelling
capabilities of role constructors:

Universal Role Using role negation, the universal role U that connects all indi-
viduals of a domain can be defined as T X T C U. Alternatively, it can be obtained
as =N C U, i.e. as the negation of the empty role N. The latter can readily be
axiomatised by the GCI T C VN.L.
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Role Conjunction This modelling feature allows us to describe situations where
two individuals are interconnected by more than one role, a relationship that can
not be captured in classical DLs that are confined to tree-like relations. For exam-
ple, the fact that somebody testifying against a relative is not put under oath can
be formalised by A(testifiesAgainst M relativeOf). T & —UnderOath. Likewise,
role conjunction allows for specifying disjointness of roles, as Dis(R, S) can be
paraphrased as TE V(RM S).L.

Concept Products The concept product statement C X D C R expresses that ev-
ery instance of C is connected to every instance of D via the role R. As an example,
the fact that (all) alkaline solutions neutralise (all) acid solutions can be expressed
by the concept product axiom AlkalineSolution X AcidSolution T neutralises. Us-
ing role negation, this can equivalently be stated by a GCI AlkalineSolution T
Y (—neutralises).—AcidSolution.

Ranges and Domains Allowing concept products on the right-hand side of
role inclusion axioms essentially allows us to specify range and domain restric-
tions on roles. For example, the fact that the role authorOf connects persons
to publications can be expressed as authorOf E Person X Publication. Using
GClIs, the same statements would be given by GCIs 3 authorOf. T E Person and
T C VauthorOf.Publication.

Qualified Role Inclusion The specialisation of role inclusions based on concept
memberships of the involved individuals can be expressed. The rule-like FOL
statement C(x) A R(x,y) A D(y) — S(x,y), expressing that all R-related instances
of C and D are also related by S, can be cast into the GCI C E V(R M1 =S).-D.
Alternatively, we can use a role inclusion axiom (C X D)MR E S. For example, the
fact that any person of age having signed a contract which is legal is bound to that
contract can be expressed by (OfAgex(ContractmLegal))M hasSigned T boundTo,
or by OfAge C VY (hasSigned M —boundTo).—~(Contract 1 Legal).

These examples also illustrate that role constructors can provide a more gen-
eral view on expressive features like the universal role or role disjointness that are
very common in DL today.

The outline of this chapter is as follows. The considered role constructors are
introduced formally in Section 5.1 to obtain the DL SROJZQ(B,, X)™* that pro-
vides a framework for the subsequent investigations. In Section 5.2, we show that
constructors on simple roles can generally be added to SROZQ and SHOIQ
without increasing the worst-case complexity of standard reasoning tasks. A sim-
ilar result can be established for SHZQ in Section 5.3, but in this case we need
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to restrict to so-called safe role expressions to prevent increased reasoning com-
plexities. In Section 5.4, we introduce the description logic SROEL(T;, X) as an
extension of the well-known tractable DL L. In order to ensure that reasoning
tasks can still be solved in polynomial time, we need to restrict to conjunctions
of simple roles and to certain forms of admissible concept product axioms. We
conclude this chapter with a summary in Section 5.5 and an overview of related
work in Section 5.6.

Various results of this chapter were published in [RKH08a, RKHO8b, Kr610].

5.1 Introducing Role Expressions

We now give a definition of the expressive description logic SROZ Q(B;, X) which
is obtained from the definition of SROJQ in Section 3.1 by allowing arbitrary
Boolean constructors on simple roles and concept products. As before, we also
define SROTQ(B;, )™ as a DL that does not require the additional structural re-
strictions that are relevant for ensuring decidability of reasoning in SROZ Q(Bs, X)
but which are not needed in all fragments of SROZQ(Bs, X)™ that are considered
below. Some further notes regarding our nomenclature are found below the fol-
lowing definition.

Definition 5.1.1 Consider a DL signature . = (I, A, N) with N = N; U N,,. The
set Ry of SROTQ(B;, xX)™ simple role expressions (or simple roles) for .7 is
defined by the following grammar:

Ry = U [(CXxCO) NNy [ =R [ (RyTTR) [ (R LURy).

where C denotes the set of SROTQ(B;, )™ concept expressions as defined be-
low. A simple role expression is safe if it contains neither concept products nor the
universal role, and if every disjunct in its disjunctive normal form contains at least
one non-negated role name. The set R,, of non-simple role expressions is defined
asR, = N,U{R |ReN,JU{CxXxD)|C,D e C}. A SROIQ(B,, x)™ role
expression (or role) is a simple role expression or a non-simple role expression,
and the set SROZQ(B,, X)™ role expressions is denoted by R = R, UR,,.

The set C of SROIQ(B;, X)™ concept expressions (or concepts) for .7 is
defined like the set of SROTQ™* concept expressions (Definition 3.1.1) but using
SROIQ(B;, )™ role expressions instead of SROTQ™ role expressions in all
constructions.

SROIQ(B;, x)™ RBox axioms, TBox axioms, ABox axioms, and knowledge
bases are defined as in Definitions 3.1.2 and 3.1.3 using SROJQ(B,, X)™ role
expressions instead of SROTQ™ role expressions in all constructions.
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Name Syntax | Semantics
inverse roles R {(x,y) € AT x AT | {y,x) € R}
universal role | U AT x A*

concept product |C x D |C? x D*
role negation | S {(x,y) € AT x AT | (x,y) ¢ RY}
role conjunction|S 17T |SYNT!
role disjunction |S LT |STuT?

Figure 5.1: Semantics of SROTQ(B,, X) roles for an interpretation 7 = (Af, -7)

A SROIQ(B,, x) concept expression C is a SROIQ(B;, )™ concept ex-
pression such that all subconcepts D of C that are of the form 35.Self, >n S.E,
or <nS.E are such that S € Ry is a simple role expression. SROIQ(Bs, X) is
the fragment of SROZQ(B;, x)™™* that contains only SROIQ(Bs, X) concept ex-
pressions and regular RBoxes, where regularity of SROZQ(B;, X)™ RBoxes is
defined as for SROZQ"™ in Definition 3.1.4. O

Note that the previous definition introduces concept products both as simple
and as non-simple role expressions. In other words, we do not impose any restric-
tions on the use of concept products in axioms of SROZQ(Bs, X).

DL nomenclature is already based on a number of non-systematic conven-
tions, and the addition of role constructors imposes further challenges for coining
suitable names for DLs. For better readability, information about role constructors
is added in parentheses to the name of the underlying DL. The letter B represents
Boolean role constructors, and X indicates the availability of the concept prod-
uct. The lower-case b is used to denote safe Boolean role constructors, while the
subscript s indicates that only simple role expressions are considered. When re-
stricting to particular role constructors, we will simply list the according operator
symbols in parentheses, as in the case of SROEL(M, X) below.

Now the semantics of SROJQ(Bs, X) is defined by extending the semantics of
SROIQ to take role expressions into account.

Definition 5.1.2 A SROIQ"™ interpretation T = (AT, -T) as defined in Defini-
tion 3.1.5 is extended to SROZ Q(Bs, X)'™ role expressions as specified in Fig. 5.1.

Satisfaction of axioms and knowledge bases, as well as knowledge base con-
sistency and entailment are defined as for SROZQ™ in Definitions 3.1.6 and
3.1.7, using the extended interpretation for SROITQ(B,, X)™* role expressions. <

Based on this definition, it is obvious how to define a suitable generalisation of
the function Inv that was introduced earlier to map a role expression to its inverse.
Given a role name R, we define Inv(R) := R™ and Inv(R™) := R as before. Concept
products are treated by setting Inv(C X D) := D X C. For other role expressions,
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we simply set Inv(U) := U, Inv(RMS) := Inv(R) M Inv(S), Inv(RU S) := Inv(R) LI
Inv(S), and Inv(=R) := =Inv(R). It is easy to see that, for any interpretation  and
role expression R, we find Inv(R)? = {(€,6) | (5, €) € R?} as desired.

Reasoning in description logics is typically based on certain structural proper-
ties of (relevant) models. In particular, it is typically possible to restrict attention
to models that are tree-shaped or forest-shaped, possibly with some generalisa-
tions. Tableau algorithms typically attempt to construct (finite representations of)
such models, and the tree-like structure of models can be exploited for finding ter-
mination criteria. When introducing role expressions, the structural properties of
models are changed fundamentally, since role expressions like =R may establish
relations between hitherto unrelated parts of the model. In particular, any tree-
like structure is lost when allowing for such expressions. Concept products have
a similar effect, since they imply role relationships based solely on concept mem-
berships while neglecting the relational structure of the model.

This is the motivation for introducing the notion of safety of role expressions in
Definition 5.1.1. Indeed, the extension of safe role expressions is always a subset
of the union of the extensions of atomic roles. Thus, intuitively speaking, safe role
expressions never establish a relationship between hitherto unconnected parts of
a model, and a general tree-shape can be preserved. However, even without this
property, DLs with unsafe role expressions can still be decidable, as shown in the
next section.

5.2 Role Expressions for SROIQ and SHOIQ

In this section, we show that adding arbitrary (i.e. also unsafe) role expressions
to the description logics SROJQ and SHOJIQ does not increase their worst-case
reasoning complexities — N2ExpTiMe [Kaz08] and NExpTmME [TobO1], respec-
tively — if the new role expressions are restricted to simple roles. In the sequel,
SHOIQ (resp. SHOIQ(Bs, X)) will be treated as a special case of SROIQ (resp.
SROIQ(B;, X)), as most considerations hold for both cases. Our first result shows
that we can easily restrict to SROZQ(B;) and SHOJI Q(By).

Proposition 5.2.1 Every SROIQ(Bs, X) (SHOIQ(Bs, X)) knowledge base KB is
semantically emulated by a SROIQ(B;) (SHOIQ(By)) knowledge base KB’ that
can be computed in linear time w.r.t. the size of KB.

Proof. KB’ is obtained by iteratively eliminating concept products from KB.
Initialise KB’ := KB. In each step, select one concept product C X D that oc-
curs as a sub-expression in some axioms of KB’ such that C, D do not contain
subexpressions with concept products. Introduce fresh role names Rc«p € N, and
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ACVS.B +— {ACVT.B,SCT)

AC>n8.B +— {AC>nT.B,TCS}

Ac<nSB - {Ac<nT.B,SCT)

AcC3S.Self — {AC3AT.Self,TCS)

Dis(S,S”) - {(SNS'CT, TCEVT.L}
Rlo...OSO...ORn;RH{Rlo oTo...oR,CRSCT}
A, B € A concept names, R € N arole name, Ry, ..., R, € R role expressions,

S.S’,8 € R, simple role expressions where § ¢ N; is not a role name,
T € N; a fresh simple role name

Figure 5.2: Normal form transformation for SROJZ Q(Bs) axioms

S cxp € Ng, and extend KB’ with the GCIs C C Y (=S ¢xp).—D, ARcxp. T C C and
T E VRexp.D, and with a RIA S ¢«p E Rexp. Then replace all uses of C X D in the
RBox of KB” with R¢yp, and all uses in the TBox of KB’ with S ¢«p. It is easy to
see that KB’ entails Rexp C S cxp and S cxp T Rexp (using two roles is necessary
to avoid any violation of restrictions on simple roles). Hence KB’ semantically
emulates KB at each stage of the computation. Clearly, the transformation termi-
nates after linear time to return a SROJQ(B;) (SHOIQ(B;)) knowledge base.
O

We will therefore disregard concept products for the remaining arguments. As
shown in [Kaz08], any SROIQ (SHOIQ) knowledge base can be transformed
into an equisatisfiable knowledge base containing only axioms of the form:

ACVYR.B [MA;C|]B; S1CS,
AC>nS.B A ={a} SI1CS;
AC<nS.B A = 35 .Self Dis(S1,S>)

Rio...oR,CR.

where R € N and §,S51,5, € N;. In fact, it is easy to see that the transformed
knowledge base semantically emulates the original one. The same normalisation
can be applied to SROZQ(B;) (SHOIQ(By)) as well, yielding the same types of
axioms but with SROZQ(B;) role expressions in the place of SROIQ roles. A
second transformation is carried out by exhaustively applying the transformation
steps depicted in Fig. 5.2. As a result, we obtain a normalised knowledge base
that obviously still semantically emulates the original knowledge base. The nor-
malised knowledge base contains only the original axiom types depicted above
(using simple role names in places of S ;) and role names in places of R;) and one
additional axiom type S E T with §, T € R simple role expressions. As shown in
[Kaz08], any of these original axiom types except the one containing role concate-
nation can be translated into C2, the two-variable fragment of first order logic with
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counting quantifiers. The remaining axioms of the new type can be transformed
into C? statements Yx, y.(n(S, x,y) — n(T, x,y)) where we extend the first-order
mapping 7 that was defined for SROZQ role expressions in Fig. 3.4 as follows:

U, x,y) =T
(R, x,y) = R(x,y)if Re N
(R, x,y) = n(R,y, x)
(=S, x,y) = -n(S, x,y)
aS T, x,y) =nS,x,y) Arn(T,x,y)
S uT,x,y =nS,x,y)VnaT,x,y)

Note that the remaining definition of 7 that was given in Fig. 3.4 readily provides
us with a mapping from SROZQ(B;) to FOL., whereas it is not suitable as a
transformation to C.

Further following the argumentation from [Kaz08], the remaining complex
role inclusions not directly convertible into C* can be taken into account by cau-
tiously materialising the consequences resulting from their interplay with axioms
of the type A C VR.B through automata encoding techniques. Further details on
this part of the transformation are provided in Section 9.3. This way, one obtains a
C? theory that is satisfiable exactly if the original knowledge base is. In the case of
SROIQ (and hence SROIQ(By)), this can result in an exponential blow-up of the
knowledge base while for SHOZQ(B;) (and hence SHOIQ) the transformation
is time-polynomial. Thus we see that the upper complexity bounds for SRO7Q
and SHOIQ carry over to SROIQ(B;) and SHOIQ(B;) by just a slight exten-
sion of the according proofs from [Kaz08] while the lower bounds follow directly
from those of SROZQ and SHOIQ. Together with Proposition 5.2.1, we thus
establish the following theorem.

Theorem 5.2.2 All standard reasoning tasks for SROIQ(Bs, X) are N2ExpTimME-
complete, and all standard reasoning tasks for SHOIQ(B;, X) are NExpPTIME-
complete w.r.t. the size of the knowledge base.

While the results established in this section are rather straightforward conse-
quences of known results, their implications for practice might be more signifi-
cant: they show that the DLs underlying OWL and OWL 2 can be extended by
arbitrary Boolean constructors on simple roles without increasing the worst-case
complexity of reasoning. On the other hand, worst-case complexity estimations
do of course not suffice to show practical utility. In particular, we are not aware of
any dedicated inference engine for C?.
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5.3 Safe Role Expressions for SH7Q

SHIQ is a rather expressive fragment obtained from SHOIQ by disallowing
nominals. In contrast to the NExpTiME-completeness encountered with SHOZQ,
the worst-case complexity of standard reasoning tasks in SHZQ is known to be
ExpTmME [Tob01]. In this section, we introduce the extension of SHIQ by safe
role expressions on simple roles. Thereafter, we present a technique for eliminat-
ing transitivity statements in SHZQ(bs) knowledge bases while preserving sat-
isfiability. Together with the observation that hierarchies of (simple) roles can be
expressed in terms of safe Boolean role expressions, this yields two results. On the
one hand, we provide a way to use existing reasoning procedures for ALCIQ(b),
such as the ones described in [Tob01, CEO07, RKH08d], to solve SHITQ(b;) rea-
soning tasks. On the other hand, as the transformation is possible in polynomial
time, the known upper bound for the complexity of reasoning in ALCIQ(b) —
namely ExpTiME — carries over to SHIQ(bs). This result depends on the safety
condition on role expressions since dropping it would lead to a DL that subsumes
ALC(B) for which reasoning is known to be NExpTimMe-complete [LS02].

Definition 5.3.1 A SHIQ(b,) knowledge base is a SHOIQ(B,) knowledge base
that contains no nominals and only safe role expressions. &

We now show that any SHZQ(b,) knowledge base can be transformed into an
equisatisfiable knowledge base not containing transitivity statements. This slightly
generalises according results from [TobO1, Mot06] as we allow safe Boolean ex-
pressions in GClIs and role inclusion axioms already for the source DL.

For a fixed SHIQ(b,) knowledge base KB, let °* denote the least partial order
on N, such that R C* § and Inv(R) C* Inv(S) for every RBox axiom RC § € KB.
In other words, C* is the reflexive transitive closure of the role hierarchy on non-
simple roles that is specified by the RBox of the knowledge base.

Definition 5.3.2 Given a SHZQ(bs) knowledge base KB, let clos(KB) denote the
smallest set of concept expressions where

NNF(=C u D) € clos(KB) for any TBox axiom C C D,
D € clos(KB) for every subconcept D of some concept C € clos(KB),
NNF(=C) € clos(KB) for any <n R.C € clos(KB),

VS.C € clos(KB) whenever Tra(S) € KB and S C* R for a role R with YR.C €
clos(KB).

Moreover, let Q(KB) denote the knowledge base obtained from KB by

— removing all transitivity axioms Tra($), and
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— adding the axiom YR.C C VS.(VS.C) for every YR.C € clos(KB) with Tra(S) €
KB and S C* R. <o

Proposition 5.3.3 Every SHIQ(bs) knowledge base KB is equisatisfiable to the
corresponding knowledge base Q(KB).

Proof. Obviously, we have that KB = Q(KB), and hence every model of KB is
also a model of Q(KB).

For the other direction, consider a model 7 = (A%, -¥) of Q(KB). We define a
new interpretation J = (A7, -7) as follows:

- AT = AL,

— for individual names a € I, we set a7 = a?,

— for concept names A € A, we set AT = AL,
— for simple role names S € N, we set S J =81

— for non-simple role names R € N,;, we define RY to be the transitive closure of
R if Tra(R) € KB, and we define R7 := RY U Jsc-gsen, S otherwise.

As a direct consequence of this definition, note that for all simple role expres-
sions S € R, we have S = S* (¥).

We now prove that 7 is a model of KB by considering all axioms, starting with
the RBox. Every transitivity axiom of KB is clearly satisfied by definition of .
We need to show that every role inclusion § C T axiom is also satisfied. Indeed, if
both S and T are simple role expressions this is a trivial consequence of (). If §
is a simple role expression and 7 is a non-simple role, the claim follows from ()
and the fact that, by construction of ./, for every non-simple role R we find that
RY C R7. 1t remains to consider the case that both S and T are non-simple roles.
If T is not transitive, the claim follows directly from the definition. Otherwise, the
desired conclusion follows from the fact that the transitive closure is a monotone
operation w.r.t. set inclusion.

We proceed by examining the concept expressions C € clos(KB) and show
via structural induction that CZ € C7. As base case, for every concept of the form
A or mA with A € A, this claim follows directly from the definition of /. We
proceed with the induction steps for all possible forms of a complex concept C
(mark that all C € clos(KB) are in negation normal form):

— Clearly, if DY ¢ DY and D! ¢ DJ by induction hypothesis, we can directly
conclude (D, M D,)! € (D, 1 D,)Y as well as (D; U D,)' € (D, U D,)Y.

— Likewise, as we have S € S for all role expressions S, and again DY ¢ D7
by the induction hypothesis, we obtain (3S.D)? € (3S.D)7 and (>nS.D)! C
(>nS.D)’.
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— Now, consider C = ¥S.D. If S is a simple role expression, we know that §J =
S7, whence we can derive (VS.D)! € (VS.D)7 from the induction hypothesis.

It remains to consider the case C = VR.D for non-simple role expressions R.
Assume ¢ € (VYR.D). If there is no ¢’ with (6,6") € R7, then ¢ € (VR.D)7 is
trivially true. Now assume there are such ¢’. For each of them, we can distin-
guish two cases:

e (6,08") € RY. Then & € D' and, by the induction hypothesis, &' € D7,

o (6,0") ¢ R’. By construction of 7, this means that there is arole S with § C*
R and Tra(S) € KB and a sequence § = 6, ...,0, = & with (0, 6x41) € S
for all 0 < k < n. By definition of €, the knowledge base 2(KB) contains
the axiom YR.D C YS.(¥S.D), hence we have ¢ € VS.(VS.D) wherefrom a
simple inductive argument ensures ¢, € D’ for all §; including 6, = &'.

So we can conclude that for all such ¢ we have & € D’. Via the induction
hypothesis follows 6 € D7 and hence we can conclude 6 € (YR.D)”.

— Finally, consider C = <nR.D and assume 6 € (<n R.D)’. Since R must be sim-
ple, we obtain RI = RY. Moreover, since both D and NNF(—D) are contained
in clos(KB) the induction hypothesis gives D7 = D*. Those two facts together
directly imply 6 € (<nR.D)”.

Now considering an arbitrary KB TBox axiom C T D, we find (NNF(-C) LI
D)’ = A7 as T is a model of KB. Moreover — by the correspondence just shown —
we have (NNF(=C)L D)’ ¢ (NNF(=C)u D)7 and hence also (NNF(=C)u D)7 =
A, so that C C D must be satisfied in J as required. O

Taking into account that the presented transformation is time-polynomial, this
result can now be employed to determine the complexity of SHIQ(by).

Theorem 5.3.4 All standard reasoning tasks for SHIQ(b,) knowledge bases are
ExpTIME-complete w.r.t. the size of the considered knowledge bases.

Proof. As shown in Proposition 3.1.9, all standard reasoning problems can be
reduced to knowledge base satisfiability checking. Using Proposition 5.3.3, any
given SHIQ(bs) knowledge base KB can be transformed into an equisatisfiable
ALCHIQ(Db) knowledge base Q(KB) in polynomial time. Furthermore, all role
inclusion axioms can be removed from Q(KB) as follows. First, all role names
contained in Q(KB) can be declared to be simple without violating the syntactic
constraints. Second, every role inclusion axiom § T 7 (with §,7 € R, being
safe by definition) can be equivalently transformed into a GCI T E V(S M —T).L.
Note that § M -7 is admissible here since it is necessarily safe. Moreover the
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transformation is obviously time-linear. Hence we obtain an ALCZQ(b) knowl-
edge base. The satisfiability checking problem for ALCZQ(b) is known to be
ExpTmve-complete [TobO1]. |

We thus have shown that allowing safe Boolean expressions on simple roles
does not increase the ExpTME reasoning complexity of SHZQ. This is not the
case when Boolean expressions of non-simple roles are allowed: as shown in
[GKO8], standard inference tasks become 2ExpTmme-complete when extending
SHIQ with conjunctions of non-simple roles.

5.4 A Tractable DL with Role Expressions

The tractable description logic EL"" is an extension of &L with nominals, role
inclusion axioms, and suitable concrete domains that allow for the representa-
tion of datatypes and related predicates [BBL0O5]. We do not investigate the latter
within this work, and we thus focus on the DL ELRO that is obtained as the
intersection of &L+ and SROZQ™. In this section, we show that standard rea-
soning tasks can still be performed in polynomial time if ELRO is extended with
role conjunction, concept products, local reflexivity (Self), the universal role, and
role disjointness, given that certain structural restrictions on concept products are
added. The basic underlying description logic without these restrictions is called
SROEL(M, X).

Definition 5.4.1 A SROEL(M;, X) role expression is a SROIQ(B;, X)™ role ex-
pression that may contain the universal role (U), role conjunction (1), and con-
cept products (X), but no role disjunction (L!), negation (—), or inverses (-7). A
SROE.L(M,, X) concept expression is a SROTQ(B;)™® concept expression that
contains only top (T), bottom (L), concept names, nominal concepts, conjunction
(), local reflexivity (Self), or existential role restrictions () on SROEL(M, X)
role expressions.

SROEL(M, X) is the fragment of SROIQ(B;, x)™ that contains only role
and concept expressions of SROEL(M;, X), as well as role assertions of the form
Tra(R), Dis(S 1, S2), Irr(S), and Ref(R), with R € R and S;) € R;. &

Note that we do not have any requirement for regularity of roles but we have
to introduce the notion of role simplicity in the context of SROEL(M;, X). Be-
sides the new role operators, we have introduced some other features of SROZ7Q
which are convenient when applying some of our constructions in later chapters
to SROEL(M;, X). It is easy to see that most of the additional features are not in-
creasing the expressive power: the universal role can be expressed as T X T, role
disjointness can be expressed as S M .S, C N with the empty role N axiomatised
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as AN.T C 1, and the remaining role characteristics can be expressed as discussed
in Section 3.1.3. Accordingly, we will not explicitly consider these features below,
whereas local reflexivity must be taken into account explicitly.

Unfortunately, the standard reasoning problems for SROEL(, X) cannot be
solved in polynomial time. Indeed, it is not hard to see that GCIs of the form
C C VYR.D can be emulated in SROJQ(Bs, X) by knowledge bases {C X T C
V,RMV C T x D} where V is a fresh role name. It is well-known that reasoning
in 8L becomes ExpTive-hard when extended with universal role restrictions of
this form. This is also a direct consequence of the ExpTime-hardness of reasoning
in the logic Horn-#LE& that is shown in Section 6.4, which shows that the problem
persists even if all roles of a knowledge base are simple. Since we are interested
in a tractable DL with role constructors in this section, we will introduce a class
of SROE.L(M, X) knowledge bases with additional restrictions below.

To simplify our investigations, we first observe that any SROE L(IMg, X) knowl-
edge base can be converted into a normal form.

Definition 5.4.2 A SROEL(M;, X) concept expression is basic if it is a concept
name or nominal, and the according set B of basic concepts thus is B = A U {{a} |
a € I}. A SROEL(M, X) knowledge base KB is in normal form if it contains only
axioms of one of the following forms:

ACC AnBEC dJRAEC ACdRB 3JRSelfEC AC dRSelf
RCT RoSCT RNSCET AXBCR RCCXD

where A, Be BU{T},C,DeBU{Ll},andR,S,T € N. o

Proposition 5.4.3 Every SROEL(MN, X) knowledge base KB is semantically em-
ulated by a SROEL(M, X) knowledge base in normal form that can be computed
in linear time with respect to the size of KB.

Proof. The elimination of role characteristics has already been discussed above,
and ABox axioms can readily be expressed as discussed in Section 3.1.3. We thus
assume that KB contains only SROEL(M,, X) GCIs and RIAs. The transforma-
tion is accomplished by exhaustively applying the rules of Fig. 5.3, where each
rule describes the replacement of the axiom on the right-hand side by the set of
axioms on the left-hand side. It is easy to see that the resulting axioms semanti-
cally emulate the original axioms for each rule, so the result follows by induction.
It is also easy to see that only a linear number of steps are required, where it is
important to note that the rules for § £ 7 MR and A C C 1 D are only applicable
if § and A are no compound expressions, so that the duplication of S and A still
leads to only a linear increase in size. O

72



5.4 A TrAcTABLE DL wiTH ROLE EXPRESSIONS

Rio...oR,_1oR, C S — {Rjo...oR, |CV,VoR,CS}
RioR, C S — {RICV.VoR,C S}
RiocR, C S — {RRCV,RioVLS)

R C R > {RIEV,VER,)

S CTAR w— {SCT,SCR)
RMS CT — {RCV,VNSCT)}
CxDCT - {CCX,XXxDCT)}
CxDcCcT - {DCX,CxXCT)}

TcCxD - {XcC,TCXxD)

TCCxD - {XCD,TCCxX}

ccbh - {CCX,XCD)

CCT = 0

L ccC = 0
CnACB — {CCX,XMACB)

ACCnD - {ACC,AC D)
JRC C A - {CC X,AR.X C A}

AcCc3ARC — {ACIARX,XCC)
JRC C A — {RC V,aV.C C A}

AC3dRC - {ACAVC,VCR)
JR.Self C A — {RC V,AVSelfC A}

A C JRSelf — {AC AV.Self,VC R}

A, B basic concept expressions, T, or L; X a fresh concept name;
C, D, C, D concept expressions where C, D are not basic; S, T role names;
R, R role expressions where R(;, are no role names; V a fresh role name

Figure 5.3: Normal form transformation for SROEL(Mg, X)

The above example showed that the interplay of concept products and role
conjunctions is sufficiently complex to emulate universal restrictions. This is not
surprising given that we have already noted in the initial discussion in this chapter
that concept products on the right-hand side of RIAs can express range restrictions
T C VR.A. It may be surprising, however, that the restriction to simple role expres-
sions on the left-hand side of such RIAs is not sufficient to retain tractability, since
this is known to be the case in EL* if no role conjunctions are allowed [BBLOS].
In the context of the cited work, a criterion for the admissibility of range restric-
tions in EL'" has been defined, and the following definition provides a similar
criterion for the case of SROEL(M, X).

Definition 5.4.4 Consider a SROE L(M;, X) knowledge base KB in normal form,
and define KBz := {RC S € KB | R,S € N}. For every role name R, the set
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Axiom | Datalog Rules

ACC|A(x) - C(x)
AN BEC C|A(x) A B(x) = C(x)
ARAC C|R(x,y) AA®y) — C(x)
A C 3R.B|A(x) = R(x,dg ), A(x) = B(dgp)
JR.Self C C | Selfz(x) = C(x)
A C 3R .Self | A(x) — Selfz(x), A(x) = R(x, x)
RC T |R(x,y) = T(x,y), Selfg(x) — Self;(x)
RoSCT|Rx,y)ANS(y,2) = T(x,2)
RS CT|R(x,y)AS(x,y) — T(x,y),Selfr(x) A Selfs(x) — Selfr(x)
AXBC R|A(x) A B(y) = R(x,y),A(x) A B(x) — Selfg(x)
RC CxD|R(x,y) = C(x),R(x,y) = D(y)
Rules with expressions Selfg are generated only if R is a simple role name

Figure 5.4: Transforming SROEL(M;, X) to datalog

ran(R) is defined to contain exactly those concepts B for which there is a role S
and concept name A such that S £ AX B € KB and KBg = R C §. The knowledge
base KB is admissible if the following conditions are satisfied:

— forevery RIAR;o0...0R,E S € KB we have ran($) C ran(R,), and
— forevery RIA R, MR, E S € KB we have ran($) C ran(R;) U ran(R5).

An arbitrary SROEL(,, X) knowledge base is admissible if its normal form is
admissible. &

It turns out that the standard reasoning problems for the class of admissi-
ble SROE L(M;, X) knowledge bases are P-complete. To show this, we transform
SROEL(M,, X) knowledge bases into equisatisfiable datalog programs as follows.

Definition 5.4.5 Given a SROZQ(B;, x) knowledge base KB, a datalog program
P(KB) is defined as follows. The following new symbols are introduced:

— concept names Selfg for each simple role R € Ry,

— individual names dg 4 foreach R € Nand A € BU {T}.

Given a concept expression C € B U {T, L}, we define a datalog atom C’(x) as
follows:

- C(x)=C(x)if C € A,
- C(x)=a~xif C ={a) witha €1,
— T(x):=Tand L(x) = L.
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Let KB’ denote the SROE L(M, X) knowledge base in normal form obtained from
KB as in Proposition 5.4.3. The datalog program P(KB) consists of

— arule R(a,a) — Selfg(a) for all a € 1,

— for all axioms a € KB’, the rules as indicated in Fig. 5.4. &

The following result states that P(KB) can be used to compute logical conse-
quences of KB if it is an admissible knowledge base.

Proposition 5.4.6 Let KB be some admissible SROEL(Ms, X) knowledge base.
— KB is satisfiable iff P(KB) is satisfiable,
— forany A € A and c € 1, we find that KB | A(c) iff P(KB) E A(c),

— forany A,B € A, we find that KB = A C B iff P(KB) U {A(c)} E B(c) for a
fresh constant c.

Proof. The proof of the first item of this proposition is a direct consequence of
Theorem 8.5.6 in Chapter 8 that shows a similar result for a decidable SWRL frag-
ment called SROE L(M,, X) rules. This later section also discusses that all admissi-
ble SROEL(N, X) knowledge bases can be expressed in SROEL(TM, X) rules; in
particular, see the remarks on admissible range restrictions after Definition 8.5.1.
Based on this correspondence, it is not hard to see that the transformation in Defi-
nition 5.4.5 is indeed a special case of the transformation for SROE L(IN, X) rules
in Definition 8.5.3. The second item follows from the observation that KB | A(c)
iff KBE{c]EAIffKBU{{c}mAC 1} Liff P(KB)U{c~ xAA(x) > L} L
iff P(KB) = A(c). The third item is obtained by similar reasoning. O

We point out that a more direct proof for a similar result has recently been
given in [Kr610]. Either approach leads to the following complexity result.

Theorem 5.4.7 All standard reasoning problems for admissible SROE.L(Mg, X)
knowledge bases are P-complete w.r.t. the size of the considered knowledge base.

Proof. The claim is a direct consequence of Proposition 5.4.6 together with
the well-known fact that checking consistency of entailment of ground facts for
datalog programs with a bounded number of variables per rule is P-complete
(Fact 4.1.4). Indeed, it is easy to see that the rules of P(KB) as obtained in Defini-
tion 5.4.5 have at most three different variables. The fact that P(KB) is of polyno-
mial size w.r.t. the size of KB follows from Proposition 5.4.3 and the observation
that the number of auxiliary symbols dg 4 and Selfg that are introduced in Defini-
tion 5.4.5 is polynomially bounded. O

We finish this section with some general remarks. First note that conjunction
of roles enhances expressivity of EL™ significantly. For example, it allows for
the following modelling features:
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— Disjointness of two simple roles S, R. This feature, also provided by SROZQ
as Dis(S, R), can be modelled in 8L (M,) with the axiom (S MR).T C L.

— Atleast cardinality constraints on the right-hand side of a GCI. The axiom A C
>n R.B can be modelled by the axiom set {R; T R,LAC AR,.B | 1 < i <
nfU{AR;MR;).TC L|1<i<j<n}whereRy,...,R, are new simple role
names.

It is worth noting that the special form of role conjunctions that are used for ex-
pressing disjointness of roles in both cases do not affect the admissibility of a
SROEL(Ng, X) knowledge base. In particular, we thus find that SROEL(M, X)
subsumes EL" (without concrete domains) with additional admissible range re-
strictions. This shows that the EL " -based OWL 2 EL profile of the Web Ontology
Language can be extended with role (i.e. “property”) disjointness without loosing
tractability. In contrast, it is easy to see that incorporating more than just conjunc-
tion on simple roles into EL™ would render the respective fragment intractable
at best:

— Allowing conjunction on non-simple roles would even lead to undecidability
as stated in Theorem 1 of [KRHO7b].

— Allowing disjunction or negation on simple roles would allow to model dis-
junction on concepts: for instance, the GCI A C B U C can be expressed by
the axiom set {A C A(RU S).T,dR.T C B,dS.T C C}, or by the axiom set
{An3dR{a} T C,A 1 d=R.{a} T B} for new roles R, S and a new individual
name a. Hence, every extension of EL"" with these features is ExpTive-hard
[BBLOS].

5.5 Summary

In this chapter, we have reviewed a number of role constructors that were proposed
for description logics, and we have investigated cases where such constructors can
be added to DLs without increasing the worst-case complexity of reasoning. For
this purpose, role constructors have been restricted in various ways. In general,
we considered only role constructors on simple roles, although it is not settled
in all cases whether constructors on non-simple roles would actually lead to an
increase in worst-case reasoning complexity. This restriction was sufficient for
showing that reasoning SHOZQ and SROZQ - the DLs that subsume OWL 1
and OWL 2 —is still in NExpTmMe and N2ExpTiMe when adding role constructors.
An extension of SHZQ with role constructors, in contrast, required us to further
restrict to safe role expressions in order to retain ExpTIME completeness of rea-
soning. In particular, safe role expressions do not comprise any concept products.
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Figure 5.5: Reasoning complexities of DLs with role constructors, where
SROEL(M, X) represents the class of admissible knowledge bases of that DL

For the tractable description logic E£7, conjunctions of simple roles and certain
concept products could be introduced to obtain the DL SROE L(M, X) for which
reasoning is still possible in polynomial time.

The complexity results of this chapter are summarised in Fig. 5.5. The DLs
SROIQ(B;, x) and SHOIQ(B;, X) are not displayed, as it has been shown in
Proposition 5.2.1 that they do not increase the expressivity of SROZQ(B;) and
SHOIQ(By), respectively. Likewise, we omit ALCHIQ(b) since it can directly
be expressed in ALCIQ(b) as shown in Theorem 5.3.4. Moreover, the figure in-
cludes some additional description logics that have been studied in the literature
(see Section 5.6), where we use the unified notation of Section 5.1. Note that
SROEL(M;, X) is not placed below SROIQ(B;) since it does not impose regular-
ity restrictions. We also point out that the position of EL below SROEL(;, X)
ignores the presence of concrete domains in EL"" — as discussed in Section 5.4,
the name ELRO would be more accurate for the corresponding DL.

For the case of SHIQ(b;), our results provide a direct way for adapting ex-
isting reasoning algorithms for SH7Q by means of a suitable pre-processing.
Likewise, the datalog translation that was introduced for SROEL(;, X) provides
a promising approach for efficient implementations based on datalog systems. For
SROIQ(B,) and SHOIQ(B;), in contrast, the design of efficient algorithms is
left as an interesting direction of future research, since our proof methods in this
case do not suggest a practically feasible implementation strategy.

To the best of our knowledge, the complexity results on SROEL(;, X) are
also the first that establish the tractability of reasoning for a description logic that

7



ExTENDING DEscriPTION LoGgics wiTH ROLE CONSTRUCTORS

comprises all expressive features of the OWL 2 EL ontology language.

5.6 Related Work

Concept products have been considered as a role construction operator in early
works on description logics (see, e.g. [BBH90]), and the relationship to domain
and range restrictions has been well known. In fact, early works seem to use con-
cept product description mainly as a convenient syntax for concurrently specify-
ing domain and range of a role. Discussions of the impact of concept products
on reasoning complexities appear to be much more recent. [Kaz06] introduces a
resolution-based algorithm for reasoning in &L extended with axioms of the form
C X D C R, and the term cross-products of concepts is used within this work. A
similar extension for EL£'" is presented in [RKHO08a], and a reasoning algorithm
is developed by extending the procedure that was given in [BBLO05]. Furthermore,
[RKHO8a] discusses how concept product axioms can be emulated in SROZ Q.

Neither [Kaz06] nor [RKHO08a] consider concept products on the right-hand
sides of RIAs. Axioms of this kind are more closely related to range and do-
main restrictions, and the according extension of EL£'" has been introduced in
[BBLO8]. The latter work also shows tractability of reasoning for a large sublan-
guage of the DL that is underlying the OWL 2 EL ontology language, but it still
lacks local reflexivity, the universal role, and disjointness of roles. To the best of
our knowledge, our work on SROEL(T, X) is the first to establish tractability
of a DL that comprises all of these features. Most recently, we have further ex-
plicated reasoning in SROEL(, X) in [Kr610]. This work provides an updated
view on the use of datalog for SROE L(,, X) reasoning together with more direct
proofs of its correctness. It also sheds more light on the difficulty of implementing
certain SROEL(M,, X) features by discussing the space complexity of bottom-up
reasoning in (fragments of) SROE.L(Mg, X).

Boolean constructors on roles have been investigated in the context of both
description and modal logics. [Bor96] used them extensively for the definition of
a DL that is equivalent to the two-variable fragment of FOL. Complexity results
for various modal logics with Boolean role constructors have been obtained in
[LS02], and initial results for related DLs have been derived from this work.

The description logic ALCNR that extends ALC with unqualified number
restrictions and role conjunctions has been introduced in [BDS93] where it was
also shown that standard inference problems for this DL are decidable. The more
recent results from [LS02] show that augmenting ALC with full Boolean role
constructors (ALC(B)) leads to NExpTIME completeness of the standard reason-
ing tasks, while restricting to either role negation (ALC(—)) [LS02] or role con-
junction (ALC(M)) [Tob01] retains ExpTimME completeness. The complexity of

78



5.6 RELATED WORK

ALC(B) does not further increase when allowing for inverses, qualified number
restrictions, and nominals. This was shown in [Tob0O1] via a polynomial trans-
lation of ALCIQ(B) into C?, the two-variable fragment of first-order logic with
counting quantifiers, for which reasoning was proven to be NExpTime-complete in
[PHOS5]. Also the recently considered description logic ALO(B) (a.k.a. ALBO)
falls in that range of NExpTmme-complete DLs [STO7].

In contrast, it was also shown in [Tob01] that restricting to safe Boolean role
expressions keeps ALC’s reasoning complexity in ExpTiME, even when adding
inverses and qualified number restrictions (ALCIQ(b)).

For logics including modelling constructs that deal with role concatenation
such as transitivity or, more generally, complex role inclusion axioms, results on
complexities in the presence of Boolean role constructors are more sparse. [LW05]
shows that ALC can be extended by negation and regular expressions on roles
while keeping reasoning within ExpTiME. Furthermore, [CEOQ7] provided Exp-
TmE complexity for a similar logic that includes inverses and qualified number
restriction but reverts to safe negation on roles.

The extension of SHZQ with non-simple role conjunctions has been intro-
duced under the label SHZQ™" in [GLHSO08] in the context of conjunctive query
answering, and the results of that work imply an upper bound of 2ExpTiME. In
[GKO8], it was shown that this upper bound is tight, and that the extension of
SHOIF with non-simple role conjunctions is even N2ExpTime-hard. We point
out that the support of arbitrary non-simple role conjunctions in these works can-
not be extended to DLs with complex role inclusion axioms as this would imme-
diately lead to undecidability.
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Chapter 6

Horn Logic Fragments of
Description Logics

In first-order logic, Horn clauses are disjunctions of atomic formulae and negated
atomic formulae that contain at most one non-negated formula. Many kinds of
rules in logic programming, and especially datalog rules, thus correspond to Horn
clauses. In terms of datalog, the restriction to Horn clauses disallows disjunc-
tions in the head of rules, and thus allow for deterministic evaluation strategies.
This simplification is also visible in terms of computational complexities: infer-
encing in datalog is ExpTmMeE-complete w.r.t. the size of the program, while it is
NExpTmve-complete in disjunctive datalog. Similar differences are found when
considering data complexity, the complexity of inferencing w.r.t. the number of
ground facts of the program, which increases from P to NP when adding disjunc-
tions.

As illustrated in Section 5.4, reasoning in description logics can be possible
by reducing inference problems for a given DL knowledge base to inference prob-
lems for a corresponding datalog program. A number of further reductions to
datalog have been proposed for various description logics, see Section 8.7 for
an overview. A common aspect of many of these approaches is that ABox ax-
ioms that do not contain complex concept expressions can directly be rewritten to
datalog facts.

This has motivated the study of cases where datalog reductions result in non-
disjunctive datalog programs, i.e. Horn clauses, and the corresponding descrip-
tion logics have been dubbed Horn description logics accordingly. The first and
most prominent such DL was Horn-SH 7 Q, which was obtained naturally from
the KAON2 system [MS06], but other well-known DLs such as &£ also share
characteristics of Horn DLs. Due to the direct rewriting of ABox facts, Horn de-
scription logics necessarily allow standard inference tasks to be solved in polyno-
mial time w.r.t. the size of the ABox axioms that contain no complex concepts, a
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measure that is known as the data complexity of a DL. It turned out that this useful
property of Horn DLs can also be exploited in inferencing algorithms that do not
rely on reductions to datalog.

In this chapter, we generalise the definition of Horn-SHZQ to arbitrary DLs
that are fragments of SROJZQ, and we provide a comprehensive analysis of the
worst-case complexities of the resulting logics. While low data complexity is a
characteristic (and well-known) feature of Horn DLs, our results show that the
complexity of inferencing w.r.t. the overall size of the knowledge base is not nec-
essarily lower in the Horn case. However, we are able to identify restricted DLs
for which inferencing is significantly harder than for their Horn versions.

Our observations also highlight the close connections of Horn DLs to De-
scription Logic Programs that have been proposed as an “intersection” of Horn
and description logic. Although we will see in Chapter 7 that this vague char-
acterisation is hardly adequate to describe the complex relationship between DL
and datalog, basic DLP languages are interesting simple formalisms that allow for
straightforward rule-based implementations. This was one of the central motiva-
tions for the definition of the OWL 2 RL ontology language which we can also
relate to a suitable Horn DL below.

We begin this chapter in Section 6.1 by defining Horn-SROIQ"™ as a large
Horn DL that provides the framework for defining the more specific logics that
are considered herein. Increasingly expressive fragments of Horn-SROZ Q™ are
studied in subsequent sections. Section 6.2 introduces the tractable Horn-7L,
Section 6.3 shows reasoning for all DLs between Horn-#£~ and Horn-7LOH "~
to be PSpace-complete, and Section 6.4 establishes ExpTiME-completeness for
all DLs between Horn-#LE and Horn-SHZ Q. The results are discussed in Sec-
tion 6.5 and an overview of related work is provided in Section 6.6.

The results of this chapter have also been published in [KRHO07a, KRHO6,
KHVSO06].

6.1 A Horn Fragment of SROJQ

We first provide a direct definition of a Horn fragment of SROZQ™ that will be
the basis for the various Horn DLs studied herein. Our definition is motivated by
the DL Horn-SH 7 Q, and we will show below that it is indeed a generalisation of
the original definition of this logic [HMSO05].

Definition 6.1.1 A Horn-SROZ Q"™ knowledge base over a DL signature .7 is a
set of SROIQ™ axioms which are

— SROIQ™ RBox axioms over .¥, or
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Cii=Cy|A|{I}]|IR.Self | SOR-C; | <IR=Cy | 2nREC |GGy | CL UGy
Co=T|L]|=A]|~{I}| -TR.Self | SORACy | Co 1 Cy | Cyp U Cy

Figure 6.1: Horn-SROTQ™® concept expressions in positive negation normal
form

Cl. =C pol(C, €) =1

O, =Clp pol(=C, 1p) —pol(C, p)

(C,oC)lip =Cil, pol(C,0C,,ip) = pol(C;,p) foroe{n,u},ie{l,2}
<nR.Clsy, =C|, pol(<nR.C,3p) = —pol(C, p)

>nR.Cl3, =Cl, pol(=nR.C,3p) = pol(C, p)

Figure 6.2: Positions in a concept (left) and their polarity (right)

— GCIs C C D over . such that pNNF(—=C U D) is a C; concept as defined in
Fig. 6.1, or

— ABox axioms C(a) where the pNNF(C) is a C; concept as defined in Fig. 6.1.
&

Note that Fig. 6.1 exploits some syntactic simplifications as discussed in Sec-
tion 3.1.3, and in particular that existential and universal restrictions are not men-
tioned explicitly. When convenient, we will still use this notation when consider-
ing fragments on Horn-SROZ Q™ below.

The original definition of Horn-SHZQ in [HMSO05] is rather more complex
than the above characterisation, using a recursive function that counts the positive
literals that would be needed when decomposing an axiom into equisatisfiable
formulae in disjunctive normal forms. In order to show that our definition leads to
the same results, we first recall the definition from [HMSO05] which requires us to
introduce some auxiliary concepts first.

Subconcepts of some description logic concept are denoted by specifying their
position. Formally, a position p is a finite sequence of natural numbers, where €
denotes the empty position. Given a concept C, C|, denotes the subconcept of C at
position p, defined recursively as in Fig. 6.2 (left). In this paper, we consider only
positions that are defined in this figure, and the set of all positions in a concept C
is understood accordingly. Given a concept C and a position p in C, the polarity
pol(C, p) of C at position p is defined as in Fig. 6.2 (right). Using this notation,
we can state the following definition of Horn knowledge bases.

Definition 6.1.2 Let pl* and pl~ denote mutually recursive functions that map
a SHIQ concept D to a non-negative integer as specified in Fig. 6.3 where
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D pI"(D) pI"(D)

1 0 0

T 0 0

A 1 0

-C pI~(C) pI"(C)

MG max; sgn(pl*(C;)) 2:sgn(pl™(Cy)

LICi 2 sgn(pl™(Cy)) max; sgn(pl(Cy))
>nR.C | 1 2=l + n sgn(pl™(C))
<nR.C | ™+ (n+1)sgnpl (C) | 1

Figure 6.3: Definition of pl™(D) and pl™(D)

sgn(0) = 0 and sgn(n) = 1 for n > 0. We define a function pl that assigns to
each SHIQ concept C and position p in C a non-negative integer by setting:

pI*(Cly) if pol(D, p) =1,
plI"(Cl,)  if pol(D, p) = -1,
A concept C is Horn if pl(C, p) < 1 for every position p in C, including the empty

position €. A SHIQ knowledge base KB is Horn if =C LI D is Horn for each GCI
C C D of KB, and C is Horn for each assertion C(a) of KB. &

pI(C, p) = {

The corresponding Definition 1 in [HMSO05] refers to ALCHIQ instead of
SH IQ since an elimination procedure for transitive roles that is considered within
this work may introduce axioms that are not Horn in the above sense. However, it
turns out that transitive roles — and SROZQ role chains in general — can also be
eliminated without endangering the Hornness of a knowledge base. An according
transformation that follows [Kaz08] is reviewed in Section 9.3. Hence we can
safely extend the definition to SHIQ.

While suitable as a criterion for checking Hornness of single axioms or knowl-
edge bases, this Definition 6.1.2 is not particularly suggestive as a description of
the class of Horn knowledge bases as a whole. Indeed, it is not readily seen for
which formulae pl yields values smaller or equal to 1 for all possible positions
in the formula. Moreover, Definition 6.1.2 is still overly detailed as pl calculates
the exact number of positive literals being introduced when transforming some
(sub)formula.

To show that Definition 6.1.1 is a suitable generalisation of Definition 6.1.2,
we first observe that Hornness is not affected by transformation to positive nega-
tion normal form.

Lemma 6.1.3 A SHIQ concept C is Horn according to Definition 6.1.2 iff its
positive negation normal form pPNNF(C) is Horn according to this definition.
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Proof. The result is shown by establishing that the steps of the normal form
transformation in Fig. 3.3 do not affect the value of pl™. The same could be
shown for pl~ but this part can be omitted by noting that the concepts that are
transformed in the recursive definition of pNNF are always in positive positions.
The claim clearly holds if C is a concept name, T, or L. Consider the case that
C = =(D; M Dy). Then pl*(C) = sgn(pl™(D,)) + sgn(pl~(D,)) = sgn(pl*(=Dy)) +
sgn(pl™(=D,)). By the induction hypothesis this equals sgn(pl"(pNNF(=D)))) +
sgn(pl"(PNNF(=D»))) = pI"(pNNF(=(D; 1 D5))), as required. The other cases of
the induction are similar. O

Proposition 6.1.4 A SHIQ concept C is Horn according to Definition 6.1.2 iff
it is Horn according to Definition 6.1.1.

Proof. “<=” We need show that pNNF(D) € C; (pNNF(D) € C,) implies pI*(D) <
1 (pI"(D) = 0). Focussing on pl™ suffices since subconcepts that occur with nega-
tive polarity within a concept in positive negation normal form are either atomic
or of the form —=D’ with D" € C;. By Lemma 6.1.3, it suffices to show that D € C;
(D € Cy) implies pl™ (D) < 1 (pl*(D) = 0). This can be established with some easy
inductions over the structure of Cy and Cy, where all cases follow by straightfor-
ward calculation of pl™, applying the induction hypothesis to obtain results for
subexpressions.

“=” By Lemma 6.1.3, we can again restrict attention to concepts in posi-
tive negation normal form. We first show that, whenever D in pNNF is such that
pl* (D) = 0, we find that D € C,. The contrapositive — if D ¢ C, then pl*(D) # 0
— can be shown by induction over the structure of D. The result is immediate for
D € A, and follows by simple calculation in all other cases. As an example, con-
sider D = <nR.~D’.1f n > 0, then pI*(D) < 1 is immediate. If n = 0 then D’ ¢ C,
and pl*(D’) = sgn(pl™(D")), where the later is 1 by the induction hypothesis.

To establish the claim, we can now show that, whenever D in pNNF is such
that plI"(D) < 1, we find that D € Cy. The required induction is similar to the C,
case, so we omit the details. O

The previous result shows that Definition 6.1.1 is indeed a generalisation of
the original definition of Horn-SH Q. The extension with nominals and Self
expressions may appear natural, but it remains to be shown that it actually leads to
appropriate results. We will not study Horn-SROZQ™® as such in the following
sections, but we will rather consider various fragments of this logic. Recall the
following definitions of subboolean description logics from [BCM*07]:

Definition 6.1.5 Consider a SROTQ™ concept expression C.

— Cis an ¥LE concept if it uses only only the constructors T, L, 1, 3, and V.
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— Cis an ¥L concept if it is an FLE concept and all of its existential role re-
strictions have the form dR.T.

— Cis an L, concept if it is an L~ concept that does not contain existential
role restrictions.

The description logics FLE, FL, and FL,, allow for arbitrary GCIs and concept
assertions that contain only concept expressions of the respective type. RBox ax-
ioms are not supported. &

When defining the Horn variant of each of these description logics, it is rel-
evant whether GCls or globally valid concept expressions are considered when
applying the syntactic restrictions. For example, the GCI A B € C is in ¥L
but the corresponding universally valid concept expression —(A M B) U C and its
PNNF —A L =B LI C are not. Disjunction could be included to overcome this issue
— the Hornness conditions restrict its expressive power as done in Horn-SHIZQ —
but then concepts such as YR.—A LI VS.B would be expressible, whereas the cor-
responding GCI dR.A C VS.B cannot be expressed in ¥L,. Therefore, we apply
restrictions on the level of GClIs and do not include concept unions, thus ensur-
ing that all Horn-7L, knowledge bases are also expressible in L. Note that the
normal form transformations that were used in Definition 6.1.1 are not affected by
such considerations, since Horn restrictions are invariant under negation normal
form transformations as illustrated in Lemma 6.1.3.

Definition 6.1.6 The description logic Horn-7LE (Horn-7L ™, Horn-%L) allows
for the following axioms:

— GClIs C C D such that the concepts C, D are in ¥LE (FL ™, ¥Ly) and we find
that pNNF(—C U D) € Cy, or

— concept assertions C(a) such that the concept C is in FLE (FL ™, FL,) and
PNNF(C) € Cq,

where C; is defined as in Fig. 6.1. <&

These basic Horn DLs form the basis of our subsequent investigations, and it
will turn out that they have very different computational properties in spite of the
rather similar syntax. We will also extend the previously defined Horn DLs to in-
clude further features of Horn-SROZQ"™ that are not included yet. For example,
we will consider the logic Horn-#LOH "~ that extends Horn-#L~ with nominals
and role hierarchies.
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6.2 A Light-Weight Horn-DL: Horn-71,

The description logic L is indeed very simple: T, L, 1, and V are the only oper-
ators allowed. Yet, checking the satisfiability of L, knowledge bases is already
ExpTmMe-complete [BBLOS]. It is not hard to see that Horn-7L is in P, and thus
is much simpler than its non-Horn counterpart.

Proposition 6.2.1 All standard reasoning problems for Horn-¥L, are P-complete.

Proof. An axiom of Horn-#ZL is in normal form if it is of one of the following
forms: AC C,ANBC C,ALC 1, TLCC,AC VRC, C(a), R(a,b), where
A, B, C are concept names, R is a role name, and a, b are individual names. Now it
is easy to see that every Horn-#L, knowledge base KB is semantically emulated
by a Horn-¥L, knowledge base in normal form that can be computed in linear
time w.r.t the size of KB. An according normal form transformation is detailed for
Horn-FZOH ™ in Lemma 6.3.6, and the transformation for Horn-7Z is an easy
special case thereof, with the only difference that GCIs {a} C C must be written
as C(a) in Horn-%L,,.

It is easy to see that every Horn-¥ZL, knowledge base in normal form can be
translated to a semantically equivalent datalog program. Indeed, this translation
is obtained by applying the standard transformation of SROZQ axioms to first-
order logic with equality as described in Section 3.2. Since all of the rules that
are obtained by translating normal form axioms have at most three variables, the
result follows from fact that satisfiability checking is P-complete for datalog pro-
grams with a bounded number of variables per rule (Fact 4.1.4). Moreover, we also
note that the reductions of standard reasoning problems to satisfiability checking
(Proposition 3.1.9) are possible in Horn-7Z as well. |

It is easy to see that this simple result could be established even when ex-
tending Horn-%L, with further expressive features. In particular, this is the case
for all features of SROZQ for which the first-order translation of Section 3.2
would lead to datalog axioms, possibly with equality as discussed in Section 4.1.3.
This includes nominals, inverse roles, role chains, local reflexivity (Self), and the
universal role, where the normalisation of role chains could be established as in
Proposition 5.4.3. Moreover, role conjunctions and concept products as discussed
in Chapter 5 are easily integrated into this setting as well, even without restricting
to simple roles.

Description logics that can be expressed in — or rather can be semantically
emulated in — datalog have been called Description Logic Programs (DLP). The
observations of the previous paragraph show that Horn-7LSROJI (1) is a DLP
language in this sense, but the literature on DLP also considers cases where a
particular combination of constructs enables the translation of a DL axiom into
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datalog. For example, the axiom A T JR.{a} can be expressed as A(x) — R(x,a)
although existential restrictions are not generally supported in datalog. This shows
that our above observations do not yet lead to a largest possible DLP, and it raises
the question of whether and how a maximal DLP language can be found. Answers
to these questions are given in Chapter 7.

Two additional features — disjunction and qualified functionality restrictions
<1 R.C — are of interest for us to obtain a Horn DL that is more closely related
to the OWL RL profile [MCH"09]. Considering Definition 6.1.1 and Fig. 6.1,
we observe that Horn DLs allow for at most one C; concept in each disjunction.
Every GCI that is Horn in this sense can therefore be expressed in a form where
said C; concept constitutes the right-hand side of the concept inclusion axiom,
while all other disjunctions occur on the left-hand side. Such disjunctions on the
left-hand side of GCls, however, can easily be eliminated during normal form
transformation since A U B £ C is equivalent to {A © C,A C C}. Therefore,
the addition of Horn-disjunction does not increase the expressiveness of the DL.
Disjunctions in subboolean DLs have traditionally been denoted by the letter U,
and hence we extend our results to an extension of Horn-#LU,.

Qualified functionality restrictions in turn are only allowed in C; expressions
of the form <1 R.—C with C € C,. Such expressions can be simplified by replacing
—C with a fresh concept name A while introducing a new axiom —C E A (this
is Horn since C € Cy). In addition, it is easy to see that axioms of the form
B C <1 R.A are translated to datalog rules B(x)AR(x, y1)AA(Y1)AR(x, y2)AA(y,) —
Y1 & ¥», so they can indeed be included into an extension of Horn-#L,. Summing
up the above discussion, we obtain the following result:

Proposition 6.2.2 Let Horn-SROIQ(N)™¢ be the extension of Horn-SROITQ"™
with arbitrary conjunctions of roles, and let RL denote the fragment of Horn-
SROIQ(MY™ comprising all knowledge bases that contain no maximality re-
strictions for numbers other than 1, no existential restrictions, and no minimality
restrictions. The standard reasoning problems for RL are P-complete.

Proof. It has been sketched in the above discussion how to extend the normal
form transformation of Lemma 6.3.6 to cover Horn disjunction of concepts and
qualified functionality restrictions on the right-hand side of GCls. A suitable nor-
mal form for GClIs is defined by requiring all left-hand sides to be of the forms T,
A or AN B, and all right-hand sides to be of the form L, A, VR.A, or <1 R.A, where
A and B are concept names, nominals, or expressions 1S.Self, and where R, S
are role names. A normal form of RIAs allows only axioms of the form R C T,
RoS CT,and RS C T, where R, S, T are role names, inverses of role names, or
the universal role. Clearly, any RL knowledge base is semantically emulated by
an RL knowledge base in normal form that can be computed in polynomial time
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—in fact, since all transformations can be accomplished in a single pass, it is even
possible to achieve the normalisation in LOGSPACE.

A polynomial-time inferencing algorithm is obtained by further translating
normalised RL knowledge bases into datalog programs with a bounded number
of variables per rule, as in Proposition 6.2.1. |

In terms of the nomenclature that was introduced for DLs in earlier chap-
ters, RL could also be described by the more explicit but less readable name
Horn-FLUSROI F ((MN), although this would still neglect qualified functional-
ity restrictions since # usually denotes only unqualified functionality restrictions
of the form <1 R.T. The reason why the rather exotic description logic RL is
specifically mentioned here is that it includes essentially all features of the OWL
2 RL ontology language which are not related to datatypes [MCH*09]. Adding
datatypes is no major difficulty but requires extended preliminary discussions that
are beyond the scope of this work.

The only syntactic feature of OWL RL that R . is missing are existential quan-
tifiers on the left-hand side of GCIs which do not increase expressiveness but
which syntactically extend OWL RL. Horn DLs do not restrict the use of exis-
tentials, so introducing them to RL would require additional constraints that do
not fit well into the framework of Horn DLs. In contrast, restrictions on the use of
existentials appear naturally when studying DLP in Chapter 7. This indicates that
Horn DLs are based on first-order Horn logic with functions, while DLP refers to
the function-free fragment datalog. Overall, RL still establishes a close relation-
ship of OWL 2 RL with the formalisms considered within this work, especially
with Horn description logics and DLP.

6.3 PSpace-Complete Horn DLs: From Horn-7L" to
Horn-7LOH"

Horn-7ZL" is the Horn fragment of ALC that allows T, L, M, V¥, and unqualified
3, i.e. concept expressions of the form dR.T. Although Horn-#ZL" is only a very
small extension of Horn-¥#L,, we will see that it is PSpace-complete. Moreover,
not all of the extensions that could be added to Horn-#ZL, can also be added to
Horn-#L~ without further increasing the complexity. The extension of #L that
we will consider below is defined as follows.

Definition 6.3.1 The description logic FLOH " is the extension of £~ with nom-
inals, and role hierarchies. The logic Horn-7LOH" is the restriction of FLOH "~
that contains only GCIs C C D and concept assertions E(a) such that pNNF(-C U
D) € C; and pNNF(E) € C;. <o
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In the following sections, we show that all logics between Horn-#L~ and
Horn-¥LOH ™ are PSpace-complete.

6.3.1 Hardness

We directly show that Horn-#L" is PSpace-hard by reducing the halting problem
for polynomially space-bounded Turing machines to checking unsatisfiability in
Horn-7L".

Definition 6.3.2 A deterministic Turing machine (TM) M is a tuple (Q, Z, A, qo)
where

— Qs afinite set of states,

— X is a finite alphabet that includes a blank symbol O,

- AC(QXX)X(QxZxXx{lr} is a transition relation that is deterministic, i.e.
(Q9 0,41,071, dl)a (‘]» g,{q>2,02, d2) € A lmphes q1 = 42,01 = 0>, and dl = dz-

— qo € Q is the initial state, and
— Q4 C Qs aset of accepting states.

A configuration of Mis a word a € Z*QX*. A configuration o’ is a successor of a
configuration « if one of the following holds:

l. «a =wgqoo,w,, @ =wo'qow,and (q,0,q9 ,0",r) € A,

2. a=wyqo,a =wo'q'0,and (q,0,q",07,r) € A,

3. @ =wiogow,, &’ =wq o,0'w,, and (q,0,q ,07,1) € A,
where g € Q and o,0”,0,,0, € X as well as w,w, € X*. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that |o’| < s + 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration « is accepting iff

- a=wigw, and g € Qy, or

— at least one the successor configurations of @ are accepting.

M accepts a given word w € * (in space s) iff the configuration gow is accepting
(when restricting to transitions in space s). <&

The complexity class PSpack is defined as follows.
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(1) Left and right transition rules:
A;MH;NCy; EAS.TNVS.(Ay MH;11 N Cy ;) Withd = (g,0,q,07",1r),i < p(w]) — 1

A;MH;NCy; EAS.TNVS.(Ay MH,_1 N Cy ;) withé = (g,0,q,07,1),i>0

(2) Memory:
HinCy; CVS.Cy; 1#]
(3) Failure: (4) Propagation of failure:
FNA;C 1L q€0x FCVS.F

The axioms are instantiated for all ¢, ¢’ € Q, 0,0’ €ZX, i, je{0,..., p(jw]) — 1}, and 6 € A.

Figure 6.4: Knowledge base KB »,, simulating a polynomially space-bounded TM

Definition 6.3.3 A language L is accepted by a polynomially space-bounded TM
iff there is a polynomial p such that, for every word w € £*, w € L iff w is accepted
in space p(|w|). &

In this section, we exclusively deal with polynomially space-bounded TMs,
and so we omit additions such as “in space s~ when clear from the context.

In the following, we consider a fixed TM M denoted as in Definition 6.3.2,
and a polynomial p that defines a bound for the required space. For any word
w € X*, we construct a Horn-#L~ knowledge base KBy, and show that w is
accepted by M iff KBy, is unsatisfiable. Intuitively, the elements of an interpre-
tation domain of KB ,,, represent possible configurations of M, encoded by the
following concept names

- A, for g € Q: the TM is in state ¢,
— H;fori=0,..., p(J]w|) — 1: the TM is at position i on the storage tape,

- CyiwithoeXandi=0,...,p(lw|)— 1: position i on the storage tape contains
symbol o.

Based on these concepts, elements in each interpretation of a knowledge base
encode certain states of the Turing machine. A role S will be used to encode
the successor relationship between states. The initial configuration for word w is
described by the concept expression /,,:

I, = Aqo MmHyM C(ro,O M1...11 CO’\w|—1,|W\—1 M CD,|W| M...r CD’[,(|W|)_1,

where o; denotes the symbol at the ith position of w.
It is not hard to describe runs of the TM with Horn-#£~ axioms, but formu-
lating the acceptance condition is slightly more difficult. The reason is that in
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absence of statements like 45.A and VS.A in the condition part of Horn-axioms,
one cannot propagate acceptance from the final accepting configuration back to
initial configuration. The solution is to introduce a new concept F that states that
a state is not accepting, and to propagate this assumption forwards along the runs
to provoke an inconsistency as soon as an accepting configuration is reached. Thus
we arrive at the axioms given in Fig. 6.4.

Next we need to investigate the relationship between elements of an interpre-
tation that satisfies KB y(,, and configurations of M. Given an interpretation J of
KB ., we say that an element e of the domain of I represents a configuration
T1...01q0 ..oy if e € AL, e € H], and, for every j € {0,..., p(w]) — 1},
e € CL . whenever

j<mando = o, or j>mand o =0.

Note that we do not require uniqueness of the above, so that a single element
might in fact represent more than one configuration. As we will see below, this
does not affect our results. If e represents a configuration as above, we will also
say that e has state g, position i, symbol o; at position j etc.

Lemma 6.3.4 Consider some interpretation I that satisfies KB y,,. If some ele-
ment e of I represents a configuration a and some transition 6 is applicable to a,
then e has an S”-successor that represents the (unique) result of applying 6 to a.

Proof. Consider an element e, state «, and transition ¢ as in the claim. Then one
of the axioms (1) applies, and e must also have an SZ-successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by
all S -successors of e. O

Lemma 6.3.5 A word w is accepted by M iff {1,,(i), F (i)} UKB s, is unsatisfiable,
where i is a new constant symbol.

Proof. Let 7 be a model of {I,(i), F(i)} U KB, Z being a model for 1,,(i), i
clearly represents the initial configuration of M with input w. By Lemma 6.3.4,
for any further configuration reached by M during computation, i* has a (not
necessarily direct) S? successor representing that configuration.

Since I satisfies F(i) and axiom (4) of Fig. 6.4, a simple induction argument
shows that F/ contains all S7 successors of i. But then 7 satisfies axiom (3) only
if none of the configurations that are reached have an accepting state. Since 7 was
arbitrary, {/,,(i), F(i)} U KB ,, can only have a satisfying interpretation if M does
not reach an accepting state.
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C A C VRC RCS
1 R(c,d)

=
I

Figure 6.5: Normal forms for Horn-¥LO%H "~ with A, B,C € B basic concepts
(including existential restrictions), R, S role names, and ¢, d individual names

It remains to show the converse: if M does not accept w, there is some in-
terpretation J satisfying {7,,(i), F(i)} U KB 4,,. To this end, we define a canonical
interpretation M as follows. The domain of M is the set of all configurations of
M that have size p(jw|) + 1 (i.e. that encode a tape of length p(|wl|), possibly with
trailing blanks). The interpretations for the concepts A,, H;, and C,; are defined as
expected so that every configuration represents itself but no other configuration.
Especially, I is the singleton set containing the initial configuration. Given two
configurations @ and a’, and a transition ¢, we define (a,a’) € S M iff there is a
transition ¢ from @ to o’. FM is defined to be the set of all configurations that are
reached during the run of M on w.

It is easy to see that M satisfies the axioms (1), (2), and (3) of Fig. 6.4. Axiom
(4) is satisfied since, by our initial assumption, none of the configurations reached
by M is in an accepting state. O

Thus checking satisfiability of Horn-#L~ knowledge bases is PSpace-hard.

6.3.2 Containment

To show that inferencing for Horn-#LO%H " is in PSpacg, we develop a tableau al-
gorithm for deciding the satisfiability of a Horn-#LOH "~ knowledge base. To this
end, we first present a normal form transformation that allows us to restrict atten-
tion to simple forms of axioms. Afterwards, we present the tableau construction
and show its correctness, and demonstrate that it can be executed in polynomial
space.

To simplify notation, we define a FLOH ™~ concept expression C to be basic if
it is of the form A € A, {a}, or AR.T. The set of all basic concepts is denoted by
B, assuming that the underlying signature is irrelevant or clear from the context.

Lemma 6.3.6 Every Horn-¥LOH ™ knowledge base KB is semantically emulated
by a Horn-FLOH ™ knowledge base that contains only axioms in the normal form

given in Fig. 6.5, and that can be computed in linear time with respect to the size
of KB.

Proof. ABox axioms C(a) can clearly be expressed as GCIs {a} C C. To seman-
tically emulate arbitrary GCls, we exhaustively apply the transformation rules in
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ccbh - {CCX,XCD)
1L CcCC — 0
cCT = 0

CnAC B — {CCX,XMAC B}
ACCnDw— {ACC,ALC D}
AC VRC - {ACVRX,XCC)

A, B basic concept expressions, T, or L; X a fresh concept name;
C, D concept expressions; C, D concept expressions that are not basic

Figure 6.6: Normal form transformation for Horn-FLOH "~

Fig. 6.6, where each rule application consists in replacing the axiom on the left-
hand side by the axioms on the right-hand side. It is easy to see that the resulting
axioms semantically emulate the original axioms for each rule, so the result fol-
lows by induction. It is also easy to see that only a linear number of steps are
required, where it must be noted that the rule for A € C M D is only applicable if
A is not a compound term, so that the duplication of A still leads to only a linear
increase in size. O

Next, we are going to present a procedure for checking satisfiability of Horn-
FL knowledge bases. In the following we assume without loss of generality that
the DL signature in consideration has at least one individual name.

Definition 6.3.7 Consider a Horn-7LOH "~ knowledge base KB in normal form,
with B the set of basic concepts, R the set of roles, and I the set of individual
names. A set of relevant concept expressions is defined by setting

cl(KB)=BU({YR.CIRe R,C e B} U{T, L}.

Given a set I of individual names, a set 7; of ABox expressions is defined as
follows:

T ={C(e)|Cecl(KB),ecI}U{R(e,f)|ReR, e, f €l}
For aset T C 77 and individuals e, f € I, we use T, s to denote the set
{C(f) 1 Cle) e TYULR(f,8) | R(e,g) €T, g € I} U{R(g, f) | R(g,e) € T, g € I}.

For the special case that e = f, we use the abbreviation 7, := T,,,.. A tableau for
KB is given by a (possibly infinite) set / of individual names, and a set T C 7
such that I C 7 and the following conditions hold:

1. ifeel, then T(¢e) e T and, ife €1, {e} € T,
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2. if A(e) € KB (R(e, f) € KB), then A(e) € T (R(e, f) € T),

if {f}(e) € T, then C(e) € T iff C(f) € T, R(e,g) € T iff R(f,g) € T, and
R(g,e) € Tiff R(g, f) € T, forall C € cl(KB), Re R, and g € I,

ifACCeKBandA(e) e T,thenC(e) e T,

ifAMBCE CeKB,A(e) e T,and B(e) € T,then C(e) € T,
ifRCS e KBandR(e, f) e T,then S(e, /) €T,

AR.T(e) € T iff R(e, f) € T for some f € I,

if VR.C(e) e T,then C(f) € T forall f € I withR(e, f) e T,

b

© NNk

A tableau is said contain a clash if it contains a statement of the form L(e). <

Proposition 6.3.8 A Horn-FLOH "~ knowledge base KB is satisfiable iff it has a
clash-free tableau.

Proof. Assume that KB has a clash-free tableau (/,T). An interpretation I is
defined as follows. Due to condition 3 in Definition 6.3.7, we can define an equiv-
alence relation ~ on [ by setting e ~ f iff there is some g € I with {{g}(e), {g}(f)} C
T. The domain /. of I is the set of equivalence classes of ~. The interpretation
function is defined by setting e’ = [e]., e/ € C? iff C(e) € T, and (e, f¥) € R?
iff R(e, f) € T, for all elements e, f € I, concept names C, and role names R. It is
easy to see that J satisfies KB.

For the converse, assume that KB is satisfiable, and that it thus has some model
J. We define a tableau (I, T) where [ is the domain of 7. Further, we set C(e) € T
iff e € C%, and R(e, f) € T iff (e, f) € RY, where C € cl(KB), and R some role
name. Again, it is easy to see that this meets the conditions of Definition 6.3.7. O

As is evident by the Turing machine construction in the previous section, some
Horn-7ZOH "~ knowledge bases may require a model to contain an exponential
number of individuals, even within single paths of the computation. Detecting
clashes in polynomial space thus requires special care. In particular, a standard
tableau procedure with blocking does not execute in polynomial space. Therefore,
we first provide a procedural description of a canonical tableau which will form
the basis for our below decision algorithm.

Definition 6.3.9 An algorithm that computes a tableau-like structure (/, T') is de-
fined as follows. Initially, we set I := I, and 7' := (). The algorithm executes the
following steps:

(1) Iterate over all individuals e € I. To each such e, apply rules (T1) to (T10)
of Fig. 6.7.
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(T1) T =T U{T(e)}

(T2) if e € Iis an individual name, T := T U {{e}(e)}
(T3) foreach A(e) e KB, T =T U {A(e)}

(T4) foreach R(e, f) € KB, T :=T U{R(e, f)}

(T5) foreach {f}(e)eT

(TSa) foreachC(f) e T, T =T U{C(e)},
(T5b) for each g € I and each R(f,g) € T, T :
inactive,

(T5c) for each g € I and each R(g,f) € T, T :
1nactive,

(T5d) foreach C(e) e T, T =T U{C(f)},

(TSe) for each g € I and each R(e,g) € T, T = T U{R(f,2)}; R(f,g) is marked
inactive,

(T5f) for each g € I and each R(g,e) € T, T = T U {R(g, /)}; R(g, f) is marked
inactive

T U {R(e, 2)}; R(e,g) is marked

T U {R(g,e)}; R(g,e) is marked

(T6) foreachAC C € KB, if A(e) e Tthen T := T U {C(e)}
(T7) foreachAMBLC C € KB, if A(e) € T and B(e) € T then T := T U {C(e)}
(T8) foreach RC S e KB, do the following:

(T8a) foreach f € I,if R(e, f) € T and R(e, f) is not inactive, then T := T U{S (e, f)},
(T8b) if AR.T(e) e T then T =T U {3S.T(e)}

(T9) foreach f € I and R(e, f) € T with R(e, f) not inactive, T := T U {dR.T (e)}

(T10) for each YR.C(e) € T and each f € [ with R(e, f) € T,
if R(e, f) is not inactive, then T := T U {C(f)}

() foreach AR.T(e) € T, if R(e, f) ¢ T for all f € I then
I:=1U{gland T =T U {R(e, g)}, where g is a fresh individual

Figure 6.7: Constructing tableaux for Horn-FLOH "~ knowledge bases

(2) If T was changed in the previous step, go to (1).

(3) Apply rule () of Fig. 6.7 to all existing elements e € I.
(4) If T was changed by the previous step, go to (1).

(5) Halt.

&

While most rules should be obvious, some require explanations. The rules (T5)
are used to ensure that individuals e satisfying a nominal class are synchronised
with the respective named individual f € I. The six sub-rules are needed since
one generally cannot add {e}(f) to T as e might not be an element of I. However,
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role statements that are inferred in this way need not be taken into account as
premises in other deduction rules, since they are guaranteed to have an active
original. Whatever could be inferred using copied role statements and rules (T8a),
(T9), or (T10), can as well be inferred via the active original from which the
inactive role was initially created. Note that this argument involves an induction
over the number of applications of rule (T5).

Rule (T8) is also special. In principle, one could omit (T8b), and use rules
(T8a) and (T9) instead. This inference, however, is the only case where a role-
successor of some individual e might contribute to the classes inferred for e. By
providing rule (T8b), the class expressions containing e can be computed without
considering any role successor, and rule (T9) is essential only when role expres-
sions have been inferred from ABox statements. In combination with the delayed
application of rule (3), this ensures that concepts are indeed inferred by (T8b)
rather than by (T8a)+(T9), which will be exploited in the proof of Lemma 6.3.13
below.

Also note that the algorithm of Definition 6.3.9 is not a decision procedure,
since we do not require the algorithm to halt. What we are interested in, however,
is the (possibly infinite) tableau that the algorithm constructs in the limit. The
existence of this limit is evident from the fact that all completion rules are finitary,
and that each rule monotonically increases the size of the computed structure. It
is easy to see that there is a correspondence between the rules of Fig. 6.7 and the
conditions of Definition 6.3.7, so that the limit structure will indeed meet all the
requirements imposed on a tableau. For a given knowledge base KB, we write
(Ixg, Txs) to denote the canonical tableau constructed by the above algorithm
from KB, where the subscripts are omitted when understood. It is easy to see
that, whenever the canonical tableau contains a clash, this must be the case for all
possible tableaux.

The algorithm of Definition 6.3.9 can be viewed as a “breadth-first” construc-
tion of a canonical tableau. Due to the explicit procedural description of tableau
rules, any role and class expression of the canonical tableau is first computed after
a well-defined number of computation steps.! Accordingly, we define a total order
<on T by setting F < G iff F is computed before G.

The canonical tableau and the order < are the main ingredients for showing
the correctness of following non-deterministic decision algorithm.

Definition 6.3.10 Consider a Horn-7LOH "~ knowledge base KB with canonical
tableau (I, T). A set of individuals [ is defined as I := 1 U {a, b}, where a, b ¢ I.

'For this to be true, one must also specify the order for the involved iterations, e.g. by ordering
elements lexicographically and adopting a naming scheme for newly introduced elements. We
assume that such an order was chosen.
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Non-deterministically select one element g € I, and initialise 7 C 7 by setting
T ={L(g)}

The algorithm repeatedly modifies 7 by non-deterministically applying one of
the following rules:

(N1) Given any X € 7, set T := T U {X}. If X is a role statement, decide
non-deterministically whether X is marked inactive.

(N2) If there is some individual e € I and X € T such that X can be derived
from T \ {X} using one of the rules (T1) to (T10) in Fig. 6.7, set T =
T \ {X}. Rules (T5b), (T5c), (T5e), and (T5f) can only be used if X is
marked inactive.

(N3) If T, = {R(e,a)} for some e¢ € I\{a} suchthat AR.T(e) € T, setT = T\T,.
(N4) If T, =0,setT :=(T U Tp.n)\ Tp.
(N5) If T = 0, return “unsatisfiable.” o

Lemma 6.3.11 The algorithm of Definition 6.3.10 can be executed in polynomi-
ally bounded space.

Proof. Since |/|, |B|, and |R| are polynomially bounded by the size of the knowl-
edge base, so is cl(KB) and thus 7. O

Lemma 6.3.12 [f there is a sequence of choices such that the algorithm of Defi-
nition 6.3.10 returns “unsatisfiable” after some finite time, KB is indeed unsatis-

fiable.

Proof. Intuitively, the non-deterministic algorithm applies rules of the algorithm
in Definition 6.3.9 in reverse order, deleting a conclusion whenever it can be de-
rived from the remaining statements. The anonymous individuals a and b are used
to dynamically represent (various) elements from the canonical tableau. For a for-
mal proof, assume that the algorithm terminates within finitely many steps, and,
without loss of generality, that each step involves a successful application of one
of the rules (N1) to (N5). We use 7" to denote the state of the algorithm n steps
before termination. In particular, T7° = 0.

We claim that for each T" there are individuals e, f € I, such that T;’He, pos €
T. This is verified by induction over the number of steps executed by the algo-
rithm. Since T = 0, the claim for 7° holds for any e, f € I.

For the induction step, assume that T;’,_)e’ b f C T. To show the claim for 7"*!,

we distinguish by the transformation rule that was applied to obtain 7" from 7"*!:

(N1) Since 7! c T", we conclude 7"} cT.

ae,b—f
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(N2) T"*!' = T" U {X}, where X can be derived from 7" by one of the rules (T1)
to (T10). Since those rules have been applied exhaustively in 7', we find
Tn+1 C T

a—e,b—f =
(N3) We find 7" = 0 and, for some g € I\{a} and R € R, T"*! = T"U{R(g, a)} and
AR.T(g) € T". Define g’ == f if g = b, and g’ = g otherwise. We conclude
that 3R.T(g’) € T and thus there is some individual e’ € I with R(g’, e’). We
conclude that 77*! cT.

ame’ b—f =

(N4) This rule merely exchanges b with (the unused) a, so we have 7"! C

a— f,b—e

T.
Applying the above induction to the initial state { L(g)}, we find { L(g)}ue, b € T.
Hence T indeed contains a clash and KB is unsatisfiable. O

Lemma 6.3.13 Whenever KB is unsatisfiable, there is a sequence of choices such
that the algorithm of Definition 6.3.10 returns “unsatisfiable” after some finite
time.

Proof. We first specify a possible sequence of choices, and then show its correct-
ness. If KB is unsatisfiable, there is some element e € I in the canonical tableau
such that L(e) € T. Pick one such e. We use @’ and &’ to denote the elements of
[ that are currently simulated by a and b. Initially, we set @’ = b’ = O for some
element O ¢ I. Rule (N1) of the algorithm will repeatedly be used to close T under
relevant inferences that are <-smaller than some statement X. Given X € T, we
define:

I={cpeTIcn <X feluta. b,
(R(f.9) € T'| R(f, ) not inactive, R(f. ) < X, f.g € TV {a',b')

a'va, bbb
This selects all elements in T that can be represented using the elements from

I with the current representation of a’ as a, and b’ as b. Throughout the below
computation, the following property will be preserved:

Tw—>a’,bb—>b/ - T (T)

Now if e € I, set @’ := e. Using the non-deterministic initialisation and rule
(N1), the algorithm of Definition 6.3.10 can now compute 7" = |{L(e)}. The algo-
rithm now repeatedly executes steps according to the following choice strategy.

Single Step Choice Strategy If 7, is non-empty, let X be the <-largest element
of T,. Else, let X be the <-largest element of 7. By property (), there is some
X' € T with {X}asar. sy = {X’}. Applying rule (N1), the algorithm first computes
T :=T U |X (x). The algorithm non-deterministically guesses the rule of Fig. 6.7
that was used to infer X’, and proceeds accordingly:
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— If X" was inferred by one of the rules (T1), (T2), (T3), (T4), (T6), (T7), (T8a),
(T8b), and (T9), the premises of a respective rule application in 7 have been
computed in (*). This is so since the required premises are <-smaller and not
inactive, and since they only involve individuals that are also found in X, i.e.
which are represented by / with the current choice of @’ and b’. Hence the
algorithm can apply rule (N2) to reduce X.

— If X’ was inferred by one of the rules of (TS), then one of the premises used
was of the form {f}(e), and thus f € I. Since inactive roles are not generated by
any of the given choices, rules (T5b), (T5c¢), (T5e), and (T5f) are not relevant.
If X’ was inferred by rule (T5a) then X can directly be reduced by applying
rule (N2). The existence of the premises in 7 follows again from (x).

If X" was inferred by rules (T5d), then X’ is of the form C(f) and thus T, = 0.
If the individual e in the premise is in I, then X again can be reduced by rule
(N2). If e ¢ I, set a’ = e and use rule (N1) to compute 7, = {{f}(e), C(e)}.
Apply (N2) to reduce X.

— If X’ was inferred by rule (T10), then X’ = C(g) for some element g, and there
is some element e such that {YR.C(e), R(e, g)} € T. We distinguish two cases:

o Ifgel, then X = C(g)and T, = 0. Set @’ = e and use rule (N1) to compute
T, ={YR.C(a),R(a, g)}. Use rule (N2) to reduce X.

o Ifg¢ I then X =C(a)ande # a’. If e € TU{}’}, then {VYR.C(e),R(e,a)} C T
by (). Use rule (N2) to reduce X. If e ¢ TU {b’}, then b’ = 0 and T, = 0,
as we will show below. Set »* = e and use rule (N1) to compute 7, =
{VYR.C(b),R(b, g)}. Use rule (N2) to reduce X.

We claimed that b’ = O whenever it is not equal to the predecessor e. This is
so, since a’ ¢ I is ensured by each step of the algorithm, and since elements
that are not in I are involved in active role statements of exactly one prede-
cessor (the one which generated a’). This is easily verified by inspecting the
rules that can create role statements.

— If X’ was inferred by rule (3), we have X’ = R(e, g) for some newly introduced
element g ¢ I. Thus X is of the form R(¢’, a), and, since X was selected to be <-
maximal, 7, = {X}. Thus we can apply rule (N3) to reduce X. In addition, the
algorithm applies rule (4) to copy b to the (now empty) a, and we set a’ := b’
and b’ == 0.

With the above choices, the algorithm instantiates elements a on demand, and
repeatedly reduces the statements of those elements. The individual rules show
that this reduction might require another (predecessor) individual b to be consid-
ered, but that no further element is needed. Also note that rule (T8b) is required to
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ensure that all concept expressions in 7, can be reduced without generating any
role successors for a. Hence, it is evident that the above choice strategy ensures
that exactly one of the above reductions is applicable in each step.

Finally, we need to show that the algorithm terminates. This claim is es-
tablished by defining a well-founded termination order. For details on such ap-
proaches and the related terminology, see [BN98]. Now considering 7 as a mul-
tiset, the multiset-extension of the well-founded order < is a suitable termination
order, which is easy to see since in every reduction step, the element X is deleted,
and possibly replaced by one or more elements that are strictly smaller than X. O

The above lemmata establish an NPSpace decision procedure for detecting
unsatisfiability of Horn-FLOH "~ knowledge bases. But NPSPAcE is known to co-
incide with PSpacg, and we can conclude the main theorem of this section.

Theorem 6.3.14 Unsatisfiability of a Horn-FLOH ™ knowledge base KB can be
decided in space that is polynomially bounded by the size of KB.

Proof. Combine Lemma 6.3.11, 6.3.12, and 6.3.13 to obtain a non-deterministic
time-polynomial decision procedure for detecting unsatisfiability. Apply Savitch’s
Theorem to show the existence of an according PSpack algorithm [Pap94]. |

Summing up the result from the previous two sections, we obtain the follow-
ing.

Theorem 6.3.15 The standard reasoning problems for any description logic be-
tween Horn-7L~ and Horn-FLOH ™~ are PSPace-complete.

Proof. Combine Lemma 6.3.5 and Theorem 6.3.14. O

6.4 Horn-SHI7Q and Other ExpTiMe-Complete
Horn DLs

FLE further extends FL by allowing arbitrary existential role quantifications,
which turns out to raise the complexity of standard reasoning tasks for Horn-
FLE to ExpTiME, thus establishing ExpTiMe-completeness of Horn-SH 7 Q. Note
that inclusion in ExpTME is obvious since L& is a fragment of SHZQ which
is also in ExpTmmE [TobO1]. To show that Horn-#LE is ExpTiMme-hard, we reduce
the halting problem of polynomially space-bounded alternating Turing machines,
defined next, to the concept subsumption problem.
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6.4.1 Alternating Turing Machines

Definition 6.4.1 An alternating Turing machine (ATM) M is a tuple (Q, Z, A, qo)
where

Q = U U E is the disjoint union of a finite set of universal states U and a finite
set of existential states E,

X is a finite alphabet that includes a blank symbol O,

AC(QXX)X(QxXZX{lr}) is atransition relation, and

qo € Q is the initial state.

A (universal/existential) configuration of Mis aword @ € £*Q%X* (X*UZ'/Z*EXL").
A configuration o’ is a successor of a configuration « if one of the following holds:

1. a =wgqgoo,w,, o =wo'qow, and (q,0,q9",0",r) € A,
2. a =wgqo,a =wo'q'0,and (q,0,q9",0',r) € A,

3. @ =wiogow,, &’ =wq o,0'w,, and (q,0,q ,07,1) € A,

where g € Q and o0,0”,0,,0, € X as well as w,w, € X*. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that || < s + 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration « is accepting iff

— «ais a universal configuration and all its successor configurations are accepting,
or

— «a is an existential configuration and at least one of its successor configurations
is accepting.

Note that universal configurations without any successors here play the rdle of
accepting final configurations, and thus form the basis for the recursive definition
above.

M accepts a given word w € X* (in space s) iff the configuration gow is ac-
cepting (when restricting to transitions in space s). &

This definition is inspired by the complexity classes NP and co-NP, which are
characterised by non-deterministic Turing machines that accept an input if either
at least one or all possible runs lead to an accepting state. An ATM can switch
between these two modes and indeed turns out to be more powerful than classical
Turing machines of either kind. In particular, ATMs can solve ExpTImME problems
in polynomial space [CKS81].
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Definition 6.4.2 A language L is accepted by a polynomially space-bounded ATM
iff there is a polynomial p such that, for every word w € X*, w € L ift w is accepted
in space p(|w). &

Fact 6.4.3 The complexity class APSpPACE of languages accepted by polynomially
space-bounded ATMs coincides with the complexity class ExpTIME.

We thus can show ExpTime-hardness of Horn-SH 7 Q by polynomially reduc-
ing the halting problem of ATMs with a polynomially bounded storage space to
inferencing in Horn-SHZQ. In the following, we exclusively deal with polyno-
mially space-bounded ATMs, and so we omit additions such as “in space s’ when
clear from the context.

6.4.2 Simulating ATMs in Horn-7L&

In the following, we consider a fixed ATM M denoted as in Definition 6.4.1, and
a polynomial p that defines a bound for the required space. For any word w € X*,
we construct a Horn-7LE knowledge base KB y(,, and show that acceptance of w
by the ATM M can be decided by inferencing over this knowledge base.

In detail, KB y,, depends on M and p(|w|), and has an empty ABox.? Accep-
tance of w by the ATM is reduced to checking concept subsumption, where one of
the involved concepts directly depends on w. Intuitively, the elements of an inter-
pretation domain of KBy, represent possible configurations of M, encoded by
the following concept names:

- A, for g € Q: the ATM is in state g,
- H;fori=0,...,p(jw|) — 1: the ATM is at position i on the storage tape,

- CyywithoeXandi=0,...,p(w|)—1: position i on the storage tape contains
symbol o,

— A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard to axiomatise a succes-
sor relation S and appropriate acceptance conditions in ALC (see, e.g., [LSO05]).
But this reduction is not applicable in Horn-SH 7@, and it is not trivial to modify
it accordingly.

One problem that we encounter is that the acceptance condition of existential
states is a (non-Horn) disjunction over possible successor configurations. To over-
come this, we encode individual transitions by using a distinguished successor re-
lation for each translation in A. This allows us to explicitly state which conditions

2The RBox is empty for 7LE anyway.
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(1) Left and right transition rules:
Aq M Hl' I Ca-’,' C 355.(Aqr M Hl'+1 Il Co-/’,') with 6 = (q, a, qI,O'/, }’), 1< p(|W|) -1
A,MH;NCy; C AS5.(Ay MH; 1N Cy ;) withd =(q,0,q,0",1),i>0

(2) Memory: (3) Ecxistential acceptance:
H;NCy; C VS5.Coi i# ] A;MASs. ACA forallge E
(4) Universal acceptance:
A;MH;NCyi N[ ]5e2(3S5.A) C A geU,xef{rli<p(w)-11U{l]i> 0}

A= {(g,0,q,07,x) € A}

Rules are instantiated for all ¢, ¢’ € Q, 0,0’ €Z, i, je{0,..., p(lw|]) — 1}, and 6 € A.

Figure 6.8: Knowledge base KB, simulating a polynomially space-bounded
ATM

must hold for a particular successor without requiring disjunction. For the accep-
tance condition, we use a recursive formulation as employed in Definition 6.4.1.
In this way, acceptance is propagated backwards from the final accepting config-
urations.

In the case of ALC, acceptance of the ATM is reduced to concept satisfia-
bility, i.e. one checks whether an accepting initial configuration can exist. This
requires that acceptance is faithfully propagated to successor states, so that any
model of the initial concept encodes a valid trace of the ATM. Axiomatising this
requires many exclusive disjunctions, such as “The ATM always is in exactly one
of its states H;.” Since it is not clear how to model this in a Horn-DL, we take a
dual approach: reducing acceptance to concept subsumption, we require the initial
state to be accepting in all possible models. We therefore may focus on the task of
propagating properties to successor configurations, while not taking care of dis-
allowing additional statements to hold. Our encoding ensures that, whenever the
initial configuration is not accepting, there is at least one “minimal” model that
reflects this.

After this informal introduction, consider the knowledge base KBy, given
in Fig. 6.8. The roles S5, 6 € A, describe a configuration’s successors using the
translation 6. The initial configuration for word w is described by the concept
expression /,,:

I, = Aqo N Hym C(T(),O M...mn CO’|w\71’|W|—1 I CI:l,IwI M...r CD,p(‘Wl)_l,

where o; denotes the symbol at the ith position of w. We will show that checking
whether the initial configuration is accepting is equivalent to checking whether
I,, C A follows from KB y,,,. The following is obvious from the characterisation
given in Definition 6.1.1.
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Lemma 6.4.4 KB, and I,, C A are in Horn-¥LE.

Next we need to investigate the relationship between elements of an interpre-
tation that satisfies KB y(,, and configurations of M. Given an interpretation 7 of
KB v, we say that an element e of the domain of 1 represents a configuration
O1...0190; ... .0 if e € Al e € H], and, for every j € {0,..., p(Iwl) — 1},
e € CL . whenever

j<mand o = oy, or j>mand o = 0.

Note that we do not require uniqueness of the above, so that a single element
might in fact represent more than one configuration. As we will see below, this
does not affect our results. If e represents a configuration as above, we will also
say that e has state g, position i, symbol o; at position j etc.

Lemma 6.4.5 Consider some interpretation I that satisfies KB q,,. If some ele-
ment e of I represents a configuration a and some transition d is applicable to a,
then e has an S f; -successor that represents the (unique) result of applying 6 to a.

Proof. Consider an element e, state , and transition § as in the claim. Then one
of the axioms (1) applies, and e must also have an S/ -successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by
all SZ-successors of e. m

Lemma 6.4.6 A word w is accepted by M iff I, € A is a consequence of KB .

Proof. Consider an arbitrary interpretation J that satisfies KB »,,. We first show
that, if any element e of 7 represents an accepting configuration «, then e € AZ.

We use an inductive argument along the recursive definition of acceptance.
If a is a universal configuration then all successors of a are accepting, too. By
Lemma 6.4.5, for any 6-successor o’ of « there is a corresponding S f; -successor
¢’ of e. By the induction hypothesis for o', ¢’ is in AZ. Since this holds for all
d-successors of a, axiom (4) implies e € AZ. Especially, this argument covers the
base case where @ has no successors.

If @ is an existential configuration, then there is some accepting d-successor
a’ of . Again by Lemma 6.4.5, there is an § g -successor ¢’ of e that represents
a', and ¢/ € A’ by the induction hypothesis. Hence axiom (3) applies and also
conclude e € A”.

Since all elements in IZ represent the initial configuration of the ATM, this
shows that IZ C A? whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuration is not accepting,
there is some interpretation J such that If; ¢ A’. To this end, we define a canonical
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interpretation M of KBy, as follows. The domain of M is the set of all config-
urations of M that have size p(Iw|) + 1 (i.e. that encode a tape of length p(Jwl),
possibly with trailing blanks). The interpretations for the concepts A,, H;, and Cy;
are defined as expected so that every configuration represents itself but no other
configuration. Especially, I is the singleton set containing the initial configura-
tion. Given two configurations @ and «’, and a transition ¢, we define (o, a’) € S (’5”
iff there is a transition § from a to o’. AM is defined to be the set of accepting
configurations.

By checking the individual axioms of Fig. 6.8, it is easy to see that M satisfies
KB 5(,,- Now if the initial configuration is not accepting, I ¢ AM by construction.
Thus M is a counterexample for /,, C© A which thus is not a logical consequence.O

We can summarise our results as follows.

Theorem 6.4.7 The standard reasoning problems for any description logic be-
tween Horn-FLE and Horn-SHIQ are ExpTive-complete.

Proof. Inclusion is obvious as Horn-SH I Q is a fragment of SHZQ for which
these problems are in ExpTiME [Tob01]. Regarding hardness, Lemma 6.4.6 shows
that the word problem for polynomially space-bounded ATMs can be reduced to
checking concept subsumption in KB y,,. By Lemma 6.4.4, KB, is in Horn-
FLE. The reduction is polynomially bounded due to the restricted number of ax-
ioms: there are at most 2x|Q| X p(lw|) X || x|A| axioms of type (1), p(lw])*> X |Z|x |A]|
of type (2), 1Q] x [Z] of type (3), and |Q] x p(wl) X =] of type (4). o

Note that, even in Horn logics, it is straightforward to reduce knowledge base
satisfiability to the entailment of the concept subsumption T T L. The proof that
was used to establish the previous result is suitable for obtaining further complex-
ity results for logical fragments that are not above Horn-7LE.

Theorem 6.4.8 Consider the description logics

(a) ELF obtained by extending EL with number restrictions of the form <1 R.T,

(b) FLo™ obtained by extending ¥L~ with composition of roles while restricting
to regular RBoxes, and

(c) FLI obtained by extending ¥L with inverse roles,

and let Horn-ELF, Horn-¥Lo~, and Horn-¥L1 "~ denote the respective Horn DLs
defined as in Definition 6.1.6.

Horn-fLo~ is ExpTimME-hard. Horn-ELF and Horn-¥L1~ are ExpTIME-complete.

Proof. The results are established by modifying the knowledge base KB ,,, to
suite the given fragment. We restrict to providing the required modifications; the
full proofs are analogous to the proof for Horn-7LE.
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(a) Replace axioms (2) in Fig. 6.8 with the following statements:
TCE<IS:T H;NCyiMASs. TEASs.Coyy i #

(b) Replace axioms (1) with axioms of the form
A,MH;NCy; EAS5.TNVSs.(Ay MHiwy M Coyr ).

Any occurrence of concept A is replaced by dR,.T, with R4 a new role.
Moreover, we introduce roles R,s for each transition ¢, and replace any

occurrence of 45 5.A with AR s.T. Finally, the following axioms are added:
SsoR4C Rys foreachod € A.

(c) Axioms (1) are replaced as in (b). Any occurrence of 155.A is now re-
placed with a new concept name Ags, and the following axioms are added:

ACVS;'Ag; foreachd € A.

It 1s easy to see that those changes still enable analogous reductions. Inclusion
results for Horn-EL% and Horn-¥£7~ are immediate from their inclusion in

SHIQ. O

ExpTimME-completeness of ELF was shown in [BBLOS] (where it was called
EL="), but the above theorem sharpens this result to the Horn case, and provides
a more direct proof. Theorems 6.4.7 and 6.4.8 thus can be viewed as sharpenings
of the hardness results on extensions of EL.

6.5 Summary

In this chapter, we have generalised the well-known definition of Horn-SH7ZQ
to Horn-SROIQ™, and derived a simplified characterisation of Horn DLs based
on a formal grammar. We have then studied a number of increasingly expressive
Horn description logics that are obtained as fragments of Horn-SROZQ"™* w.r.t.
their worst-case inferencing complexities. The reported results are summarised
in Fig. 6.9. Some non-Horn DLs — &L, RL, SHIQ, SHOIQ, and SROIQ -
are also displayed in this context, while L, and ¥£~ (both ExpTimE) are omit-
ted to simplify the presentation. The complexity results for Horn-SHOZQ and
Horn-SROZ Q do not follow from this work: they have been established only very
recently [ORS10].

The entry for Horn-#Lo™ in Fig. 6.9 is displayed in a dotted box to indicate
that its exact position is not certain. We have established ExpTiME hardness, which
suffices to demonstrate that this extension of Horn-7L~ does no longer admit rea-
soning in PSpace.? The 2ExpTiME upper bound for the complexity follows from

3Unless PSpace = ExpTIME.
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N2ExPTIME SROIQ
................................................................... I......\.............................................
2ExPTIME Hormn-SROZQ
oz
NEXPTIME j”{ _____________ HOM-FL 0 b
ExpTIME

SHIQ Horn-SHOIQ

Horn-SHZQ

Hom-ELF Horm-FLE Horn-FLL™

Figure 6.9: Reasoning complexities of Horn DLs; the exact position of Horn-#Lo~
is not known

the according result for Horn-SROZ Q [ORS10]. Further checks are needed to de-
termine the exact complexity of Horn-¥Lo~. But when considering the fact that
no Horn DL is known to be cmoplete for a non-deterministic complexity class, it
seems to be extremely unlikely that this DL is complete for NExpTmMe. Indeed,
we conjecture that this avoidance of non-determinism is inherent to Horn DLs.

A tableau algorithm for reasoning in description logics between Horn-#L~
and Horn-#LO%H ™ has been devised to show the upper complexity bound for rea-
soning in these logics. In essence, this algorithm achieves its goal in polynomial
space by storing only very small portions of the constructed tableau, correspond-
ing to very restricted “local” environments in the according model. The main re-
sult therefore consists in showing that such an extremely limited view suffices for
complete reasoning in the considered logics. As opposed to Horn-¥ZL, the addi-
tion of nominals to Horn-#L" significantly complicates reasoning procedures, al-
though it does not lead to increased worst-case complexities. Due to a high amount
of unguided non-determinism, the tableau algorithm for Horn-7ZOH" is clearly
unsuitable for practical implementation.

Another important theme of this chapter was to establish hardness results that
require only a minimal amount of logical expressivity, and which can therefore be
useful to derive hardness results for many other DLs as well. This was achieved
by directly simulating Turing machine computations in terms of DL inferencing,
where polynomially space-bounded Alternating Turing Machines have been found
a convenient tool for showing ExpTiME hardness. The versatility of this approach
was illustrated by deriving a number of additional hardness results for extensions
of &L and 7L~ which extended or strengthened existing results.
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6.6 Related Work

Horn-SH I Q has originally been introduced in [HMSO05] where it has been de-
fined as discussed in Section 6.1 but with additional implicit restrictions related
to the presence of transitivity. The latter was caused by a method of transitivity
elimination that creates non-Horn axioms of the form YR.A C YR.VR.A for tran-
sitive roles R which must be taken into account when defining Horn-SHI Q. As
discussed in Section 6.1, this problem can be avoided by encoding transitivity
(and other RIAs) by means of automata encoding techniques as used in [DNO5]
which have first been applied to DLs in [Kaz08]. See Section 9.3 for further dis-
cussion. Taking this into account, our formulation of Horn-SHIQ is slightly
more general than the one in [HMSO0S5] and than the formulations used in pre-
cursors to this work [KHVS06, KRH06, KRH07a]. While the data complexity of
Horn-SH I Q has been one of the main motives for defining it in [HMSO05], the
combined complexity result reported herein is new. Recent investigations revealed
that even entailment of conjunctive queries for Horn-SH 7 Q can be performed in
ExpTmME [EGOSO08], whereas this problem is known to be 2ExpTime-complete for
SHIQ [GLHSO08]. Another recent result established the exact reasoning com-
plexity of Horn-SHOIQ and Horn-SROIQ to be ExpTime and 2ExpTiME, re-
spectively [ORS10].

The lower data complexity of reasoning in Horn-SHZQ has first been ex-
ploited by the KAON?2 system as described in [Mot06, MS06]. Further algorithms
and implementations have since been able to exploit the simpler structure of Horn
knowledge bases to achieve tangible performance gains. An example is the hy-
pertableau reasoner HermiT that can handle arbitrary SROZQ (OWL 2) knowl-
edge bases [MSHO08, MSHO7]. The “consequence-based” reasoning method of
[Kaz09a] is restricted to Horn-SHZQ, but shows outstanding performance for
practically relevant ontologies that fall into that fragment.

Other notable examples of Horn DLs are provided by light-weight descrip-
tion logics. Indeed, disjunctive information makes reasoning NP-hard in all DLs
that support conjunction and GCls, and hence it is excluded from DLs that allow
for polynomial-time reasoning. Thus, it is no surprise to find that EL£"" [BBLOS5,
BBLO08] and various versions of DL-Lite [CGL*07] are Horn DLs in the sense of
this chapter. The same is true for various formulations of DLP [GHVDO3, Vol04],
as has already been observed in Section 6.2.

Reducing inference problems of DL to inference problems of corresponding
datalog programs has been considered in a number of approaches, some of which
avoid the use of disjunctions in datalog if the input knowledge base is Horn. See
Section 8.7 for an overview of related works.

The description logic L~ dates back to [BL84] where it was introduced as a
presumably tractable variant of the frame language #£. While subsumption of
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individual concept expressions can indeed be decided in polynomial time, the
subsumption problem for £~ and even in L, is ExpTiMe-hard in the presence
of arbitrary £~ TBoxes, as was first shown by McAllester in an unpublished
manuscript of 1991 [DLNS96].
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Chapter 7

The Datalog Fragment of
Description Logic

Description Logic Programs (DLP) were introduced as a family of fragments of
description logic (DL) that can be expressed in first-order Horn-logic [GHVDO03,
Vol04]. Since common reasoning tasks are still undecidable for first-order Horn-
logic, its function-free fragment datalog is of particular interest, and the term
“DLP” today is most commonly used to refer to tractable DLs that can be trans-
lated to equisatisfiable datalog.

This statement is slightly more concrete than describing DLP as a subset of the
“expressive intersection” of DL and datalog [GHVDO03], but it is still insufficient
to characterise DLP. In particular, other tractable DLs such as SROE L(11g, X) (and
thus L) can also be translated to equisatisfiable datalog programs, as discussed
in Section 5.4. The union of DLP and &L is intractable since it subsumes Horn-
FLE for which ExpTiME hardness of reasoning was shown in Section 6.4, but one
may still wonder whether DLP is merely one among several equivalent subsets of
the “expressive intersection” of DL and datalog.

But tractability was not among the original design goals of DLP, and one might
also weaken this principle to require merely a semantics-preserving transforma-
tion to datalog. Could the union of DLP and EL then be considered as an ex-
tended version of DLP? Possibly yes, since it is contained in the DL Horn-SHIQ
for which a satisfiability-preserving datalog transformation is known [HMSO05].
However, &L and DLP can be translated to datalog axiom-by-axiom, i.e. in a
modular fashion, while the known datalog transformation for Horn-SH 7 Q needs
to consider the whole knowledge base. But how can we be sure that there is no
simpler transformation given that both data-complexity and combined complex-
ity of datalog and Horn-SH 7 Q agree? The answer is given in Proposition 7.1.1
below.

In any case, it is obvious that the design principles for DLP — but also for EL
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and Horn-SHIQ — are not sufficiently well articulated to clarify the distinction
between those formalisms. This chapter thus approaches an explicit characterisa-
tion of DLP, not in terms of concrete syntax but in terms of general design prin-
ciples, which capture the specifics of the known DLP for datalog. An essential
principle is structurality of the language: a formula should be in DLP based on its
term structure, not based on concrete entity names that it uses. Moreover, we ask
whether DLP could be defined as a larger, or even as the largest, DL that satisfies
our design principles. A positive answer to this question is given by introducing a
significantly larger variant of DLP that is proven to be a maximal DLP description
logic in the sense of this work.

This chapter begins by discussing the problems of characterising DLP and
providing some fundamental results in Section 7.1. Section 7.2 presents a simpli-
fied version of the main results by restricting attention to the smaller description
logic ALC, where it is significantly easier to define a DLP fragment and prove its
maximality. These simplifications allow us to outline the general proof structure
and some relevant methods, but they do neither cover all relevant parts of earlier
DLP definitions nor all relevant proof techniques needed in the general case. A
full definition for an extended language D LP is then provided in Section 7.3. In
Section 7.4, we show how DLP can be expressed using datalog. Section 7.5 dis-
cussed some important model-theoretic constructions for characterising fragments
of first-order logic that can be expressed in datalog. These constructions are then
used as a basis for showing maximality of DL% in Section 7.6. We discuss our
results in Section 7.7 and give pointers to related work in Section 7.7.

A report on some of the results of this chapter is given in [KRS10].

7.1 Initial Considerations and Problem Definition

In this section, we discuss why defining DLP is not straightforward, and we spec-
ify various design principles to guide our subsequent definition. The goal is to
arrive at a notion of DLP that is characterised by these principles, as opposed to
DLP being some ad hoc fragment of description logic that happens to be express-
ible in datalog without being maximal or canonical in any sense. The first design
principle fixes our choice of syntax and underlying DL:

DLP 1 (DL Syntax) Every DLP knowledge base should be a SROZQ"™ knowl-
edge base.

The second principle states that the semantics of every DLP knowledge base
can be expressed in datalog. We will see below that it is sometimes useful to intro-
duce auxiliary symbols during the translation to datalog. If this is done, the datalog
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program can no longer be semantically equivalent to the original knowledge base,
even if all consequences with respect to the original predicates are still the same.
Yet, equisatisfiability — the requirement that a DLP knowledge base is satisfiable
iff its datalog translation is — turns out to be too weak for many purposes. A suit-
able compromise is the notion of emulation as introduced in Section 2.2:

DLP 2 (Semantic Correspondence) There should be a transformation function
datalog that maps a DLP knowledge base KB to a datalog program datalog(KB)
such that datalog(KB) FOL.-emulates KB.!

DLP 2 is a strong requirement with many useful consequences. For example,
it ensures that instance retrieval queries can directly be answered over datalog,
without needing to know the details of the datalog transformation: to find out
whether KB entails C(a), it suffices to check if datalog(KB) entails C(a). But
DLP 2 is much stronger than the requirement of preserving such atomic conse-
quences, since the entailment of any FOL. formula over the signature of KB can
be checked in datalog(KB).

The principles DLP 1 and DLP 2 set the stage for defining DLP but they do
not yet provide sufficient details to attempt a definition. The description of DLP
as the “intersection” of DL and datalog is not a useful basis for defining DLP: the
syntactic intersection of the two formalisms contains no terminological axioms at
all. This raises the question of how to define DLP in a canonical way. A naive ap-
proach would be to define a DL ontology to belong to DLP if it can be expressed
by a semantically equivalent datalog program. Such a definition would be of little
practical use: every inconsistent ontology can trivially be expressed in datalog,
and therefore a DL reasoner is needed to decide whether or not a knowledge base
should be considered to be in DLP. This is certainly undesirable from a practi-
cal viewpoint. It is therefore preferable to give a definition that can be checked
without complex semantic computations:

DLP 3 (Tractability) Containment of a knowledge base KB in a DLP descrip-
tion logic should be decidable in polynomial time with respect to the size of KB.

Note that typical syntactic language definitions are often sub-polynomial, e.g.
if they can be decided in logarithmic space (which leads to a linear-time algo-
rithm that can be parallelised). Yet, polynomial-time language definitions might
still be acceptable: for example, every decidable DL with transitive roles, number
restrictions, and role hierarchies already requires polynomial time for computing
a maximal set of simple roles.

Recall that we use the first-order translation 7 to apply first-order notions such as semantic
emulation to description logics; see Section 3.2.
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The downside of a syntactic approach is that semantically equivalent transfor-
mations on a knowledge base may change its status with respect to DLP. This is
not a new problem — many DLs are not syntactically closed under semantically
equivalent transformations, e.g. due to simplicity restrictions — but it imposes
an additional burden on ontology engineers and implementers. To alleviate this
problem, a reasonable further design principle is to require closure under at least
some forms of equivalence or satisfiability preserving transformations. Particu-
larly common transformations are the constructions of negation normal form and
disjunctive normal form as defined in Section 3.1.3.

DLP 4 (Closure Under NNF and DNF) A knowledge base KB should be in
DLP if and only if its negation normal form NNF(KB) and its disjunctive normal
form DNF(KB) are in DLP.

Closure under NNF will turn out to be mostly harmless, while closure under
DNF imposes some real restrictions to our subsequent treatment. We still include
it here since it allows us to generally present DL concepts as disjunctions, such
that the relationship to datalog rules (disjunctions of literals) is more direct.

The above principles still allow DLP to be defined in such a way that some
DLP knowledge base subsumes another knowledge base that is not in DLP. In
other words, it might happen that adding axioms to a non-DLP knowledge base
turns it into a DLP knowledge base. This “non-monotonic” behaviour is undesir-
able since it requires implementations and knowledge engineers to consider all
axioms of a knowledge base in order to check if it is in DLP. The following prin-
ciple requires definitions to be more well-behaved:

DLP 5 (Modularity) Consider two knowledge bases KB; and KB,. Then KB, U
KB, should be in DLP if and only if both KB; and KB, are. Moreover, in this
case the datalog transformation should be datalog(KB; UKB,) = datalog(KB;) U
datalog(KB»).

Modularity ensures that one can decide for each axiom of a knowledge base
whether or not it belongs to DLP without regarding any other axioms. The goal
thus has changed from defining DLP knowledge bases to defining DLP axioms.
Note that SROZQ with global constraints (regularity, simplicity) does not satisfy
DLP 5 (to see this, set KB; = {Ro S C R} and KB, = {Ro § C S}) which is the
main reason for considering SROZQ"™ instead of SROZQ in this chapter. The
above principles already suffice to establish an interesting result about tractability
of reasoning in DLP:
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Proposition 7.1.1 Consider a class K of knowledge bases that belong to a DL for
which DLP 1 to DLP 3, and DLP 5 are satisfied, and such that the maximal size
of axioms in K is bounded. Then deciding satisfiability of knowledge bases in K
is possible in polynomial time.

Proof. By DLP 2, satisfiability of KB € K can be decided by checking satisfia-
bility of datalog(KB). Assume that the size of axioms in knowledge bases in K is
at most n. Up to renaming of symbols, there is only a finite number of different
axioms of size n. We can assume without loss of generality that the transforma-
tion datalog produces structurally similar datalog for structurally similar axioms,
so that there are only a finite number of structurally different datalog theories
datalog({a}) that can be obtained from axioms « in K. The maximal number of
variables occurring within these datalog programs is bounded by some m. By
DLP 5, the same holds for all programs datalog(KB) with KB € K. Satisfiability
of datalog with at most m variables per rule can be decided in time polynomial in
2™ (Fact 4.1.4). Since m is a constant, this yields a polynomial-time upper bound
for deciding satisfiability of knowledge bases in K. O

We do not require DLP 4 in the previous result since no set of formulae that is
closed under NNF can be restricted to axioms of a bounded size. Proposition 7.1.1
states that reasoning in any DLP language is necessarily “almost” tractable. In-
deed, many DLs allow complex axioms to be decomposed into a number of sim-
pler normal forms of bounded size, and in any such case tractability is obtained.
It turns out that there are arbitrarily large DLP axioms that cannot be decomposed
in DLP, yet Proposition 7.1.1 clarifies why Horn-SHZQ cannot be in DLP: it is
not hard to modify the proof of Theorem 6.4.7 to establish ExpTIME worst-case
complexity of reasoning for a class K of Horn-SH 7 Q knowledge bases as in the
above Proposition 7.1.1. Indeed, the knowledge bases constructed to show Exp-
Tmve hardness in Section 6.4.2 contain only two types of axioms that are not of
bounded size: the tested GCI /,, C A and the universal acceptance axioms (4) of
Fig. 6.8. Both include conjunctions with a linear number of conjuncts which can
easily be decomposed by introducing a linear number of axioms of bounded size.

Note that none of the above principles actually require DLP to contain any
knowledge base at all. An obvious approach thus is to define DLP to be the largest
DL that adheres to all of the chosen design principles. The question to ask at this
point is whether this is actually possible: is there a definition of DLP that adheres
to the above principles and that includes as many DL ontologies as possible? The
answer is a resounding no:

Proposition 7.1.2 Consider a description logic Lp,p that adheres to the princi-
ples DLP I to DLP 5. There is a description logic L}, , that adheres to DLP 1 to
DLP 5 while covering more knowledge bases, i.e. Lpip C L)), p.
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Proof. We first need to argue that, even with unlimited resources for the datalog
translation, it is not possible that DLP supports all SROZQ axioms. We show that,
if the concept expression C is satisfiable and does not contain the symbols R, Ay,
A,, ¢ and d, then the axiom « = {¢} T C M dR.(d M (A; U A,)) cannot be FOL..-
emulated by any datalog program. For a contradiction, suppose that a is FOL.-
emulated by a datalog theory datalog(a). By construction, « is satisfiable, and so
is{a,A; C L}foreachi = 1,2. By Definition 2.2.1, we find that datalog(a)U{A; C
1} is satisfiable, too. Thus, there are models ; of datalog(e) such that Af" = 0.
By the least model property of datalog, there is also a model 7 of datalog(e) such
that AT = AL = 0. But then datalog(a) U {A; LI A, C 1} is satisfiable although
{a, A} U A, C L} 1is not, contradicting the supposed FOL.-emulation.

We can now show that there is some unsatisfiable axiom that is not in Lp;p.
To this end, recall that deciding (un)satisfiability of SHOJQ concept expressions
is NExpTiME hard. This follows from NExpTimE hardness of deciding consistency
of SHOZQ knowledge bases [Tob01] together with the fact that knowledge base
satisfiability in SROZQ can be reduced to concept satisfiability [Sch94]. However,
we just showed that, if the axiom @ = {c} T C M dR.({d} N (A; U Ay)) is in
Lprp with symbols R, Ay, A,, ¢, d not in C, then the concept C is unsatisfiable.
Thus, if Lp;p contains all unsatisfiable SHOJZQ axioms of the form of «, then
deciding whether @ € Lp,p is equivalent to deciding whether C is unsatisfiable
(since one can clearly construct @ from C in polynomial time). By DLP 3, this
would yield a polynomial decision procedure for SHOZ Q concept satisfiability —
a contradiction.

Therefore, there is an unsatisfiable axiom a with @ ¢ Lp.p. Now let L}, , be
defined as {KB | DNF(NNF(KB)) \ {DNF(NNF(a))} € Lprp}. The transformation
is given by datalog’(KB) = datalog(KB) if KB € Lp;p, and datalog’(KB) =
{T - A(x),A(x) — 1} U datalog(DNF(NNF(KB)) \ {DNF(NNF(«))}) other-
wise, where A is a new predicate symbol. It is immediate that this defines a DL
fragment (DLP 1), and that this definition is tractable (DLP 3). Equisatisfiability
(DLP 2) follows since any knowledge base containing an axiom that is equivalent
to « 1s unsatisfiable. Closure under negation normal form (DLP 4) and modularity
(DLP 5) are immediate. |

This shows that any attempt to arrive at a maximal definition of DLP based on
the above design principles must fail. Summing up, the above design principles
are still too weak for characterising DLP: any concrete definition requires fur-
ther choices that, lacking concrete guidelines, are necessarily somewhat arbitrary.
Thus, while it is certainly useful to capture some general requirements in explicit
principles, the resulting approach of defining DLLP would not be a significant im-
provement over existing ad hoc approaches.

Analysing the proof of Proposition 7.1.2 reveals the reason why DLP 1 to
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DLP 5 are still insufficient. Intuitively, a definition of DLP cannot reach the de-
sired maximum since the computations that were required in this case would no
longer be polynomial (DLP 3). Even DLP 5 does not ameliorate the situation,
since expressive DLs can encode complex semantic relationships within single
axioms. The core of the argument underlying Proposition 7.1.2 in this sense is
the fact that there is no polynomial-time procedure for deciding whether or not a
single SROZQ axiom can be expressed in datalog.

These considerations highlight a strategy for further constraining DLP to ob-
tain a clearly defined canonical definition instead of infinitely many non-optimal
choices. Namely, it is necessary to prevent complicated semantic effects that may
arise when considering even single DL axioms from having any impact on the def-
inition of DLP. Intuitively speaking, the reason for the high complexity of evaluat-
ing single axioms is that individual parts of an axiom, even if they are structurally
separated, may semantically affect each other. In expressive DLs, individual parts
of an axiom can capture the semantics of arbitrary terminological axioms: the
TBox can be internalised into a single axiom.

An important observation now is that the semantic interplay of parts of an
axiom usually requires entity names to be reused. For example, the axiom T C
A M —A is unsatisfiable because the concept name A is used in both conjuncts,
while the structurally similar formula T E A M =B is satisfiable. So, in order to
disallow complex semantic effects within single axioms to affect DLP, we can
require DLP to be closed under the exchange of entities in the following sense:

Definition 7.1.3 Let F be a FOL. formula, a DL axiom, or a DL concept expres-
sion, and let . be a signature. An expression F’ is a renaming of F in . if F’
can be obtained from F by replacing each occurrence of a role/concept/individual
name with some role/concept/individual name in .. Multiple occurrences of the
same entity name in F need not be replaced by the same entity name of . in this
process.

A knowledge base KB’ is a renaming of a knowledge base KB if it is obtained
from KB by replacing each axiom with a renaming. <&

Note that we do not require all occurrences of an entity name to be renamed

together, so it is indeed possible to obtain A M =B from A M —A.

DLP 6 (Structurality) Consider knowledge bases KB and KB’ such that KB’ is
an arbitrary renaming of KB. Then KB is in DLP iff KB’ is.

This is clearly a very strong requirement since it forces DLP to be based on

the syntactic structure of axioms rather than on the semantic effects that occur for
one particular axiom that has this structure. We will thus study the semantics and
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expressivity of formulae based on their syntactic structure, disregarding any pos-
sible interactions between signature symbols. We therefore call a FOL. formula,
DL axiom, or DL concept expression F' name-separated if no signature symbols
occur more than once in F'.

Together with modularity (DLP 5), the principle of structurality captures the
essential difference between a “syntactic” and a “semantic” transformation from
DL to datalog. Indeed, if DLP adheres to DLP 5 and DLP 6, then it may only
include knowledge bases for which all potential semantic effects can be faithfully
represented in datalog. The datalog transformation thus needs to take into account
that additional axioms may be added (DLP 5) to state that certain entity names
are semantically equivalent, while hardly any semantic consequences can be com-
puted in advance without knowing about these equivalences. In consequence, the
semantic computations that determine satisfiability must be accomplished in data-
log, and not during the translation. This intuition will turn out to be quite accurate
— but a lot more is needed to establish formal results below.

Structurality also interacts with normal form transformations. For example,
the concept (—A LI =B) M C can be emulated in datalog using rules T — C(x)
and A(x) A B(x) — L. Butits DNF (=AM C) U (=B C) is only in DLP if its
renaming (mAMC)U(=BM D) is, which turns out to not be the case. Therefore, the
knowledge base {—=ALI-B, C}is in DLP but the knowledge base {(=ALI=-B)MC} is
not. We have discussed above why such effects are not avoidable in general. The
more transformations are allowed for DLP, the less knowledge bases are contained
in DLP. Note that such effects do not occur for negation normal forms.

7.2 The Datalog Fragment of ALC

Our investigations in later sections show that the definition of a maximal DLP
fragment of SROZQ"™ is surprisingly complex, and the required proofs for show-
ing its maximality are rather intricate. For this reason, we first characterise the
maximal DLP fragment of the much simpler description logic ALC. The absence
of nominals and cardinality restrictions simplifies the required constructions sig-
nificantly. Various basic aspects of the relationship between DL and datalog can
also be found in this simpler case, but there are also a number of aspects that
are not touched at all. To further simplify the syntactic presentation here, we also
drop the requirement DLP 4 where especially closure under DNF otherwise leads
to more complicated descriptions that do not serve the didactic purpose of this
section.

Throughout this section, we use 3 and V instead of >1 and <0 ... -, which
yields a more natural syntax for ALC. Exploiting DLP 4 we can simplify the
definition of DLP by giving concepts in negation normal form only.
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Concepts that are necessarily equivalent to T and L

L7 =T |VRL? | LZnLA | LA uC

L7 =1 |3RLY LY nC|L]uL]

Body concepts: for C in normal form, C € L? iff CUA (or =C C A)isin DLP #rc
L =L L7 | -A |VRL} | L7 nLY | LY ULy

Head concepts: for C in normal form, C € LZI iff AC Cisin DLP asc

L7 =L} |A|YRL] LN LY | L7 ULy

Assertional concepts: for C in normal form, C € Laﬂ iff C(a) is in DLP a4 rc

L ==L/ | 3RLI | LI 0Ly L7 ULy

Figure 7.1: Grammars of DLP 4 ¢ concepts in negation normal form, simplified
as discussed in Section 3.1.3

Definition 7.2.1 We define the description logic DLP #,¢ to contain all knowl-
edge bases consisting only of SROTQ™ axioms which are

— GClIs C C D such that NNF(=C L D) is an Li‘ concept as defined in Fig. 7.1,
or

- ABox axioms C(a) where NNF(C) is an L' concept as defined in Fig. 7.1.

Note that the simplifications of Section 3.1.3 are used to specify concepts only up
to associativity and commutativity of M and L. <&

Intuitively speaking, the grammars L' and L7 in Fig. 7.1 serve as “head” and
“body” concepts of DLP, and hence play a similar rdle as the concepts C; and C,
have played for Horn DLs in Section 6.1. Concepts of type L7 account for cases
where Skolemisation is admissible for emulating existential statements. Finally,
the languages L7 and L7 encompass concept expressions that are necessarily
equivalent to T or L, even under arbitrary renamings.

Following the grammatical structure of DLP # ¢, we specify three auxiliary
functions for constructing datalog programs to FOL.-emulate a DLP 4 ¢ knowl-
edge base.

Lemma 7.2.2 Given a concept name A, and a concept C € L7, Fig. 7.2 recur-
sively defines a datalog program digi}(A T C) that semantically emulates A C C.

Proof. First note that the definition of dig} (A € C) is well. In particular, programs
dig;(—B T D) are only used if D € L. The claim is shown by induction over
the definitions of dIg?(—'A C C)and dng‘(A E (), where the hypothesis for the
former is that it semantically emulates —=A E C. The easy induction steps can
directly be established by showing that any model of the datalog program can be
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C digi(Ac )

DeL¥ digi (=X € D) U {A(x) A X(x) > L}

B {A(x) = B(x)}

VR.D dig7(X € D) U{A(x) A R(x,y) = X(»)}
DM D, dig7(A c Dy) U digl(A C D)

DiuD, € (LFULY | digf(X, € Dy) Udigi(=X; E Dy) U {A(x) A Xi(x) > Xa(x)}

C digf(-A c C)

Del? 0

DeL] {A(x)}

-B {B(x) > A(x)}

VR.D dig7' (=X E D) U {R(x,y) A X(y) = A(x)}

DinD, e LFNLY | digy(-A € Dy) Udigy(—A C D)
DyuD; € (LFULY) | digf(=X; € Dy) Udigy (=Xa € D7) U {X1(x) A Xa(x) > A(x)}

A, B concept names, R a role, X(;) fresh concept names

Figure 7.2: Transforming axioms A C L' and —=A C L to datalog

restricted to a model of the corresponding DL axiom, and any model of the DL
axiom can be extended to an interpretation that models the datalog program. We
omit further details here. Examples of a very similar argument are found in the
proofs of Lemma 7.4.1 and 7.4.2. O

Lemma 7.2.3 Given a constant a and a concept C € L7, Fig. 7.3 recursively
defines a datalog program dlgaﬂ(C (a), L) that semantically emulates C(a).

Proof. The construction of Fig. 7.3 uses a “guard” concept E that is used to
defer the encoding of L? disjunctions. The induction claim thus is that, for every
E € L?, C € L7, and a € I, the program dlg‘;‘(C(a),E) semantically emulates
(CUE)a).

The concept E is processed in case C € L] by using dig;. Another more in-
teresting case is C = AR.D. The basic encoding works by standard Skolemisation,
but the guard concept is also processed and a new guard —Y is created for the
Skolem constant d. It is not hard to show semantic emulation in all cases and we
omit further details and refer to the full proofs given in Section 7.4. O

We summarise these results in the emulation theorem for DLP 7 ,c.
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C digZ(C(a), E)

DeLf dig7 (X € DU E) U {X(a)}

DN D, dig(D1(a), E) U digZ(Dy(a), E)

Dy uD; € (LF UL |digh(=X C Dy) Udig](Dy(a), E U —X)

3AR.D dig# (=X C E) U {X(a) > R(a, b), X(a) - Y(b)} U dig](D(b),~Y)

E € Lg{, X, Y fresh concept names, b a fresh constant

Figure 7.3: Transforming axioms C(a) with C € L7 to datalog

Theorem 7.2.4 For every DLP a,c axiom « as in Definition 7.2.1, one can con-
struct a datalog program datalog(a) that semantically emulates a.

Proof. If « = C C D is a TBox axiom, define datalog(«) = dIg}?(A C NNF(=C U
D)) U{A(x)}. If @ = C(a) is an ABox axiom, define datalog(a) = dIgf‘(C(a), 1).
The result follows by Lemma 7.2.2 and 7.2.3. O

It remains to show that DLP 4 ¢ is indeed the largest DLP fragment of ALC.
We first define auxiliary datalog programs to entail that a concept’s extension is
empty for arbitrary concepts that are not in L7,

Definition 7.2.5 Given a name-separated concept C ¢ L7, a datalog program
[C C L] is recursively defined as follows:

—IfC=_1Lset[[CC L]4:={}.

—IfCeAset[CC L]z :={C(x) > L}.

—~IfC=-Be-Aset[CC L]a:={Bx)).

- IfC=VYR.Dwith D ¢ LZ set [CC L]# = {R(x,x)} U[DC L]a.
—IfC=3RDset[CC L]x :={R(x,y) = L}.

- IfC=D nDy,withD; ¢ L?set [CC L] 4 :=[D) C L]

- IfC=D,uD;,withD,D; ¢ L?set [CC 1]z :=[D; C L]4U [D:C L]a.

Given a name-separated concept C ¢ L7, a datalog program [T C CJ 4 is defined
as [T C Cla := [NNF(=C) C L] 4. o

Note that this definition is well. In particular, observe that C ¢ L' implies
NNF(-=C) ¢ L?. Moreover, it is easy to see that [C T L]g ([T & Cla) is
satisfiable and entails CC L (T C C).

The next lemma shows that concepts that are not in L' can be forced to require
certain positive entailments to hold in any model in which they have a non-empty
extension.
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Lemma 7.2.6 If C ¢ L} is name-separated then there is a datalog program [[C C
Alla for a fresh concept name A such that

— [C E A]l# U {C(a)} is satisfiable for any individual name a, and
- [CCA]4ECCA.

Proof. The result is shown by induction over the structure of C. If C € A is
a concept name, then [C C AJlg = {C(x) — A(x)} clearly satisfies the claim. If
C =VYR.DwithD ¢ Lf;‘ set[CC All4 :=[[DC Allq U{R(x, x)}. The claim follows
by induction. If C = dR.D with D # 1 then [C C A]g = {R(x,y) = A(x)}
clearly satisfies the claim. If C = D; m D, with Dy ¢ L, D;,D, ¢ L7 then
[C C Alla := [D; C Al 4 satisfies the claim by the induction hypothesis. For the
case C = D, U D, with Dy ¢ L7 and Dy, D, ¢ L7, we can define [C C A4 =
[D, C Az U [D; C L] 4. The claim follows by induction. O

Note that the program [C T AJ# does not FOL.-emulate C C A since the
subprogram [D, T _L]# that is used for the LI case excludes a number of in-
terpretations that satisfy C. But the previous result suffices for our subsequent
arguments.

Theorem 7.2.7 Consider a name-separated concept C, an individual name a, and
a concept name A not occuring in C.

(1) If C ¢ L7 then C(a) cannot be FOL..-emulated by any datalog program.

(2) IfC ¢ L then A C C and T C C cannot be FOL.-emulated by any datalog
program, unless P = PSpack.

In particular, no fragment of ALC that is larger than DLP a,c can be FOL.-
emulated by datalog, unless P = PSPAcCE.

Proof. The proof for both claims proceeds by an interleaved induction over the
structure of C. Note that C cannot be atomic in either case. We begin with the
induction steps for claim (1), assuming that the claims hold for all subformulae of
C. Suppose for a contradiction that there is a datalog program P¢(, that FOL.-
emulates C(a).

If C = AR.D with D ¢ L7 then Pc(,y U {R(a,y) — y ~ b} FOL.-emulates
D(b) for a fresh individual b, contradicting the induction hypothesis (1) for D. If
C = VR.D with D ¢ L} then Pc) U {A(x) = R(a, x)} FOL.-emulates A C D,
contradicting the induction hypothesis (2) for D. If C = C; N C, with C; ¢ L
and C,,C, ¢ Lf then Pcy) U T E Cy]l4 FOL<-emulates C,(a), contradicting the
induction hypothesis (1) for C;.

Consider the case C = C; U C, where Cy,C, ¢ Lf‘. If C, ¢ Lf‘ then P¢,y U
[C; E L]# FOL.-emulates C;(a), again contradicting the induction hypothesis
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(1) for C;. Otherwise, if Cy, C; € L7 then Cy, C; ¢ L?. Using fresh concept names
A; and A,, consider datalog programs P; := {A;(x) > L}U[C; C A4V [C; C
As]la (i = 1,2). It is not hard to see that {C(a)} U P; is satisfiable, so the same is
true for P¢(, U P; by FOL.-emulation. Thus, Pey,) U [C) E Aj]a U [C2 E As]la
must have a model 7, such that Af "= fori=1,2. By the least model property of
datalog (see, e.g., [DEGVOI]), this implies that Pe) U[[C; E A1 ]laUCy CE Az ]lA
has a model 7 such that A{ = Ag = (. Thus P¢,) U Py U P, is satisfiable. But
clearly P, E C; C L (i = 1,2) so {C(a)} U P; U P, is unsatisfiable, contradicting
the supposed FOL..-emulation.

This finishes the induction steps for claim (1). For claim (2), suppose for a
contradiction that A C C is FOL.-emulated by some datalog program P,cc. First
consider the case that C ¢ L7. Then Pycc U {A(a)} FOL.-emulates C(a) for
some fresh individual a, contradicting the induction hypothesis (1) for C. Thus,
the remaining induction steps only need to cover the cases of C € L7\ Lﬂ.

The case for C = C; 1 C; is similar to step (1). Likewise, the only remaining
case of C = C; U (; is the case where, w.l.o.g., ClLaﬂ \ L%, which can also be
treated as before. There are no remaining cases for C = VR.D.

Consider the case C = dR.D with D ¢ L“f. Then Po-c U [T C D].# FOL.-
emulates A C JR.T. The logic obtained by extending DLP # ¢ with axioms of the
form A € dR.T is Horn-#L~ for which reasoning was shown to be PSpace-hard
in Section 6.3.1. It is not hard to modify the proof of the according Lemma 6.3.5
to use only axioms of bounded size. Assuming that P # PSpace the supposed
FOL.-emulation contradicts Proposition 7.1.1. O

Our subsequent results for the maximal DLP fragment of SROZQ™® further
strengthen the previous theorem so that the assumption P # PSpack is no longer
required. We thus do not invest any more effort to accomplish this for the above
case. Another direct proof of this result is given in [KRS10].

7.3 Defining Description Logic Programs

In this section, we provide a direct definition of DLP as a fragment of SROZQ"™,
where we assume that the universal role U is not a special role operator but rather
is introduced a posteriori by suitable axiomatisation. Adding U is not a problem in
principle, but based on the discussions in the next sections it will become obvious
that this would further complicate our presentation substantially. Our motivation
for considering SROZQ is to cover the essential features that were considered for
DLP and OWL 2 RL, neither of which includes the universal role.
We first summarise the characterisation of DLP as presented in Section 7.1.
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Definition 7.3.1 A description logic £ is a DLP description logic if the set of its
knowledge bases adheres to the principles DLP 1-DLP 6 of Section 7.1. <

Our goal in this section thus is to define the maximal DLP description logic.
Some further considerations are needed for this to become practically feasible.
Namely, it turns out that the characterisation as given in the previous section leads
to a prohibitively complex syntactic description of the language. Our first goal
in this section therefore is to identify ways of simplifying its presentation. Note
that it is not desirable to simply eliminate “syntactic sugar” in general, since the
very goal of this work is to characterise which SROZQ knowledge bases can be
considered as syntactic sugar for datalog.

A natural approach is to restrict attention to axioms in some normal form.
DLP 4 requires closure under negation normal form, which seems to free us from
the burden of explicitly considering negative occurrences of non-atomic concepts.
But NNF does not allow for this simplification, since concepts of the form <n R.D
still contain D in negative polarity. Hence, the positive negation normal form of
Definition 3.1.10 is more adequate for our purposes.

While pNNF effectively reduces the size of a DLP definition by half, the defi-
nition is still exceedingly complex. The construction of disjunctive normal forms
is compatible with pNNF, so we can additionally require this form of normalisa-
tion. Another source of complexity is the fact that SROJQ features many concept
expressions for which all possible renamings are necessarily equivalent to T or
1. Simple examples such as T U C were already encountered in the definitions of
L7 and L7 in Section 7.2, but SROZQ also includes expressions like >0 R.C or
<3 R.{a} U {b}.

Definition 7.3.2 Let C be a SROJQ concept expression.

C is structurally valid if T C C’ is valid for every renaming C’ of C.

C is structurally unsatisfiable if C’ C L is valid for every renaming C’ of C.

C is structurally refutable if it is not structurally valid, i.e. if there is a renaming
C’ of C such that T £ ("’ is refutable.

C is structurally satisfiable if it is not structurally unsatisfiable, i.e. if there is a
renaming C” of C such that C’ C L is refutable.

The renamings C’ considered here refer to renamings over arbitrary signatures,
and are not restricted to the signature of C. &

Many non-trivial examples for such concepts are based on the fact that some
DL concepts do not allow for arbitrary interpretations but are in fact constrained to
certain extensions. It is possible to provide a complete syntactic characterisation
of these SROJQ concepts.
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Concepts containing at most n elements in any interpretation, and their complements
L, =Lyo:=1|L,nC|L, UL, |>nRLg_; (n>1)
Lops1 5= {I} [ Loy | Lt MC | Lgyw ULy (m" +m” = m + 1)
L, =Lox:=T|A|{I}| 3R.Self | -A | ~{I} | —3R Self | L.nL, |L,uC |
<nR—-C(n=>0)|>0R.C|2nRLg,-1 (n>1)

Loy o= T | A|3R.Self | -A | ={I} | -3R.Self |
Lt MLgpit | Loy UC | LSm’_l—l Loy (m' +m"” =m) |
<nR~-C(n>0)|>0R.C|>nRLc,-1 (n>1)

Concepts not containing at most n elements in any interpretation; their complements
Lt=Lsyo:=T|LtUC|Lt Ly |>0R.C|<nR.—Lyy_, (n>0)
LZw—m—l m= {1} | LZw—m | LZw—m—l uCl LZw—m’ r LZw—m” (m’ +m” =m+ 1)

Lt =Lsyo:=1]A[{I}|3R.Self | -A | ={I} | -3R.Self | L+ UL+ |[L+ 1 C |
>nR.Cmn>1)|<nR.-Ls, , (n>0)
Lowm_1 5= L | A |{I}| IR.Self | -A | ={I} | =3IR.Self |
Lsw-m-1 ULsgom-1 | inJ—m—l M C | Ly MLsy_pmr (m'+m" =m) |
>nR.Cn>1)|<nR-Ls,, (n>0)

C: any SROTQ™ concept

Figure 7.4: Grammars of structurally valid, unsatisfiable, refutable, and satisfiable
concepts

Lemma 7.3.3 The grammars given in Fig. 7.4 characterise sets of SROIQ con-
cept expressions as follows:

C € L., iff C* contains at most n elements for any interpretation I,

— C € L., iff CT contains more than n elements for some interpretation I,

— C € Lsy_, iff A* \ C* contains at most n elements for any interpretation I,

= C € Lay, iff A"\ CT contains more than n elements for some interpretation I.

In particular, L+, L, ET, and L 1 characterise the sets of structurally valid, un-
satisfiable, refutable, or satisfiable concept expressions.

Proof. We first show the “only if” direction of L., by induction over the structure
of the grammars. The base cases L and {I} (where n > 1 is required) are obvious.
The case L., (where n > 1) is immediate from the induction hypothesis. Note
that the cases of L and M for n = 0 are simply special instances of the respective
cases for n > 1. The cases for L., 1 C and L., M L.~ are again obvious from
the induction hypothesis.
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Considering the grammar for each operator, it can be seen that L., is indeed
the set complement of L., for each n. An easy induction over n is used to show
this formally, where it suffices to compare the cases for each constructor to see
that they are exhaustive and non-overlapping. Thus, to show the “if”” direction of
the claim for L., it suffices to show the “only if”” direction of the claim for L.,.

The “only if” direction of the claim for L., if again established induction over
the structure of concepts in L.,. Most cases are obvious. For the case of C 1 D, it
is necessary to note that the extensions of C and D, in addition to containing more
than n elements, can always be selected freely to ensure that the intersection of
both extensions contains enough elements.

The proofs for the claims about L., and Ezw_n are similar. O

The previous result shows that structural validity, satisfiability, unsatisfiability,
and refutability of a concept expression can be recognised in polynomial time by
using the given grammars.? For another simplification of our characterisation, we
may thus assume that almost all occurrences of such concepts have been elimi-
nated in the concepts that we consider. This completes the ingredients we need for
defining the normal form that is used below.

Definition 7.3.4 A concept C is in DLP normal form if C = DNF(pNNF(C)) and

— 1f C has a structurally valid subconcept D, then D = T and either C = D or D
occurs in a subconcept of the form >n R.D,

— if C has a structurally unsatisfiable subconcept D, then D = L and either C = D
or D occurs in a subconcept of the form <n R.—D.

The unique DLP normal form of a concept D is denoted by DLPNF(C). &

It is easy to see that DLPNF(C) can be computed in polynomial time. In par-
ticular, structurally valid and unsatisfiable subconcepts can be replaced by T and
1, respectively, and expressions of the form C LI L and C M T can be reduced to
C. Also note that the order of applying the single normalisation steps does not
affect the DLP normal form. It therefore suffices to characterise concepts in DLP
normal form that are in a DLP description logic. When convenient, we continue to
use GClIs C C D to represent the unique DLP normal form of —=C U D. Exploiting
associativity and commutativity of M and of U, we furthermore disregard order
and nesting of multiple conjunctions or disjunctions.

Whereas structurally valid and invalid subconcepts are ignored in DLP normal
forms, we still have reason to consider concepts with restricted extensions. We

ZNote that the omission of the universal role allows us to ignore concepts such as <0 U.{a}
which would otherwise be structurally unsatisfiable; similar simplifications occur throughout this
section.
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thus use D, (Ds,_,) to denote the sublanguage of concepts of L., (Ls,_,) that
are in DLP normal form.

Before giving the full definition of a large — actually, as we will show below,
the largest — DLP description logic, we provide some examples to sketch the com-
plexities of this endeavour (datalog emulations are provided in parentheses). DLP
expressions of the form AT dR.BC VS.C (A(x) AR(x,y) AB(y) AS(x,z) = C(2))
are well-known. The same is true for A © 3R.{c} (A(x) — R(x,c)) but hardly for
A C 22R.({c} u{d}) (A(x) - R(x,c), A(x) > R(x,d), c ~ d — 1). Another
unusual form of DLP axioms arises when Skolem constants (not functions) can
be used, as in the case {¢} T >2R.A (R(c, s), R(c, s"), A(s), A(s'), s = s/ —> L
with fresh s, s") and A C dR.({c} M AS.T) (A(x) = R(x,c), A(x) — S(c, s) with
fresh s). Besides these simple cases, there are various DLP axioms for which
the emulation in datalog is significantly more complicated, typically requiring
an exponential number of rules. Examples are {c} C >2R.(—-{a} U A LU B) and
{c}C25R.(AU{alu (b} n<1S.({c} L{d}))). These cases are based on the com-
plex semantic interactions between nominals and atleast-restrictions.

Definition 7.3.5 We define the description logic DLP to contain all knowledge
bases consisting only of SROZIQ™ axioms which are

— RBox axioms, or

— GClIs C £ D such that the DLP normal form of =C LI D is a Dpp concept as
defined in the following grammar:

Dpip =T |L|Cy|DTm2>1)|Cyr

where Cy is defined as in Fig. 7.5, and D™ and C, are defined as in Fig. 7.6,
or

— ABox axioms C(a) where the DLP normal form of C is T, L, or a D, concept
as defined in Fig. 7.5.

As before, the simplifications of Section 3.1.3 are used to omit 4 and V, and to
specify concepts only up to associativity and commutativity of M and LI. <

In spite of the immense simplifications that DLP normal form provides, the
definition of DLP still turns out to be extremely complex. We have not succeeded
in simplifying the presentation any further without loosing substantial expressive
features. Some intuitive explanations help to understand the underlying ideas. It
is instructive to also compare these intuitions to the above examples.

The core language elements are in Fig. 7.5. Since all concepts are in DNF, each
sublanguage consists of a conjunctive part C and a disjunctive part D. Definitions
of DLP typically distinguish between “head” and “body” concepts, and Cy and
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Body concepts: for C in normal form, C € Dp iff C U A (or =C E A) is in DLP
Cp :=-A | -{I} | -3R.Self | KOR.-Dp U {L}) | Cg 1 Cp
Dy = Cp | DgLDg
Head concepts: for C in normal form, C € Dy iff A C C is in DLP
Cy:=Cp|A|{l}]| IR.Self | 2nR.D,; | KOR.=Dy | <IR.=Dp U {L}) |
CynCy | Dy
Dy :=Cyx |DyuUDp|D,UCs
Assertional concepts: for C in normal form, C € D, iff {a} C C is in DLP
C,:=Cyg|>nRD”" | C,NC,
D, =C,|D,uUDg
Disjunctions of nominal assertions of the form {I} 1 C,
Dy =={I} [ {I} N Cq
D11 2= Dy U Dy
Conjunction of negated nominals, i.e. complements of some nominal disjunction
C.y ==-{I)
Con+1y == Co N I}
C, =-{I} | Cs 1 Cs
Filler concepts for >n in D,
D> i=T[Co,uD} (1 <m<n*—n)|DpuD}, (m<n)|

D,uD! uD; (forr:=n-(m+1) wehaver>0andr(r—1)=m)
where no disjuncts are added for expressions D, and Dy

Extended concepts with restricted forms of (“local”) disjunctions, used in D" only
Cj 2= Cp | SOR.=D} | <nRA(DF N Dy ) | C5TC
D}, := C; | D3 uD} | D} UCs

C;, :==Cy | 2nRD} | <OR.-D}, | <IR.=Dj | <n R~(DF NDsy) |
C;,nCj, | D],
D}, == C}, | D}, uD} | D} U Cs
C} w=C} | >nR.(D} U{T) | C; NCE
D} :==C} | D uD}
D, == {I}nC;
D', =D uDj

m+1!

Figure 7.5: Grammars of DLP concepts in DLP normal form, simplified as dis-
cussed in Section 3.1.3

C; play a similar role in our definition. Cy represents concepts that carry the full
expressive power of a DLP GCI, and can serve as right-hand sides (“heads”) of
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Additional concepts based on global domain size restrictions
D=l = {}n C},
D=+ o= DT L ({(Iy n CT™ )

Additional concepts expressing T for unary domains (‘propositional’ case)
Cl:={I}|CEnCY | <OR~(MDY) | <nR.=D (n>1)
D? :=CY DY uD
Additional head and body concept expressions for unary domains (‘propositional’ case)
Cp = CI' | CY | -A | -3RSelf | C4 N Cy | <OR~(D5 U{L})
2D ID” I DP P
Dy == D7 | Dy | Dy LDy
CZ n= C’l; | A| AR.Self | CZ M CZ | >1 R.DZ | <O R.ﬁD’;I
PP P P
D, :=D7 [C, | D, UDy,

Additional structurally unsatisfiable concepts for domains of restricted size
Cil:=~{I} | CT' N C|>1RDT' | >2nRD(n > 2)

C7"l e=C7™ N C2nRD ' (n>1)| 2nRD(n > m+2)
DT = CT" | D" uDT™"

Concepts that can never hold for all individuals

Cor i=-{I} | Cxr 1 C

D: concepts in DLP normal form that are not structurally valid or unsatisfiable
C: concepts of D that are no disjunctions

Figure 7.6: Grammars of DLP concepts: special cases with restricted domain size

DLP GClIs. Cp concepts can be seen as negated generic left-hand sides (“bodies™)
of GClIs. However, these basic classes are not sufficient for defining a maximal
DLP. C, characterises concept expressions which can be asserted for named in-
dividuals — these are even more expressive than Cy in that existential restrictions
are allowed (intuitively, this is possible as in the context of known individuals the
existentially asserted role neighbours can be expressed by Skolem constants). D,
concepts then can be viewed as collections of individual assertions (e.g. {a} 1 B).
Another way of stating such assertions is to use C; in a disjunction (e.g. ~{a}UB).

By far the most complex semantic interactions occur for atleast-restrictions in
ABox assertions: D*” and all subsequent definitions address this single case. For
example, the DLP axiom {a} T >2 R.(—~{b} LA LI B) can be semantically emulated
by the following set of datalog rules, where c; are auxiliary constants:

R(a,c1), R(a,c;), b=c - AWb), b=c,— Bb), c=~c— L.
This emulation uses internal symbols to resolve apparently disjunctive cases
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in a deterministic way. The datalog program does not represent disjunctive infor-
mation: its least model simply contains two successors that are not equal to b. The
nested disjunction only becomes relevant in the context of some disjunctive FOL.
formula, such as Yx.x = a V x = b. The considered theory is no longer datalog
in this case, and the program simply “re-uses” the disjunctive expressive power
provided by the external theory. The fact that the actual program is far from being
semantically equivalent to the original axiom illustrates the motive and utility of
our definition of semantic emulation.

Many uses of nominals and atleast-restrictions lead to more complex interac-
tions, some of which require completely different encodings. This is witnessed by
the more complex arithmetic side condition used in D*". Concepts in D, N D}
correspond to disjunctions of m nominal classes, each of which is required to sat-
isfy further disjunctive conditions, as e.g. {b} M >1 R.(A U B). Now, as an example,
a disjunction of an atomic class and four such “disjunctive nominals” is allowed
as a filler for >7 (since 3 X 2 > 4) but not for >6 (since 2 X 1 < 4). Also note that
the disjunctive concepts like Dy, and D that are allowed in fillers do not allow all
types of disjunctive information but only a finite amount of “local” disjunctions.
For example, {a} LI B U C requires one “local” decision about a, whereas concepts
like {a} M <OR.=(B U C) or {a} M <2 R.—L require arbitrarily many decisions for
all R successors.

The remaining grammars in Fig. 7.6 take care of less interesting special cases.
Most importantly, C7, covers all concepts that can be emulated if the interpretation
domain is restricted to contain just one individual. C.+ contains axioms which
make the knowledge base inconsistent as they deny the existence of a nominal.
The auxiliary classes C7" describe concepts that cannot be satisfied by an inter-
pretation with at most m elements in their domain, as described in the following
lemma.

Lemma 7.3.6 A name-separated concept C # L in DLP normal form is in CT"
as defined in Fig. 7.6 for some m > 1 iff, for all interpretations I with domain size
#AT) <m, wefind T = CC L.

Proof. The “only if” direction can be shown by an easy induction, where the base
cases are given by concepts >n R.D with n > m, and — in the case n = 1 — negated
nominals —{a}. The proof is straightforward and we omit further details.

For the “if” direction, assume that C ¢ CT"U{L}, and let A be a domain of size
m, i.e. #(A) = m. Then, for any 6 € A, we can find an interpretation 7 (¢, C) such
that A7®O = A and § € C*@O. The base cases with C of the form C, IR.Self, {I},
-C, -3R.Self, and — if n = 1 — ={I} are obvious. If C = D U D,, then, without
loss of generality, D; ¢ C7" and 7(6,C) = 1(6, D)) satisfies the claim.

Now assume that C is of the form D; m D,. Then Dy, D, ¢ C7™ U {1}, and
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C digz(-AE C)
{A(x)} ) PInv
-B {B(x) > A(X)} U Pryy
—{c} {A(0)} U Pryy
—3dR.Self | {R(x,x) = A(x)} U Pryy

D1 N D, | digg(—AC Dy)Udigy(—AC D)
Dy u Dy | digg(=X; E Dy)Udigg(=Xa C D2) U {X1(x) A Xa(x) = A(x)}
<OR.—D | digz(=X C D) U {R(x,y) A X(y) = A(x)}

A, B concept names, ¢ an individual name, R a role, X; fresh concept names

Figure 7.7: Transforming axioms —A C (D U {L}) to datalog

we find interpretations 7 (6, D;) and 7(d, D,) as in the hypothesis. Since C is
name-separated, the hypothesis for D, is also satisfied by any variant 7'(6, D)
of 7(9, D) which is obtained by changing the interpretation of symbols that oc-
cur in D,. Thus we can assume without loss of generality that 7(d, D) has been
chosen such that it agrees with 7 (6, D;) on all signature symbols that occur in D;.
By a symmetric argumentation for 7 (¢, D,), we find that such an 7(6, D) would
also satisfy the hypothesis for D,, and hence we can set Z (6, C) := 1(6, D).

If C = <nR.D, then any interpretation 7 (8, C) with RZ(5, C) = 0 satisfies the

claim. If C = >n R.D with n < m, then consider distinct elements d;,...,9, € A.
Using structurality and the induction hypothesis again, we find a model 7 (6, C) =
I(6;,D) =...=I(8,,D)suchthat R7®O = {(5,6;|1 <i<n)). O

7.4 Emulating D/L%P in Datalog

In this section, we show that knowledge bases of D L% as given in Definition 7.3.5
can indeed be emulated in datalog.

Emulations are generally established by means of recursively defined func-
tions that translate D LP axioms to datalog. Relevant (auxiliary) transformations
are required for each of the languages defined in Fig. 7.5 and 7.6. In all cases, the
built-in semantics of inverse roles is explicitly needed in datalog. For this purpose,
an auxiliary datalog program Prp,, is defined as Py, = {R(x,y) — Inv(R)(y, x) |
R € R}, where R is the set of roles of the given signature. We begin with the rather
simple case of Dp.
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Lemma 7.4.1 Every DLP axiom —=A T C with A a concept name and C € Dy U

{L} is semantically emulated by the datalog program dlgz(—A C C) as defined in
Fig. 7.7.

Proof. Note that the definition in Fig. 7.7 is well — especially all recursive uses
of dlg, refer to arguments in the domain of this function. The proof proceeds by
induction over the structure of C, showing that the conditions of Definition 2.2.1
are satisfied. We show a single induction step to illustrate the easy argumentation.

Consider the case C = D; U D,. For one direction of the claim, consider any
model 7 of =A T C. An interpretation Z” over the extended signature is defined
by setting X?' := AT\ D fori = 1,2. It is easy to see that 7" |= {=X; C D |
i = 1,2} U{X;(x) A X5(x) — A(x)}. By the induction hypothesis, we can find an
interpretation 7, that extends 7’ and such that 7,  dlgz(—X; © D;). Another
application of the hypothesis yields a model 7, | dlgz(—A E C) as required
to show the claim. The other direction requires us to show that every model of
dlgz(—A E C) is also a model of —=A T C, which is obvious when applying the
induction hypothesis. O

Now define, for a datalog program P and a ground literal A(c), a datalog pro-
gram Pl = {A(c) NF — H | F — H € P}. This way of manipulating datalog
programs is convenient for our following definitions. Clearly, if P semantically
emulates a formula ¢, then P4, semantically emulates ¢ V =A(c).

The remaining language definitions of Fig. 7.5 are interdependent, so the cor-
responding translation needs to be established in a single recursion for which se-
mantic emulation is shown in a single structural induction. We still separate the
relevant claims for clarity, so the following lemmata can be considered as in-
duction steps in the overall proof. The following lemma illustrates a first, simple
induction step:

Lemma 7.4.2 Consider a concept C € Dy such that, for every proper subconcept
D € D, of C and individual name d, the program dlg,({d} C D) semantically
emulates {d} E D. Then, given a concept name A, the datalog program dlg,(A C
C) as defined in Fig. 7.8 semantically emulates A T C, where we use ind(E) to
denote the set of individual names that occur in a concept E.

Proof. Note that the definition is well, and especially that all uses of programs
dig,({d} E D) do indeed refer to proper subconcepts D of C. The proof proceeds
by induction, using similar arguments as in Lemma 7.4.1. We illustrate a single
case which uses some features that did not occur before.

Consider the case C = {c} 1 D € Dy,. For the one direction, let 7 be a model
of A C C.If n({c} & D) is a first-order formula that corresponds to {c} C D,

then 7 | —A(c) V n({c} C D). Moreover, I | A C {c}. By our assumptions and
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C digy(AEC)

D e Dp digz(=X E D) U {A(x) A X(x) — L}
B {A(x) = B(x)} U Py

{c} {A(x) =» ¢ = x} U Py

AR.Self {A(x) = R(x,x)} U Py

Dy Dye (DM Dy)| digy(A E Dy)udlgy(A E D;)
{ctmD €Dy dig,({c} E D)la) U digy (A E {c})

DiuD,e (DH LI DB) dIgH(X2 C Dl) U dIgB(—|X1 C D2) U {A()C) A X](x) — Xg(x)}
DyuDye (D, U Cy) | Uceinapy) d19,(c} E Di)lace)
>nR.D € (ZnR.Dy) | Ueceindp) ({A(X) = R(x, o)} U Useinao\ (e} fA(X) A cxd — L} U

dig,({c}= D))
where D, is such that D = D/ LI (D, M {c}) for some D.. € D,_y,
<OR.-D dig, (X E D) U{A(x) A R(x,y) = X(»)}
<1R.-D digg(=X E D) U{Ax) AR(X, ) ANXP) AR(Xx,2) AN X(2) =y =27}

A, B concept names, ¢, d individual names, R a role, X(;, fresh concept names,
dig,({c} E C) as defined in Fig. 7.9 below

Figure 7.8: Transforming axioms A C Dy to datalog

the induction hypothesis, dlg,({c} E D) semantically emulates {c} & D — hence
dig,({c} E D)|4( semantically emulates —=A(c) V n({c} E D) —, and dlg,(A C {c})
semantically emulates A £ {c}. Since the auxiliary symbols that may occur in
both datalog programs are distinct, semantic emulation yields a single extended
interpretation 7’ such that 7* | dlg,({c} E D)lae) and I” | digy(A C {c}),
as required. The other direction is shown in a similar fashion by applying the
induction hypothesis and assumptions of the lemma. O

The induction steps for defining dlg,({c} E C) are rather more complex, and
some preparation is needed first. Concepts of the forms D}, Dj;, and D}, allow
for restricted forms of “local” disjunction. To make this notion explicit, we first
elaborate how such concepts can be expressed as disjunctions of finitely many
DLP knowledge bases.

Definition 7.4.3 Consider concept expressions C and D such that:

- Ce~-Cand D € Dj, or
- CeCand D € Dy, or
- Cef{l}and D € D;.
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A set of knowledge bases Kccp is defined recursively as follows:

(1) If D € D, then Kccp = {{C C D}}.
Assume D ¢ D, for the remaining cases.

(2) If D = D; 11 D, then «CED = {KB] UKB, | KB € WCEDUKBZ S (](CEDz}-
(3) If D = D; U D, then:

(3a) If D; € C,, define auxiliary sets of knowledge bases K, for M C ind(D,)
as follows: Ky = {{C E Myews ~{dH U Uueinao, o KBa | KBy € Kiaycn, .
Then set Keep = Uncinan,) Ku-

(3b) If D, € Dj\ Cs, then consider fresh concept names B; and B,, and define
Keep = {{C E =B LBy} UKB, UKB, | KB) € K ,cp,. KB € i, ).

(3c) If Dy, D, ¢ D}, then Kecp = Keep, U Keep, -

(4) If D = >nR.D’ then:

(4a) If D" € D!, then w.l.o.g. D" = D, U...U D, with D; = {d;} M D! and D! €
C}. Define Kccp = {{C T >nR. | {d}} U UL, KB; | KB; € Kigcp |-

(4b) If D’ ¢ D}, then consider a fresh individual name d and assume that
VQ[,};D/': {KBy,...,KB,}. Letd; (i = 1,...,n) be fresh individuals, and
let KB’ denote the knowledge base KB; with all occurrences of d re-
placed by d;. Then define Kccp = {{{di} M{d;}C L] 1<i<j<nju{CC

>1RAd} | 1<i<n}U U ce, KB [ Kioooo ko € (1.8},
(5) If D = <nR.—D’ then:

(5a) If D’ € C, then a >n-partitioning M ofind(D’)isaset M = {M,,..., M,}
of m > n mutually disjoint non-empty sets M; C ind(D’). Given such a
>n-partitioning, define KBy, = {{c} C {d} | ¢c,d € M, forsomei €
{I,...,m}U{CM[ s Z1Rfc}C L |S Cind(D),#{M;| M;NS + 0} >
n}. Then define Kccp = {KBy( | M a >n-partitioning of ind(D")}.

(5b) If D’ = D, U D, where D, € Cs and D, € D}, then define a set of
knowledge bases K, for a set M C ind(D,) as follows: Kj; = {KB u
Uden KBy | KB € Keepr with D" = <n R [ yeing, \w —1d}, KBy €
Kiacp,}- Then define Keep = Uncingp,) K-

(5¢) If n < 1 and D" € Dy, then consider a fresh concept name B, and set

C’ == ~Bif D’ € Dy and C’' := B otherwise. Define Kccp = {{C C
<nR~C’}UKB |KB ¢ (KC,;D,}.
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As usual, empty conjunctions are treated as T. In cases (3a) and (5b), the con-
struction may lead to axioms in L+; these axioms are omitted from Kecp. O

Observe that, without loss of generality, the cases in the previous definition
are indeed exhaustive and mutually exclusive for D € D} . In particular, cases (5a)
and (5b) cover all situations where D € (Ds,,—,, ND}), where we find #ind(D’) > n
and #ind(D,) > n, respectively, since we assume that D ¢ D,. It is easy to verify
that all recursive uses of Kccp satisfy the definition’s conditions on C and D, and
that all axioms in knowledge bases of Kccp are in DLP normal form. Note that
case (4b) can only occur if D € D} \ D}, so C must be a nominal in these cases.
Similar observations for the other cases allow us to state the following lemma.

Lemma 7.4.4 Consider concept expressions C and D as in Definition 7.4.3. If D
is in D} (D}, D) then all axioms of the form C E E in knowledge bases of Kccp
are such that E is in D, (Dy, Dp).

In particular, the knowledge bases in Kccp are in DLP.

Proof. The claim can be verified by considering all axioms that are created in the
cases of Definition 7.4.3. The claims for D}, D7,, and D are interdependent and
must be proven together.

The claim clearly holds for the base case (1). Case (2) immediately follows
from the induction hypothesis. Case (3a) is trivial since additional axioms of the
form C C E do not occur in knowledge bases of Kiscp,. Case (3b) and (3c)
are again immediate from the induction hypothesis, where we note for (3b) that
D, U D, isin D, (Dy, Dp) for D; € Dg \ Cs whenever D, is in D, (Dy, Dp).

Case (4a) can only occur if D € D7, \ D, so it suffices to note that the concept
>nR.| |i_{d;} is in Dy. Case (4b) in turn requires that D € D} \ D}, and clearly
>1R.{d;} € D,.

Cases (5a) is immediate, since CM[ | .5 =1 R.{c} E L is equivalently expressed
as C C [ ].cs <SOR.—~—{c}, the conclusion of which is in Dg. Case (5b) follows
directly by induction. Case (5c) comprises three relevant cases: n = 0 and D’ € D
(DeDy),n=0and D’ € D}, (D € D}),n=1and D" € D} (D € D},). We find
that C" is in Dg (Dy) whenever D’ is in Dy (D7,), so that the claim holds in each
case.

It remains to show the second part of the claim. Using the first part of the claim,
the preconditions on C and D imply that all axioms C T E that are constructed
for Kccp are in DLP. Axioms C’ T E in Kccp with C’ # C must be obtained
from some K¢ cp that was used in the construction of Kccp. But such recursive
constructions only occur in cases where the preconditions of the definition are
satisfied, so the claim follows by induction. O

The next proposition shows that C £ D is emulated by the disjunction of the
knowledge bases in Kcp, thus establishing the correctness of the decomposition.
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DL does not provide a syntax for knowledge base disjunctions, and we do not
want to move to first-order logic here, so we use a slightly different formulation
that follows Definition 2.2.1.

Proposition 7.4.5 Consider concept expressions C and D as in Definition 7.4.3,
both based on some signature .. Let ./’ be the extended signature of Kccp.

— Every interpretation I over . with I = C E D can be extended to an inter-
pretation I" over .’ such that I' = KB for some KB € Kccp.

— For every interpretation I’ over .’ such that I’ = KB for some KB € Kccp,
we find that I’ = C C D.

Proof. We proceed by induction. Case (1) is obvious. Cases (2) is immediate from
the induction hypothesis. For case (3a), let M be the largest set of individuals such
that 7 = C C [ ] —{d}. Using the induction hypothesis, it is easy to see that
I E C C D implies that there is an extension Z’ of 7 such that 7’ = KB for some
KB € K. The converse is similar.

For case (3b), consider an interpretation J over . with 7 = C C D. Consider
the extended signature . with the fresh concept names B; and B,, and define
an extension 7" of 7 over .’ by setting B!" := =D! and B!" := D!. Then
I" = =By E Dy and I” | B, E D,, and we can apply the induction hypothesis
for K_,cp, and Kp,cp, to obtain models 7" (over some extended signature .”"")
such that 7/ = KB, for some KB, € K_pcp, and I | KB, for some KB, €
Kp,cp,- Since 7 and I agree on By, B,, and all symbols of C C D, there is an
interpretation 7” such that 7’ = KB; U KB,. Since C7 = =B U BY | it is easy to
see that 7’ satisfies the conditions of the claim. The other direction of the claim
for (3b) is an easy consequence of the induction hypothesis.

Case (3c) can only occur if C € {I}, and it is easy to see that the claim holds in
this case.

Case (4a) is again not hard to see when using the induction hypothesis. For
case (4b), first note that C must be a nominal since D is cannot be in Dy. The
required semantic emulation then is an easy consequence of standard Skolemisa-
tion, where each successor d; may satisfy any of the sufficient subconditions that
are captured by KB!, ..., KB'.

The reasoning for case (5a) is similar to case (3a): given an interpretation 7,
we find a >n-partitioning M such that ¢,d € M; iff ¢! = d*. It is easy to see that
J E C C D implies 7 | KBy,; no induction is required. The other direction is
again obvious.

Case (5b) is a simple extension of case (5a) where a subset M of individuals is
selected in each knowledge base to ensure that all individuals of M are instances
of D,, thus reducing the requirement to a maximal number of R-successors that do

136



7.4 EMULATING DLP IN DATALOG

not belong to M. To express this more formally, we use expressions >1 U.({d}ME)
where U is the universal role that can be semantically emulated in DLP — this
allows us to embed ABox assertions into GCIs. With this notation, we observe
that C € <nR.—~(D; U D) is semantically emulated by the disjunction of all the
axioms C C <nR.= [ yeina, \u ~4d} O genr 21 U.({d} 1 C) for all M C ind(Dy).
It is easy to see that the construction in (5b) corresponds to this disjunction, where
conjunction is modelled as in case (2), and individual assertions are encoded using
the recursive constructions Ki;cp, that are valid by the induction hypothesis. The
converse is easily obtained by similar considerations.

Case (5¢) uses a similar argument as case (3b). Consider an interpretation 7
over ./ with 7 = C C D. For the extended signature .’ with fresh concept
name B, an extension 7"’ of T is defined by setting C’?” := D’. By the induction
hypothesis for K¢ cp, we find a model 7’ (over some extended signature .7”")
such that 7' | KB for some KB € K¢ . But then there is a corresponding
knowledge base KB’ = {C C <nR.—~C’} U KB in K¢cp such that 77 = KB’. Thus
1" satisfies the conditions of the claim when restricted to .. The other direction
is again easy. O

We can now define datalog programs for semantically emulating axioms of
the form {c} C >n R.D>". We consider all three main cases — C_,, UD}, Dz LID" ,

D, u D}, u D, — individually, before combining these cases with the remaining
forms of D, to complete the induction.

Lemma 7.4.6 Consider a constant c, and a concept C = >n R.D LI D, such that
D, €C.,, D, €D/, and (1 <m < n*—n).
Assume that, for every individual symbol d and every knowledge base KB €
Kiaicp,, there is a datalog program datalog(KB) that semantically emulates KB.
Then we can effectively construct a datalog program dlg, ({c} E C) that se-
mantically emulates {c} C C.

Proof. Let h be the smallest number such that 2" > (#K4cp,)", where d is an
arbitrary constant (clearly, the cardinality #K,cp, does not depend on the choice
of d). Now let § = {c; | i,j € {l,...,n},k € {l,...,h}} beasetof nxXnXxh
fresh constants. It is convenient to consider the indices of constants in S to be
coordinates, so that S consists of the elements of a three dimensional matrix with
n rows, n columns, and /4 layers. Now given any k = 1,...,h, we define sets
Af, B C S foralli=1,...,n by setting:

k. koo
A7 = A{ciks Cioks -+ > ik} and - By = {C1it, Coiks -+ - Crik}-

In other words, Af? (Bf.‘) is the ith row (column) in layer 4 of §. Now given a
set O C S, define O(k) = {c;x € O | i,j € {1,...,n}} — the intersection of O
with layer £ in S. Now for every h-tuple v = (X, ..., X)) with X € {A, B} for all
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k =1,...,h, there is a unique partitioning P, = {Oy,...,0,} of § into n disjoint
subsets O; € S (1 < i < n) for which the following holds: for every i € {1,...,n}
and k € {1,...,h}, we find that O;(k) = (X))} Observe that the 2" partitions P,
that can be constructed in this way are indeed mutually distinct. Intuitively, the
partitions P, thus encode binary numbers of / digits.

Given partitionings P = {Oy,...,0,} and P = {01, ..., O;,,} of S, we say that
P is finer than P’ if, for every i € {1,..., p’}, we find that O] is a union of parts
O; € P. Note that every part O; can be contained in at most one part O;, and thus
p’ < p. Partitions of the form P, have the following important property: for every
partition P = {O,...,0,} of § with p € {n,...,n + m — 1}, there is at most one
partition of the form P, such that P is finer than P,. To show this, consider two /-
tuples v, w C {A, B}" that differ in (at least) the kth component (k € {1, ...,h}), i.e.
(w.l.o.g.) the kth component of v is A, and the kth component of w is B. Now for
any partition P that is finer than P, and P,, for every i € {1,...,n} there are parts
O1,...,0; € Psuch that A = Oy(k) U ... U O;(k), and parts O, ..., 0’, € P such
that Bf =0|ku...U 0;., (k). This implies that P cannot contain a part O such
that #0(k) > 1 since no two sets Af.‘ and Bf.i share more than one constant. Hence P
must have at least n? parts to cover all elements in layer k. Now the precondition
m < n? — n implies that n + m — 1 < n?, which establishes the claim.

To establish the required datalog program, partitions of constants are consid-
ered as equality classes, and rules are created to check for particular equalities. To
this end, define a conjunction [O] = ¢ A.. . Ac;jforevery set O = {cy,...,c,} C S.
This notation is extended to partitions P = {Oy,...,0;} of S by setting [P] =
[OTA...ATO:.

Consider a fresh constant d. For every h-tuple v € {A, BY", let ¢, : P, — Kiarcp,
be a mapping of parts of P, to knowledge bases in Kscp, such that, for every
n-tuple K = (KBy,...,KB,) € ‘K{’;}EDZ of knowledge bases, there is an A-tuple
w € {A, B} with partition P, = {0, ..., 0,} as defined above, and ¢,,(0;) = KB,
for all i = 1,...,n. This choice of the functions ¢, is possible due to our initial
choice of A, since there are 2" such functions but only #7({’11}E p, different n-tuples
of knowledge bases from K cp,-

For every partition P of § into i € {1,...,n+ m — 1} parts, datalog rules are
constructed as follows. If P is not finer than any partition of the form P,, then
only the rule [P] — L is added (this includes the case of P having less than n
parts). Otherwise, let P, be the unique partition of this form that is finer than P.
For every part O of P,, select one part 7(O) of P such that 7(O) C O, so that there
are n distinct selected parts in P. Now let d,, ..., d, denote the m constants of D;.
For every e = d,, ... ,d,, and for every part O € P,, let A be a fresh concept name
and construct the following datalog:

(1) [P1Ae= f — A(e), where f € n(O) is arbitrary,
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(ii) datalog(KB’)|4(), where KB’ is obtained from ¢,(O) by replacing all oc-
currences of {d} with {e}.

Now dig,({c} E C) is defined to be the union of Py, and all datalog rules con-
structed above, and the datalog facts R(c,c;) for all i,j € {1,...,n} and k €
{1,...,h}.

It remains to show that dig,({c} C C) semantically emulates {c} E C. For the
one direction, consider a model J of {¢} C C. We need to show that it can be
extended to a model of dig,({c} E C). Select n distinct R-successors 0y, . .., 0, of
¢’ such that §; € (D, U D,)! for all i = 1,...,n. By Proposition 7.4.5, for all
e €{dy,...,dy}, if e/ € D} then there is an extended interpretation 7, such that
I, E KB, for some KB, € K, cp,. Since 7, extends Z only over fresh symbols
that occur in one K. cp,, all interpretations 7, can be combined into a single
extension 7’ of 7.

Now let KB/, € K|4cp, denote the knowledge base from which KB, is obtained
by replacing all axioms of the form {d} C F by {e} C F, where d is the constant
used when constructing dlg,({c} E C). By the construction of dig,({c} C C), there
is a tuple v € {A, B} and a partition P, = {O, ..., O,} such that ¢,(0;) = KB;,J, for
alli = 1,...,nf0rwhichd}r = 0; anddlj #o;foralll < j.

Consider any e € {d,,...,d,} with ¢/ € D.. The model I’ above was con-
structed such that 7’ = KB,, and thus, by the assumption of the lemma, there is
an extension Y’ of 7’ such that J’ = datalog(KB,). We define a model J of
dig,({c} € C) by further extending J”. For all constants f € S, define f7 := §, for
the unique i € {1, ...,n} such that f € O;. Moreover, for each of the fresh concept
name A introduced in (i) above, let A7 be the smallest extension for which all
rules of (i) are satisfied by 7.

Now it is easy to see that J satisfies the facts R(c, ¢;jx) for all i, j € {1,...,n}
and k € {1,...,h}. To see that it also satisfies the rules constructed in (ii) above,
note that the rules (ii) for some particular e € {cy,...,c,} are always satisfied if
J ¥ A(e). Assume J = A(e). By minimality of A7, this implies that 7 e ~ f
for some f € S that belongs to a part O; of P,, and thus ¢ = §; for some i €
{1,...,n}. By construction, ¢,(0;) is of the form KB;I, (where e might be unequal
to d;, but with ¢’ = djj = 6;). Since 6; € (D, U Dy)!, we find §; € D] and thus
J E dig,({p'} E F) forall {b} E F € KB;,J,, where b’ = eif b =dand b’ = b
otherwise. This shows that the rules (ii) are indeed satisfied by 7.

For the other direction, consider a model 7 of dlg,({c} C C). We need to show
that it is also a model of {c} C C. Let P be the partition of S that corresponds to the
~ equivalence classes on S induced by 7. By the construction of dig,({c} E C),
the partition P is finer than some partition of the form P,, and thus has at least n
parts. Moreover, n of the parts of P are selected parts of the form 7(O) for some
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O € P,. It is not hard to see that the n domain elements of 7 that correspond to
the selected parts are R-successors of ¢ that belong to (D; L D,)*, which is an
easy consequence of rules (i) and (i1) together with the assumed model-theoretic
correspondences for axioms in K cp,. O

Lemma 7.4.7 Consider a constant ¢, and a concept C = >n R.D; U D, such that
D, € D, D, € D} withm < n of the form D, = ({c;} 1 C) U ... U ({c,n} M1 Cpy).
Assume that, for every i € {1,...,m} and every knowledge base KB € Ki..,cc,
there is a datalog program datalog(KB) that semantically emulates KB.
Then we can effectively construct a datalog program dlg,({c} E C) that se-
mantically emulates {c} C C.

Proof. For eachi = 1,...,m, let ; > 1 be the least number such that 2 >
#XKcacc;» and consider a set S; of fresh constants S; = {a;1, b, ...,a;, by,}. Let
V: denote the set of all sets of the form {x;, x2, ..., x;} with x;, € {a;, b} for all
hefl,....,[;}}. Let ¢; : Vi = K. cc, be an arbitrary surjective function (which
exists due to the choice of a sufficiently large ;).

Consider fresh constants dy, ..., d,_,, (note that n —m > 1) and a fresh concept
name B. We construct the following datalog rules and programs:

(i1) foreveryie{l,...,n—m}:
R(C’ di):»
B(d;) — L for a fresh concept name A,

(iii) foreveryi,jef{l,...,n—m}, i # J:
d,’zdj—> 4,

(iv) foreveryie{l,...,n—m}and je{l,...,m}:
di~cj— 1,

(v) foreveryie{l,...,mjandh e {l,...,[;}:
R(c, aip),
R(c, Dip),
aip = by — L,

(vi) foreveryie{l,...,m}and v = {x;,Xp,...,X;} € Vi
B(xi1) A ... A B(x;,) = A(c;) for a fresh concept name A,
A(ci) = ¢ = X1,

datalog(é;(v))lac)»

(vii) foreveryi,je{l,...,m},i# j,foreverye € S;and f € §;U{d,,...,d,—n}:
e~ f—oex~d,.
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Now dlg,({c} E C) is defined as the union of Py, and all rules and programs
constructed above.

It remains to show that dig,({c} C C) semantically emulates {c} E C. For the
one direction, consider any model 7 of {c} T C. Select n distinct R-successors
81,...,0, of ¢! such that §; € (D, UD,)! foralli=1,...,n. By Proposition 7.4.5,
foralli e {1,...,m}, if ci] € CI.I then there is an extended interpretation Z; such
that 7;  KB; for some KB; € K|.,cc,. Since 1; extends 7 only over fresh symbols
that occur in one K¢, all interpretations 7; can be combined into a single
extension 7’ of 7. By the assumption of the lemma, we find an extension " of 1’
such that J” = datalog(KB;).

A model J of dig,({c} & C) is defined by further extending J’. For the
auxiliary concept B of (i), define BY := (=D;)! and let J be such that J E
digz(=B E D) (which is possible by Lemma 7.4.1). For each i € {1,...,n —m},
select d;j € {d1,...,0,} such that rules (ii)—(iv) above are satisfied. This is always
possible since at most m elements of {d,,...,d,} can be in (~D;)?. Without loss
of generality, we assume that dl%(] =0;.

Now select an injective function ¢ : {1,...,m} — {2,...,n} such that Y(i) = j
if cf = ¢, for some j € {1,...,n} and there is no i’ < i such that cl{ = 0;; and
(i) € D{ otherwise. Again, it is not hard to see that this is always possible. Now
foreach i € {1,...,m}, interpretations for constants in S; are defined as follows. If
¢l € C], thenletv € V; be such that KB; = ¢;(v). Otherwise, let v € V; be arbitrary.
For all h € {1,...,1;} and x € {a;, by}, define x7 = &, if x € v, and x7 = ¢,
otherwise. It is not hard to see that J satisfies rules (v) and (vii). For the auxiliary
concepts A introduced in (vi) for some set w € V;, set A7 = {¢}if w = v and
Syy € (=Dy) (which also implies ¢/ = &), and set A7 = 0 otherwise. Thus,
there is at most one such auxiliary concept for i that is non-empty, corresponding
to the set v € V; for which KB; = ¢;(v). The construction of \J” ensures that the
remaining rules of (vi) are satisfied as required. It should be observed that this
construction also works in the case that cf = cf for some i # j.

For the other direction, consider any model 7 of dlg,({c} € C). The rules of
(i)—(@iv) obviously establish n — m distinct R-successors dj, ..., d,_, of c¢ that are
in D;. According to rules (vii), for every i € {1,...,m} and every k € {1,...,[;},
some Xj € {aj, by} 1s unequal to all constants in S ; U {dy,...,d,,_,} forall j # i
with j € {1,...,m}. Hence, if the premise of the first rule of (vi) is false for all
v € V,, then there must be some k € {1,...,[} such that x. ¢ B’ and hence,
by (i), xl{( € D’ yielding the required distinct R-successor for i. Otherwise, if
the premise of the first rule of (vi) is true for some v € V;, then cl.[ ~ x; 1S the
required successor, since cf € D‘ZZ is ensured by the rules of (vi) together with the

assumptions of the lemma. O
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Lemma 7.4.8 Consider a constant ¢, and a concept C = >n R.Dy U D, LI D3 such
that D\ € D,, D, € D} of the form D, = ({c;} 1 Cy) U ... U ({c,) M Cp), D3 € D,
of the form D3 = ({cpi1} M Cpp) U ... U (et} M Cruyy), and for r .= n — (m + 1)
we haver > 0 and r(r — 1) > m.

Assume that, for every constant e, dig,({e} E D,) semantically emulates {e} C
D, and that, for every KB € K. cc. (i € {1,...,m+1}), datalog(KB) semantically
emulates KB.

Then we can effectively construct a datalog program dlg,({c} E C) that se-
mantically emulates {c} C C.

Proof. Let s > 1 be such that 2° > []Z, #K.,cc,- Consider the following sets of
fresh constants:

-{dili=1,...,1},

-lejli=1,....m,j=1,...,5},

-{fili=1,...,1}.

Now, foreachi=1,...,m,let ¢; : {1,2}° — K., cc, be a surjective function from

s-ary binary numbers to K., cc,, which exists due to our choice of s. Moreover, for
eachi=1,...,m,lety; = (h, k) be a pair of distinct numbers i,k € {1,...,r},h #
k such that y; # ; whenever i # j. This choice is possible since there are r(r — 1)
such pairs and r(r — 1) > m was assumed. Given any j-ary tuple 8, we use 6(k) to
denote the kth component of 8 for k = 1,..., j. In particular, we use the notation
viv() =1,....,m, j=1,...,s) with tuples v € {1, 2}* below.

Let B be a fresh concept name — we will use it to mark certain distinct R-
successors that the datalog program must ensure to exist. We construct the follow-
ing datalog rules and programs:

(i) foralle, f €{d,,...,d. c1,...,Cny} With e # f:
Ble)ANB(f)yNex f — L,
B(e) — R(c, e),

(i1) forallie {1,...,r}:
B(d,),
dig,({d;} C Dy),
(i) forallie {l,...,m},ve{l,2}, he{l,...,s}
R(c, ein),
dig,({ein} C Dy),
forall je(l,...,r}, j# (1), j#¥i(2): e = dj — L,
eit ® dy,y A ... A eig * dy ) — A(c;) for a fresh concept name A,
A(c;) — B(cy),
datalog(¢;(v))lacc
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(iv) foralli, je{l,...,m}withi# j,forallhe{l,...,s}:
if there is k € {1, 2} such that y;(k) = y;(k): e, = ejn — e = dy,x),
otherwise: e, ~ e, — L,
(v) forallief{l,...,l},jel{l,...,r:
R(c, f1),
dig,({f:} E D1),
fi ® dj — A(cyyi) for a fresh concept name A,
A(Cm+i) - B(Cm+i)7
dlg,,({cm+i} E Cosidlacens

(vi) foralle € {fi,..., fi,€l1sevsClssevesrCmlsenesCpsl):
forall f € {fi,...,fi}withe# f: fre— f=d,
forall f e{ci,....cmu}: BH)Nfre— L.

Now dlg,({c} E C) is defined as the union of Py, and all rules and programs
constructed above.

It remains to show that dig,({c} C C) that semantically emulates {c} E C. For
the one direction, consider any model 1 of {c} C C. Select n distinct R-successors
01,...,0, of ¢’ such that 6; € (D, U D, LU D3)! foralli = 1,...,n. By Proposi-
tion 7.4.5, foralli € {1,...,m}, if ¢/ € C/ then there is an extended interpretation
Z; such that 7; KB, for some KB, € Ki.zc,- As in the proof of Lemma 7.4.7
above, we can find an extended interpretation J’ such that ' | KB;. Using
a similar argument, we can chose J” such that 9’ [ dlg,({c;} C C;) for each

jEm+ 1,...,m+l}forwhichcf€Cf.

A model J of dig,({c} E C) is defined by further extending J”. At least r
elements 6 € {0, ...,0,} must satisfy ¢ € D{ —w.l.o.g. we assume that this is the
case for 81, ...,9,. Then set d;7 =¢;forallie{l,...,r}.

Now select an injective function o : {1,...,m + [} — {1,...,n} such that
o) =jifcl € Cl, ¢] =6, forsome j € {l,...,n} and there is no i’ < i such that

¢l = 6;; and o(i) € DY otherwise. Such a function clearly exists. Consider some

iefl,...,m). If&g(l.) € DI, then set e;% := o(i) foreach h € {1,..., s}. Otherwise,
8oy = ¢! and ¢! € C/. In this case, let v € {1,2}° be such that KB; = ¢;(v),
and define e;z = dg,-(v(h)) for each h € {1,...,s}. Finally, for i € {1,...,1}, define
fij ‘= O (m+i)-

By the assumption of the lemma, for each program of the form dlg, ({e} T D)
that is constructed in rules (ii), (iii), and (v), we can extend J to symbols of
dig,({e} E D) so that the respective programs are satisfied. For B we select the
smallest extensions BY for which the rules of (ii), (iii), and (v) that use B are
satisfied. It is easy to check that the rules of (1) are satisfied. Similarly, we assign
minimal extensions to all auxiliary concept names A introduced in (iii) and (v).
Now it is not hard to check that 7 satisfies all rules of (i)—(vi) as required.
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C dig,({c} E C)

D e Dy digy,(X E D) U {X(c)}

D, 1D, dlga({c} CD)HU d|ga({C} C D))

Dy uD; € (D, UDp) | digg(—X C D) Udlg,({c} E Di)lx)

>nR. T {R(c,ay),...,R(c,a,)} U Py

>nRD (D+#T) dig,({c} E C) as defined in Lemma 7.4.6, 7.4.7, and 7.4.8

X a fresh concept name, a; fresh constants

Figure 7.9: Transforming axioms {I} C D, to datalog

For the other direction, consider any model 7 of dlg,({c} € C). The rules of (ii)
establish r distinct R-successors dy, . . .,d, of c thatare in Dy. Foranyi € {1,...,1},
the rules of (iv) ensure that f; is not equal to any c; in B. The rules of (v) leave
two possibilities. Either f; is equal to some constant d;, in which case ¢,,,; 1s an
R-successor of ¢ that is in C,,,;, and that is distinct from all other ¢, and d,, by ().
Or f; is not equal to any constant d; or f, (h # i), and thus not equal to any ey
either (vi); so f; constitutes a new R-successor of ¢ that is in D;.

For any i € {1,...,m}, if some e, is not equal to dy, 1y or dy, ), then the rules
of (ii1) and (iv) ensure that e;; is not equal to any other constant of the form d;
or ej. Rules (iv) ensure that e;, is also not equal to any constant of the form f;,
and thus ¢;, constitutes an additional R-successor of ¢ that is in D;. If no such ¢;,
exists, then a rule of (iii) applies for some v € {1,2}*, implying that cf € A for
the respective fresh concept name A. But then the rules of (iii) together with the
assumptions of the lemma imply that 7 | ¢;(v) € K. cc,- By Proposition 7.4.5,
we find that cf € Cf . Rules (i) and (iv) ensure that c; is distinct from the remaining
R-successors. Overall, we thus obtain r + m + [ = n distinct R-successors of ¢ that
belong to D; U D, U Ds. |

Lemma 7.4.9 Consider a concept C € D, and constant c such that every datalog
program dlg,({c} E D) (dlg,(X T D)) on the right-hand side of Fig. 7.9 seman-
tically emulates {c} € D (X E D). Then the datalog program dlg,({c} E C) as
defined in Fig. 7.9 semantically emulates {c} C C.

Proof. The proof proceeds by induction. The complex cases have already been
established in Lemma 7.4.6, 7.4.7, and 7.4.8. The remaining induction steps are
very similar to the steps in Lemma 7.4.1 and 7.4.2. O

We can now complete our induction by summarising the previous lemmata.

Proposition 7.4.10 Consider concepts C € Dy, D € D,, a concept name A, and
a constant symbol c. Lemma 7.4.1, 7.4.2, 7.4.6, 7.4.7, 7.4.8, and 7.4.9 together
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define a recursive construction procedure for datalog programs dlg,(A E C) and
dig,({c} T D) that semantically emulate A C C and {c} T D, respectively.

Proof. The mentioned results are the basis for establishing an inductive argu-
ment to proof the claim. Lemma 7.4.6, 7.4.7 and 7.4.8 require the existence of
certain datalog programs datalog(KB). For this proof, we define datalog(KB) :=
{digz(—AEE)|-ACEecKBJU{dIg,(ACE)|AC EcKB}uU{dlg,{fIEE)|
{f} C E € KB} (we provide a more general definition of datalog(KB) for other
forms knowledge bases at the end of this section). According to Lemma 7.4.4 this
definition is well and covers all axioms that can occur in KB.

It remains to show that the preconditions of each induction step are indeed sat-
isfied by applying the induction hypothesis that the claim hold for proper subcon-
cepts of the considered concepts. This is obvious whenever preconditions require
the claim to hold for programs of the form dig,(A” C C") or dlg,({c’} E D’) where
C’ and D’ are proper subconcepts of C and D, respectively.

The induction steps for dig,({c} £ D), however, need to use Lemma 7.4.6,
7.4.7 which 7.4.8 additionally require that, for a proper subconcept D’ of D and
some KB € K, the claim holds for all programs dig,(A E E) with A C
E € KB and for all programs dig,({f} € E) with {f} E E € KB (the translations
digz(—A C E) are always given by Lemma 7.4.1). Inspecting Definition 7.4.3, we
find that most axioms in knowledge bases of K. cp are of the form C C D” with
D" a proper subconcept of D’, so that the induction hypothesis applies. However,
all cases other than (1), (2), and (3¢) also introduce additional axioms that are not
referring to subconcepts. By checking the recursive definitions of these axioms, it
is easy to see that the claim holds for all axioms of this form. O

We still need to show that the “propositional” concepts in D™ can also be
emulated in datalog.

Lemma 7.4.11 For every concept C € D™ for some n > 1, one can construct a
datalog program datalog(C) that semantically emulates C.

Proof. C is of the form ({c;} M Cy)uU...u{c,} 1 C,) with C; € CZ and C; € C7'
fori =2,...,n. Itis not hard to see that C is semantically equivalent to {c;} 1 C.
This is shown by induction over n. Clearly, all models of C have domains with at
most n elements. By Lemma 7.3.6, foralln > 2, ({c;}nCy) U ... U{c,} 1 Cp)is
semantically equivalent to ({c;} M Cy) U ... U ({c,—1} M C,_1), as required.

All models of {c;} M C; have a unary domain, so that further simplifications
are possible. Given any concept D in DLP normal form, let ¢(D) be the concept
that is obtained by exhaustively applying the following rules:

— If D has a subconcept >1 R.E, replace this subconcept by E 1 3R.Self.
— If D has a subconcept >m R.E with m > 1, replace this subconcept by L.
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@ dig(@) \ Py

Ref(R) {R(x, x)}

Irr(R) {R(x,x) — L}

Sym(R) {R(x,y) = R(y, x)}

Asy(R) {R(x,y) AR(y, x) = L}

Dis(R1, R>) {Ri(x,y) ARao(x,y) > L}

Tra(R) {R(x,y) AR(y,z) = R(x,2)}
RioRyo...oR,CR | {Ri(xp,x1)A...AR,(x;—1,x,) = R(x0, x,,)}

Figure 7.10: Transforming SROZQ RBox axioms to datalog

— If D has a subconcept <m R.—E with m > 1, replace this subconcept by T.

It is easy to check that D € C¥ implies DLPNF(¢(D)) € Dg, and that D € C7,
implies DLPNF(¢(D)) € Dy. Clearly, {c;} 1 C; is semantically equivalent to
{c1} M ¢(Cy), which is in turn equivalent to the knowledge base {T C {c;},{c;} C
¢(C1)}. Thus, by Proposition 7.4.10, C is semantically emulated by datalog(C) :=
{x = ¢;} Udlg,({c;} E DLPNF(¢(C)))) as long as DLPNF(¢(Cy)) ¢ {T,L1}. If
DLPNF(¢(Cy)) = T set datalog(C) := {}. If DLPNF(¢(C;)) = L set datalog(C) :=
{T — L} (the unsatisfiable rule with empty body and head). O

To obtain the main result of this section, it remains to show that RBox and
ABox axioms in DLP can also be emulated in datalog.

Theorem 7.4.12 For every DLP axiom a as in Definition 7.3.5, one can con-
struct a datalog program datalog(«@) that semantically emulates a.

Proof. If a is a TBox axiom of the form C C D, then set E := DLPNF(=C L D).
If E = T then datalog(e) = {}. If E = L of E € C.; then datalog(a) =
{T — L} (the unsatisfiable rule with empty body and head). It is easy to see, that
concepts of the form C.-+ are indeed unsatisfiable when used as axioms. If E € D™
for some n > 1 then set datalog(a) = datalog(E) as defined in Lemma 7.4.11.
Finally, if E € Dy then set datalog(a) = dig,(A C E) U {A(x)} as defined in
Proposition 7.4.10, where A is a fresh concept name.

If @ is an ABox axiom of the form C(a) with DLPNF(C) € D, then define
datalog(a) := dlg,({a} E DLPNF(C)) as given in Proposition 7.4.10.

If @ is an RBox axiom then dIgg(a) is obtained as the union of Py, and the
rules given in Fig. 7.10. Set datalog(@) := dIgg(a). It is easy to see that this datalog
program satisfies the claim. O
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7.5 Model Constructions for Datalog

In this section, we introduce constructions on first-order logic interpretations that
will be essential for showing that certain formulae cannot be in DLP. The general
approach is to find operations that preserve models for datalog programs, i.e. op-
erations under which the set of models of any datalog program must be closed. A
well-known model construction in logic programming is the intersection of two
Herbrand models, and it is well-known that Horn logic is closed under such in-
tersections. The next definition generalises intersections in two ways: on the one
hand, it uses functions to allow for interpretations with different (non-Herbrand)
domains; on the other hand, it allows us to construct additional domain elements
as feature combinations of existing elements.

Definition 7.5.1 Consider a datalog signature .#’ and two interpretations 7; and
T, over that signature. Consider a set A and functions ¢z : A — A’t and v : A —
A’2 such that, for each constant ¢ in .7, there is exactly one element 6, € A for
which u(6.) = ¢’ and v(6,.) = ¢’2. The product interpretation § = I\ X, 15 is
defined as follows:

- AT = A,
— for each constant ¢ in ., set ¢7 = 4.,

— for each n-ary predicate symbol p and n-tuple 6 € A", set 6 € p7 iff u(d) € p’
and v(0) € p’2, where u(d) and v(0) denote the tuples obtained by applying u
and v to each component of 6. &

The previous definition does not imply that constants have distinct interpreta-
tions: 8, = 6, if and only if ¢/t = @' and ¢?2 = d*2. As the definition of equality in
product models is similar to the definition of predicate extensions, it is convenient
to formulate Definition 7.5.1 for first-order logic without equality, assuming that
~ is introduced by the well-known axiomatisation of its properties as discussed in
Section 4.1.3. A direct definition for FOL. is straightforward.

The construction of product interpretation can be considered as a combination
of direct product and sub-model constructions known in model theory [CK90].
The essential property of product interpretations is the following:

Proposition 7.5.2 Consider a signature ., interpretations I, and I, and func-
tions pu: A — A" and v : A — A as in Definition 7.5.1. Then, for every datalog
program P over .7, we find that 1, = P and I, = P implies T, X,,, I, | P.

Proof. Let J = I, X,, I,. Consider any rule B — H in P, and a variable
assignment Z for J such that 9, Z | B. Define a variable assignment Z; for 7
by setting Z;(x) := u(Z(x)). By Definition 7.5.1, it is easy to see that 7|, Z| E B,
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and thus 7|, Z, E H. Analogously, we construct a variable assignment Z, such
that 7,,Z, F B and 7,,Z, F H. Itis easy to see that this implies J,Z F H as
required. O

A well-known special case of the above product construction is obtained for
A = AT x A2 with u and v being the projections to the first and second com-
ponent of each pair in A. It turns out that this canonical product construction
is not sufficient to detect all cases of knowledge bases that cannot be FOL.-
emulated in datalog. For example, the set of models of the non-DLP axiom {a} C
>2 R.(—~{b}u <1 S§.-A) is closed under canonical products. The more general con-
struction above is needed to address such cases.

When using Proposition 7.5.2 to show that a knowledge base cannot be FOL .-
emulated in datalog, it must be taken into account that FOL.-emulation is not as
strong as semantic equivalence. It is not sufficient to show that the models of
a knowledge base are not closed under products. For example, the DLP axiom
{a} T >1R.T has a model 7 with domain A? := {a, x}, a’ := a, and RY = (a, x).
Yet, the function u : {a} — {a, x} with u(a) = a can be used to construct an inter-
pretation 1 X, , I that is not a model of the axiom. Note that all preconditions of
Definition 7.5.1 are satisfied. Proposition 7.5.2 allows us to conclude that there is
no datalog program that is semantically equivalent to {a} C >1 R. T, but not that
there is no such program FOL..-emulating the axiom. To show that a knowledge
base cannot even be emulated in datalog, we therefore use the following observa-
tion.

Lemma 7.5.3 Consider a knowledge base KB over some signature .. If there
are FOL, theories T\ and T> over . such that:

— KB U T, and KB U T, are satisfiable, and

— for every pair of models 1| = KBUT, and I, = KBUT),, possibly based on an
extended signature /', there are functions u and v such that 1, X, I, ¢ KB,

then KB cannot be FOL.-emulated in datalog.
If T, = T, then this conclusion can also be obtained if the precondition only
holds for pairs of equal models 1| = I,.

Proof. For a contradiction, suppose that the preconditions of the lemma hold
and there is a datalog program P that FOL.-emulates KB. Then P U KB U T; is
satisfied by some model 7; of P for each i = 1, 2, where the relevant signature of
P may be larger than the signature of KB. Let J = I X,,, 7, denote the product
interpretation from the second condition. Applying Proposition 7.5.2, we find that
J is a model of P that is not a model of KB. But then the union of P with a FOL.
formula of . that is semantically equivalent to the negation of the conjunction of
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all axioms in KB is satisfiable, contradicting the supposed FOL.-emulation. The
last part of the claim is obvious. O

The optional extension of the signature in the previous lemma can be impor-
tant since the preconditions of Definition 7.5.1 require that the domain of the
constructed model contains elements for all constant symbols.

As a simple example for this approach, we show that KB = {T C ALIB} cannot
be FOL..-emulated in datalog. Define auxiliary knowledge bases KB; = {A C 1}
and KB, = {B C L}. Clearly, KB U KB; and KB U KB, are satisfied by some
models 7, and 7,, respectively. However, it is easy to see that no product of 7
and 7, can be a model of KB — independent of the choice of u and v — since the
extensions of A and B must always be empty in such a product.

Of course there are other examples for which y and v must be chosen more
carefully. In particular, it is sometimes necessary to restrict the amount of new
elements that are introduced by the product. The following definition provides a
useful notation for such a restricted form of products that will be sufficient for
most applications:

Definition 7.5.4 Consider interpretations 7| and 7, over a signature ., and let I
be the set of constants in .. Given a set S C I x I, functions u : A — A’! and
v : A — A’ are defined as follows:

- A=SU{cc)|cel},

- p(c,dy) =,
- v({c,d)) = d*>.

I Xs I, denotes the product interpretation 7 X,, I for these functions. <o

A special aspect of the previous definition is that it restricts attention to named
elements — elements that are represented by some individual name — in the original
models. It is an easy corollary of Proposition 7.5.2 that all other elements are
indeed irrelevant for satisfying a datalog program.

7.6 Showing Structural Maximality of DLP

In this section, we show that the earlier definition of DL% is indeed maximal
for the underlying principles. The proof mainly uses the principle of structurality
(DLP 6) due to which it suffices to show that structural concept expressions that
are not in DLP cannot be FOL.-emulated in datalog. To this end, we generally
use the strategy suggested by Lemma 7.5.3. The below discussions often use data-
log rules or DL axioms in the context of first-order logic to conveniently denote an
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arbitrary FOL.. theory of the same semantics, as obtained by any of the standard
translations. Especially, this abbreviated form never refers to the more complex
datalog transformation of D L% concepts, and it is only used when syntactic de-
tails are not relevant. Moreover, we assume that ~ always denotes the equality
predicate, and do not explicitly provide an axiomatisation for it.

The outline of the proof is as follows. We start by specifying some useful
kinds of auxiliary datalog programs in Definition 7.6.1 and 7.6.2. The first major
class of concept expressions is excluded by Proposition 7.6.6 which shows that
concepts that are not in D can usually not be emulated in datalog. This result
is prepared by Lemma 7.6.3, Lemma 7.6.4, and Lemma 7.6.5. These lemmata
also are of some utility later on, since they can be used to exclude most forms of
existential statements from DLP.

The second main ingredient of the maximality proof is Corollary 7.6.9. It ex-
tends Proposition 7.6.6 by establishing that concepts can typically not be emulated
in datalog if they are not in Dy. The chief insight that leads to this result is formu-
lated in Lemma 7.6.8 which sports the most complex proof of this section. After
this, it is comparatively easy to establish Lemma 7.6.10 to treat some pathologi-
cal cases that had been excluded from the earlier considerations. In particular, it
includes the “propositional” case where a DL concept enforces a unary interpre-
tation domain.

The outcomes of Proposition 7.6.6, Corollary 7.6.9, and Lemma 7.6.10 are
finally summarised in the main Theorem 7.6.11.

To pursue the proof strategy outlined by Lemma 7.5.3, our main work con-
sists in specifying suitable auxiliary theories 7 and T,. To simplify this task, we
first define some auxiliary theories that will be used frequently. Many of these
constructions have the additional advantage of being in datalog — with the im-
portant consequence that they are still satisfied by product interpretations (Propo-
sition 7.5.2). Often this is relevant for showing that said product interpretations
cannot satisfy a given non-DLP concept.

Whereas many concept expressions C cannot be FOL.-emulated in datalog,
it is usually possible to specify a datalog program that entails {c} C C for a given
constant ¢ by specifying sufficient properties that ¢ must satisfy for this to be true.
This only fails if C is structurally unsatisfiable. The below construction generalises
this idea to any number of constants, and to the dual case where {c} & —C is
entailed. The constructions in Definition 7.6.1 and 7.6.2 should be compared to
the simpler cases discussed in Definition 7.2.5 which serve essentially the same

purpose for ALC.

Definition 7.6.1 Consider a name-separated concept C in positive normal form,
and individual names co, ..., c, forn > 0.
If C ¢ L, the datalog program [cy, ..., c, € C] is defined recursively as follows:
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— If C=TorC =2>0R.Dthen [cg,...,c, € C] = 0.

- IfC={d}thenn =0and [cy € C] := {co = d}.

— If C is of the form A, =A, ={I}, AR.Self, or =3R.Self, then [[¢y,...,c, € C] =
Uo<i<, datalog({c;} C C).

— C=DnD, thenD; ¢ L., fori =1,2,and [[cop,...,c, € C] == [cg,...,Cy €
DU lco,...,c, € Ds].

- If C = D; U D, with D, ¢LS,1,then [co,...,cu € C]] = lco,...,c, € Di].

- If C = D, uUD, with Dy € fsm, and D; € fgmn such that m’ + m"”” = n—1, then
[cos-..,cn € C1:=lcos...,cmw € D1V [Chra1s-- s Covsmrs1 € D2l

— If C = >mR.D with m > 1, consider fresh constants d, ..., d,, and define

lco,....cn €Cl = 1dy,....dyn € DIU{R(c;,d;)|0<i<n 0<j<mjuld; =

- If C = <mR.—=D, then [[cy,...,c, € Cl :={x=c; AR(x,y) > L |1 <i<n}.

If C ¢ L., then define a datalog program [cy,...,c, € C] = [co,...,cn €
PNNF(=C)]. &

Note that the given cases directly follow the definition of L., in Fig. 7.4. Also
note that [[¢g, ...,c, € C] and [co, ..., c, ¢ C] are satisfiable, even if we addition-
ally require that all constants ¢; are mutually unequal (which is not implied by the
datalog programs).

Definition 7.6.1 can be viewed as a way to entail statements of the form
{co}U...U{c,} E Cif C ¢ L,. For cases where C is not in L., for any n > 0 this
approach can be generalised to entail statements of the form D E C for a more
general class of concepts D. The necessary construction is provided by the follow-
ing definition which is very similar to Definition 7.6.1. We provide an alternative
perspective and specify the dual case — entailing C C D in cases where C ¢ L,
for all m > 0 — which is the only case that is needed in our subsequent arguments.

Definition 7.6.2 Consider a name-separated concept C in positive normal form,
and a concept D € Dy.

If C ¢ L,,,, for any m > 0, the datalog program [C T D]< is defined
recursively as follows:

If C = L then [C C D]< := 0.
If C is of the form A, {I}, or AR.Self, then [C C D]« := datalog(C C D).
If C is of the form —A, or =3R.Self, then [C C D]« := datalog(C C 1).

IfC=D,uD,then D; ¢ Ly,_,, foranym > 0 (i = 1,2), and [C E D]< =
[D, E D)<V [D; E D]..
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- If C = Dyn D, with Dy ¢ L, forany m > 0, then [C C D]« = [D, C D]..

- If C = <mR.—E, consider fresh constants d,,...,d,,, and set [C C D]< =
do,....dn ¢ EIU{di=d; = L]0 <i< j<m}UJos,datalog(>1R.{d;}).

— If C = >mR.E, then [C C D] := datalog(>=1R.T C D). O

It should be noted that the cases of the definition are indeed exhaustive. Also
observe that [C C D] is always satisfiable, where D # L is important to ensure
that this is actually true for cases like [{c} T D]<. This also shows that [C C
A]l< U{A E L} cannot be assumed to be satisfiable in general.

Some further observations should be made in order to understand how Defi-
nitions 7.6.1 and 7.6.2 can be used when discussing datalog emulation. The con-
structions in both cases do certainly not FOL.-emulate the statement that they
entail. For example, [[c € C] enforces one particular case for which {c} C C; it
does in general not describe all such cases. Moreover, the program [C T D]« may
enforce a much stronger condition such as C C L as in the case of C = <mR.-E.
This illustrates that the extension of C can be constrained by [C E D]<. Con-
versely, a knowledge base [A U B & D] might entail the stronger statement
ALCD.

Luckily, as long as structurality is assumed, the knowledge bases of Defini-
tion 7.6.1 and 7.6.2 hardly semantically interact with concept expressions other
than those that they are constructed from. Yet, it must be noted that [[co,...,c, €
C] may introduce mutually unequal individuals d; for the case C = >m R.D, and
that two distinct individuals are already required if C = —{d}. This effect can oc-
cur for all of the above constructions. Logical theories in FOL. can restrict the
maximum size of the domain, and the same is accomplished by DL axioms that
correspond to concept expressions in L., for some m > 0. We need to exclude
this possibility when using the above definitions.

The previous discussion shows that it is important to carefully check all uses
of Definitions 7.6.1 and 7.6.2 to avoid undesired semantic ramifications. A useful
intuition is that the constructed theories enforce a simplification upon C that al-
lows us to disregard the concept’s internal structure. As an example of a typical
usage of these constructions, consider the axiom a = {a} C C; U C, with C;, ¢ L.
Then o U [[a ¢ C,] implies {{a} C C,}.> So [[a ¢ C] allowed us to dismiss an
“uninteresting” C, to focus on the impact of C;.

The following lemmata use the product construction to create elements that
are not in a given concept’s extension, where we usually use the abbreviated prod-
uct construction of Definition 7.5.4. In the weakest case, elements outside the
extension must be provided to achieve this (Lemma 7.6.3). With stronger side

3This implication is not quite a FOL.-emulation since [a ¢ C,] can require a minimal domain
cardinality, as discussed above.
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conditions, some or even all of the elements can be part of the concept extension
(Lemma 7.6.4 and 7.6.5). The lemmata are essential ingredients for showing that
subconcepts that are not in D} cannot occur in any DLP concept that is in normal
form, and the assumptions of the lemma are therefore motivated by the definition
of DY.

Lemma 7.6.3 Consider a name-separated concept C in DLP normal form such
that C # L and C ¢ Ds,,_, for all n > 0 (in particular C # T). Let cy,...,c, be
fresh constants. There is a consistent datalog program [ cy, . .., c, € Cllx such that

= llco,....,cn € Cllx E —(c;i = cj) forall i, j € {0, ... ,n} withi # j,
- [co,.--scn € Cllx E{c;} E -C foralli=0,...,n,

— for all models 1, T, of [co,...,c, € Clx, and any set of constants N C 1 with
{co,...,ca} ©N, the product J = I\ Xxn) L2 is such that {c;,c;) ¢ C7 for all
i,j€{0,...,n}k

Proof. Using a fresh concept name A, we define [co,...,c, € Clx = [C C
=A< U{A(c)) |0 <i<njU{ci=c;— L |0<i< j<n} Given models J; and
I, of [co,...,cn & Cllx, and I = I Xwxn) L2, we find that {c;,c¢;) € A7 for all
i,j€10,...,n}. Since [[co,...,c, & Clx is in datalog, it is satisfied by 7, and thus
we conclude (c;, c;) ¢ CY forall i, j € {0,...,n} as required. |

The next lemma considers concepts C ¢ Dj,. The lemma is also stated for sets
of individuals, and additional care is now needed to ensure that it is possible for
C to have a set of (distinct) instances. It is not enough to assume C ¢ D, for
some or all n > 0 since this pre-condition cannot be preserved by all recursive
constructions. Namely, the recursion in the case C = D; U D, must be based on
the one subconcept D; for which we have D; ¢ D3, but there is no reason for
D; ¢ D, to hold for any n > 1 (only n = 0 is excluded since C is in DLP normal
form). This explains why the lemma considers multiple individuals cy, . . ., ¢, only

in cases where this problem can be avoided.

Lemma 7.6.4 Consider a name-separated concept C in DLP normal form such
that C ¢ D3, and C does not have a subconcept D ¢ D}. Let n > 0 be such that
n = 0if C is a disjunction or C € Dy for some k > 0, and consider fresh con-
stants cg,...,Cn,do, . ..,dy,. There is a consistent datalog program [cy,...,c, €
C,dy,...,d, ¢ Clx and according set M = {co,...,Cn,do,...,dyn} U{c € 1|
c occurs in [[cy,...,c, € C,dy,...,d, ¢ Clx} such that

- [cos....cn€C,dy,...,d, & Clx E ~(exf)foralle,f €l{cy,...,cn,do,...,dy}
with e # f,

- [coy...,chn€C,dy,...,d, ¢ Clx E{c;} T C foralli=0,...,n,
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- [lco,... cn€Cidy,...,d, & Clx E{d;} E =C foralli=0,...,m,

— for all models 1, I, of [co,...,c, € C,dy,...,d, ¢ Clx, and any set of
constants N C I with M C N, the product J = 1| Xxn) L2 is such that
(c;,dj) ¢ CJ foralli€|0,...,nyand j€{0,...,m}.

Proof. Note that the conditions imply that C € D}, and hence C ¢ {T,L}.

Set P ={e~ f — L | ef € {c....Cn,dp,...,dp},e # f}. We define

[co,...,cn € Cody,...,d, ¢ Clx recursively based on the structure of C, and we

inductively show that it has the required properties. Both parts can conveniently

be interleaved. Thus, in each of the following cases, let 7, and 7, be models of
the [[co,...,c, € C,dy,...,d, ¢ Clx just defined, and let J be the product inter-
pretation as in the claim:

— If C has the form A, {I} or AR.Self, then [cg,...,c, € C,dp,...,d, & Clx =
PU|co,...,c, € CI1Udy,...,d, ¢ C].

It is easy to see that 7 satisfies the claim. Note that the pre-conditions of the
lemma imply n = 0 whenever C € {I}.

- If C = D, 1 D, with D, ¢ Dj, then [co,...,c, € C,dy,...,d, ¢ Clx =
[[C()’--"CnEDl,dOa---,dmng]]X'

Since J; and 7, are models of [cg,...,c, € D, dy,...,d, &€ D], the claim
follows immediately by induction.

- If C = Dy U D, with D; ¢ C} and D, ¢ D>, for all k > 0, then n = 0 is
required. Define [¢y € C,d,,...,d, ¢ Clx = [[co € Dy,dy,...,d, ¢ Di]x U
[D; C {co}]l<.

7 and 7, are models of [cy,...,c, € Dy,dy,...,d, ¢ Di]x and we can apply
the induction hypothesis. The desired result follows since the product J also
satisfies the datalog program [D, C {co}]<.

— If C = 2kR.D with k > 1, then [cy,...,c, € C,dy,...,d,, &€ Cllx = PU
{R(ci,e))|10<i<n 1< j<klUle,...,ex € DJU{R(d,x) > L]0 < j<m)
for fresh individual names ey, ..., ¢.

It is again easy to see that J satisfies the claim.

- If C = <OR.—D with D ¢ D}, then, for a fresh constant e, define [cy, ..., c, €
C,dy,...,d, ¢ Clx = PU{R(c;,x) > x = e,R(c;,e) | 0 <i<n}U{RU, [) |
0<i<m}UleeD,f ¢ D]x«.

We find that ({c;,d;),{e, f)) € RI foralli€{0,...,n}and j € {0,...,m}. The
claim follows from the induction hypothesis.
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- If C = <IR.-D with D ¢ D, for all k > 0, then consider fresh individ-
uals e, f, g. Define [cg,...,c, € C,dy,...,d, &€ Clx = PU{R(c;,x) = x =
e,R(ci,e) |0 <i<n}U{R(,;, f),R(d;,g) | 0<i<m}Ule,f,g ¢ D]x. Note
that the last component of this union also requires that the individuals denoted
by e, f, g are mutually distinct.

We find that ((¢;,d,), (e, )) € R7 and {{c;,d;),{e, g)) € RY foralli € {0,...,n}
and j € {0, ..., m}. The claim follows from Lemma 7.6.3.

It should be verified that the given cases are exhaustive. Especially, C = <1 R.—=D
with D ¢ D, for all k > 0 is the only case where C = <k R.—D for some k > 1 —
all other forms are either in D} or not in D). Moreover, all recursive applications of
the construction satisfy the necessary pre-conditions, especially the requirements
for n > 1 are preserved. O

The third and final lemma in this series is only needed for two individuals
so that we can simplify our presentation slightly. However, the construction now
becomes more complex since we can no longer use an auxiliary datalog theory,
and since more care is needed in selecting a suitable product interpretation.

Lemma 7.6.5 Consider a name-separated concept C in DLP normal form such
that C ¢ D}, and C does not have a subconcept D & D. Let ¢, ¢, be fresh con-
stants. There is a consistent first-order theory [[cy, c; € Cllx and a set of constants
N C I such that

= [lco,c1 € Clix E —~(co = 1),
= [[co,c1 € Cllx E{c} EC fori=0,]1,

— for all models I of [co,c1 € Cllx, the product J = 1 Xxny X is such that
(co,c1) & CY.

Proof. The conditions again imply that C € D}, and hence C ¢ {T, L}. Moreover,
C ¢ D}, and C € D} implies that C ¢ D.,. Indeed, C ¢ D since C is in DLP
normal form, and thus C € D; would imply that C is of the form {I}nC} € Dj, €
D;,. This property is inherited by subconcepts D of C as long as D ¢ Dj,.

We define [cy,c; € C]Jlx recursively based on the structure of C, and we in-
ductively show that it has the required properties. Both parts can conveniently be
interleaved. In addition, we also specify a suitable set N of constant symbols to
use in the product construction in the recursion. Thus, in each of the following
cases, let 7 be a model of the [[cy,...,c, € C]x just defined, and let J be the
product interpretation as in the claim.

-IfC = D, u D, with D.,D, ¢ DE then |[C0,C] € C]]X = [[CO € Dy,c1 ¢
D]« U lc; € Da,cy € Ds]l« and the set N is defined as in Lemma 7.6.4.

Using Lemma 7.6.4, it is easy to see that J satisfies the claim.
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- If C = D, U D, with D; ¢ D}, and D, € D}, then consider a fresh concept name
A. Since C ¢ D,,_, for all n > 0, the same holds for D; and D,. Moreover,
D, ¢ D, as discussed initially. We thus can define [[cy,c; € C]x = [[co,c1 €
D« U[[D, C =A]< U{A(cy),A(c;)}. The set N is defined to be the same as for
[[co,c1 € Di]lx.

7 is amodel of [cy, c; € D]« and we can apply the induction hypothesis. The
desired result follows since the product J also satisfies the datalog program
[D; C —-A]< U {A(co), A(cy)} (Proposition 7.5.2).

- If C = D, 11 D, then we can assume D; ¢ Dj,. Clearly, C ¢ D, implies
Dy, D, ¢ D.,. Thus we can set [cy, c; € Cllx := [[co,c1 € D]« U [[co, 1 € D5,
where N is again taken to be the set of constants as defined for [cy, ¢; € D;]«.

We can again apply the induction hypothesis since 7 = [[co, ¢; € D;]lx, and use
the fact that J E [[co, c1 € D-].

- If C = >nR.D then D ¢ D! UDg,_; U {L}. Since all subconcepts of C are
assumed to be in D}, we conclude that D ¢ D.,. Thus we can introduce fresh
individual symbols dy,...,d, and set [co,c; € Clx = [dy,...,d, € D] U
{=(e = ) | e,f € {co,c1,dp,...,du} e # f} U{VXR(Co,X) © Vocicn X =
di} U{V¥x.R(c1, x) & \oci<y X = d;}. Define N = {cy, ¢1}.

We claim that {co, ;) € A7 is such that {cy,c;) ¢ C7. Consider any element
(e, ) € AY such that ({co,c1),{e, f)) € RI. By the construction of J, we
have that (c},e?),(c], f') € R, and thus ¢/ = d/ and f/ = d‘jr for some

i€{0,...,n—1},j€{l,...,n}. Since the constants d; are unequal to ¢, ¢y, this
implies that e, f ¢ N, and thus e = f = d; = d;. Therefore, (e, f) is equal to
d;7 for some i € {1,...,n — 1} whenever ({cy, c1),{e, f)) € R7, as required for
(co,c1) ¢ CI.

- If C = <OR.-D with D ¢ Dj, then define [co,c; € Clx = [co,c; € D]x U
{R(cp, co), R(c1, c1)}, where N is defined as for [[cy, ¢; € D].

The claim follows by induction as before.

— If C = <1R.—-D with D ¢ Dg U {1} then [[¢1,c9 € Clx = l[co € D,c; ¢
D]« U {R(cy, co), R(co, c1),R(c1, c), R(cy,c1)}, where N is defined to be the set
M as given in Lemma 7.6.4.

The claim is a consequence of Lemma 7.6.4.

— If C = <nR.—~D with n > 2 then consider fresh individual symbols ¢, ..., c,
and define [co,c; € Clx = [co,c1 ¢ Dlx U [ca,...,c, € DI U{R(ci,cj) | i €
{0,1},j€10,...,n},i # jlU{=(ci = ¢;) | 0 < i< j<n}, where N is defined to
be the set M as given in Lemma 7.6.3.

156



7.6 SHOWING STRUCTURAL MAXIMALITY OF DLP

It is easy to see that {co,c;) in J has at least n distinct R-successors {c;, ¢;)
(i=2,...,n)and {cy, co). The former are not in D since J satisfies the datalog
program [[ca,...,c, ¢ D]. The latter are not in D by Lemma 7.6.3.

Atomic concepts, nominals, Self restrictions, and their negations do not occur
since C ¢ Dj,. O

The previous result is used in the following proposition to show that certain
kinds of atmost-concepts are generally excluded from DLP, even if they occur as
subconcepts only.

Proposition 7.6.6 Given a name-separated concept C ¢ {T, L} in DLP normal
form, the following three statements are equivalent:

- C¢D},
— C has a subconcept D ¢ D,

— C contains a subconcept <k S.—F suchthat F € D} and F ¢ D, foralll > 0
and:

(a) k=0and F ¢ D;; U{L}, or
(b) k=1and F ¢ Dy U{Ll}, or
(c) k>2.

If these statements hold and, in addition, C ¢ D, for alln > 0, and C ¢ C.+,
then C cannot be FOL.-emulated in datalog.

Proof. Note that the preconditions on C imply that {C} is satisfiable. The claimed
equivalence is easily verified by considering the grammar for D} given in Fig. 7.5,
where it should be noted that some cases are inherited from D}, and Dj. Also
observe that F € D is thus equivalent to saying that F has no subconcept £ ¢ D} .
First, we define an auxiliary theory that requires <k S.—F to be non-empty in
order for C to be satisfied. As before, we sometimes mix first-order logic and DL
to denote an arbitrary FOL.. theory that represents the first-order semantics of
this combination. Given a constant symbol ¢, and a subconcept D of C such that
<k §.—F is a subconcept of D, we recursively construct a FOL, theory T (c, D):

— If D =<k S.—F,then T(c,D) = 0.
— If D = D, 1 D, with <k S.—F a subconcept of Dy, then T(c, D) := T(c, Dy).

- If D = Dy U D, with <k S.—F a subconcept of Dy, then T'(c, D) := T(c,D;) U
[c ¢ D,].

— If D = >nR.D’, then consider fresh constants ¢y, ..., c, and define T(c, D) =
{(Vx.R(c,x) = Vi<icnCi = x} U T (co, D).
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— If D =<nR.-~D" (withR # §), then consider fresh constants c, ..., c, and set
T(c, D) := { No<i<a R(c, c) A No<icjcn =(ci ® cp}Uct, ...y cn € DU T (co, D).

Note that T'(c, D) is satisfiable, due to structurality of C and the fact that the
subconcept <k S.—F cannot be part of a subconcept of the form L+ or L, since C
is in DLP normal form. Now the theory 7 is defined as T := T'(c, C) for some fresh
constant c. It is easy to see that 7 U{C} is satisfiable, and that T U{C}U{<k S.~F C
1} is unsatisfiable.

Consider the case k = 0. Let a and b be fresh constants. We use the con-
struction of Lemma 7.6.5 to ensure that every element in the respective product
interpretations has an S -successor {a, b) in =F, and N denotes the according set of
constant symbols as in the definition of [[a, b € F]«. Some care is needed to ensure
that the auxiliary theory 7 remains true in any such product interpretation. Thus
define 7" =T U{=(c~d)|ce€ N,doccursin T}U{¥Yx.S(x,a) AS(x,b)}U[a,b €
F1Jx. It is not hard to see that 7’ U {C} is satisfiable. For an arbitrary model 7 of
T’ U {C}, consider the product interpretation J = 1 Xxn) Z. Since J satisfies
Vx.S (x,a) A S (x,b) (by Proposition 7.5.2), we find (6, {a, b)) € S for all 6 € A7,
Thus Lemma 7.6.5 entails £ <O0S.-F C L.

Moreover, J satisfies 7. This is a consequence of Proposition 7.5.2 for all
axioms of 7 that are in datalog. The only axioms for which this is not the case are
of the form Vx.R(c,x) = V<<, ¢i = x. Consider any element (e, f) € AJ such
that (¢7, (e, f)) € R7. By the construction of J, we have that (c,e?),(c?, ) €

R?, and thus ¢’ = ¢/ and f7 = cf for some i, j € {1,...,n}. Since all constants
in N must be unequal to constants c;, this implies that e, f ¢ N, and thus e =
f = c¢i = cj. Therefore, (e, f) is equal to 0;7 for some i € {1,...,n} whenever

(¢, (e, f)y € RI, so that the considered axiom of T is indeed satisfied.

Since T U {C} U {<kS.—F C 1} is unsatisfiable, this implies J £ {C}. This
establishes the preconditions for Lemma 7.5.3 (for the case 7} = T») and thus
shows the claim.

The other cases k = 1 and k > 2 are very similar, using constructions [a €
F.b ¢ Fl« and [ci,...,cx ¢ F]lx of Lemma 7.6.4 and 7.6.3. For k = 1, it is
admissible that ¢ ¢ F? is an S-successor of all elements. For k > 2, k such S -
successors ¢|,...,c/ ¢ F! are allowed. In either case, the product construction
generates further S -successors that require <k S.—F to be empty. O

Observe how the previous proof depends on using the second pre-condition
of Lemma 7.5.3 where a single model is multiplied with itself. This is essential
to ensure that the auxiliary theory T is satisfied in the product, even though it
contains non-datalog axioms. The above result also marks a case where we really
need product constructions that are different from the canonical product that uses
all pairs of (named) individuals as the new interpretation domain. The auxiliary
theory T in the above case would not generally be satisfied in a canonical product:
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the non-datalog axioms introduced for atleast-restrictions require a fixed set of
successor individuals, whereas a canonical product contains additional successors
that correspond to pairs of the original individuals.

For the remaining steps of the proof, we use some additional auxiliary con-
structions. The datalog programs of Definitions 7.6.1 and 7.6.2 are not suitable to
isolate properties that exclude a concept from DLP: to the contrary, they simply
enforce certain entailments to override any complex semantic effects. The fol-
lowing definition therefore provides us with knowledge bases that can be used
to “measure” information about the extension of a concept C without enforcing
C C L. The underlying intuition is that non-emptiness of some concepts can be
ensured to entail positive information. The construction thus can be viewed as a
generalisation of the construction in Lemma 7.2.6 to the more complex case of
SROIQ.

We provide two cases: [[c € C ~ A]lp is used to detect whether a constant
cis in C, while [C ~ AJls< is used to detect if C is generally non-empty. Both
constructions can only work (in DL%) if C “contains” positive information, i.e. if
it is not in Dp. Note that the constructions can be considered as specialisations of
[a ¢ C]and[CC Al-.

Definition 7.6.7 Consider a name-separated concept C in DLP normal form such
that C ¢ Dy U {L, T} UD,,_ for some k > 0. For individual names c, ..., ¢, and
concepts Ao, ...,A; € Dy, a datalog program [[cg,...,cx € C ~ Ag,...,Aillp 1S
defined recursively as follows:

— If C has the form A, {I} or AR.Self, then [[cg,...,c,x € C ~ Ay, ..., Aillg ==
Uo<i<k datalog({c;} M C C A)).

- If C = D; 1 D, with D; ¢ Dg, then w.l.o.g. D; is not a conjunction and
thus D; ¢ D.,_,, for all m > 0. Define [[cy,...,cx € C ~ Ag,..., Al =
[co,...,cr € Dy ’\/)AO,...,Ak]]B.

-IfC = D, uD, with D, ¢ DB» then D,D, ¢ DZw—k- Set [[C(),...,Ck e C ~
AO’---’Ak]]B = [co,...,cr € Dy ’\/)Ao,...,Ak]]BU [co,...,cx & D]

— If C = >nR.D withn > 1, then [[¢g,...,ck € C ~ Ao, ..., Allz = {R(c;, x) =
Ai(c) | 0<i<k}

— If C = <OR.—D, then, for a fresh constant d and fresh concept name B, define
[co,....ck € C~ Ag,...,Aillp = [[d € D~ Bl U{R(c;,d), B(d) — Ai(c)) |
0<i<k}

— If C = <nR.—-D with n > 1, then consider fresh constants d; (i = 0,...,n).

Define [co,...,ck € C ~ Ag,..., Al = {R(Ci,dj) | 0<i<k0c< ] <
nfUuldj~d — A(c)|0<j<1<n0<Li<k}Uld,...,d, & D].
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Moreover, if C ¢ D, for all k > 0, then a datalog program [C ~ A< is
defined recursively as follows:
— If C has the form A, {I} or AR.Self, then [[C ~ A] < := datalog(C C A).

- IfC =D nD,withD| ¢ Dgand D ¢ Ds,,_, foralln > 0, then [C ~ A]lp< =
[Dy ~ Allp<.

— If C = D, U D, with D; ¢ Dg, then [C ~ Allp< := [D; ~ Allg< U[[D;, C A].-.
— If C =>nR.D withn > 1, then [[C ~ A]lz< = {R(x,y) = A(x)}.

— If C = <OR.—D, then, for a fresh constant ¢ and fresh concept name B, define
[C~ Allg< :=[[c € D~ Blg U{R(x,c), B(c) — A(x)}.

— If C = <nR.—-D with n > 1, then consider fresh constants ¢; (i = 0,...,n).
Define [C ~ Allp< = {R(x,c;)) |0 <i<njU{ci=c; > Ax)[0<i<j<
n} U lco,...,c, & D]. O

It should be noted that the cases in the previous definition are indeed exhaus-
tive: side conditions usually are only provided to specify a particular situation
that can be assumed without loss of generality. Conditions that follow from the
assumptions are omitted. Observe that the necessary conditions for recursion are
satisfied in all cases of the definition. The choice of D, in the cases for C = D;M1D,
is possible since we disregard the nesting order of U: if there is some D; ¢ Dp,
then there is some such D, that does not have a C. disjunct (which is in D) while
still D; ¢ Dp. But then this D, ¢ D»,,_,, for all m > 0 as required.

It is not hard to see that, given the preconditions of Definition 7.6.7, we find
that [co,...,cx € C~> Ag,..., Alls E Upik {C M i} E A} and [C ~ Alls< E
C C A. Notably, the case C = <nR.—D uses a different approach than the other
cases: the positive information used to entail non-emptiness of A is found in the
equality relations that are implied between auxiliary constants d;.

Observe that the datalog programs of Definition 7.6.7 again may significantly
constrain the extension of C. For example, if C = <1 R.—L then [C ~ A]< is
only satisfied by interpretations that entail either C T L or T C C. This may
entail T C A, so we will only use [C ~ A]lzg<if T E A or C C L is satisfiable.
Non-emptiness of C might also be unavoidable, so one cannot assume that [C ~»
Allp< U{A C 1} 1s satisfiable. Yet, the remaining freedom will generally suffice for
our purposes.

Another noteworthy fact is that [[cy,c; € C ~ Ay, A] is not the same as
[co € C~ Apllp U [c; € C ~ A;]lp, which is the reason why the definition must
explicitly include cases with k > 0. To see this, consider C = (—{a} M —{b}) U B.
Then [[co,c1 € C ~> Ag, A1]lp = {B(co) — Ao(co), B(c1) — Ao(c1),co = a,cy = b}
but [[cg € C ~ Apllp U [[c1 € C ~ A]lp = {B(co) = Ao(co), B(c1) = Ap(cr),co =
a, c, ~ a}. The latter entails the unwanted consequence ¢y ~ ¢; since the auxiliary
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programs [[¢; ¢ —{a} M —{b}] are constructed independently for i = 0, 1 instead of
using [[co, c; ¢ —~{a} 1 ~{b}].
The following lemma provides some important ingredients for showing max-

imality of DLP, since it establishes the pre-conditions of Lemma 7.5.3 for broad
classes of concepts.

Lemma 7.6.8 Let C € D} be a name-separated concept expression in DLP nor-
mal form, let 1 be the set of constants of the given signature, and let a,b,c € 1 be
arbitrary constants not occurring in C.

(1) If C ¢ Dy, then one of the following is true:

I with a,b € N such
C}U T, we find that

— There is a theory T and a set of constants N
that: given an arbitrary model 1 of {{a} U {b}
J =T Xxny L is such that {a, b) ¢ cJ.

— There are theories Ty, T, such that: given arbitrary models I; of {{a} U
(b} E CYUT,; (i = 1,2), we find that J = I, Xaxxy L2 is such that
{a,by ¢ CI.

C
c

(2) If C ¢ D,, then there are theories Ty, T, such that: given arbitrary models
Tiof {c} ECYUT; (i = 1,2), we find that J = 1| Xaxx) L2 is such that
¢J ={(c,c)¢ Y.

In all cases, models I, T, and 1, as described in the claims exist.

Proof. By Proposition 7.6.6, C € D/ implies D € D for all subconcepts D of C.

We start by considering claim (1). Claim (2) is shown independently below,
so if C ¢ D, then we obtain theories 7 and 7, as in claim (2) for some fresh
constant c. It is easy to see that the theories 77 := T; U {a ~ ¢,b ~ ¢} (i = 1,2)
suffice for establishing claim (1). It remains to show claim (1) for cases where
C € D,. An easy induction can be used to show that D, N D, € D. Hence, using
our assumption that C ¢ Dy, we can also conclude C ¢ Dj,.

The only remaining cases for claim (1) therefore are such that C ¢ D7, so that
Lemma 7.6.5 can be applied. Define T := [a,b € C]«, and define N as in the
lemma. The claim follows from Lemma 7.6.5.

For claim (2), we construct theories 71 = T(c,C) and T, = T5(c, C) for a fresh
constant ¢ as in the claim. The proof proceeds by induction over the structure of
C. Note that C cannot be an atomic class, nominal, Self restriction, or the negation
thereof.

Consider the case C = Dy M D,. Without loss of generality, we find that D, ¢
D,. Applying the induction hypothesis, we obtain theories 7;(c,C) = T(c, D)
(i = 1,2) that satisfy the claim.
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Consider the case C = D; U D,. As a first case, assume that D; ¢ D,. Then
we can define theories Ti(c,C) := Ti(c,D;) U [[c ¢ D,] (i = 1,2). The claim then
follows from the induction hypothesis together with the fact that every product
interpretation constructed from models of T;(c,C) (i = 1,2) must also satisfy
[c ¢ D,] by Proposition 7.5.2. The case D, ¢ D, is similar.

Now assume that C = D; U D, with Dy, D, ¢ Dg. Using fresh concept names
Ay, A, and the construction of Definition 7.6.7, define T;(c,C) = {Ai(c) —» L} U
Ujz12llc € Dj~ Al fori = 1,2. Then any product interpretation J of any two
models of T;(c,C) (i = 1,2) satisfies | J;-;,[[c € D; ~ Ajllp U{A;(c) — L}, and
hence J [~ {c} U D; (i = 1,2) as required.

Consider the case C = <OR.—D with D ¢ Dy. Since C € D we find D € Dj,.
Using D;, N D, € Dy as above, we conclude that D ¢ D,, which allows us to
apply the induction hypothesis. Consider a fresh individual name d and define
T(c,C) = Tid,D) U {R(c,d)} (i = 1,2). Given models ; of T;(c,C) (i = 1,2),
the induction hypothesis implies that J := 7| X1y Z» does not satisfy {d} E D.
Since J E R(c,d) we conclude 7 ¥ {c} C C.

Consider the case C = <1 R.—~D with D ¢ Dg and D ¢ D,,_;. Using fresh
symbols ¢y, ¢, A1, Ay, we define Ti(c,C) = {Ai(c;) — L} U [[c;,co € D ~
A1, A2]lp U {R(c,c1), R(c, cy)} for i = 1,2. Using similar arguments as in the last
case of C = D; U D,, we find that no product interpretation of models of T(c, C)
(i =1,2) can satisty {c} C C.

Consider the case C = <nR.-D withn > 2 and D ¢ D,,_,. Using fresh
individuals symbols ¢y, ..., c,, set T = [co,...,c, € D] U {R(c,c; | 0 < i < n}.
We define T1(c,C) = TU{c; = ¢; - L |1 < i< j<n}band Ty, C) =
TU{ci=cj— L|0<i<j<n- 1} Thus, any model of {{c} E C} U T;(c,C)
({{c} E C}UT,(c, C)) entails ¢y = ¢ (c,—1 = c,), but this entailment is lost in every
product interpretation. This shows the desired result since product interpretations
satisfy T by Proposition 7.5.2.

Consider the case C = >1 R.D with D ¢ D>'. Then D € D} and D ¢ D,. For a
fresh constant d, define T;(c,C) = Ti(d, D) U {R(c,x) —» d ~ x} fori = 1,2. The
claim follows from the induction hypothesis and the fact that every considered
product interpretation also satisfies {R(c, x) — d ~ x}.

Consider the case C = >nR.D with n > 2 and D ¢ D>". Without loss of
generality, we can assume that D is of the form C;U...LC,UE (p > 1) where no
C; is a disjunction, C; ¢ Cgfori =1,...,p, and E € Dy U {_L}. For the following
argument, we use £ = L to cover the case where no such FE is given in the original
DLP normal form. Note that £ might be a disjunction but cannot be T.

First assume that there is some F' € {E,Cy,...,C,} such that F € D, for
some k > 0. Since F' is in DLP normal form, it is a disjunction that contains some
disjunct in C_,, (m > 1). All subconcepts of D are assumed to be in D}, so if

m < n®> —n then D € D*"; a contradiction. Thus D is of the form D; L D, with
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D, € C_,, and m > n*> — n. Moreover, D, ¢ D, since otherwise we would find
DeD,cD™".

Let ind(D;) = {cy,...,cn} be the set of constants in D;. Let py, ps, ..., Ppe_n
denote a sequence of all pairs p; = (d;,d,) of constants d,d, € {ci,...,c,}
with d; # d,. The order is inessential, but some order is needed for notational
purposes. Define auxiliary theories T;(c,C) = {Vx.R(c, X) = Vigjen €j ® x} U
Ui<jem Ti(cj; D) Ufc; = di | n < j < m,pj,, = (dy,d>)}. Observe that the first
component in this definition refers only to the first n constants cy, ..., ¢,, the sec-
ond part is specified for all m constants, and the third component refers to the last
m — n constants ¢,1,. .., Cp, only.

To see that these theories satisfy the claim, consider models ; of {{c} E C} U
Ti(c,C)(i=1,2),and let J = 1| Xaxr £> denote their product. Observe that, by
the construction of Ti(c, C), the constants ¢; (1 < j < m) are mutually unequal in
J . Now consider an arbitrary element § € A7 such that (¢7, §) € R7. By definition
of the product, there must be a constant symbol d — possibly an auxiliary constant
that did not occur in C — such that 6§ = (d,d) and (c’i,d’") € R’ fori = 1, 2. Since
the models 7; satisfy Yx.R(c,x) — V<, ¢; = x, we conclude that 7, | d = c;
and 7, F d = ¢ for some (possibly distinct!) j,k € {1,...,n}. Thus, there are
at most n” elements 6 € A7 such that (¢7,6) € R7, since there are at most n?
distinct ways of selecting j, k. Now m of those n> elements are of the for c;(.] for
some j = 1,...,m, and by the induction hypothesis we find that c‘jy ¢ Dzj . Since
c‘;f ¢ Dl7 1s immediate, we thus find that ij ¢ DI forall j=1,...,m. Summing
up, we conclude that J can have most n> — m distinct R-successors for ¢ which
are in D. Since n®> — m < n*> — (n* — n) = n, we find that J }~ {c} C >nR.D, as
required.

For the rest of the proof, assume that F' ¢ Dy, for all F € {E,Cy,...,Cp}
and k > 0. In particular, we can use the constructions of Definition 7.6.2 and 7.6.7.
Now if {{c} € C}U[E C <OR™.——{c}]< is unsatisfiable, then C,U...LUC, € D,_;.
Since we assumed that C; U ... U C, € D}, this again implies D € D*". Hence,
{{c} C C} U [E C <OR .=—={c}]l< must be satisfiable (note that this includes the
case E = 1). It is easy to see that {{c} C C} U [E C <0R.-—{c}]< semantically
emulates {{c} C >nR.C; U ... U C,}, and that the claim can thus be established
by induction. So for the remaining considerations we can assume that E is not
present at all, i.e. that C =>nR.C; U...UC,.

Using the assumptions on C;, we can apply Definition 7.6.7 and define T :=
U<icp (ICi ~ Aillp< U{R(x,y) A Ai(y) — B;(x)}) for fresh concept names A, .. .,
A,, By,...,B,. Itis easy to verify that {{c} C C} U T is consistent. Now consider
the theory 77 .= T U {Bi(x) —» L | T U {{c} C C} U {B; C 1} is consistent}, where
it should be noted how the B; are used to avoid inconsistencies that could arise
immediately when requiring A; C L. Consider the case (A) that 7" U {{c} C C}
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is inconsistent. Then there are two disjoint subsets 11,1, C {1,..., p} for which
Ti(c,C) :=TU{B, C L |ie€ I} 1is such that T;(c,C) U {{c} C C} is consistent
for k = 1,2, while T(c,C) U Tr(c,C) U {{c} T C} is inconsistent. Every product
interpretation of models of Ty(c, C) (k = 1,2) entails T (by Proposition 7.5.2) and
B; C 1 (by Definition 7.5.1), and thus cannot be a model of {{c} C C}, as required.

Now consider the case (B) where T’ U {{c} C C} is consistent. Then there is
By, such that T U {{c} C C} U {B;, C L} is inconsistent. This implies that {{c} C

C}U{>1R.C, C 1} is inconsistent. Since C;, ¢ C. C D, we conclude that either
| li<i<pizn Ci € D<,1 or this concept is empty, i.e. p = h = 1.

First consider the case (B.1) where C;, € D<;. Then C, U ... U C, ¢ D,
implies p =nand C; € D foralli # h, 1 <i < p. Since C is not of the Dy-form
>n R.D,,, there is k such that C; ¢ D,. Now C; € D implies that C;, = {a} N C;
for some individual a and concept C; ¢ D,. As each model of C requires one R-
successor of ¢ in each concept of the form C;, we find that {{c} T C} semantically

emulates {{a} E C;}. The claim follows by induction.

As a second case (B.2), assume that C;, ¢ D<;. Then C;, ¢ D, for all k > 0
since C}, is not a disjunction. Since this implies that 7 U{{c} T C}U{B; € L | i # h}
is consistent, this theory must be equal to 77 U {{c} C C}.

Consider the case (B.2.1) where C;, ¢ D,. For fresh individuals ¢y, ..., c, de-
fine 7" =T U{VR(c,x) = Vi<i<n i = x}. Note that 7" U {{c} E C} is satisfiable
by interpretations J that have cf € Cf as the n distinct R-successors of c. Define
Ti(c,C) = Uijen Ticj, C)VT” (i = 1,2).

To show that this satisfies the claim, consider models 7; of {{c} C C}UT;(c, C)
(i = 1,2). Since the induction hypothesis only applies to named individuals, we
introduce n” fresh constants {c j»ci for ok € {1,...,n}. I is extended to 7| over
this extended signature by setting {c;, )t o= cf‘, so that 7| | (cj,cx) = c;. The
extended interpretation 77, is defined analogously for the second components. Due
to the constructions in this proof, for any constants e, f, we find that 7;(e, C},) is the
same as T;(f, C,) with e uniformly replaced by f (i = 1,2). Thus, we find that 7, |=
Ti({cj,ck),Cp) fori=1,2and all j,k € {1,...,n}. Moreover, I = {{{c;, c,)} E Cy}
so the induction hypothesis can be applied to obtain 1| Xy xr) I} ¥ {{cj, ci)} E C},
where I’ denotes the extended set of constants.

It is not hard to see that the interpretations I’ = 1| Xwxr) L5 and J = 1| Xxy
I, are equal (possibly up to renaming of domain elements). In particular, J” en-
tails (c;, cx) = ({cj,cj),{cw,cr)). Hence we find that J ¥ {(c}, cx)} € C},. More-
over, since 7 and I satisfy 7", we find that (¢7, ) € R7 implies 6 = (c;, cx)”
for some j, k € {1,...,n}. Thus we obtain J [~ {{c} C C} as required.

As the final case (B.2.2), assume that C;, € D,. Since D ¢ D", we find D #
Cp, 1.e. p > 1. We concluded | |; ;<21 Ci € D<,-1 above for all sub-cases of
(B). Hence D is of the form D, L D}, LI Dy — where we assume that m is the
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least natural number for which D has this form — and m and [/ do not satisfy the
relevant conditions in the definition of D*”. Accordingly, we denote D as Cj, L
Myu...uM,uL u...uL. Since My,...,M,,Ly,...,L; € Dy, they are

each of the form {d} M C for some individual name d: let ey,...,e,, fi,..., fi
denote these individual names. Set r := n — (m + [), and consider fresh individual
names cy, ..., c,. Defineaset X :={cy,...,c,,e1,...,en f1,..., fi} of all constants

considered as R-successors of c. Using the induction hypothesis, define

T,‘(C,C) = [[61,...,6m,f1,...,fl ¢ Ch]]x U
I[cl,...,c,ECh,el,...,em,fl,...,f,eéCh]]X U
Ui<jem Tiejs Mj) U{YX.R(c, X) = V jex d = x}

for i = 1, 2. Note that the construction of Lemma 7.6.3 is possible: if C;, would be
in D, then C € D, would imply C € D, which cannot be.

To show that this satisfies the claim, consider models 7; of {{c} C C} U T;(c, C)
(i=1,2),and let J = I Xax1 £ be the corresponding product interpretation. By
the constructions of T(c, C), we obtain that (¢7, §) € RY implies § = {a, b)7 for
some a, b € X. We distinguish various cases:

- Ifa,b € {er,...,em fi,..., fi} and a # b, then {(a,b)) ¢ EJ for all E =
M,,...,M,, L,,...,L canbe concluded from {a, b)T # d7 foralld = ey, ...,
ms fi,- ., fi. Moreover, (a,b)? ¢ C, by Lemma 7.6.3.

— Ifa=>5b=e;forsome j=1,...,m, then {a,b)? ¢ C), again by Lemma 7.6.3.
As above, (a, b)Y ¢ L;7 foralli=1,...,I. A similar argument shows (a, b)7 ¢
M7 forall i = 1,...,m with i # j, whereas (a,b)’ ¢ M7 follows by the
induction hypothesis. '

- Ifaeler,....em fi,..., fiyand b € {cy,...,c.}, then{a, b} ¢ C, follows from
Lemma 7.6.4. The conclusion {a,b) ¢ EJ forall E = M,,...,M,,,L,,...,L
follows as before.

In each of these cases, we thus find that (a, b)7 ¢ D7 . Therefore, the only elements
(a,b)” that might be in D7 are such that either a = b € {f;,...,f)} ora,b €
{c1,...,c,}. This yields a maximum of / + r? R-successors for ¢7. Since D ¢ D*",
we find that r(r — 1) < m (the case r < 0 cannot occur for any case under (B)).
Equivalently, 7 — r < m which in turn is equivalent to 72 — n+m + [ < m. But then
r* +1 < n, and we find J ¥ {c} C C, as required. O

The previous lemma already suffices to exclude a significant amount of axioms
from DLP:

Corollary 7.6.9 Let C be a name-separated concept expression in DLP normal
form, let A be a fresh concept name, and let c be a fresh constant symbol.
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(1) If C ¢ Dy U{T, L}, then A C C cannot be FOL.-emulated by any datalog
program.

(2) If C ¢ D,U{T, L}, then {c} C C cannot be FOL.-emulated by any datalog
program.

(3) If C¢ Dy U{T, L}, and C ¢ D, foralln >0, and C ¢ C.+, then C cannot
be FOL.-emulated by any datalog program.

Proof. If C ¢ D}, then the result follows from Proposition 7.6.6 in all cases. Thus
assume that C € D for the remainder of the proof.

For claim (1), consider fresh individual symbols a and b, and construct 7'; and
T, as in Lemma 7.6.8 (1). Define T} := T; U {A(a), A(b)} for i = 1,2. Then T'; and
T, satisfy the preconditions of Lemma 7.5.3 for the knowledge base KB = {{a} C
A,{b} T A,A E C}. In particular, T; U {A E C} is satisfiable since C is in DLP
normal form and C # L. This suffices to establish the claim.

For claim (2) and (3), we can use the theories 7; and 7, of Lemma 7.6.8 (2)
and (1), respectively. To ensure that the preconditions of Lemma 7.5.3 hold for
claim (3), we need to ensure that {C} U T; is satisfiable for i = 1,2. To this end,
C ¢ C.+ U {L} ensures that {C} is satisfiable. C ¢ D, for all n > 0 ensures that C
is satisfiable by interpretations of arbitrary domain sizes, and it is not hard to see
that {C} U T is consistent when considering the construction in Lemma 7.6.8. O

The previous result already covers a significant amount of concept expressions
that are not in {T,L} U Dy U D™ U C,r. It remains to show that concepts in
D, \ (D™ U C,+) for some n > 1 cannot belong to DLP.

Lemma 7.6.10 Let C be a name-separated concept expression in DLP normal
form such that C ¢ {T, L}, and C € D, \ (D™ U C.+ UDy) for some n > 1. Then
C cannot be FOL.-emulated by any datalog program.

Proof. Observe that, for any m > 1, we find C}, ¢ Df, ¢ C7" c CT"*'. We
define the degree d(D) of a concept expression D as follows. If D € C7" for
some m > 1, then let d(D) be the largest such m. Otherwise, if D € DZ, then
define d(D) := 1. Otherwise set d(D) := 0. Now since C € D" it is of the form
C=({c}nCpu...ul{c,} nC,), and we can assume that d(C;) < d(C;,) for all
i =1,...,n—1. Using this notation, it is not hard to see that C ¢ D™ is equivalent
to saying that d(C;) < iforsomei=1,...,n.

First consider the case that i > 1. We find that C is semantically equivalent to
(i} Cy u...U{c}nC). To see this, assume that n > i. Every model of C
has at most n elements in its domain. Since d(C,) > n by construction, C,, € C7".
By Lemma 7.3.6, we thus obtain C,, E C as a consequence of C, showing that
C is equivalent to ({c;} M Cy) U ... U ({c,—1} M C,—1). The claim thus follows by

induction.
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Now C; ¢ C7 holds for all j < i. Using Lemma 7.3.6, we thus find that
{c;} C C;j is satisfiable by models of at most i elements in their domain. By name
separation of C, we find that C is satisfiable, and clearly C is only satisfied by
models with exactly i > 1 domain elements. Finite domain sizes can be enforced
by FOL. theories, and hence must be preserved by FOL.-emulation. But do-
main sizes greater than 1 are not preserved by the product construction of Defini-
tion 7.5.1, so the fact that C cannot be FOL.-emulated in datalog is a consequence
of Proposition 7.5.2.

Consider the case i = 1. Using the same argument as above, we find that C
is semantically equivalent to {c;} 1 C;. By construction, C; ¢ DZ. The claim is
now shown by a miniature version of the proof steps that were used to establish
Corollary 7.6.9, where relevant constructions and arguments largely collapse due
to the requirement that the domain of interpretation is unary. We first provide
two auxiliary constructions for the “propositional” variants of Definition 7.6.1
and 7.6.7. Given a name-separated concept D ¢ D? and a constant d, recursively
construct a datalog program [[d ¢ D]? as follows:

— If D € C7! then [d ¢ D]” = 0.

— If D is of the form A, —A, —{I}, dR.Self, or —-3R.Self, then [d ¢ D]” :=
datalog({d} C =D).

If D = D, 1 D, with D; ¢ D, then [d ¢ D1 := [d ¢ D17

If D = D, U D, with D;, D, ¢ D”, then [d ¢ D] := [d ¢ D;1” U [d ¢ D,]".
If D = <OR.~D’ with D’ ¢ D, then [d ¢ DI = {R(d,d)} U [d ¢ D']".

If D = >nR.D’ with n > 0, then [d ¢ D] := {~R(d, d)}.

If D ¢ D¥ then, for a concept name A, we recursively construct a datalog program
[{d} N D C A]l;, as follows:

— If D has the form A or IR.Self, then [[{d} 1 D C A]}, := datalog({d} n D C A).
- If D = D, n D, with D; ¢ D}, then [{d} N D C A}, := [{d} N D, C AJ%.

— If D = D, D, with D, ¢ D%, and D, ¢ D?, then [{d} D C A], == [{d}nD; C
ATL U [[d ¢ D,]".

- If D = <OR.~D’ with D’ ¢ D}, then [{d} 1 D C Al%, == [{d} n D’ C Al U
{R(d, d)}.

— If D = >1 R.D with D’ ¢ C=', then [{d} N D C A]l’, := {R(d, x) — A(x)}.

To establish the claim, we recursively construct theories 7, = T;(c;,C;) and
T, = T,(cy, Cy) that satisfy the preconditions of Lemma 7.5.3. Note that C cannot
be an atomic class, nominal, Self restriction, or the negation thereof.
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Consider the case C = D; U D, with Dy,D, ¢ D’g. It is easy to see that
Ti(c1,C) = Ti(c1, D) U{=A(0)} U Uz p{d} M Dy T Aj1% (i = 1,2) satisfy the
claim for fresh concept names A, A,. Furthermore, if C = D; LI D, with D, ¢ DZ
and D, € DZ then the claim is satisfied by T(c;,C) = Ti(c1,Dy) U [[d ¢ D,]?
(i = 1,2). Similarly, for the case C = DM D, with D; ¢ DZ, the theories T;(cy, Dy)
(i = 1,2) satisfy the claim.

Now consider the case C = >nR.D. Thenn = 1 and D ¢ DZ. Since C is
semantically equivalent to D on singleton domains, the claim follows again by
induction. A similar reasoning is possible for the case C = <nR.—D withn = 0
and D ¢ DY, O

We are now, finally, in a position to state the main theorem of this section.

Theorem 7.6.11 If C is a concept expression in DLP normal form such that C ¢

DLP, then C cannot be contained in any DLP description logic in the sense of
Definition 7.3.1.

Proof. By Definition 7.3.5,C ¢ {T, L}JUCyUD™UC,r foralln > 1.If C ¢ D,
for alln > 0 and C ¢ D, then the result follows by Proposition 7.6.6. If C ¢ D,
for all n > 0 and C € D, then the result follows by Corollary 7.6.9. If C € D,
for some n > 0, then the result follows by Lemma 7.6.10. m]

7.7 Summary

DLP provides an interesting example for the general problem of characterising
syntactic fragments of a logic that are motivated by semantic properties. We de-
rived and motivated a number of design principles for achieving such a character-
isation for DLP, most notably the principles of modularity (closure under unions
of knowledge bases) and structurality (closure under non-uniform renaming of
signature symbols), and showed that the presented DLP description logic is the
largest one possible. Formalisms like our maximal D L% are unnecessarily large
for practical applications, but understanding overall options and underlying design
principles is indispensable for making an informed choice of DL for a concrete
task.

Our work also clarifies the differences between DLP and the description log-
ics SROEL(M, X) (and thus EL) and Horn-SH I Q which can both be expressed
in terms of datalog as well. First of all, neither SROE.L(M;, X) nor Horn-SHIQ
can be FOL.-emulated in datalog (DLP 2). The datalog obtained in these cases
still preserves satisfiability even when arbitrary ABox facts (without complex
concepts) are added. In other words, SROEL(M, X) and Horn-SH I Q satisty a
weaker version of DLP 2 based on FOLE"™ _emulation of Definition 2.2.2, where
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FOLE™™ is the variable-free fragment of FOL.. Under those weakened princi-
ples, a larger space of possible DL fragments is allowed, but it is not clear whether
(finitely many) maximal languages exist in this case. There is clearly no largest
such language, since both SROEL(Mg, X) and DLP abide by the weakened prin-
ciples whereas their (intractable) union does not.

Even when weakening the principles of DLP like this, Horn-SHIZQ is still
excluded since it cannot be modular (DLP 5) by Proposition 7.1.1. It is open
which results can be established for Horn-SH 7 Q-like DLs based on the remain-
ing weakened principles.

This chapter also heavily exploits the notion of semantic emulation as intro-
duced in Section 2.2. In essence, emulation requires that a theory can take the
place of another theory in all logical contexts, based on a given interface signature.
Examples given in this chapter illustrate that emulation can indeed be very differ-
ent from semantic equivalence. Yet, our criteria can be argued to define minimal
requirements for preserving a theory’s semantics even in combination with addi-
tional information, so emulation appears to be a natural tool for enabling informa-
tion exchange in distributed knowledge systems. We therefore belief that notions
of emulation (and, closely related, conservative extension) are natural tools for
studying the semantic interplay of heterogeneous logical formalisms in general.

Finally, the approach of this chapter — seeking a structural logical fragment that
is provably maximal under certain conditions — immediately leads to a number of
further research questions. For example, what is the maximal fragment of SWRL
that can be expressed in SROZQ? This fragment would contain forms of DL Rules
and DL-safe rules as introduced in Chapter 8 and 9. But also the maximal FOL.
fragment that can be expressed in some well-known subsets such as the Guarded
Fragment [AvBNO98] or the two-variable fragment might be of general interest. We
argue that ultimate answers to such questions can indeed be obtained by a careful
articulation of basic design principles. At the same time, our study indicates that
the required definitions and arguments can become surprisingly complex when
dealing with a syntactically rich formalism like description logic. The main reason
for this is that constructs that are usually considered “syntactic sugar” have non-
trivial semantic effects when considering logical fragments that are structurally
closed.

7.8 Related Work

DLP has originally been introduced in [GHVDO03, Vol04] although already these
sources provide a number of distinct characterisations and variants. As explained
in Section 6.2, the Horn DL R.L that subsumes the abstract part of OWL RL
[MCH™09] can also be considered as an extension of these works. It has been dis-
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cussed above how datalog reductions for other DLs, especially for Horn-SHIZQ
and for (extensions of) EL, relate to DLP. Further pointers to works on datalog
reductions are given in Section 8.7.

We are not aware of any model-theoretic characterisation of datalog that is
closely related to the constructions introduced in Section 7.5. The least model
property of datalog is well-known [L1088], and various generalised model con-
structions have been studied to characterise logics [CK90]. In particular, [CK90]
provides a characterisation theorem for Horn sentences, stating that a first-order
formula is semantically equivalent to some Horn sentence iff its validity is pre-
served under reduced products. Moreover, it is well-known that models of uni-
versal theories are closed under sub-model constructions. While both of these
constructions can be related to the products in Definition 7.5.1, we point out that
they are not distinguishing function-free universal Horn logic from universal Horn
logic with function symbols. The reason why our constructions are adequate for
establishing the given results must therefore be sought in the pre-conditions of
Lemma 7.5.3 which can no longer be established if the signature includes function
symbols (assuming a suitable extension of Definition 7.5.1 to such signatures).

More generally, constructions of models can be characterised by means of
categorical algebra based on suitable notions of morphisms between models and
logical theories. Institution theory has been proposed as a meta-logical framework
for studying logics in an abstract fashion [GB92]. Institution theory uses binary
relations (“F’") as an abstraction for various model theories, and thus is related to
formal concept analysis (FCA) where binary relations are studied as formal con-
texts [GWI7]. Indeed, the logical perspective on formal contexts is well-known
[KGO9], and relationships to DLs have also been explored [Rud06, Ser07]. Other
approaches that can be related to institution theory in a more abstract setting are
information flow theory and channel theory [Gog06, Ken(09]. We are not aware of
extended discussions of model constructions in any of these frameworks.

Another related branch of formal logic is the characterisation of logics based
on model-theoretic properties in general, in the spirit of the original Lindstrom
theorem for first-order logic (see [CK90] for an introduction). Again, we are not
aware of any such characterisation for universal function-free Horn-logic, i.e. for
datalog. Characterisation theorems of another type abound in modal logics and
related fields, starting with the seminal characterisation result by van Benthem
(see [BVBWO6]). In these cases, various notions of bisimulation are employed to
relate models, and the preservation under bisimulation then characterises formulae
of certain logics. These results can yield insights for characterising DLs, and could
thus be useful when investigating the problem of representing other logics in terms
of DL — the converse of what was studied within this chapter.
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Chapter 8

Description Logic Fragments of
SWRL: DL Rules

We have already noted in previous chapters that various description logic axioms
can also be presented as (datalog) rules, and, equivalently, certain datalog rules
can be cast into description logic axioms with the same semantics. It is clear that
there must still be rules and axioms that cannot be rewritten in this way, or at least
that it is not possible to do this rewriting automatically. Otherwise, one could use
a rewriting algorithm followed by a standard reasoning algorithm for datalog or
description logics, respectively, to obtain a decision procedure for the combined
reasoning tasks. Such a procedure cannot exist according to the undecidability
result for SWRL (Fact 4.2.2).

In this chapter, we address the question which SWRL rules can be emulated
by description logic knowledge bases. The class of decidable SWRL fragments
that is obtained from this consideration is called Description Logic Rules, and
different description logics lead to different classes of DL Rules depending on the
expressive power that is available for emulating rules.

We begin this chapter by providing a number of motivating examples in Sec-
tion 8.1, thereby introducing the essential methods that are used subsequently for
emulating SWRL rules in DL. Thereafter, in Section 8.2, we define SROZQ rules
as a large class of DL Rules that are also expressible in OWL 2. Section 8.3 fur-
ther extends this framework for DLs that support logics with role constructors,
where especially role conjunctions and concept products are useful for encom-
passing SWRL rules that could not be emulated in SROZ Q. Based on these rather
large DL Rule languages, Section 8.4 provides a general definition for obtaining a
DL Rule language for many further description logics, and shows that the worst-
case complexity of reasoning is typically the same as for the underlying DL. The
close relationship of DL Rules and datalog is exploited in Section 8.5 to obtain a
direct translation procedure from SROEL(M, X) rules to SROEL(M, X), possi-
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bly extended with admissible range restrictions (concept products). The results of
this section also establish the correctness of the reasoning procedure that was pre-
sented for SROEL(M, X) in Section 5.4. We conclude by summarising our results
in Section 8.6 and provide pointers to related work in Section 8.7.

Various results reported in this chapter have been published in [KRHO08a,
KRHO8b, RKHO8a].

8.1 Initial Observations

We first consider some examples to improve our intuition. The following rule
appeared in Section 1.3:

Person(x) A authorO£f(x,y) A Book(y) — Bookauthor(x).

We noted that it can equivalently be expressed by the description logic axiom
Person M JauthorOf.Book C Bookauthor. The important difference between
both representations is that the latter does not use any variables. We have already
seen that concept expressions play the rdle of unary predicates in SWRL. It is not
necessary to state the argument of these unary predicates since it is always the
same variable on both sides of a class inclusion axiom. The above example could
thus equivalently be written as a SWRL rule:

(Person M dauthor0f.Book)(x) — Bookauthor(x).

This explains the whereabouts of variable x. The variable y in turn appears only
in two positions in the rule body. Since it is not referred to in any other part of
the rule, it suffices to state that there exists some object with the required rela-
tionship to x, so the rule atoms authorO£f(x,y) A Book(y) are transformed into
JauthorOf.Book(x). Rewriting atoms as description logic concepts in this fash-
ion is called rolling-up, since a “branch” of the rule body is rolled-up into a state-
ment about its first variable. A graphical representation of rules that is based on
this intuition is introduced in Definition 8.2.1 below.

For further examples, consider the SWRL rule base as specified in Fig. 8.1.
The rules given there have already been discussed in Chapter 4, but we introduce a
number of additional facts that will be useful for subsequent discussions.! Indeed,
we will refer to Fig. 8.1 as a running example throughout this and the next chapter.
When reasoning as in Section 4.2.1, it is not hard to see that the rule base entails
that anja, bijan, ian, and markus are — for the sake of the example — Unhappy,
and the degree to which these conclusions are preserved will support our intuition
when comparing various SWRL fragments that are studied below.

! Any similarities with real vegetarians, whether happy or not, are entirely coincidental.
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(1) Vegetarian(x) A FishProduct(y) — dislikes(x,y)

) orderedDish(x,y) A dislikes(x,y) — Unhappy(x)

3) orderedDish(x,y) — Dish(y)

(4) dislikes(x,z) ADish(y) A contains(y,z) — dislikes(x,y)

5) Happy(x) A Unhappy(x) — L
Vegetarian(anja) orderedDish(anja, thaiRedCurry)

dcontains.FishProduct(thaiRedCurry)

Vegetarian(bijan) orderedDish(bijan, fishFingers)
FishProduct(fishFingers)

Vegetarian(ian) dorderedDish.dcontains.{fishSauce}(ian)
FishProduct(fishSauce)

Vegetarian(markus) dorderedDish.dcontains.FishProduct(markus)

Figure 8.1: Example SWRL rule base

We can now try to generalise from the first example given above. We have seen
that x in the above case is simply an implicit (and necessary) part of the concept
inclusion axiom. So for any rule that we wish to rewrite as such an axiom, we need
to identify some variable x which plays this special role, and find a way to elimi-
nate all other variables from the rule using a rolling-up method as above. This is
not always possible, as rule (2) from Fig. 8.1 illustrates. The conclusion of this
rule suggests that the variable y should be eliminated to obtain a class inclusion
axiom. But the premise of the rule cannot be rewritten as above. A class expres-
sion like JorderedDish. T ddislikes.T describes elements with relationships
orderedDish and dislikes, but not necessarily to the same element y. Using in-
verse roles, one could also write JorderedDish.ddislikes™.T to describe some
x who ordered something that is disliked by someone — but not necessarily by x.
Indeed, this relationship can only be expressed in DLs that support conjunctions
of roles as discussed in Chapter 5.

Yet, there are various further types of datalog (or SWRL) rules that can be ex-
pressed in DL axioms. An example is rule (4) of Fig. 8.1. As its conclusion is a bi-
nary atom, it can certainly not be expressed as a concept inclusion axiom. SROZQ
role inclusion axioms, on the other hand, can include only role expressions, while
rule (4) also contains a unary (concept) atom Dish(y). This problem can be ad-
dressed by adding an auxiliary axiom to the knowledge base. A fresh role name
Rpisn is introduced together with the concept inclusion axiom Dish = dRp; . Self.
Intuitively speaking, this defines the class of dishes to be equivalent to the class of
those things which have the relationship Rp;s, to themselves. With this additional

173



DescripTioN Logic FRAGMENTS oOF SWRL: DL RULES

axiom, one can rewrite rule (4) as follows:
dislikes(x,z) A Rpisn(y,y) A contains(y,z) — dislikes(x,y).

This step is the core of the transformation to SROZ Q. Using inverse roles, we can
now write the rule premise as a chain:

dislikes(x,z) A contains (z,y) A Rpisn(y,y) — dislikes(x,y).

This rule can now easily be expressed as a SROZQ role inclusion axiom. Together
with the auxiliary axiom we have used above, rule (4) is thus represented by the
following description logic knowledge base:

Dish = BRDish.Self
dislikes o contains™ o Rp;sp C dislikes

Note that the second axiom no longer contains the requirement that Rp;g, refers
to the same variable in first and second position. Indeed, the resulting knowledge
base is not semantically equivalent to the original rule but it can be shown to
semantically emulate it.

While these examples provide us with a significant set of tools for translating
rules into axioms, there is still a case that we have not addressed yet. Consider rule
(1) of Fig. 8.1. Again, the conclusion of the rule is a binary atom, so the use of a
role inclusion axiom seems to be required. Yet, even if we use the above method
for replacing the unary predicates Vegetarian(x) and FishProduct(y) with new
auxiliary roles, we only obtain the following rule:

RVegetarian(x’ X) A RFishProduct(y’ y) - diS]-ikeS(x’ y)

But this cannot be rewritten as a role composition axiom, since there is a “gap”
between x and y. This problem can be overcome by inserting the universal role U
to connect x and y:

RVegetarian(x’ X) A U(x’ y) A RFishProduct(y, y) - dislikes(x, Y)

Since the relation denoted by U is defined to comprise all pairs of individuals,
adding the atom U(x,y) does not impose any restrictions on the applicability of
the rule. Yet it helps us to bring the rule into the right syntactic shape for be-
ing expressed in SROJQ. Together with the required auxiliary axioms, we thus
obtain:

Vegetarian = JRyegetarian-Self
FishProduct = 3Rp;ishproduct.Self
RVegetarian oUo RFishProduct C dislikes
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These examples already sketch the most important techniques for transforming
SWRL rules into SROJQ knowledge bases. A final aspect that was not covered
yet is the use of constant symbols (individual names) in rules. Since SROZ Q fea-
tures nominals, constant symbols can be used to transform role atoms into concept
atoms. For example, the rule body R(x,a) AS (¢, d) can be expressed as AR.{a}(x) A
1S .{d}(c). Constants in concept atoms in turn can be removed by introducing fresh
variables. In the previous example, we obtain AR.{a}(x) A AS .{d}() A {c}().

8.2 Defining SROZQ Rules

Based on the above observations, we can provide a formal definition of DL Rules
for SROI Q. Clearly, the details of the definition depend on the capabilities of the
available description logic. Our above examples have employed role composition
(o), inverse roles (-7), and the universal role U, as well as local reflexivity (Self)
and nominal concepts. Moreover, if a SROZQ knowledge base is to be obtained,
additional structural restrictions like regularity and simplicity of roles need to be
taken into account. Therefore, we first provide a general definition of SROTQ™*
rules which is then strengthened to obtain a definition of SROZQ rules that ac-
counts for these requirements.

A main criterion for deciding whether or not a rule can be formulated in de-
scription logic is the structure of variable dependencies within the rule body. This
structure is described by the dependency graph of the rule body — the directed
graph with the body’s variables and constants as its nodes, and with the role atoms
R(s, t) representing edges from s to z. With this intuition in mind, we can define
some graph-theoretic notions for the body of a rule. Here and in the following, it
is often convenient to consider the body as a set of atoms and to use the according
notation.

Definition 8.2.1 Consider a SWRL rule B — H.
— A pathin B from a term s to aterm s’ is aset {S (s, %), ...,S,(t,, s)} C B with
n > 1. In this case, n is the length of the path.

— Two terms s and s are connected in B if either s = s’, or there is a sequence of
terms s = t;,t,...,t, = s such that, for all i € {1,...,n — 1}, there is either a
path from ¢, to t;;; or a path from #;, to ¢,.

— Aterm ¢ is a root in B if ¢ occurs in B, and there is no path in B to ¢.

— Bis tree-shaped if B contains exactly one root ¢, and there is exactly one path
from ¢ to any term s in B. In this case, ¢ is the root of B.

— If H is of the form C(¢) or R(t, s), then ¢ is the root of H. &
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(1) Head Normalisation

— If H is empty, then set H = 1(x), where x € V is arbitrary.

— For each variable x in H: if x does not occur in B, then set B := B A T(x).
(2) Role Atom Normalisation For all atoms R(s,?) in B — H:

— if r € I, then replace R(s, 1) by AR.{t}(s), else

— if s € I, then consider a variable y not occurring in B — H, replace R(s, ) by
R(y, 1), and set B := B U {{s}(y)}, else

— if s = ¢, then replace R(s, ) by AR.Self(7).
(3) Concept Atom Normalisation For all atoms C(s) in B — H:

— if s € I, then consider a variable y not occurring in B — H, replace C(s) by C(y),
and set B := BU {{s}(y)}.

(4) Connecting the Body For every root x of B:
— if x is not connected in B to the root z of H, then B := BU {U(z, x)}.
(5) Orienting the Body For every role atom R(x,y) € B:
— if the root of H is not connected to x in B\ {R(x, y)}, then B := BU {Inv(R)(y, x)} \
{R(x, y)}.

Figure 8.2: Normalising a SWRL rule B - H
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In essence, we are interested in SWRL rules with a tree-shaped body. How-
ever, SROZQ allows for a number of exceptions to that structure as illustrated
by the examples in Section 8.1. To deal with these cases without introducing
more complex graph-theoretic properties, we define a normalisation procedure
for SWRL rules. The normalisation procedure for a SWRL rule B — H is spec-
ified in Fig. 8.2. Step (1) ensures that head and body are non-empty, and that all
variables in the head occur in the body as well. Steps (2) and (3) together ensure
that the rule does not contain any constant symbols as parameters of atoms. Note
that the second case of (2) could have been addressed like the first case, using
Inv(R) instead of R. This would slightly increase the obtained class of SROZQ
rules as defined below, but it would make the normalisation algorithm less useful
for defining DL Rules in description logics without inverse roles. Step (4) ensures
that all terms of the body are connected in the sense of Definition 8.2.1, while step
(5) attempts to orient the role atoms in the body to “point away” from the root
variable of the head.

It is readily seen that the normal form of a SWRL rule is semantically equiv-
alent to the original rule, since all of the individual transformation steps ensure
semantic equivalence. Moreover, it is obvious that the procedure terminates, since
it only iterates over a limited number of elements in each step (all iterations are
assumed to refer to the elements found in the rule B — H as encountered be-
fore starting the iteration, i.e. subsequent changes to B — H will not affect the
iterations). We can sum up those observations as follows:

Lemma 8.2.2 For any SWRL rule B — H, the normalisation algorithm of Fig. 8.2
produces a semantically equivalent SWRL rule B* — H'. The time of this compu-
tation and the size of B — H’ are linearly bounded in the size of B — H.

Note that step (4) of the normalisation is non-deterministic, as illustrated by
the example rule A(x) A R(y1,2) A S(y2,2) — C(x). The rule body contains three
roots x, y;, and y,, of which the latter two are not connected to x when entering step
(4). Depending on the order of iteration, we obtain either A(x) AR(y1,2)AS (y2,2) A
U(x,y;) = C(x)or A(x)AR(y1, 2)AS (y2,2)AU(x,y2) — B(x). The subsequent step
(5) then results in either A(x) A U(x,y1) A R(y1,2) A S (z,y2) = C(x) or A(x) A
U(x,y2) ANS(2,2) A R (z,y1) = C(x). We assume that this non-determinism is
prevented by using some arbitrary but fixed iteration order for processing variables
in step (4). The remaining steps are deterministic, if the choice of fresh variable
names y is assumed to be deterministic. With these assumptions, it makes sense

to speak of the (unique) normal form of some SWRL rule. We can now define
SROIQ"™ rules:

Definition 8.2.3 A SWRL rule B — H in normal form is a SROZQ™ rule if the
following conditions are satisfied
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— the rule contains only atoms of the form C(s) and R(s, t) where C is a concept
expression and R is a role expression of SROTQ™®,

— Bis tree-shaped and has the same root as H,
— if H=R(x,y) withR ¢ R, and x,y € V, then B = S (x,y) with § € Ry simple.

A SWRL rule is a SROT Q™ rule if its normal form is a SROTQ™ rule. o

The first condition is an obvious requirement for transforming SWRL rules
into SROZI Q"™ knowledge bases, and especially it precludes the use of predicate
symbols that are not part of the DL signature as induced by the given SWRL sig-
nature. The second condition ensures that the relations between variables in B can
be expressed in SROTQ™. The third condition, finally, defines general restric-
tions on the use of simple roles that will become relevant in various fragments of
SROIQ"™ rules. It is easy to check that the rules (1), (3), (4), and (5) of Fig. 8.1
are indeed covered by this definition, where dislikes is the only role name that
must be non-simple. Unfortunately, in the absence of rule (2), no conclusions are
obtained regarding instances of Unhappy. SROZQ rules are obtained by adding
regularity restrictions to this definition:

Definition 8.2.4 Given a SROZQ™ rule of the normal form B — R(x,y) with
x,y € V,letp(B, x,y) C Bbe the unique path p(B, x,y) := {S1(x, x2),...,S (X, y)}
from x to y.

A SROIQ"™ rule base RB is regular if there is a strict (irreflexive) total order
< on R such that
— forR ¢ {S,Inv(S)}, we find S <R iff Inv(S) <R, and

— for every rule B — R(s,t) € RB and normal form B — R(x,y) with x,y € V,
the set p(B’, x,y) is of one of the forms:

{R(x,2), R(z, y)}, {Inv(R)(x, y)},
{R1(x,22), R2(22,23)5 - - - s Ru(zns Y}
{R(.X, Zl)’Rl(Zl,ZZ)’ s ’Rn(zn’ y)}’ {Rl(x’ Zl)a s aRn(Zn—lyzn),R(Zn’ y)}

suchthat R,R;,...,R, € R,and R, < Rfori=1,...,n.

A SROIQ rule base is a regular SROIQ™ rule base that contains only SROIQ
concept and role expressions. A SROIQ rule is a SROTQ™ rule that occurs in
some SROZQ rule base. &

The previous definition should be compared with Definition 3.1.4 which in-
troduced analogous restrictions for defining SROZQ. The main difference in the
definition of regularity for rules is that we now need to determine the set p(B, x, y)
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of role atoms that are actually relevant for this restriction. As in the case of RBox
axioms for SROTQ, certain SROZQ™ rules cannot be part of any SROZQ rule
base, as illustrated by the rule R(x,y) A S(y,z) A R(z,v) — R(x,v). Moreover, it
should be marked that the restrictions that are imposed on SROZQ concept ex-
pressions in Definition 3.1.4 depend on the declarations of simple role names Nj
in the given signature, which also constrain the general structure of SROTQ™®
rules (Definition 8.2.3). In the case of Self, this entails that SROJQ rules must
not entail atoms of the form R(x, x) for non-simple R.

Definition 8.2.4 and 8.2.3 make no attempt to maximise the defined class of
DL Rules. In principle, it would be feasible to do this in a systematic way, to
determine a maximal DL Rule language (for a given DL) similar to the maximal
DLP language that was studied in Chapter 7. But said chapter also illustrates that
such a canonical treatment may require rather complex and technically involved
arguments, especially due to the rich syntax of description logics. In the case
of DL Rules, a maximal structural fragment would need to combine the above
insights on DL Rules with the approach of DL-safe variables as introduced in
Chapter 9, since the latter can also be formulated in a structurally stable way as
long as structurality is not extended to variable names.> The endeavour of fully
characterising a maximal DL Rule language is clearly beyond the scope of this
work.

It is not hard to find concrete examples of SWRL rules that are not covered
by the above algorithm/definition even though they can be expressed in SROJ Q.
For example, the rule >2 R.T(x) A {a}(x) A {b}(y) — R(x,y) requires R to be
non-simple so that >2 R.T is not a SROZQ concept. Yet, the SROIQ knowledge
base {{a} M >2 R.T € dR.{b}} emulates the rule, where R is now a simple role
name as required. Further examples include rules like R(x,y) A S(x,y) — U(x,y)
that are semantically trivial even though they do not satisfy the restrictions on
SROTQ™ rules. Another significant class of SWRL rules that can be expressed in
SROIQ are DL-safe rules as introduced in Chapter 9, although they may require
exponentially large knowledge bases.

The essential property of SROIQ™ rules is that they can be emulated by
SROTQ™* knowledge bases. An algorithm for obtaining a suitable knowledge
base KB from a SROTQ"™ rule B — H is specified in Fig. 8.3. The basic tech-
niques applied here — rolling up side branches and replacing concept atoms by
role atoms in RIAs — have already been explained in the earlier examples. Note
that, for all inputs B — H, the preconditions for creating either a concept inclu-
sion axiom or a role inclusion axiom must be satisfied. If H* = D(x), then B’

2A DL Rules language that is closed under renaming of single occurrences of variables
is clearly overly limited, since it could not capture essential parts of the above definition of
SROIQ™ rules; it would thus be significantly less expressive than DLP.
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Input: A SROTQ™ rule B —» H
Output: A SROIQ™ knowledge base KB

Initialise B” — H’ to be the normal form of B —» H
Roll Up Side Branches

— While B’ contains an atom R(x, y) where y occurs in no other role atom of B — H’:
Define the set B, := {C(#) € B" | t = y}, and a concept E = [ |¢()e g, C where the empty
conjunction is assumed to be T. Then set B’ := B’ U {dR.E(x)} \ B,.

Create Concept Inclusion Axiom If H’ is of the form D(x):
— In this case, B’ is of the form C;(x) A ... A Cy(x). Set KB :={Cyn...nMC, C D}.
Create Role Inclusion Axiom If H’ is of the form S (x, y):

— Initialise KB := 0.

— For each concept atom C(z) in B: Set B’ := B’ U{R¢(z,2)} \ {C(z)} where R¢ is a fresh
simple role name, and set KB := KB U {C = AR.Self}.

— Now B’ is of the form Ry (x, x2) A ... A Ry(x,,y). Set KB :=KBU{Rjo...0R, C S}.

Figure 8.3: Transforming SROZQ™ rules into SROZ Q"™ knowledge bases

contains only concept atoms. This must be the case after rolling-up, since H’ con-
tains no binary atoms, and since B’ is tree-shaped. If H" = S (x,y), then B’ must
eventually have the form R;(x, x;) A ... A R,(x,,y). To see this, first note that all
concept atoms C(z) in B” have been replaced by role atoms R(z, z). Second, ev-
ery role atom R(v,w) € B’ with w # y and for which there no atom of the form
S (w,z) € B’ must have been eliminated when rolling up side branches. Thus the
remaining atoms must all be role atoms that form a chain.

While the correctness of the transformation will be shown below, the algorithm
does not always produce the result that might be considered most obvious. On the
one hand, the algorithm never generates ABox axioms, which would sometimes
lead to a simpler presentation. As an example, the simple SWRL fact R(a, b) leads
to the normalised rule {a}(x) — dR.{b}(x) for which the algorithm creates the
knowledge base {{a} E JR.{b}}. This captures the intended semantics but it is
rather not the preferred way of expressing the original statement. On the other
hand, the algorithm does not implement any additional simplifications that can be
admissible in some cases. For example, the rule {a}(x) A R(x,y) A{b}(y) — S(x,y)
can be expressed as a GCI {a} N AR.{b} T IS.{b}, whereas the transformation
algorithm produces a knowledge base {{a} = AR ,.Self, {b} = ARy;,).Self, R, o R o
R{b| Y }
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The output KB of the transformation algorithm for some input rule B — H
will be denoted by KB(B — H). This notation is extended to SROTQ™ rule
bases RB by defining KB(RB) = | Jz_,yerg KB(B — H). We can now state the
main result of this section.

Theorem 8.2.5 Every SROIQ™ rule base RB is semantically emulated by the
SROIQ"™ knowledge base KB(RB), the size of which is linearly bounded by the
size of RB.

If RB is a SROIQ rule base, then KB(RB) is a SROIQ knowledge base.
Thus the problem of deciding consistency of a SROIQ rule base is N2ExpPTIME-
complete.

Proof. To show that KB(RB) is a SROZIQ™ knowledge base, we must verify
that the use of simple role names agrees with Definition 3.1.2. Thus consider the
creation step for role inclusion axioms. If the head of the rule is of the form S (x, y)
in this step, it must have been of this form in the normalised input rule already.
Since § is simple, Definition 8.2.3 implies that B = R(x, y) with R € R;. Applying
the transformation steps to a rule of this form, it is easy to see that we obtain
arule Ry(x,y) — S(x,y) in Step 6b, so the generated RIA is indeed allowed in
SROIQ"™.

We have already observed in Lemma 8.2.2 that the size of the normal form of
a SROIQ™ rule is linearly bounded, and it is easy to see that this property also
holds for the size of KB(RB).

It suffices to show semantic emulation for rule bases that consist of a single
rule B — H. This result is established by showing that the following property is
preserved throughout the transformation algorithm: KB U {B” — H’} semantically
emulates B — H, where B® — H'’ denotes the modified input rule at the current
stage of the computation. By Lemma 8.2.2, the claim holds after the algorithm’s
initialisation, and it is easily verified that its validity is preserved by each individ-
ual transformation step.

Now assume that RB is a SROZQ rule base. It is obvious that KB(RB) con-
tains only SROJ Q role and concept expressions. It remains to show that KB(RB)
satisfies the regularity restrictions of SROZ Q. Thus let < denote the strict total or-
der on R that exists for RB according to Definition 8.2.4. We claim that it satisfies
all properties of the strict total order that is required to show regularity of KB(RB)
based on Definition 3.1.4. For this it suffices to show that the path p(B, x,y) is
indeed exactly the set of those role atoms that are considered when creating the
final role inclusion axiom in Fig. 8.3 for an input rule of the form B — R(x,y).
This is easy to see by noting that rolling-up eliminates exactly those role atoms
that are not included in p(B, x, y).

Now the claimed complexity result follows from the well-known worst-case
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complexity result for SROZQ [Kaz08]. |

In particular, this shows that we have indeed identified a decidable SWRL
fragment. Since the above worst-case complexity is very high, it does not allow
us to draw conclusions about the practical implementability of SROZQ rules. In
this respect, it is more important that we can provide a linear-time transformation
from SROZQ rules to SROZQ. Given that the computed knowledge base is not
significantly larger than the original rule base, it is feasible to use this transforma-
tion to implement inferencing for SROZQ rules. In contrast, the considerations
in Section 9.3 illustrate that an N2ExpTiME worst-case complexity can sometimes
even be established if a transformation incurs an exponential blow-up in the size
of the knowledge base.

Based on the existing practical experiences with SROZQ inference engines,
it can thus be argued that inferencing for SROZQ rules can also be accomplished
with realistic computing resources in relevant cases. However, the actual perfor-
mance in “average’ cases strongly depends on the structure of typical knowledge
bases that are obtained from SROZQ rule bases. It is likely that these knowl-
edge bases are rather different from today’s SROZQ knowledge bases, since DL
Rules provide a different modelling metaphor that emphasises expressive features
of SROZQ that are hard to access when constructing SROJQ axioms directly.

8.3 Adding Role Constructors

Bodies of SWRL rules are arbitrary conjunctions of atoms, whereas SROZQ sup-
ports only conjunctions of concepts but not of roles. Based on the insights that
have been obtained in Chapter 5, it is therefore natural to extend SROZQ rules
to SROIQ(Bs, X) rules by allowing simple role expressions as well. This also al-
lows for the use of concept product expressions to formulate rules of the form
A(x) A B(y) = R(x,y) directly as (A X B)(x,y) — R(x,y). This may look like an
unnecessary complication at first since the respective rule could also be expressed
in SROIQ, but a closer inspection shows that the use of concept products allows
R to be simple whereas SROZQ can only emulate this rule if R is non-simple.

SROIQ(Bs, x) (or SROIQ(B,, x)™°) rules in their general form might be less
relevant than SROJQ rules in practice, since there is no sufficient tool support
for reasoning in SROZQ(Bs, X), but they provide the largest DL Rule language
considered within this work. Moreover, SROJ Q(B;, X) rules serve as a convenient
conceptual framework for SROE L(IN;, X) rules that are more likely to play a role
in practical applications, and for which an inferencing algorithm is specified in
Section 8.5.

Note that our definition of SWRL assumes SROZQ"™ as the underlying DL,
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(1) Head Normalisation
(2) Role Atom Normalisation
(3) Concept Atom Normalisation

(3.a) Concept Product Normalisation If H = R(x,y) with R € R; then:

— define a set B, := {C(z) € B | z occurs in no role atom of B — H}, and concepts
E :=Tlewes € MMewes, VL) and F = [Negyep €
— define B:=BU{(EXF)(x,)}\({C()e B|t=xort=y}UB,).

(3.b) Role Conjunction Normalisation For all role atoms R(x,y) € B:

— if R € Ry and there is some S (x,y) € Bwith § € Ry, then
B = BU{(RTT1S)(x, N} \ {S(x,y), R(x, y)}, else

— if R € Ry and there is some S (y, x) € B with § € Rq, then
B = B U {(Inv(R) 1.8)(y, )} \ {S (v, x), R(x, y)}.

(4) Connecting the Body
(5) Orienting the Body

Figure 8.4: Normalising a SWRL rule B — H in SROI Q(B;, x)™

so that role constructors cannot occur in such rules. However, it is easy to see that
this restriction is not essential, since role expressions are hardly considered when
processing DL Rules. Large parts of the transformation algorithm for SROZQ
rules simply preserve role expressions, so that complex role expressions behave
like atomic roles (role names). The only exception is step (5) in Fig. 8.2, where a
role expression is replaced by its inverse. When dealing with SROJ Q(Bs, X) roles,
this operation must of course be defined as in Section 5.1. In the following, we will
therefore tacitly assume that SWRL rules may contain complex role expressions
as well, and in particular we admit such expressions in intermediate results that
are created when transforming rules. Whether or not they are supported in the
input rule base is not essential to our presentation, and in particular we obtain a
larger decidable fragment of SWRL without role constructors as well.

Due to the simplicity requirement of SROZQ(Bs, X) role expressions, it is still
impossible to model conjunctions of chains of roles, and, in essence, we there-
fore still require the dependency graph of a SROIQ(B;, X)™ rule to be free of
undirected cycles, and large parts of the definition for SROZQ™ rules can be
re-used. The most efficient way of defining SROJQ(B, X)™ rules thus is to ex-
tend the normal form transformation of SROZQ™ rules to take advantage of the
additional expressive features. To this end, consider the extended normalisation
procedure as specified in Fig. 8.4, where steps (1)—(3), (4), and (5) are the same
as in Fig. 8.2.

183



DescripTioN Logic FRAGMENTS oOF SWRL: DL RULES

The new steps (3.a) and (3.b) use role constructors to address cases that could
not be handled in SROZQ"™*. In (3.a), concept products are used to avoid viola-
tions of simplicity constraints for roles. The first step defines auxiliary concepts
that are used to combine various concept atoms into a single expression £ and
F. Note that the construction of E corresponds to the construction of GClIs from
SROIQ™ rules that do not contain role atoms, where the universal role is used to
connect independent atoms to the root variable x of the head. Step (3.b) iteratively
combines simple role expressions using role conjunction, where some expressions
might need to be inverted in the process.

It is not hard to see that the extended SROJQ(Bs, X)™ normal form of a rule
is again semantically equivalent to the original rule. As in the case of SROTQ™®
normal forms of rules, we assume an arbitrary but fixed global ordering for iterat-
ing over role atoms, so that the normalisation of SROJQ(B, X)™° rules is indeed
deterministic.

The definition of SROTQ(B;, )™ and SROIQ(B,, x) rules and rule bases
now is completely analogous to the definition of the corresponding notions for
SROIQ™ and SROIQ.

Definition 8.3.1 SROJTQ(B;, X)™° rules are defined as in Definition 8.2.3 but us-
ing SROTQ(B,, x)™ instead of SROZQ™ in all places. A SROTQ(B;, %)™
rule base is a set of SROTQ(B;, X)™ rules. Regular SROITQ(Bs, x)™* rule bases
and SROJQ(B, X) rules and rule bases are defined as in Definition 8.2.4 but
using SROTQ(Bs, x) and SROITQ(Bs, )™ instead of SROIQ and SROIQ™,
respectively, in all places. &

Due to the structural similarity of SROZQ(B,, X)"™ rules and SROITQ™
rules, it is easy to see that the transformation of Fig. 8.3 can also be used to trans-
form SROTQ(B;, X)™ rules. Theorem 8.2.5 and 5.2.2 thus can be combined into
the following result:

Theorem 8.3.2 The problem of deciding satisfiability of SROI Q(Bs, X) rule bases
is N2ExpTIME-complete.

Returning to our running example from Fig. 8.1, we see that rule (2) can now
be supported since it is transformed to a role conjunction in step (3.b) of the nor-
malisation of Fig. 8.4. However, the resulting role expression is only allowed in
SROIQBs, X) if the role names orderedDish and dislikes are simple. This,
however, conflicts with rule (4) of Fig. 8.1 that requires dislikes to be non-
simple. Therefore, depending on the choice of simple and non-simple roles, we
find that either rules (1), (3), (4), and (5), or rules (1), (2), (3), and (5) can occur
together within a single SROJQ(B;, X) rule base. The former rule base is also
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supported by SROZQ rules, but does not allow for any conclusions regarding un-
happy individuals. The latter rule base still completely lacks rule (4), but allows
us to conclude Unhappy(bijan).

8.4 Further Classes of DL. Rules

The above discussions were focussed on highly expressive DL Rule languages,
suitable for identifying rather large decidable fragments of SWRL. In this section,
we show how to define DL Rules for smaller description logics, and derive some
immediate complexity results. The discussion in this section is generally based
on SROIQ(Bs, x)™ rules as the most general decidable fragment of SWRL in-
troduced above, and the normal form construction of rules thus will refer to the
extended transformation in Fig. 8.4.

But already the normalisation of Fig. 8.2 has the drawback of introducing
nominals into rules in steps (2) and (3). The elimination of constant symbols from
rules allowed for a more unified treatment of DL Rules, and the rewriting of R(x, a)
to dR.{a}(x) in rule heads directly enlarges the class of DL Rules by avoiding un-
necessary simplicity restrictions that would apply when translating such rules into
RIAs. However, the use of nominals for encoding constants excludes a number of
description logics where this feature is not available, which is especially undesir-
able since the use of constants is common in rule-based modelling. Fortunately,
nominals are not necessary when giving up semantic equivalence in favour of em-
ulation, as long as the nominal occurs in a negative position, i.e., in essence, if it
occurs non-negated in a rule body or negated in a rule head.

Lemma 8.4.1 Consider a SWRL rule base RB in the normal form as obtained by
the transformation in Fig. 8.4. A rule base RB’ is obtained from RB by executing
the following steps for each individual symbol a € 1:

— introduce a fresh concept name N, and add a new fact N,(a),

— in all concept atoms C(x) in a rule body of RB that contain a subconcept {a}
in a position p with pol(C, p) > 0, replace this occurrence {a} = C|, by N,,

— in all concept atoms C(x) in a rule head of RB that contain a subconcept {a}
in a position p with pol(C, p) < 0, replace this occurrence {a} = C|, by N,,

where positions and polarities are defined as in Fig. 6.2. Then RB’ semantically
emulates RB.

Proof. It is easy to see that RB’ = RB due to the restriction on the polarity of the
replaced nominals. Conversely, every model 7 of RB can be extended to a model
I’ of RB’ by setting NZ' := {a}? for all individual names a € I. m
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This additional transformation significantly increases the class of DL Rules
obtained for description logics without nominals, which will also be crucial to
obtain a generalisation of DL-safe rules in Chapter 9.

Definition 8.4.2 Consider a DL £ that is a fragment of SROJQ(B;, x)™°, and
that supports concept conjunctions, existential restrictions, local reflexivity (Self),
and (general) role inclusion axioms. Given a set of SWRL rules RB, let RB’ denote

the corresponding set of rules in normal form and with nominals eliminated as in
Lemma 8.4.1. Then RB is an £ rule base if:

(1) RB is a SROIQ(B,, x)™ rule base,
(2) all concept and role expressions in RB’ are allowed in £,

(3) if L contains only regular knowledge bases, then RB is regular in the sense
of Definition 8.2.4.

L rules are SWRL rules that occur in some L rule base. o

This rather compact definition deserves some explanation. We restrict to DLs
that feature at least the basic operators that were used to emulate DL Rules since
only very restricted rule languages can be obtained without them. Condition (1)
ensures that we can apply the construction of Section 8.2 and 8.3 to obtain a
SROIQ(B;, )™ knowledge base that semantically emulates the given £ rule
base RB. Let KB(RB) denote the according knowledge base that is obtained by
applying the transformations steps of Fig. 8.3 to the pre-transformed rule base
RB’ as in Definition 8.4.2. We thus incorporate the additional transformation of
Lemma 8.4.1, so that conditions (2) and (3) suffice to establish the following re-
sult.

Proposition 8.4.3 Consider an L rule base RB for some description logic L as
in Definition 8.4.2. Then the SROIQ(B;, X)™¢ knowledge base KB(RB) is an L
knowledge base that semantically emulates RB.

The complexity of checking satisfiability of L rule bases is the same as the
complexity of checking satisfiability of L knowledge bases.

Proof. The claimed semantic emulation is an immediate consequence of the ac-
cording results for SROTQ™ rules and SROIQ(B,, X)™® rules, together with the
fact that semantic emulation is preserved by Lemma 8.4.1. It is easy to see that
KB(RB) contains only role and concept expressions that are allowed in £. Indeed,
item (2) of Definition 8.4.2 ensures that the pre-transformed rule base RB’ con-
tains only such expressions, and the translation algorithm of Fig. 8.3 introduces
only constructs that were supposed to be available in L.
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If £ is a fragment of SROZQ(B;, X), i.e. if it imposes regularity restrictions
on RBoxes, then these conditions are also satisfied by KB(RB) due to item (3) of
Definition 8.4.2.

For the claimed complexity result, note that checking satisfiability of £ knowl-
edge bases must be P-hard, since £ supports conjunctions of concepts. Satisfia-
bility checking of propositional Horn logic is a well-known P-complete problem
for which there is an obvious LoGSpace reduction to the satisfiability problem of
L knowledge bases. Now for inclusion, it suffices to note that the construction of
KB(RB) is also possible in LoGSpack. For hardness, we observe that the standard
transformation of £ knowledge bases to semantically equivalent £ rule bases (see
Section 4.2.1) is again possible in LoGSpAcE. O

This result confirms that Definition 8.4.2 provides a suitable generic definition
of DL Rule languages. A more careful inspection of this definition is useful to
understand its implications. While conditions (1) and (3) should be obvious, the
effects of (2) are slightly more complex, since it refers to the result of rule nor-
malisation. Basic characterisations of DL Rules as in Definition 8.2.3 require the
rule body to be tree-shaped, and the normalisation in Fig. 8.2 attempts to create
this form by using SROJQ(B;, X) constructs. When using a weaker DL, some of
these constructs might not be available, so that the according normalisation rule
is not allowed. In other words, it is generally allowed to use DL rules that already
have tree-shaped bodies, while deviations from that form are only admissible if
the DL is sufficiently expressive.

As an example, consider the description logic SROEL(M, X) as defined in
Section 5.4. Theorem 5.4.7 showed that standard reasoning tasks for this logic
are P-complete when restricting to admissible knowledge bases. Since admissi-
bility is only concerned with the use of concept products on the right-hand side
of concept inclusions, it does not restrict the use of concept products in rule bod-
ies as encountered in Fig. 8.4. Other uses of concept products cannot occur since
our definition of SWRL based on SROZQ does not include them. Therefore, we
immediately obtain following corollary of Proposition 8.4.3 and Theorem 5.4.7.

Corollary 8.4.4 The problem of deciding satisfiability of a SROEL(M, X) rule
base is P-complete w.r.t the size of the rule bases.

SROEL(M,, X) does not feature inverse roles — it is known that this would
increase its reasoning complexity to ExpTiMe [BBLOS] — such that step (5) of the
normalisation in Fig. 8.2 is not applicable. In effect, bodies of SROEL(M;, X)
rules need to be a conjunction of tree-shaped bodies that do not share variables,
and the root of one of these components must be the root of the rule’s head. On
the other hand, the use of concept products and role conjunctions in the additional
transformations of Fig. 8.4 effectively relaxes the restrictions imposed on simple
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roles. Namely, a simple role name R can occur in a rule head R(x, y) as long as the
rule’s body contains only role atoms of the form S (x, y) where S is simple, or of
the form 7'(z, a) where a € 1.

Definition 8.4.2 could still be generalised further. In particular, it currently
is tailored toward DLs that generally allow or disallow concept expressions in
GClIs. A notable class of logics for which this is not the case are Horn description
logics as considered in Chapter 6, where different restrictions apply to concepts
depending on whether they occur as premises or as conclusions. It is easy to see
that Definition 8.4.2 could be generalised to cover this type of DLs by being more
specific about the type of concept expression that is allowed in rule heads and
bodies.

In addition, existential role restrictions are in fact only required for rolling
up concept expressions in rule bodies, such that even DLP provides sufficient
expressivity for defining a class of DL Rules. The resulting formalism of DLP
rules has the interesting property that its rule bases can be semantically emulated
by datalog programs. This provides us with a way of using rule-based inference
engines for evaluating a certain kind of DL Rules. The following section illustrates
that this can be a viable approach for other DLs as well.

8.5 Implementing DL Rules in Datalog

In order to obtain decidability and complexity results in the previous sections, we
took the approach of reducing DL Rules to knowledge bases of the underlying de-
scription logics, thus enabling inference engines for description logics to be used
when reasoning with DL Rules. Conversely, the proximity of DL Rules to first-
order rule languages suggests to ask for similar translations that allow inference
problems to be expressed in a rule language. The above discussion of DLP rules
indicated that this is possible in some cases. Establishing this result for DLP was
straightforward due to the strong semantic relationships that exist between DLP
and datalog. But from Chapter 7 we also know that D L% already is the maximal
— in the sense of said chapter — fragment of SROJQ with such close connections
to datalog.

Given that we cannot expect other DLs to have such close connections to data-
log, we must be content with weaker semantic relationships. Fortunately, even
equisatisfiability suffices to translate standard reasoning problems, but this gen-
eralisation also opens a significantly larger field for possible solutions. Indeed,
a number of translations to (disjunctive) datalog have been proposed to address
reasoning tasks for description logics, see Section 8.7. It is not immediately clear
how to adapt these approaches to DL Rules since general role inclusion axioms
are typically not covered by the approaches.
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In addition, one motivation for expressing inferencing problems for DL Rules
in datalog would be that datalog can accommodate rule-like axioms in a more
natural way, without requiring complicated rewritings. Horn DLs in general can
be expected to allow for a more direct translation to datalog, but the example
of Horn-SHIQ illustrates that the required algorithms can still be rather com-
plex. In this section, we show that there is a significantly simpler translation for
SROEL(M, X) rules, for which reasoning is possible in polynomial time. In con-
trast to the approach that has been sketched for D L% rules above, our translation
directly converts SROEL(M;, X) into an equisatisfiable datalog program that mir-
rors the basic structure of the input rules. As explained above, it cannot be ex-
pected that the resulting datalog semantically emulates the original rule base, but
it turns out that important entailments are still preserved.

We do not consider an extended definition of SWRL here that would allow
the use of SROE.L(M, X) role constructors in SROEL(M, X) rules. Hence, ad-
ditional role constructors do not occur in the input rules. However, we want to
obtain the datalog translation for SROEL(,, X) knowledge bases that was given
in Section 5.4 as a special case, so we need to ensure that (rule versions) of all
SROE L(M,, X) axioms in normal form are covered (see Definition 5.4.2). For
most normal forms, a semantically equivalent SROEL(M,, X) rule is obvious, but
axioms of the form R © C X D cannot be represented. Such axioms are clearly
equivalent to two axioms R T C X T and R C T X D, where the former can be
represented as a SROEL(M, X) rule R(x,y) — C(x). To cover the latter axiom as
well, we allow additional range restriction rules of the form R(x,y) — D(y).

As noted in Section 5.4, concept products on the right-hand side of RIAs
must be restricted in order to retain tractability. The above decomposition of such
axioms shows that the problem is due to range restrictions only, since axioms
R C C X T can always be represented as GCIs dR.T C C. Similar to the structural
restriction that were defined for concept products in Definition 5.4.4, we thus can
define admissibility for range restrictions.

Definition 8.5.1 Consider a SROEL(,, X) rule base RB and a set of range re-
striction rules RR. For every role name R, define ran(R) := {D | R(x,y) — D(y) €
RR}. The range restrictions RR are admissible for RB if, for every rule B — R(t,y)
witht€ VUl and y € V, and for every D € ran(R), one of the following holds:

- D(y) € B, or

— there is some atom S(s,y) € Bwith s € VUI and D € ran(S).

An extended SROEL(Mg, X) rule base is the union of a SROEL(M,, X) rule base
RB with a set of range restrictions RR that are admissible for RB. <
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It should be noted that this definition is compatible with the normalisation
rules for DL Rules in the sense that a set of range restrictions is admissible for the
normalisation of a rule base if and only if it is admissible for the rule base. Return-
ing to the example from Fig. 8.1, we find that rule (3) is a range restriction. Rules
(1), (2), and (5) can occur within a SROE L(,, X) rule base, while rule (4) is dis-
allowed since its normal form includes inverse roles. Given these rules, it is easy
to see that rule (3) is an admissible range restriction, so the rules (1), (2), (3), and
(5) together with all facts of Fig. 8.1 form an extended SROEL(M;, X) rule base.
As in the case of SROIQ(Bs, X) rules, we can only conclude Unhappy(bijan),
but recognising the given rules as an extended SROE L(1,, X) rule base allows us
to apply polynomial-time algorithms for inferencing.

Definition 8.5.1 is slightly more restrictive than Definition 5.4.4 since it con-
siders only the explicitly asserted ranges of each role, while the earlier definition
used the hierarchy of simple roles to derive “obvious” implied restrictions. It is
clear that such an extension would be possible in the above case as well, but since
rules can generally have more different forms than RIAs, the formulation would
not be as natural as for the case of SROEL(M,, X). Even without this, every ex-
tended SROEL(M,, X) rule base is transformed to an admissible SROEL(M, X)
knowledge base when using the algorithm of Fig. 8.4 together with the transla-
tion for range restriction rules by means of concept products as discussed above.
Conversely, every admissible SROE L(IMg, X) knowledge base is semantically em-
ulated by an extended SROEL(M;, X) rule base that is obtained by the obvious
translation of axioms, together with additional range restriction rules to explicitly
state the implicit range restrictions as considered in Definition 5.4.4.

To simplify our presentation, we first transform SROEL(M;, X) rules into a
simpler form.? In contrast to the approach taken to represent SROJQ rules as
knowledge bases, we now perform an inverted rolling-up to decompose concept
expressions to individual rule atoms.

Proposition 8.5.2 Every SROEL(M, X) rule base RB is semantically emulated
by a SROEL(, X) rule base RB’ such that the following holds for every rule
B — H€RB':

— all variables in H occur in B,

— ifC(t)e BthenC =A, C=T,0rC ={a} where Ae€ Aanda €],

- ifC(t)e HthenC =A,C=dR.A, C= 1, orC ={a} where A€ Aanda € L

Moreover, RB’ can be computed in linear time w.r.t. the size of RB.

3We avoid the term “normal form” here since it was already introduced with another meaning
for DL Rules above.
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Proof. The transformation algorithm iteratively transforms RB. In each iteration,
arule B — H that is not in the required form is selected. If H = T(¢), then delete
B — H from RB. If H = (C 11 D)(¢), then replace it with new rules B — X(1),
X(t) = C(¢), and X(¢t) — D(t), where X is a fresh concept name. If H = AR.C(¢)
with C ¢ A, then replace it with rules B — dR.X(¢) and X(x) — C(x) where X is
again a fresh concept name. If H = dR.Self(¢) then replace it with R(z, 7).

If B contains an atom L (7), then delete B — H from RB. If B contains an atom
AR.C(?), then replace it with R(¢,y) A C(y) where y € V does not occurin B - H
yet. If B contains an atom (C 1 D)(#), then replace it with C(¢), D(¢). If B contains
an atom JR.Self(7) then replace it with R(z, 1).

Finally, if H contains a variable x that does not occur in B, then add T(x) to
B. It is easy to see that this construction leads to the required result after a linear
number of steps. O

The construction in the previous proof can be assumed to be deterministic
if the order of the transformation steps is fixed. Note that range restriction rules
already satisfy the requirements of Proposition 8.5.2. SROE L(M;, X) rules can be
transformed to datalog as follows:

Definition 8.5.3 Given an extended SROEL(IM;, X) rule base RB, the datalog pro-
gram P(RB) is defined as follows. The following new symbols are introduced:

— concept names Selfi for each simple role name R € N,

— individual names dg 4 foreach R € Nand A € A.

In the following, we will always use I, A, N, N, N; to refer to the original sig-
nature of RB, not including the additional symbols added above. Let RB” denote
the simplified SROE L(M, X) rule base obtained from RB as in Proposition 8.5.2.
The program P(RB) is obtained from RB’ as follows:

(a) For all rules B — H € RB’, the program P(RB) contains the rule B” — H’
that is obtained from B — H by replacing all occurrences of R(x, x) by
Selfz(x), all occurrences of {a}(¢) by a ~ t, and all occurrences of AR.A(¢)
with A € A by the conjunction R(t,dg4) A A(dg.).*

(b) For all rules B — S(y,z) € RB’ with y,z € Vand S € N; simple, P(RB)
contains the rule B* — Selfs(y) where B’ is obtained from B by replacing
z by y, and — afterwards — replacing all occurrences of R(x, x) by Selfz(x),
and all occurrences of {a}(¢) by a ~ ¢.

4Note that this substitution can only occur in rule heads. As usual, conjunctions in rule heads
serve as a shortcut notation for two rules with the same body and either of the conjuncts as their
head.
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(1) Vegetarian(x) A FishProduct(y) — dislikes(x,y)
Vegetarian(x) A FishProduct(x) — Selfg;isiikes(X)
(2) orderedDish(x,y) A dislikes(x,y) — Unhappy(x)

3) orderedDish(x,y) — Dish(y)
5) Happy(x) A Unhappy(x) — L
Vegetarian(anja) orderedDish(anja, thaiRedCurry)

contains(thaiRedCurry, dcontains,FishProduct)

Fi ShPrOduCt(dcontains,Fi shProduct)
Vegetarian(bijan) orderedDish(bijan, fishFingers)

FishProduct(fishFingers)
Vegetarian(ian) orderedDish(ian, dorderednish.x1)

Xl(dorderedDish,Xl)

Xl(x) - contains(x, dcontains,{fishSauce})
fishSauce ~ dcontains,{fishSauce}
FishProduct(fishSauce)

Vegetarian(markus) orderedDish(markus, dorderedpishx2)

Xz(dorderedDish,XZ)
Xz(x) - contains(x, dcontains,FishProduct)

X1 and X2 are fresh concept names from the simplification of Proposition 8.5.2.

For each role R € {contains, dislikes, orderedDish} and each individual
a € {anja,bijan, fishFingers, fishSauce, ian, markus, thaiRedCurry}
arule R(a,a) — Selfg(a)

Figure 8.5: Datalog program for the extended SROEL(M,, X) rules of Fig. 8.1

(c) For each a € I and R € N; simple, P(RB) contains the rule R(a,a) —
SeIfR(a).

In all cases, x denotes an arbitrary variable x € V, and ¢ denotes an arbitrary term
teVUL O

It is easy to see that P(RB) is indeed a datalog program. Note that atoms of the
form Selfg(x) are created only in cases where R must be simple: in (a) this is the
case since only such occurrences of R(x, x) are allowed in a SROEL(, X) rule,
and in (b) it follows since S is simple so that R must also be simple for all atoms
R(y,z2) € B.

As an example, Fig. 8.5 shows a datalog translation of the rules of Fig. 8.1 that
were identified above to be allowed in an extended SROE L(g, X) rule base. An
interesting point to observe is that the auxiliary individual dcontains Fishproduct 1S
used both for the fish product in Anja’s curry and for the fish product in Markus’
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unnamed dish. Clearly, the rule base does not entail that both fish products are the
same, but the restrictions of SROEL(M,, X) rules ensure that it is impossible to
query for that information. In other words, identifying both individuals does not
lead to undesired conclusions.

The correctness proof for this construction constitutes an essential part of the
technical contributions of this section, and we first provide some intuition on how
the proof proceeds. To show that RB and P(RB) are equisatisfiable, we construct
models of P(RB) from models of RB, and vice versa. It is well-known that, in
the case of EL"", models can be generated by introducing only a single element
for each atomic concept [BBLOS]. For SROEL(, X) rules, however, the added
features of role conjunction and local reflexivity change the situation: considering
only one characteristic element per atomic concept leads to undesired entailments
in both cases. Our model constructions therefore deviate from the classical SL"
construction that worked for the simple &L rules in [KRHO8a] with only minor
modifications.

For instance, the rule base {a}(x) — AR.C(x), {a}(x) — S5 .C(x) does not entail
any conjunction of the form R(a, x) A S (a, x). Yet, every interpretation in which
the extension of C is a singleton set would necessarily entail this conjunction. This
motivates the above use of dg ¢ in P(RB), which, intuitively, represent elements
of C that have been ‘“generated” by a rule head of the form AR.C(x). Thus we
admit |N] distinct characteristic individuals for each concept, and this suffices for
the proper model construction in the presence of role conjunctions.

The second problematic feature are expressions of the form R(x, x), which
again preclude the consideration of only one characteristic individual per concept.
The use of concept atoms Selfz(x) enables the translation of models for RB to
models of P(RB) (the soundness of the satisfiability checking algorithm). The
latter may indeed entail additional statements of type R(x, x) without impairing
the validity of the datalog rules that use Selfz(x).

In the other direction, models of RB are built from models of P(RB) by cre-
ating infinitely many “parallel copies” of a basic model structure. These copies
form an infinite sequence of levels in the model, and simple roles relate only to
successors in higher levels. Exceptions to this construction principle, such as the
concept product rules discussed earlier, make the exact formalisation technically
involved. The below proof for this case hinges upon the simplicity of roles in
concepts Selfg, and it is not clear if a relaxation of this requirement would be
possible.

Lemma 8.5.4 If is an extended SROEL(MNg, X) rule base RB in the simplified
form of Proposition 8.5.2, then RB is satisfiable if P(RB) is satisfiable.

Proof. If P(RB) is satisfiable, then it has a least Herbrand model (7 since it is
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a datalog program [AHV94]. This notion is typically defined for datalog without
equality only, so we take the perspective that the equality predicate ~ is part of
the signature of P(RB) and has been axiomatised as in Section 4.1.3. With this
convention, the domain of 7 is exactly the Herbrand universe A7 = TU {dra | R €
N,A € A} (if equality was part of the logic, the domain would consist of the =
equivalence classes of the Herbrand universe; our approach avoids this notational
burden).

To define an interpretation J of RB, we also consider SROEL(, X) rules
as a fragment of first-order logic without equality. In other words, we consider
~ as a signature symbol that is interpreted as a congruence relation, i.e. as an
equivalence relation with the additional property that the elements of any of its
equivalence classes cannot be distinguished by first-order formulae over the given
signature. It is clear that the traditional perspective can be obtained by factorising
I with =, but the expanded view simplifies our presentation.

Now define A := TU {dga, | R € N,A € A,n > 0} where we assume this
to be a disjoint union. For each 6 € A, the level v(d) is defined as v(a) = 0 if
a € I, and v(dgs,) = n. The projection ¢ : A’ — A7 is defined by «(a) = a
fora € I, and «(dgra,) = dra. For each a € I, set a’ = a. Forany A € A, set
AT := {6 € AT | (6) € A7}. Finally, for each role name R € N, set (5,") € R’ iff
((6),1(6")y € RI and one of the following conditions holds:

— 1(0) # (&), or
— «(8) = «(&") and «(6) € Self, or
- v(6) < W)

Finally, ~ is interpreted by setting ~* := {(5, ¢’y | there is a € I such that («(5), a) €
~7 and (((8"),a)y € =T} U {{(5,6) | 6 € A}, where it is easy to check that this is
indeed a congruence relation for 7.

We claim that 7 is a model of RB. Given a variable assignment Z for 7, let Z’
denote the variable assignment for J defined as Z’(x) := «(Z(x)). Then, for any
atom « of the form C(¢) or R(t, s) over the signature of RB, we find that 7, Z F «
implies J,Z" E a. Moreover, I,Z E a ~ t implies J,Z' E a = t and thus
9, E {a}(®). Finally, I, Z E R(t,t) implies I, Z' = Selfz(t).

Now consider any rule B — H such that 7, Z | B. By the previous obser-
vations, J,Z’ E B’, where B — H'’ is the rule obtained from B — H in (a) of
Definition 8.5.3. Since J = P(RB), we obtain 7, Z’ = H’. We need to show that
I,Z E H. This follows directly from the definition of 7 for atoms of the form
C(t) € H and {a}(t) € H.

For atoms AR.B(1) € H, we find that (+/<,dg p,) € R for any n > v(t/%),
since J,Z" E R(t,dgrp) N B(dgp). This also shows that dr g, € B?, so we can
conclude 7, Z | dR.B(¢) as required.
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For atoms R(t,s) € H, we need to verify that one of the conditions in the
definition of R’ is satisfied. Thus assume that (/<) = «(s"%), and v(t'%) >
v(st9). If t € Tor s € 1, then «(t'%) = «(s?%) implies s = t. We thus obtain
I,Z E R(,s) since «(t7%) e Self!, which in turn is a consequence of the fact
that 7 satisfies the rules (c¢) of Definition 8.5.3. If 7, s ¢ I, then P(RB) contains
arule B” — Selfg(y) by item (b) of Definition 8.5.3, and we can draw a similar
conclusion by observing that /', Z" E B”.

This shows that 1 satisfies all rules of RB, including range restrictions. O

The other direction of the proof is slightly more complex, since Herbrand mod-
els cannot be assumed to be available for SROE L(,, X) rule bases. Instead of di-
rectly relating domain elements to elements of the original model, we now assign
characteristic concepts k(d) to each domain element o.

Lemma 8.5.5 If RB is an extended SROEL(M, X) rule base in the simplified
form of Proposition 8.5.2, then P(RB) is satisfiable if RB is satisfiable.

Proof. Assume that RB has some model 7. We define an interpretation J of

P(RB) with domain AY = {a’ |a e }U{dgc | R € N,C € A,(CNAR".T)! ¢

{a}? for all a € I}, where we assume that this is a disjoint union. Note that we use

inverse roles for describing semantic conditions here, although inverses cannot be

used in SROE L(,, X). For each individual name d in P(RB), set d7 as follows:

- Ifd el then d7 = d~.

- Ifd = dgc € A, thend? = d.

- Ifd = dgc ¢ AY and (C M AR.T)! C {a} for some a € I, then @7 = a’ for
some (arbitrary) such a.

Moreover, we assign a concept expression k(d) to any element § € A7 as follows:

— if § = a’ with a € I then k() := {a} for some (arbitrary) such a,
_ if § = dg then k(6) = C M IR".T.

Now 7 interprets roles and concepts as follows (where we assume that C and R
are symbols occurring in RB):

(A) 6§ e CT iff k(6)! c Ct
(B) 6 € Self iff (¢, €) € RY for all € € k(5)”
(C) (6,a’y € RI for a € Liff k(6)* C AR{a})!

(D) (8,dsc) € RT for R € N, iff k(6)" € AR.k(dsc)?, and k(ds )’ < D* for all
D e ran(R)
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(B) (5,dsc) € RI for R € N and «x(6)! € AS.C7 iff (e,€’) € R’ for all
€ € k(0)! and € € k(dsc)’ with (¢,€') € S7, and k(ds )’ € D* for all
D € ran(R)

(F) (6,dsc) € RI for R € N, and «(6)! ¢ 3IS.CT iff (¢,€’) € R’ for all
€ € k(6)! and € € «k(ds ), and k(ds )’ € D? for all D € ran(R)

We claim that 7 is a model for P(RB). For the rules of type (c) in Defini-
tion 8.5.3 this is easy to see. Now consider some rule B — H’ generated from a
rule B —» H € RB by item (a). Assume there is a variable assignment Z’ for
such that I, Z’' = B’. We show how to iteratively construct a variable assignment
Z for 1 such that 7, Z E B, where the construction starts at the root element of
B:

While Z has not been defined for all variables occurring in B, do the following:

— Select a variable x occurring in B such that there is no atom R(y, x) € B with
y € V such that y # x and Z(y) not defined yet. Note that such an x always
exists, since B — H is a DL Rule, and thus has no proper cycles.

— Select a value Z(x) € x(Z'(x))’ as follows:

(1) If Z'(x) = a’ with a € I then set Z(x) = a’.

(2) Otherwise, if there is some R(z, x) € B’ with R € N,, then let Z(x) be
some element € € k(Z’(x))? such that (<, €) € RL.
For the remaining cases, assume that (1) and (2) do not hold, and hence
Z'(x) = ds ¢, and all role atoms in B’ that contain x in the second posi-
tion refer to simple roles.

(3) If there is some R(z, x) € B’ such that x(+7-<)! C 3S.CY, then let Z(x)
be some element € € x(Z'(x))’ such that (+/<,€) € S7.

(4) Otherwise let Z(x) be some element € € x(Z'(x))’.

Finally, for all variables x not occurring in B, let Z(x) be arbitrary.

We need to verify that Z is indeed well-defined. For that we must show that
the choice of Z(x) in (1)—(4) above is always possible. To this end, note that
k(Z'(x))? is non-empty by definition of x. We check all cases separately:

(1) The given choice clearly is possible, and Z(x) € k(Z'(x))~.

(2) Since R(t, x) € B’ with R non-simple, this atom is the only role atom with
x in its second component by definition of SROEL(T, X) rules, hence the
choice of R(t, x) is canonical. From J, Z’ E B’ and (D) in the definition of
J we conclude that «(+7-<")? € AR.k(Z'(x))?. By definition of Z (for case
t € V)and J (for case t € I), we find that /< € x(+7<"), and thus there
must be a possible choice for Z(x).
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(3) In this case, the choice of Z(x) depends on the term ¢ in the first position of
the selected atom R(¢, x). However, by the definition of DL rules, all atoms
of the form R’(#', x) must have the same term in their first component, and
thus the choice of ¢ is again canonical. By assumption, we find x(+7-<") C
3S.C7, and we can apply a similar argument as in case (2) to conclude that
the required choice of Z(x) is possible.

(4) Trivial.

We further claim that 7, Z | B, which is shown by considering all atoms that
may occur in B:

— C(r) with C € A. By Definition 8.5.3, B’ also contains C(¢) and hence 7, Z’
C(#). If t € V then, by construction of Z, we find that Z(¢) € x(Z'(¢))’. Hence,
by item (A) in the definition of J, Z(t) € CZ. Otherwise, if ¢ € I then we find
that k(t)! = {t}} = {t!} € C? as required, where the subset inclusion follows
again from (A).

— {a)(®). In this case, t7-<" = a and k(+7<") = {b} for some b with b’ = a’. Thus
12 € k(t7Z)! = {a’} as required.

— R(t, u). First assume that u € V. If t = u, then Selfz(«) € B’ and we can use (B)
to conclude 7, Z E R(t,u). Otherwise, if u € V and t # u, we can distinguish
the cases as in the definition of Z:

(1) I,Z E R(t,d?) is a direct consequence of (C).

(2) The choice in case (2) of the definition of Z directly implies 7, Z
R(t,u), where it is important to note that only one such (non-simple)
role atom with second argument u can occur.

(3) Again we have argued above that all role atoms with u in their second
position must then be simple and refer to the same 7 in their first position.
Z(u) was chosen such that (+/<, Z(u)) € S. Therefore, T, Z’ | R(t, u)
and (E) imply that (t/-<, Z(u)) € R’ as required.

(4) Case (F) in the definition of J applies, and hence we again conclude
that (+<, Z(u)) € RL.

Finally, if u € I, then we can also apply the same reasoning as in case (1)
above.

We thus find that 7, Z & B, and, since 7 is assumed to be a model of RB,
we conclude that 7, Z | H. Moreover, for any variable x in B for which there is
no atom R(t, x) € B, and for any € € k(Z’'(x))?, we can construct such a variable
assignment Z which additionally satisfies Z(x) = €. This is easily seen since the
value of Z is chosen by item (4) in the definition of Z in this case.
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We can now show that J, " & H’. First consider the case that B — H is
a range restriction R(x,y) — C(y). If Z(y') = a’ with a € I then Z(y) = a’
by the definition of Z, and we find a’ € C? since 7 satisfies B — H. But then
K(ZM)' = {a}f € C?, and hence Z'(y) € C7 by (A) as required. If Z'(y) ¢ L,
then I, Z' E R(x,y) must be due to (D), (E), or (F) in the definition of 7. In each
case, k(Z'(y)) € C? is a necessary precondition, since C € ran(R), and hence we
obtain I, Z" E C(y) from (A).

Now assume that B — H is a SROEL(N, X) rule that is no range restriction.
We distinguish cases by considering the different types of atoms that may occur
in H. According to Proposition 8.5.2, we have to consider three basic kinds of
atoms: A(t), AR.B(t), and R(t,u), where A € AU{T}U{{a} | a € I} and B € A.
If t € V then, by the definition of SROE.L(M, X) rules, we find that there is no
atom R(u,t) € B with u # t. Thus, for any € € k(+7-<)?, there is an assignment
Z such that Y2 = € and 7,Z £ H. This also is trivially true if ¢ ¢ V, since
k(t7Z)! contains only a single element ¢’ in this case. Using this insight (1), we
can consider the various possible kinds of atoms in H:

- If A(t) € H with A € A U {1} then also A(f) € H’. Then (%) shows that € € A?
for all € € k(+7<)!, and we can conclude that #7-<" € A7 by case (A) in the
definition of . For A = L this is a contradiction, showing that this case cannot
occur.

— If {a}(t) € H then a ~ t € H'. By (}), we find that x(+7-<")! = {a}’ and thus
t7Z" € {a}7 by (A). But this implies /<" = a7 as required.

— If AR.B(t) € H with B € A then R(t,drp) N B(dgp) € H'. By considering the
possible values of «, it is easy to see that K(d,{ »)’ € BY, which establishes the
second part of the above conjunction by (A).

To show that R(t,dg ) is also entailed, we again apply () as in the previous
item to conclude that x(+7-<)? ¢ AR.BY. Thus we just need to observe that the
conditions for I, Z’ | R(t, dg p) that are given in (E) and (F), respectively, are
satisfied.

— If R(t,u) € H with t # u then R(¢,u) € H'. Using (}) and the fact that u?< €
k(u?ZH | we find that k(+7-<)? € AR.k(uT-<)!. This establishes the required
conditions for (D) and thus settles all cases where either u € I, oru € V
with Z’(u) = a’ and a € 1. For the remaining cases, assume that u € V with
Z'(w) = dsc.

Observe that, for all D € ran(R), we find dg c € D7 since the conditions of
Definition 8.5.1 hold, and since all range restrictions of RB are satisfied by J

as shown above. By (A), this ensures that the conditions on ran(R) as stated in
(D)—(F) hold. In particular, this settles the case R € N, by (D).
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It remains to check the case where R € N;. By the restrictions on simple roles
in SROEL(N, X) rules, we conclude that u# occurs in the second position of
role atoms in B’ only if the atom is of the form R’(¢, u) with R” simple. If there
is such an atom R'(t,u) € B’ and if x(+7-<")! c 3S.C7, then the value for Z(u)
was chosen by case (3) of the definition of Z. We can thus derive a similar
statement as (), and conclude that Z(«) might take any value € € x(Z’'(u))*
for which (t/<, ¢’y € SZ. Since we derive (t/<, €’y € R” in all these cases, we
can invoke (E) to conclude J, Z’ E R(t, u).

If there is no role atom R'(z, u) in B’, or if x(+7-<" )Y ¢ 3S.C7 for all such atoms,
then Z(u) is chosen in case (4) of the definition of Z. A similar argument as
before shows that the conditions of case (F) are satisfied in this case, and we
obtain 7, Z" | R(t, u) as required.

— If R(t,t) € H then Selfz(f) € H'. Applying (%) again, we find that (¢, €) € R?
for all € € k(t7-<)!. Using (B), we can again derive J, Z’ = Selfz(?).

This shows that 9, Z’ E H’ and concludes the proof for rules of type (a).

Finally, for rules generated in item (b) of Definition 8.5.3, note that one could
similarly obtain these rules by item (a) by adding, for each rule B — H € RB with
R(x,y) € H and R € N; simple, a rule B — R(x, x), where B’ is obtained from B
by replacing all occurrences of y with x. Since adding such rules clearly does not
affect the semantics of RB, case (b) is covered by case (a).

We conclude that 7 is indeed a model for all rules in P(RB) as required. O

Summing up the result of Proposition 8.5.2, Lemma 8.5.4, and Lemma 8.5.5,
we obtain the following theorem:

Theorem 8.5.6 Given an extended SROEL(M, X) rule base RB in normal form,
RB is unsatisfiable iff P(RB) is unsatisfiable.

Definition 8.5.3 thus suggests an approach for implementing SROEL(, X)
rules in datalog without the need of first transforming rule bases to SROEL(, X)
knowledge bases. This translation does not directly establish the tractability of rea-
soning problems that was stated in Corollary 8.4.4. The latter result was based on a
tractability result for admissible SROE L(I;, X) knowledge bases (Theorem 5.4.7)
that was obtained by further decomposing axioms in the knowledge base so as to
limit the number of variables that occur in each datalog rule after the transla-
tion. It is not hard to see that a similar result could be achieved by decomposing
SROEL(N, X) rules, and indeed we provide a more general result for an exten-
sion of SROEL(M, X) rules in Section 9.4.

Such normalisations, however, are mainly relevant for obtaining worst-case
complexity results, and it should not be taken for granted that they would actually

199



DescripTioN Logic FRAGMENTS oOF SWRL: DL RULES

improve the computational behaviour of inferencing engines. On the one hand,
available datalog implementations are typically optimised for datalog rules with
an arbitrary number of variables per rule, and the decomposition of such rules
into many rules with a bounded number of variables would not necessarily lead to
performance gains. On the other hand, a dedicated inference engine for extended
SROEL(N,, X) rules may employ optimisations that exploit the tree structure of
rules directly, without requiring an explicit decomposition that introduces new
signature symbols.

8.6 Summary

In this chapter, we have introduced DL Rules as a novel class of decidable SWRL
fragments. The main characteristic of DL rule bases is that they can be emu-
lated by knowledge bases of an underlying description logic based on a trans-
formation that can be performed in linear time. The expressiveness of DL Rule
languages varies depending on the description logic on which they are based,
and accordingly the worst-case complexity of satisfiability checking in DL rule
languages agrees with the worst-case complexity of reasoning in this DL. We
have specifically considered the highly expressive languages of SROJZQ rules
and SROZQ(Bs, X) rules for which reasoning is N2ExpTimMe-complete, but also
the class of extended SROE L(1, X) rule bases where polynomial-time reasoning
is possible. In all of these cases, the most important defining feature of DL Rules
is the tree-like dependency structure of their rule bodies.

When considering the impact of a DL on the resulting DL Rule language,
we can distinguish expressive features that are only relevant for extending the
available concept expressions from those that play a crucial role for emulating
rules. The first kind of feature includes operators like concept union and cardi-
nality restrictions. If features of this kind are not available, then the resulting DL,
Rule language simply does not comprise SWRL rules that include such concept
expressions. The second kind of feature, in contrast, is required to capture the
semantics of the basic logical constructs that rules provide, even if no complex
role or concept expressions occur in its atoms. The most important of these fea-
tures are concept conjunction, existential role restriction (on the left-hand side of
GCls), local reflexivity (Self), and general role inclusion axioms, all of which are
necessary for emulating a reasonable amount of SWRL rules in DL.

Further features of the second kind are useful for encompassing a broader
class of SWRL rules that are not exactly tree-shaped but that can be transformed
into such a shape by applying obvious rewritings. These features are the universal
role, inverse roles, role conjunctions, and concept products. Nominal classes, in
contrast, have also been used to normalise the structure of rules but were shown
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to be dispensable in all cases in which they are introduced for this normalisation.

Reasoning in DL Rules is generally possible by transforming rule bases into
DL knowledge bases. But this generic approach may lead to collections of axioms
which disguise the original rule structure that could otherwise be useful to guide
the search in inference engines. An alternative approach is to develop rule-based
inferencing algorithms that can preserve the structure of rules while still support-
ing DL constructs beyond DLP (see Chapter 7). To this end, we have presented
an algorithm for translating reasoning problems for extended SROE.L(M, X) rule
bases to datalog. The correctness proof of this method also establishes the cor-
rectness of the datalog transformation provided for SROEL(MM, X) in Section 5.4
which is obtained as a special case.

8.7 Related Work

DL Rules depend on expressive features that have been (re)introduced for DLs
only with the proposal of SRZQ [HKS05] and SROZQ [HKS06]. Complex role
inclusion axioms had originally been included even in KL-ONE — an early pre-
decessor of today’s description logics — where they were called role-value maps
[BS85], but it had soon been recognised that these features lead to undecidability
of basic inference problems [SS89]. Only much later have complex role inclusion
axioms been introduced again into description logic research, at first only to con-
firm that undecidability occurs even with very restricted cases [Wes01]. Regularity
conditions for retaining decidability were first proposed in [HS04], and more re-
cent work suggested generalisations of these conditions [Kaz09b] that could also
be relevant for enlarging the class of DL rule bases. For the case of £L, it is well-
known that no regularity conditions are required when introducing role inclusion
axioms [BBLO5].

It has long been known that DL concept expressions correspond to tree-shaped
conjunctive formulae of first-order logic, and that GClIs thus correspond to cer-
tain SWRL rules. An extensive treatment of possible rolling-up approaches in
the context of DL conjunctive query answering can be found in [TesO1]. Apply-
ing simple rolling-up methods to rules with unary head atoms has also led to the
first proposals for decidable fragments of SWRL [PSG*05]. The possibility of ex-
pressing larger classes SWRL rules by combining local reflexivity with general
role inclusion axioms has first been introduced independently in [GSHO8] and
[KRHO8a]. [GSHOS] focusses on DL Rules for SROZQ and discusses slightly
different rewriting method that takes “obvious” inferences into account for sim-
plifying rule bodies (not all cases covered in [TesO1] are included, e.g. one could
simplify role conjunctions of roles with a common functional superrole). This
allows the approach to subsume more rule bases, but it also introduces another
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non-local criterion for determining whether a rule is supported or not. The related
work [GHO8] introduced a prototypical user interface to support the modelling
of such rules. [KRHO08a] includes tractability results for DL rule languages based
on EL and DLP, all of which are subsumed by the more general results in this
chapter. More recently, it has been proposed to introduce qualified role inclusion
axioms as additional logical operators that are directly processed in inference al-
gorithms [TSS09]. It is not hard to see that the approach of this chapter could
exploit such constructs to emulate DL Rules in a more direct way.

The reduction of inference tasks of description logics to suitable inference
tasks in datalog has been considered in a number of independent works. Exam-
ples include resolution-based approaches for &L [Kaz06] and SHIQ [HMSO05,
Mot06], as well as approaches for SHZQ based on ordered binary decision dia-
grams [RKHO08d, RKHOSc]. In many of these cases, disjunctive datalog — the ex-
tension of datalog with disjunction in rule heads — is required [Mot06, RKHO08d,
RKHO08c]. Notable exceptions occur when considering Horn description logics
such as Horn-SH 7 Q [HMSO05] and £L [Kaz06], as discussed in Chapter 6. How-
ever, not all approaches lead to non-disjunctive datalog when applied to Horn DLs,
as illustrated by the reduction in [RKHO8d, RKHOS8c] that requires disjunctions to
encode binary decision diagrams.
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Chapter 9

Extending DL Rules with DL-Safe
Variables

In this chapter, we extend the class of DL-safe SWRL rules which are based on
the idea of limiting the interaction between datalog and description logics to a
“safe” amount that does not endanger decidability.! DL-safe datalog rules have
originally been introduced in [MSSO05], where it was also shown that they do not
increase the worst-case complexity of the DL SHIQ.

We generalise this approach to the extended class of DL+safe rules that com-
bine DL-safe rules with DL Rules as discussed in Chapter 8. Although DL+safe
rules can still be expressed in terms of the underlying description logic, the ac-
cording rewriting might incur an exponential growth of the size of the knowledge
base. This contrasts the linear transformation that was obtained for DL Rules, and
thus allows us to argue that DL+safe rules provide a real extension of expressive-
ness.

When considering SROZQ as the underlying DL, it turns out that this ex-
tension does not lead to an increased worst-case complexity of reasoning tasks.
Given the very high worst-case complexity of SROZQ, this does not allow us to
conclude that the implementation of SROZQ rules with DL-safe variables is prac-
tically feasible. Indeed, our proof method leads to an exponential blow-up of the
size of the input theory that would be prohibitive in practice. These observations
motivate our definition of ELP as the most expressive tractable SWRL fragment
that is considered within this work.

The structure of this chapter is as follows. Section 9.1 starts by providing a
general introduction to DL-safe rules that provides the basic intuitions and moti-
vations for the subsequent considerations. Section 9.2 introduces DL+safe rules as

'The name “DL-safe” actually originates from a related notion of “safety” that has been con-
sidered for datalog in the field of deductive databases.
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an extension of DL-safe rules that exploit the insights of Chapter 8 to encompass
additional SWRL rule bases. In Section 9.3, it is shown that satisfiability checking
in SROZ Q+safe rules is N2ExpTiMe-complete, and thus not harder than reason-
ing in SROZQ. Section 9.4 introduces ELP as a more light-weight rule language
that can be processed by extending the datalog transformation from Section 8.5.
We conclude by summarising our results in Section 9.5 and provide pointers to
related work in Section 9.6.

The results of Section 9.4 can also be found in [KRHO8b] though this does not
encompass the full generality of DL+safe rules yet.

9.1 Introducing DL-Safe Rules

The restrictions that DL-safe rules impose on SWRL to preserve decidability can
be viewed from two perspectives. On the one hand, one can give syntactic “safety”
conditions that ensure the desired behaviour. This corresponds to the original def-
inition of DL-safe rules. On the other hand, one can modify the semantics of
SWRL rules so as to ensure that every rule is implicitly restricted to allow only
“safe” interactions with description logic knowledge bases. This approach has
become very common in practice, since it is indeed always possible to evaluate
arbitrary SWRL rules in a DL-safe way, without requiring the user to adhere to
specific syntactic restrictions. We begin with the original definition and explain
the second perspective afterwards.

Definition 9.1.1 Consider a signature (I, P, V) of SWRL as in Definition 4.2.1,
with designated subsets of DL concept names A C P, simple role names Ng C P,
and non-simple role names N, € P. A DL atom is a SWRL atom of the form
P(t,...,t,) where P is a DL concept or role, i.e. P € C or P € R where C and R
are defined based on the SROZQ signature (I, A, N). All other SWRL atoms are

non-DL atoms.
A SWRL rule of the form B — H is DL-safe if all variables in B — H occur in
anon-DL atom in B. A set of SWRL rules is DL-safe if all of its rules are DL-safe.
&

Note that the distinction of DL atoms and non-DL atoms only makes sense if
we disallow rules that entail information about non-DL atoms from DL atoms —
this is obviously given when restricting attention to DL-safe rules. The previous
definition is also the first case where it is relevant to distinguish the designated
sets A and N from arbitrary unary or binary predicates in P. In particular, the
underlying SWRL signature is relevant for determining if a set of rules is DL-safe
or not.
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For an example, consider again the SWRL rules from Fig. 8.1 on page 173.
The predicates orderedDish, contains, and FishProduct are used in descrip-
tion logic concepts and thus must be role and concept names, respectively. There-
fore, rule (1) is not DL-safe since y is used only in the DL atom FishProduct(y).
For similar reasons, rule (3) is not allowed but all other rules are indeed DL-safe.

DL-safety is easily recognised by checking whether there are enough non-DL
atoms in each rule premise. Some care must still be taken since DL-safety is not an
intrinsic feature that a SWRL rule may have since it depends on underlying SWRL
signature. To see this, we can take a different perspective on the rules of Fig. 8.1.
As we have seen in Section 8.1, rule (1) and rules (3) to (5) could similarly be
considered as SROJ Q rules, while rule (2) does not meet the requirements. Using
DL Rules and DL-safe rules together is no problem since the former are merely
a syntactic shortcut for description logic axioms. We just have to consider all
predicates in DL Rules as role and concept names. Rule (1) and rule (3), which
we found not to be DL-safe above, could thus also be considered as DL Rules.
But when doing so, the predicates Dish and dislikes also must be part of the
DL signature, and thus rules (2) and (4) are no longer DL-safe.

Summing up, we can treat the rules of Fig. 8.1 in at least two ways: either we
use rules (2), (4), and (5) as DL-safe rules, or we use rule (1) and rules (3) to (5) as
SROIQ rules. In each case, we can also use the given facts, but no further rules.
Hence, neither approach is quite satisfying, since we have to neglect one or the
other rule in each of the cases. But the definition of DL-safety suggests a way to
get closer to our original rule set. Namely, whenever a rule is not DL-safe for a
particular signature, it can be modified to become DL-safe by adding further non-
DL atoms to the rule premise for all variables that did not appear in such atoms
yet. We can introduce a fresh unary non-DL predicate O and use atoms of the form
O(x) to ensure the DL-safety conditions for a variable x. When viewing rules (1)
and rules (3) to (5) as DL Rules, e.g., we can modify rule (2) to become DL-safe
as follows:

(2°) orderedDish(x,y) A dislikes(x,y) A O(x) A O(y) — Unhappy(x)

This new rule is indeed DL-safe since both x and y occur in non-DL atoms,
and hence it can be used together with the other (DL) rules. But, unfortunately,
this rule does not allow for any additional conclusions since one can always find
an interpretation where O is interpreted as the empty set, so that rule (2°) is never
applicable. Adding O(x) and O(y) imposes additional conditions for applying the
rule. Therefore we would like to ensure that O must encompass as many elements
as possible. A first idea might be to add the rule O(x), i.e. the fact that O encom-
passes all elements. But this rule would not be DL-safe, as x does not occur in a
non-DL atom in the premise. A little reflection shows that we can only assert that
concrete elements belong to O, e.g., by writing O(markus). By giving additional
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facts of this kind, we can extend the applicability of rule (2°) to further cases.

Thus, consider a SWRL rule base that consists of the rules (1) and (3) to (5),
and all facts of Fig. 8.1, together with the additional rule (2) and facts O(c) for
each individual name a that occurs in Fig. 8.1. Based on this rule base, we can
obtain all conclusions of the underlying SROZQ rule base. For example, we find
that Markus ordered a dish that he dislikes, as expressed by the description logic
assertion

(dorderedDish.ddislikes™.{markus})(markus)

which we could check with a DL reasoner. An explicit way to read this expression
is as follows: Markus belongs to the class of things who ordered a dish that is
disliked by someone in the class {markus}, of which Markus is the only member.

In spite of this conclusion, we cannot infer that Markus is unhappy. The DL-
safe rule (2’) is applicable only if the variables x and y represent members of the
class denoted by O. But we can always find an interpretation where this is not the
case for the element that represents the unnamed dish that Markus ordered.

In contrast, we know that Anja ordered a particular Thai curry dish called
“Thai Red Curry” and again we may conclude that she dislikes this dish. Since
the domain element that corresponds to Anja’s dish is represented by the con-
stant symbol thaiRedCurry, the DL-safe rule (2’) is applicable and we derive
Unhappy(anja). The only other instance of Unhappy that we can conclude is
bijan, which follows by applying rules (1) and (2°).

This example also provides some intuition of why the DL-safety restriction is
enough to ensure decidability of reasoning. Namely, DL-safety effectively restricts
the applicability of rules to those domain elements that are identified by constant
symbols, i.e. to the elements for which we can instantiate the predicate O (or any
other non-DL predicate we may use). Since we only ever have a finite number of
constant symbols, rules are applicable in only a finite number of cases. The DL-
safe rule (2°), e.g., could also be replaced by rules without variables that enumerate
all the basic cases that are covered:

orderedDish(anja, thaiRedCurry) A dislikes(anja, thaiRedCurry)
— Unhappy(anja)

orderedDish(markus, thaiRedCurry) A dislikes(markus, thaiRedCurry)
— Unhappy(markus)

orderedDish(markus, anja) A dislikes(markus, anja)
— Unhappy(markus)

While this still yields exponentially many rules, these rules now are easier
to deal with for a description logic reasoner. In fact, rules without variables can
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always be considered as DL Rules, and could thus even be transformed into de-
scription logic axioms. This approach, however, is not feasible in practice, since
it creates an exponential amount of new axioms that the reasoner must take into
account. Reasoners with direct support for DL-safe rules, in contrast, may process
such rules rather efficiently, and in an optimised fashion. Examples of systems that
currently support DL-safe rules are KAON2 [MS06] and Pellet [SPG*07].

It has been mentioned that there is a second perspective that one may take on
DL-safe rules. The above discussions have shown that, intuitively, DL-safe rules
are applicable only to elements that are denoted by constant symbols. Instead of
imposing a syntactic requirement to ensure this, we may directly build this restric-
tion into the semantics of SWRL. One way to do that is to change the definition
of variable assignments, requiring that variables can only be assigned to domain
elements of the form a’ for some constant symbol a € I. Such domain elements
are sometimes called named elements. Another possible approach is to assume
that the premise of every rule (DL-safe or not) is silently extended with condi-
tions O(x) where O is defined by facts O(a) for each constant symbol a. Both ap-
proaches are essentially equivalent in that they allow us to write arbitrary SWRL
rules and use them like DL-safe rules. This is, in fact, what some description logic
reasoners that support DL-safe rules will automatically do when encountering a
rule that is not DL-safe.

The above perspective is convenient since it allows users to specify arbitrary
rules without considering the details of their semantics. However, this approach
introduces some confusion, since the term “DL-safe rule” might now be used
for two different things. On the one hand, it might refer to a SWRL rule that
respects the syntactic restrictions explained above. On the other hand, it might
denote a rule that is syntactically similar to SWRL, but which is evaluated under a
modified semantics that restricts its conclusions. The second approach can also be
viewed as an incomplete way of reasoning with SWRL: all conclusions that the
rules entail under the “DL-safe semantics” are also correct conclusions under the
standard SWRL semantics, but some conclusions might not be found. An example
of such a lost conclusion is Unhappy(markus) which we could derive in SWRL
in Section 4.2.1 but not with the DL-safe rules above.

While the relationship between the two approaches is straightforward, it is im-
portant to clarify the intended meaning when specifying SWRL rules. This is even
more the case when Description Logic Rules are also considered, since SWRL
rules that are not DL-safe may still be suitable as DL Rules.

207



ExTENDING DL RULES wiTH DL-SAFE VARIABLES

9.2 DL Rules with Safe Variables

The extended introduction to DL-safe rules in the previous section already ex-
plained that DL Rules and DL-safe rules can be used in combination. This im-
mediately leads to larger decidable fragments of SWRL, but this loose integration
of the two approaches can be further extended. In this section, we introduce the
concept of DL-safe variables and we show how it can be applied to obtain larger
decidable fragments of SWRL. The resulting class of rule languages is called
DL+safe rules since it represents a natural integration of DL Rules and DL-safe
rules that generalises both approaches.

Definition 9.2.1 Consider a SWRL signature (I, P, V) as in Definition 9.1.1, and
a SWRL rule B — H over that signature. A variable x is DL-safe for B — H if it
occurs in a non-DL atom in B. O

A DL-safe rule therefore is a SWRL rule that contains only DL-safe variables
in its head. As before, this notion is only useful if we ensure that non-DL atoms are
not entailed from DL atoms in the considered rule bases. If this can be taken for
granted, then the satisfiability of rule bases is typically not affected when replacing
rules with DL-safe variables by their groundings, defined as follows.

Definition 9.2.2 The DL-safe grounding ground(B — H) of arule B — H is the
set of all rules that can be obtained by uniformly replacing DL-safe variables in
B — H with individual names of the given signature. Given a set of SWRL rules

RB, we use ground(RB) to denote the union of all DL-safe groundings for rules
of RB. O

Much of the discussion of Section 9.1 applies to DL-safe variables as well. In
particular, we are free to choose the alternative perspective that DL-safe variables
are subject to a different semantic interpretation that restricts variable assignments
for those variables to named elements. This approach could be formalised by in-
cluding a designated set of DL-safe variables into SWRL signatures. To avoid
confusion, we stay true to the formulation of Definition 9.2.1.

In essence, DL-safe variables behave like individual names, and we can extend
the definition of DL Rules accordingly.

Definition 9.2.3 Consider a description logic £ as in Definition 8.4.2. Given a set
RB of SWRL rules over a signature ., let . denote the signature obtained from
. by declaring all unary predicates to be concept names. Then RB is an L+safe
rule base over .7 if

— all rules in RB that contain a non-DL atom as their head are DL-safe, and

— ground(RB) is an £ rule base over .” according to Definition 8.4.2. <&
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Since all atoms in DL Rules must be DL atoms, this definition implicitly re-
quires rules to contain unary non-DL atoms only. This restriction could be weak-
ened, but such an extension would not contribute much to the results of this chap-
ter since we typically consider only non-DL atoms of the form O(x).

It should be noted that DL+safe rules are a generalisation of DL Rules and DL-
safe rules. Clearly, a DL rule base simply is a DL+safe rule base without non-DL
atoms. For the case of DL-safe rules, note that every SWRL rule without variables
is a DL Rule according to Definition 9.2.3. We point out that the elimination of
nominals in Lemma 8.4.1 is essential for this result. Hence, any DL-safe rule is
also a DL+safe rule (given that only unary and binary atoms are used, as discussed
above). Since any DL knowledge base can directly be expressed as a DL Rule
base, this shows that any combination of a description logic knowledge base with
a set of DL-safe rules can be expressed as a DL+safe rule base.

For an extended example, consider again the rules of Fig. 8.1 on page 173.
As before, we find that rules (1) and (3) to (5) are SROZQ rules, and hence they
are clearly SROZQ+safe rules as well. This is not the case for rule (2), but we
do not need to restrict it quite as strongly as rule (2’) in Section 9.1. Namely, it
suffices if one of the variables is forced to be DL-safe, so we obtain two possible
approximations:

(2.a) orderedDish(x,y) A dislikes(x,y) A O(y) — Unhappy(x)
(2.b) orderedDish(x,y) A dislikes(x,y) A O(x) — Unhappy(x)

where O is instantiated for all individual names as before. The grounding of either
rule is a SROZQ rule: assuming that the DL-safe variable is replaced by constants
a and b, we can apply the algorithm of Section 8.2 to obtain SROJQ axioms:

(2.a) dorderedDish.{a} 1 ddislikes.{a} C Unhappy
(2.b) {p} 1 AU.({b} N dorderedDish.ddislikes™.{b}) C Unhappy

where the axiom for (2.b) could be simplified by omitting the outermost conjunc-
tion and existential on the left-hand side; this optimisation is not part of the trans-
formation algorithm. When using the SROJ Q+safe rule base with rule (2.a), only
Unhappy(bijan) and Unhappy(anja) are entailed, whereas with rule (2.b) we ad-
ditionally obtain the missing conclusions Unhappy(ian) and Unhappy(markus).
Continuing with the example, we can also consider SROZQ(Bs, X)+safe rules
as an underlying formalism. As observed in Section 8.3, the simplicity restrictions
on role conjunctions allow us to consider either rules (1) and (3) to (5), or rules
(1) to (3) and (5) as SROIQ(B;, X) rules. In the first case rule (2) can be treated
as before, while in the second case we can consider restricted versions of rule (4)
that still allow dislikes to be simple. It turns out that it suffices to make any
of the variables x, y and z in the body of rule (4) DL-safe, leading to rules (4.x),
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(4.y), and (4.z). With the extended transformation of Section 8.3, we obtain the
following axioms when using the constants a, b, ¢ for grounding:

(4.x) {a} x(Dishrmdcontains.ddislikes .{a}) C dislikes
(4.y) (ddislikes.dcontains™.{b}) M AU.(Dish M {b}) C Adislikes.{b}
(4.z) (Adislikes.{c}) x (Dish M dcontains.{c}) C dislikes

Together with rule (4.x), the rule base entails all named instances of Unhappy,
just as in the case of SROZ Q+safe rules with rule (2.b) above. With rule (4.y) we
can only conclude Unhappy(bijan) and Unhappy(anja), whereas rule (4.z) lets
us derive only Unhappy(bijan) and Unhappy(ian).

The next proposition shows that grounding can be used to reduce satisfiability
checking of DL+safe rules (and also DL-safe rules) to satisfiability checking for
the corresponding class of DL Rules.

Proposition 9.2.4 Consider a description logic L as in Definition 9.2.3. Then
every L+safe rule base RB is equisatisfiable to ground(RB).

In particular, if the problem of checking satisfiability of L knowledge bases is
decidable then checking satisfiability of L+safe rule bases is also decidable.

Proof. Consider a L+safe rule base RB. We claim that RB and ground(RB)
are equisatisfiable. Clearly, every model of RB is also a model of ground(RB).
For the converse, consider a model 7 of ground(RB). An interpretation 7’ is de-
fined to coincide with 7 regarding domain, interpretation of individuals, and in-
terpretation of roles and concepts. For every n-ary predicate P ¢ A U N, define
Pl = {(8,,...,6,) € P! |foralli=1,...,n: & = a’ for some a € I}. In other
words, I’ restricts the extension of non-DL predicates to named individuals. It is
easy to see that 7’ is a model of RB, since all rules in RB with non-DL atoms as
heads are DL-safe.

By Definition 9.2.3, ground(RB) is an L rule base where the signature is mod-
ified to consider all unary predicates as concept names as in the definition. Satis-
fiability of ground(RB) can then be decided based on Proposition 8.4.3. O

The satisfiability-preserving reduction in the previous proof yields an expo-
nential blow-up of the number of input rules, and hence is not a useful basis
for obtaining tight upper boundaries for the worst-case complexity of satisfiabil-
ity checking. Yet, this result can be considered as a way of expressing DL+safe
Rules in terms of DL Rules, and in particular as a reduction of DL-safe rules to
description logic axioms. In this sense, DL-safe rules do not introduce additional
expressiveness, although the term “syntactic sugar” is rather not appropriate given
the exponential blow-up of the rewriting and the fact that only satisfiability is pre-
served. However, the well-known result that DL-safe rules do not increase the
ExpTiME worst-case complexity of reasoning for SHIQ [MSS05] suggests that
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DL +safe rules may not lead to an exponential increase in complexity. This is con-
firmed for the DLs SROZQ and SROE L(M;, X) in the following two sections.

9.3 Reasoning Complexity of SROJ Q+safe Rules

Intuitively, every DL+safe rule represents an exponential number of DL Rules
that are obtained by replacing DL-safe variables with individual symbols. Based
on this intuition that was the basis of the proof of Proposition 9.2.4, we obtain
an upper bound for the complexity of reasoning with DL+safe rules that is ex-
ponentially larger than the upper bound of the underlying DL. For example, it is
immediately clear that satisfiability of SROZQ+safe rule bases can be decided in
non-deterministic triple-exponential time. In this section, we show that this result
can be refined to obtain an N2ExpTiME upper complexity bound, showing that this
reasoning problem must be N2ExpTime-complete. Moreover, we use the results
of Chapter 5 to obtain results for the slightly larger class of SROZQ(B;, X)+safe
rules.

The fact that all standard reasoning tasks for SROZQ knowledge bases can
be decided in N2ExpTiME was shown in [KazO8] by providing an exponential
reduction from SROZQ to C? — the two-variable fragment of first-order logic with
counting quantifiers — for which reasoning is known to be NExpTmmEe-complete,
and we have extended this transformation to SROJQ(B;, X) in Section 5.2. The
transformation is based on the use of non-deterministic finite automata (NFA)
that have been defined in [HS04, HKSO06] to capture the interplay of complex
role inclusion axioms. We do not repeat the details of this construction here, and
merely quote the essential results. Proofs for the following facts can be found in
[HKSO06] and the accompanying technical report.

Fact 9.3.1 Consider a SROIQ knowledge base KB. For each (possibly inverse)
role R € R, there is an NFA Ay over the alphabet R such that the following holds
for every model I of KB, and for every word S ...S, accepted by Ag:

If (0;,0i11) ESfforeachie {1,...,n), then (6y,6,+1) € RL.

Moreover; let < denote a strict linear order that witnesses regularity of RB as re-
quired in Definition 3.1.4. For each R € N, the number of states of Ay is bounded
exponentially in the depth of KB that is defined as:

max{n | thereare S| < ... < S, suchthatT;o...0S;0...0T;, ES; € KB}

Considering the DL Rule normalisations from Fig. 8.2 and 8.4, and the trans-
formations from Fig. 8.3, it is easy to see that the grounding of DL-safe variables
does not increase the depth of a knowledge base. More formally, we obtain the
following.
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Lemma 9.3.2 Given a SROIQ(B;, X)+safe rule base RB, let RB’ denote the rule
base that is obtained by uniformly replacing each DL-safe variable in RB by some
(arbitrary) individual name. Moreover, let KB(RB’) and KB(ground(RB)) denote
the SROIQ(B;, X) knowledge bases that correspond to RB’ and ground(RB) as
defined in Proposition 8.4.3, where unary predicates of RB are considered as con-
cept names. Then the depth of KB(RB') is equal to the depth of KB(ground(RB)).

The transformation of SROZQ knowledge bases into C? theories in [Kaz08]
proceeds in three steps: (1) the input axioms are transformed into a simplified
normal form as discussed in Section 5.2, (2) complex role inclusion axioms are
eliminated, and (3) the resulting SROZQ axioms are expressed as formulae of C?.
Step (1) can be executed in linear time and leads to a SROJ Q knowledge base that
semantically emulates the original knowledge base. Step (2) applies a technique
that was originally introduced in [DNOS]. Every axiom of the form A C VR.B
is replaced by the following set of axioms, where Ay is the NFA as introduced
above, and X, are fresh concept names for each state g of Ag:

ACX, q is the initial state of Ag
X, CVS.Xy Ag has a transition g 5 q
X,CB q is a final state of Ag

Moreover, all complex RIAs of the form S, 0...0S5, C R with n > 2 are deleted.
The number of new axioms (and fresh concept names) that are introduced for each
axiom of the form A C VR.B is bounded by the sum of the number of states and
transitions in Ag, and the number of transitions in turn is linear in the number of
role names and states. According to Fact 9.3.1, the number of axioms introduced
for each axiom A C VR.B is exponentially bounded in the depth of the knowledge
base. The overall size of the knowledge base after step (2) therefore is bounded
by a function that is linear in the size of the knowledge base and exponential in
the depth of the knowledge base.

Step (3), finally, is a simple rewriting that does not increase the size of the
knowledge base. Lemma 9.3.2 therefore allows us to draw the following conclu-
sion. As shown in Section 5.2, it is possible to extend this transformation to cover
additional types of role expressions, and this extension does not interfere with the
RIA elimination in step (2).

Theorem 9.3.3 The problem of deciding satisfiability of SROIQ(Bs, X)+safe rule
bases (and thus also of SROI Q+safe rule bases) is N2ExpTiME-complete w.r.t. the
size of the rule bases.

Proof. Consider a SROIQ(B,, X)+safe rule base RB and a SROZQ(B;, X) rule
base ground(RB) as in Lemma 9.3.2. Since the size of KB(ground(RB)) is linear
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in the size of ground(RB) (Theorem 8.2.5), we find that the sizes of ground(RB)
and of KB(ground(RB)) both are exponential in the size of RB. By Lemma 9.3.2
and Theorem 8.2.5, the depth of KB(ground(RB)) is linear in the size of RB. The
size of the knowledge base that is obtained in step (2) of the above transformation
of KB(ground(RB)) to C? is bounded by the product of the number of axioms in
KB(ground(RB)) and the maximal number of states in NFA Ag. Since both are
exponential in the size of RB, the overall bound is still exponential in this size.
Hence, the transformation to C? in step (3) yields a theory that is exponential in
the size of RB, even when taking into account the additional transformation steps
that were introduced for SROZ Q(Bs, X) role expressions in Section 5.2. Since the
satisfiability problem for C? theories is NExpTiME-complete [PHO5], we find that
satisfiability of RB can be decided in N2ExpTIME.

Hardness follows from the N2ExpTmMe-hardness of SROZQ [Kaz08]. O

This shows that the worst-case complexity of reasoning in SROZ Q+safe rules
is not higher than the worst-case complexity of reasoning in SROZQ. Yet, the
exponential increase in the input size, although it is not an increase of the knowl-
edge base’s depth, suggests that in-advance grounding is not the most promising
approach for implementing reasoners. In particular, the method is guaranteed to
require exponential runtime in all cases, whereas successful DL reasoning algo-
rithms typically are able to avoid exponential behaviour for many input problems.
It is not hard to see that optimisations could be applied to obtain more promis-
ing algorithms, e.g. by noting that grounding leads to a large number of struc-
turally similar axioms that can be treated analogously during reasoning. This can
be exploited, for example, when constructing NFAs from the knowledge base.
The general strategy underlying such optimisations is deferred grounding: instead
of initially replacing DL-safe variables with constants, DL-safe variables are kept
unchanged and treated like constant symbols in subsequent inferencing steps, until
concrete values are really needed. Even when DL-safe variables are eventually in-
stantiated, it is not necessary to compute all possible instantiations at once. These
observations suggest that the algorithmic treatment of SROJ Q+safe rules could
indeed achieve similar levels of efficiency as the treatment of SROZQ knowledge
bases, but further research and development will be required to arrive at practical
implementations.

9.4 Tractable DL-Safe Rules: ELP

We have seen that DL+safe rules do not necessarily increase the worst-case com-
plexity of reasoning as compared to the underlying DL. However, DL+safe Rules
are inherently intractable since they encompass DL-safe rules which can in turn
be used to express arbitrary datalog programs that use unary and binary predicate
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symbols only. Checking satisfiability of such programs is still NP-complete.? In
this section, we therefore study how DL-safe variables can be combined with DL
Rules to obtain tractable rule languages. This approach leads to the rule language
ELP that extends SROEL(M,, X) rules as defined in Section 8.5 with DL-safe
variables while still allowing polytime reasoning.

Intuitively speaking, the high worst-case complexity of datalog is due to the
fact that arbitrarily complex relationships can be expressed in rule bodies of un-
bounded size. We already noted that reasoning becomes tractable when restricting
to datalog rules with a bounded number of variables. As an alternative, one can
constrain the structure of rule bodies in the spirit of DL Rules, as shown in the
next definition.

Definition 9.4.1 Consider a set RB of SWRL rules over some signature ., and
let .”” denote the signature obtained from .’ by declaring all unary predicates to
be concept names.

Then RB is an ELP rule base if the following holds:

— all rules in RB that contain a non-DL atom as their head are DL-safe,
— ground(RB) is a SROE L(M, X) rule base over ., and

— RB is a SROIEL(MN,, X) rule base over ., where SROIEL(M,, X) is the
extension of SROEL(M, X) with inverse roles.

A set of range restrictions RR is admissible for an ELP rule base RB if RR is
admissible for ground(RB) according to Definition 8.5.1. An extended ELP rule
base is the union of an ELP rule base RB and a set of range restrictions RR that
are admissible for RB. <&

The above definition ensures that any ELP rule base is a SROEL(IN, X)+safe
rule base, but it also imposes additional restrictions on the structure of DL-safe
variables. In essence, the requirement of RB being a SROIEL(M;, X) rule base
implies that the body of any rule in RB does not contain “undirected cycles™ other
than those that can be expressed by means of local reflexivity and conjunction of
simple roles.

Returning to our earlier example from Fig. 8.1, we now find that all rules
but rule (4) are in ELP extended with admissible range restrictions. In contrast

ZHardness is easy to establish, e.g. by reducing the 3-colouring problem of binary graphs
[Pap94] to satisfiability checking. Inclusion can be shown by providing a non-deterministic
polynomial-time algorithm for checking ground entailments. This can be accomplished by guess-
ing a suitable proof tree [L1088], where we note that each node in the tree corresponds to one out
of polynomially many available ground atoms, so that a polynomial presentation of the complete
tree is possible.

3This intuitive terminology alludes to the graphical interpretation from Definition 8.2.1.
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to the case of SROJQ(B,, X)+safe rules considered in Section 9.2, however, we
cannot select an arbitrary variable of rule (4) to be DL-safe. Only if z is DL-safe
will the grounded rule be a SROE L(M, X) rule. This corresponds to rule (4.z) as
considered in Section 9.2 and indeed we found that the SROJ Q(B;, X) translation
of this rule was a SROEL(M, X) axiom. As before, we obtain the conclusions
Unhappy(bijan) and Unhappy(ian).

Interestingly, ELP can be considered as a SWRL fragment that subsumes and
extends the logical formalisms underlying OWL EL and OWL RL. The former
should be obvious, since the DL SROE L(IM;, X) subsumes the abstract — i.e. un-
related to datatypes — logical features of OWL EL. It has been discussed in Sec-
tion 6.2 that the DL R L plays a similar role for OWL RL. However, the union of
both of these logics subsumes Horn-#LE (see Section 6.4) for which inferencing
is already ExpTime-hard. Hence, ELP cannot subsume this union without giving
up its main design criterion of tractability. The following theorem shows how ELP
can still support inferencing for both languages, and even achieve some amount
of interoperability between them.

Theorem 9.4.2 Given an extended SROEL(Mg, X) knowledge base KB, and a
RL knowledge base KB, that are based on a signature ., there is an extended
ELP rule base RB (possibly over an extended signature) such that the following
holds for any ground atom a of the form C(a) or R(a, b) over .7 :

— if KBy F @ or KB, [ a then also RB E «,
— if RB E a then KB, UKB; E a,

and RB can be computed from KB, and KB, in logarithmic space w.r.t. the size
of the knowledge bases.

Proof. It has been noted in Proposition 6.2.2 that RL axioms can be translated
into datalog rules by using the first-order transformation specified in Section 3.2.
It is well known that all ground entailments of a datalog program can be derived
by applying rules only to named individuals, and hence the resulting rules can
be extended by auxiliary body atoms O(x) for each variable x they contain. As
before, we add facts O(a) for each individual name a of .. Here we assume that
O is fresh for ., i.e. that it does not occur in .¥.

It is easy to see that all rules that result from this transformation of KB, are
SROIEL(Mg, X) rules, with the only exception of those rules that are obtained
from axioms A C <1 R.B. Namely, these rules contain equality statements of the
form y; =~ y, in their heads, and such atoms have not been allowed in any DL Rule
language. As discussed in Section 4.1.3, however, the equality predicate in datalog
can be replaced by a suitable axiomatisation. Hence, we introduce a fresh role
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name R., replace atoms y; =~ y, with R.(yy,y,), and add new rules to axiomatise
R. as an equality relation as in Section 4.1.3. Moreover, since equalities only
occur in DL-safe rules, all the auxiliary rules for axiomatising equality can also
be modified to be DL-safe.

It is not hard to see that the rule base that is obtained by applying these transla-
tions to the datalog rules that are obtained for KB, are indeed in ELP, and that they
entail the same ground facts as KB,. Now RB is obtained as the union of this set of
DL-safe rules with KB, expressed in terms of SWRL rules as usual. The previous
observations immediately establish the first part of the claim. For the other direc-
tion, it suffices to note that (the SWRL version of) KB; UKB, U {O(a) | a € 1},
entails RB. Since a does not contain O, this shows the second part of the claim.O

Note that the resulting ELP rule base entails all individual consequences of
KB, and KB,, and some but not all consequences of their (unsafe) union. ELP thus
provides a means of combining SROEL(M;, X) (OWL EL) and RL (OWL RL) in
a way that prevents intractability, while still allowing for a controlled interaction
between both languages. We argue that this is a meaningful way of combining
both formalisms in practice since only some RL axioms must be restricted to safe
variables. Simple atomic concept and role inclusions, for example, can always be
considered as SROE L(M, X) axioms, and all concept subsumptions entailed from
the SROEL(M;, X) part of a combined knowledge base do also affect classifica-
tion of instances in the RL part. RL thus gains the terminological expressivity of
SROEL(M, X) while still having available specific constructs that may only affect
the instance level.

Next, we want to show that reasoning with extended ELP rule bases is indeed
tractable. Our earlier results on extended SROEL(M;, X) rule bases already pro-
vide a way of deciding satisfiability of ELP rule bases by first grounding DL-safe
variables, and then proceeding with the elimination of range restrictions and trans-
formation to datalog. This direct approach, however, would incur an exponential
blow-up of the rule base. The proof thus proceeds by decomposing ELP rules into
rules containing a limited number of variables. The grounding of DL-safe vari-
ables then can only produce a polynomially bounded number of new rules. After
translating from SROEL(, X) rule bases to datalog as in Section 8.5, the num-
ber of variables per rule is still bounded, which leads to the desired tractability
result.

The decomposition of ELP rules into rules with a bounded number of variables
exploits the forest-like structure of rule bodies by iteratively reducing branches of
trees. Since SROEL(M,, X) does not support inverse roles, this reduction is more
complicated than the normalisation techniques that were used for SROE.L(;, X)
knowledge bases in Section 5.2.
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Lemma 9.4.3 Every extended ELP rule base RB is semantically emulated by an
extended ELP rule base RB’ that contains at most three variables per rule, and
that has the simplified form of Proposition 8.5.2. Moreover, RB’ can be computed
in time polynomial w.r.t. the size of RB.

Proof. As a first step, we simplify the form of rules in RB. Nested concept con-
junctions and existential role restrictions with compound subconcepts are elimi-
nated as in Proposition 8.5.2. However, we explicitly allow concept expressions
of the form JR.Self(r) and AR.{a}(¢), and we will not decompose them in any way.
To the contrary, we replace role atoms R(¢, t) and R(¢, a) with a € I by concept ex-
pressions dR.Self(¢) and AR.{a}(¢), respectively. An essential property is that both
of these expressions can later be expressed in SWRL without using DL concept
constructors, and without introducing fresh variables. We obtain an extended ELP
rule base RB; that contains only concept expressions that are of one of the forms
A € A, {a} with a € 1, AR.Self, AR{a}, T, L, and dR.A with A € A (only in
rule heads). Rules with body atoms of the form _L(#) or head atoms of the form
T(t) are assumed to be deleted. Expressing R(¢,¢) and R(z, a) in terms of concept
expressions is useful since these special cases would otherwise need to be distin-
guished from other cases where role atoms are considered below. Clearly, RB; can
be computed in time polynomial w.r.t. the size of RB, and it semantically emulates
RB.

Next, we eliminate individual names in argument positions, which can be ac-
complished by replacing single occurrences of individual names a by fresh vari-
ables x, and adding nominal concepts {a}(x) to the rule body. This step is sim-
ilar to steps (2) and (3) in Fig. 8.2, and it is easy to see that the resulting rule
base RB; is still an extended ELP rule base that semantically emulates RB. Note
that it is important for this result that individual occurrences of constants are re-
placed by different variables. For example, A(x) A S(a,y) A R(y,a) — T(x,y) is
in ELP, and so is A(x) A S(z,y) A R(y,Z) A {a}(z) A {a}(Z') — T(x,y) but not
A(x) A S(z,y) A R(y,2) A {a}(z) — T(x,y). In the following, we can therefore
assume that all terms in rules are variables (DL-safe or not).

In the next step, we extract role conjunctions from the rules of RB, to ensure
that all rules with more than three variables contain at most one atom that connects
two given variables. As an example, consider the ELP rule A(x) A O(z) A R(z,y) A
S(y,z) = T(x,y) where O(z) is a non-DL atom so that z is DL-safe. Note that we
cannot treat the occurrences of z independently as in the case of individual names.
Using a fresh role name V, the above rule can be expressed by rules O(z) AR(z, y) A
S(y,2) = V(z,y) and A(x)AO(2)AV(z,y) — T(x,y). Note that the direction chosen
for V is not arbitrary, since the rule O(z) AR(z,y) AS (y,z) — V(y,z) is not in ELP.
Based on the observation that expressions of the form R(z,y) A S(y,z) can only
occur in ELP rule bodies if at least one of y and z is DL-safe, it is not hard to
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obtain a general transformation rule from this example:
Select arule B — H € RB, with more than three variables and do the following:

— if there are S, R € N such that {R(x,y), S (x,y)} C B, then replace B — H with
rules BU{V (x, WI\{R(x, y), S (x,»)} = Hand {R(x,y), S (x,y)} = V(x,y) where
V is a fresh role name,

— if there are S, R € N and a non-DL predicate O with {R(x, y), S (y, x), O(x)} C B,
then replace B — H with rules B U {V(x,y)} \ {R(x,y),S(y,x)} — H and
{R(x,y),S(y,x),0(x)} = V(x,y) where V is a fresh role name.

Let RB; denote the rule base that is obtained from RB, by applying the above
transformation exhaustively. Clearly, RB; again semantically emulates RB and
can be computed in polynomially many steps.

We are now ready to transform the extended ELP rules of RBj into extended
ELP rules with at most 3 variables per rule. To this end, we first introduce some
auxiliary notions, where we adopt the graph-based perspective that was first intro-
duced in Definition 8.2.1. Consider some rule B — H:

— A direct connection T" from ¢ to u in B is a singleton set of the form I' =
{R(t,u)} C B.

— A connected component of B is a non-empty subset § C B such that, for all
terms ¢ # u occurring in S, we find that ¢ and u are connected in S. A maximal
connected component (MCC) is a connected component that has no supersets
that are connected components.

— A variable x is final for H if H = R(¢t, x) or H = C(x).

— Given a subset § of B, we say that S is reducible if it contains variables that
are neither a root (as in Definition 8.2.1) of H nor final for H.

— Let S be an MCC of B, and consider a direct connection I' from a term ¢ to
aterm u in S. Let S, be the set of all atoms in S \ I' that contain some term
¢ connected to 7 in S \ I'. Similarly, let Sr,, be the set of all atoms in § that
contain some term u’ connected tou in S \ I.

Intuitively, the sets S, and S, consist of all atoms to the “left” or to the “right”
of the connection I" that can be reached from ¢ and u, respectively, without using
the atom of I'.

Since DL Rules cannot contain proper dependency cycles, and due to the trans-
formation of RB, to RB3 above, every connected component S of a rule in RBj
has some root element in §'.

We can now proceed to reduce the forest structure of rule bodies.

In each iteration step of the reduction, select some rule B — H in RBj that
contains more than three variables and some reducible MCC § of B, and apply
one of the following transformations. We use x to denote the root variable of H.
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(1) If S contains no variable that is final for H, then let ¢ be a root variable in
S. The rule B — H is replaced by three new rules (B \ §) U {X(x)} — H,
{T(x),Y(1)} = X(x),and § — Y(¢), where X, Y are fresh concept names.

For all other cases, assume that the variable y in § is final for H.

(2) There is a direct connection I' = {R(t,u)} € S such that u # y and S,
does not contain x or y. Then rule B — H is replaced by two new rules
BU{XI\(Sr,Ul) - H,andT'US,, — X(7), where X is a fresh concept
name.

(3) There is a direct connection I' = {R(z, y)} from some variable ¢ # x to y. Let
s be aroot variable of St if the latter is non-empty, and set s := # otherwise.
The rule B — H is replaced by three new rules BU{V (s, )}\(Sr,Ul') = H,
{(W(s,)}uI' = V(s,y),and S, — W(s, 1), where V, W are fresh non-simple
role names. Moreover, if H = S(x,y) then a range restriction V(z,7') —
D(7’) is added for every range restriction S(z,7") — D(z’) € RBs.

(4) There is a direct connection I' from y to some variable u such that S, is
reducible. We distinguish two cases:

(a) There is a direct connection from some term ¢ ¢ {x,y} to u. Then
rule B — H is replaced by two new rules BU {V(x,u)} \ Sr, = H
and Sr,, — V(x,u), where V is a fresh non-simple role name.

(b) The above is not the case, and u is involved in a direct connec-
tion I'" = {R'(u,u’)} besides I' = {R(y, u)}, such that S~ contains
x. The rule B — H is replaced by two new rules B U {V(y,u’)} \
{R(y,u),R'(u,u’)} — H and {R(y,u), R (u,u’)} — V(y,u’), where V
is a fresh non-simple role name.

This iteration is repeated until no further transformation is applicable, and the
resulting set of rules is denoted by RBy. In all considerations below, we will use
the notation of the above cases when considering some transformation step, and
refer to the generated rules in each step by the order of their appearance in the
transformation steps (e.g. by saying “first rule of (2)” or “rule 3 of (3)”).

Claim 1 RB; is an extended ELP rule base.

For most cases, it is readily seen that the created rules are ELP rules (unless
they are range restrictions), which follows from the fact that subsets of rule bodies
of ELP rules satisfy the essential requirements of Definition 9.4.1, and in partic-
ular still expose the tree shape required by Definition 8.2.3. An additional check
is required to verify that, for some new rule head X(x) or V(x, r) with x unsafe, x
is indeed a root in the body. This is readily verified for all cases. Moreover, it is
easy to see that the translation preserves conditions on simplicity of roles, since
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all newly introduced roles are non-simple, and since they do never occur in a body
position where simplicity is required.

Further care must be taken when introducing auxiliary roles, since auxiliary
role atoms create new paths in rule bodies that might violate the required tree
shape. New role atoms are introduced in (3), but only to either replace an existing
direct connection to the variable y (first rule), or as part of a “chain” of role atoms
(rule 2). Similar observations can be made in case (4)(b). For case (4)(a), note that
the precondition implies that u already is the target of direct connections from two
distinct terms y and ¢. Thus, u must be a DL-safe variable, and the reduction is
permissible, even though it clearly leads to multiple direct connections leading to
uinrule 1.

Finally, we need to verify that the range restrictions of RB, are admissible for
the (grounded) ELP rules of RB,. It is easy to see that the transformations do not
change the dependency between roles, but may introduce new role names during
the decomposition. However, admissibility is only concerned with role atoms that
lead to the final variable of a rule. The only case where newly introduced role
atoms connect to the final variable is (3), and additional range restrictions are
explicitly introduced there to ensure admissibility.

Claim 2 After the above translation, all rules in RB,4 have at most three variables
in the body.

For a contradiction, suppose that there is some rule B — H with at least four
variables in B. By assumption, none of the cases of the translation is applicable
to that rule. However, there must be some reducible MCC S in B. Otherwise, B
would contain no variables besides the root and final variable of H, contradicting
our assumption. Thus let S be a reducible component in B. Since rule (1) is not
applicable, all reducible MCCs of B (and in particular ') contain the final variable
y.

Since S is reducible, some atom of S contains a variable that is neither final
nor root for H. Since case (3) is not applicable, we conclude that there is no
direct connection 7' from some variable r # x to y. But since S is a connected
component, all terms of S are connected to y, and hence there must be a direct
connection I" from y to some variable u. Since (2) does not apply, I' must be such
that S, contains the root variable x given that it cannot contain y without violating
the tree shape of the rule. Since only one such I' can exist (again due to the tree
shape asserted for extended DL rules), and since B — H contains more than three
variables by assumption, S, must be reducible, and thus the precondition of case
(4) holds.

It remains to show that one of the two sub-cases of (4) must apply. Assuming
that (a) does not hold, we conclude that there is no direct connection from any
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term ¢ # y to u. We know that u is directly connected with some term other than
y, since S, is reducible. Therefore there is some connection I"” from u to some
term u’. Since (2) is not applicable, S, contains x, and (b) is indeed applicable.

Claim 3 The transformation terminates after a finite number of steps that is
polynomially bounded in the size of RBj;.

For any set S of atoms, let v(S) be the number of variables in S. Given a rule
B — H € RBj, a number y(B — H), called the reduction number of B — H,
is then defined by setting y(B — H) := max(0, v(B U H) — 3). Moreover, y(RB3)
is defined as the sum of y(B — H) for all B - H € RBj. Clearly, y(RB3) is
polynomially bounded by the size of RBj.

We claim that the above transformation terminates after at most y(RB3) steps.
Clearly, no transformation can be applied if y(RB3) = 0. It remains to show that,
whenever RB} is obtained from RB; by any of the transformation steps, we find
that y(RB3) > y(RBj). This is achieved by considering all transformations in-
dividually. The technical difficulty in this part arises from the individual max(-)
computations involved in y: even if a rule gets smaller, this might not equally re-
duce its reduction number, since there are no negative reduction numbers. In other
words, each rule may contain up to three variables that do not count. We will
sometimes assume that those three have been selected for some rule and speak of
“non-counting variables” and “counting variables.”

For case (1), note that S contains some variable that does not occur in H,
and that B — H has at least 4 variables. We may thus assume that S contains
a counting variable. Therefore rule 1 has at least one counting variable less than
B — H.If v(§) < 3, then rules 2 and 3 have a reduction number of 0 and the
claim follows. If v(S) > 3 then we may assume that S contains at most two non-
counting variables of B, since B — H also contains some variable y final for H
that is not contained in §. Hence rule 1 has at least v(S) — 2 counting variables
less. Rule 3 in turn has only v(S) — 3 counting variables, and rule 2 still has no
counting variables, so that the claim follows again.

For case (2), we use n to denote v(St, U {T(«)}), the number of variables in
S 1. UT that are distinct from ¢. Since S, is reducible, n > 1. Again, since there
are 4 or more variables in B — H, we can assume that S, contains at least one
variable that is counting in B — H. The reduction number of rule 1 therefore
is strictly smaller than y(B — H), and this suffices whenever n < 3 (since the
reduction number of rule 2 is O in that case). Now assume that n > 3. Since ¢
can be assumed to be non-counting, St, U {T(«)} contains at most 2 non-counting
variables of B, and hence rule 1 has at least n — 2 counting variables less. Rule
2, in turn, has only n — 3 non-counting variables, which again proves the overall

reduction.
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Case (3) can be shown by a similar argumentation. Rule 2 does not add to the
overall reduction number, and the sum of rules 1 and 3 is found to decrease by a
case distinction as above. Case (4)(a) is also similar where we note that ¢ ¢ {x, y}
is strictly required to obtain a reduction. For case (4)(b), the result follows since u
is assumed to be a variable, so that again the reduction number of the transformed
rule 1 decreases (while the other rule has at most three variables).

Claim 4 RB, semantically emulates RB;.

This can be shown by a simple induction, given that all possible transformation
steps preserve semantic emulation. This is generally rather easy to see, but we
show one case formally for illustration. Thus consider transformation step (1),
where B — H is the considered rule, and B, —» H, B, — X(x), and B3 — Y(¢)
denote the generated rules.

For the one direction, consider some interpretation 7 such that 7 E {B; —
H,B, — X(x), By — Y(t)}. We claim that 7 = B — H. Thus assume that 7, Z
B for some variable assignment Z. Then also 7, Z E B; as B; C B, and hence
I,Z EY().Butthen 7, Z E B, and hence 7, Z | X(x). This in turn shows that
I,Z E B and thus 7, Z E H as required.

For the other direction, consider some interpretation 7 such that /7 = B — H.
Then there is some interpretation I’ with 7’ B — H, and such that YZ' =
{6 € A" | ', Z E B; for some variable assignment Z with /"< = §} and
X7 ={6 € A | Y # 0}. A suitable 7’ can be obtained from 7 by minimising the
extent of X and Y while preserving all other aspects of the interpretation, which
can be done since X, Y are fresh. Note that 7’ E B; — Y(¢) and 7' E B, — X(x)
by definition. We claim that 7" = B; — H. Thus assume that 7', Z E B; for
some variable assignment Z. Then 7/, Z E X(x). By the definition of X? and
Y?', we find that there is some variable assignment Z’ such that 7', Z" £ Bs.
By construction, B; and B; contain no common variables. Thus there is some
variable assignment Z” such that Z"”(x) = Z(x) for any variable x in B; and
Z"(x) = Z'(x) for any variable x in B;. But then 7', Z"” = B; U B;s. As defined in
(1), (By UBy) 2 Band thus 7/, Z"” E B, and we can conclude 7', Z"” E H since
I’ E B — H. By definition, Z and Z” agree on all terms in H and thus we obtain
1", Z E H as required. Since Z was arbitrary, this shows that 7 = B; — H as
required.

The cases (2)—(4) can be treated in a similar fashion.

Summing up, we find that RB, semantically emulates RB, can be computed in
polynomially many steps w.r.t. the size of RB, and contains at most three variables
per rule. To obtain the required rule base RB’, we replace concept atoms of the
form JR.Self(x) and AR .{a}(x) by role atoms R(x, x) and R(x, a), respectively. Note
that this suffices to establish the form of Proposition 8.5.2, and that this operation
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does not introduce additional variables. O

We can combine the previous results to obtain the desired complexity result.

Theorem 9.4.4 The problem of deciding satisfiability of an extended ELP rule
base is P-complete w.r.t. the size of the rule bases.

Proof. By Lemma 9.4.3, every extended ELP rule base RB is semantically em-
ulated by an extended ELP rule base RB” with at most three variables per rule.
Thus, the size of ground(RB’) is polynomial w.r.t. the size of RB, and it is equi-
satisfiable to RB’ by Proposition 9.2.4. Using the construction in Definition 8.5.3,
a datalog program P(ground(RB’)) is obtained that also has at most three vari-
ables per rule. By Theorem 8.5.6, P(ground(RB")) is satisfiable iff ground(RB’)
is. The result follows since satisfiability of datalog programs with at most three
variables per rule can be decided in polynomial time (Fact 4.1.4), combined with
the fact that all of the relevant transformations are polynomial. O

9.5 Summary

In this chapter, we have introduced the notion of DL-safe variables as a basis for
combining the established formalism of DL-safe rules with the new approaches
on DL Rules as discussed in Chapter 8. The resulting formalism of DL+safe rules
lead to a new class of decidable fragments of SWRL that generalise both DL-safe
rules and DL Rules. It could be shown that satisfiability checking is decidable
in all DL+safe rule languages that are based on a description logic for which
knowledge base satisfiability is decidable.

The decidability proof for DL+safe rules is based on the grounding of DL-
safe variables, which leads to an equisatisfiable but exponentially large set of DL
Rules. Our further investigations have shown that this exponential blow-up may
not lead to a corresponding increase in worst-case complexity of reasoning. In-
deed, the worst-case complexity in the case of SROZQ+safe rules was found to
be the same as for SROZQ since the additional ground rules did not increase the
depth of the knowledge base. It is known that DL-safe rules do not increase the
reasoning complexity of SHZQ, and we therefore conjecture that a similar result
could be obtained for SH I Q+safe rules.

However, reasoning in DL+safe rule languages is necessarily intractable since
they encompass DL-safe rules, and hence the extension of SROEL(, X) rules
to SROEL(M, X)+safe rules does not preserve tractability. Yet, we were able to
extend SROEL(, X) rules with DL-safe variables without loosing tractability.
The resulting formalism ELP uses conditions that resemble the structural require-
ments for DL Rules in order to enforce an acyclic dependency structure between
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all variables in rule bodies. This contrasts with the earlier definition of DL+safe
rules where DL-safe variables were treated like constant symbols that are hardly
affected by the structural restrictions that are imposed on a rule.*

All of our proofs eventually used grounding for reducing a DL+safe rule base
to a DL rule base. While convenient for obtaining complexity results, this method
may not be most adequate for practical implementations, even if it is deferred as
in the case of ELP until all rules have been decomposed to limit the resulting in-
crease in the size of the rule base. Since ELP can be transformed to equisatisfiable
datalog, it might be more promising to simply keep DL-safe variables, together
with non-DL atoms of the form O(x) to restrict their possible values. It is very
likely that optimised datalog engines will typically show better performance on
such inputs than on the corresponding grounding. Indeed, grounding can still be
performed by the datalog engine if considered suitable, whereas ground rules can
hardly be generalised again to obtain a more compact representation.

An interesting perspective on DL-safe variables is to view them as “variable
nominals” that represent one of a finite number of nominal classes. In contrast
to disjunctions of nominals, the value that is chosen for DL-safe variables must
be the same in all occurrences of this variable. Based on the observation that
grounding leads to a highly regular knowledge base, one might conjecture that
such variable nominals could be processed more efficiently when introducing a
suitable DL construct that allows DL-safe variables to be expressed more naturally
in terms of DL axioms. The study of according extensions of existing inferencing
algorithms is an interesting area of future research.

9.6 Related Work

DL-safe rules have originally been proposed in [MSS05], where they were ob-
tained as a natural extension of the resolution-based KAON2 algorithm for trans-
lating SH 7 Q knowledge bases to equisatisfiable datalog programs [Mot06]. Rea-
soning support for DL-safe rules is currently available in the original KAON2
system [MSO06] and in Pellet [KPS06, SPG*07]. In addition, OWL 2 introduces
a simple data integration mechanism based on keys that allows reasoners to infer
the identity of two individuals whenever they share the same values on certain
roles (in OWL: “properties”) [HKP*09]. Since OWL 2 keys are only applicable
to named individuals, they are closely related to DL-safe rules, and indeed every
OWL 2 key axiom is equivalent to a (slightly modified kind of) DL-safe rule with
an equality statement as its head [MPSP09].

“Cases where the presence of constants is the reason why a SWRL rule is not a DL Rule can
only occur in DLs without inverses. For example, R(a, x) — C(x) is not an &L rule.
y P
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An earlier approach for combining description logics with datalog was AL-
log [DLNS98]. This hybrid approach restricts the interaction of datalog and de-
scription logics by restricting to unary DL atoms, disallowing DL atoms in rule
heads, and requiring all rules to be DL-safe (though this term has not been used
there). DL atoms are thus considered as constraints that additionally restrict the
applicability of datalog rules, which in turn can be considered to operate “on top”
of a given DL knowledge base. The DL considered in [DLNS98] is ALC, so the
SHIQ-based DL-safe rules of [MSSO05] can be viewed as a proper extension of
AL-log.

A more general perspective is provided in [LR98] where the CARIN family of
knowledge representation languages is considered. These formalisms are gener-
ally based on a combination of datalog and the description logic ALCNR, which
we prefer to call ALCN (M) according to the nomenclature of Chapter 5. The ap-
proach allows both role and concept atoms in rules but it disallows DL atoms in
rule heads. Besides the fact that the UNA is adopted for constant symbols, the
semantics of CARIN agrees with the semantics of SWRL. It is shown that con-
junctive query answering is decidable for ALCN (M), from which decidability of
non-recursive CARIN rule bases can be derived. Based on advances in conjunc-
tive querying, this form of non-recursive CARIN has recently been extended to
more expressive DLs [Ort08].

Since reasoning tasks become undecidable in unrestricted recursive rule bases,
two types of restrictions are studied in [LR98]. First of all, it is shown that de-
cidability can be regained by restricting the expressive features of ALCN (M) in
suitable ways. As a second approach that is closer related to this work, a notion
of role safety is introduced, requiring that at least one of the variables in each
role atom in the body of a rule is DL-safe in a strong sense: it is required to oc-
cur in a non-DL body atom the predicate of which does not occur in the head
of any rule. It is easy to see that a SWRL rule that is role-safe in this sense is a
DL+safe rule in any description logic that has inverse roles and that satisfies the
basic conditions of Definition 8.4.2. For this to be true, all binary atoms that occur
in the head of some rule need to be declared as roles, but otherwise the result is
straightforward. Role safety precludes the occurrence of role chains, yet chains
may be introduced when connecting the rule body with the universal role U. To
prevent that the resulting rule base formally violates regularity restrictions, the
DL should also support role conjunction and concept products, so that all roles
can be declared simple and rules can be simplified as in Fig. 8.4. This allows us to
conclude that ALCN I (M, X)+safe rules subsume role-safe CARIN-ALCN (M),
and in particular that the decidability of the latter is a corollary of the results of
Chapter 5, 8, and 9.

Another generalisation of DL-safe rules and AL-log is provided by the frame-
work of DL+log when considered under its first-order semantics [Ros06]. This
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approach encompasses datalog with disjunctions and negations, and imposes a
weaker requirement for DL-safety that requires only the variables that occur in
rule heads to be DL-safe. On the one hand, this is more restrictive than DL+safe
rules which also allow variables that are not DL-safe in the rule heads. On the other
hand, D L+log is more general than DL+safe rules since it allows rule bodies to
contain non-tree-shaped dependencies between variables that are not DL-safe, as
long as those variables do not occur in rule heads. Clearly, reasoning in DL+log
subsumes some forms of conjunctive query answering for the underlying DL, and
indeed it was shown in [Ros06] that satisfiability of D L+log rule bases is decid-
able iff the containment problem for (unions of) conjunctive queries is decidable
for the underlying description logic. This is a significantly stronger requirement
than the one that has been given in Proposition 9.2.4 for ensuring decidability of
DL +safe rules.
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Chapter 10

Conclusions

The objective of this work was to advance the development of hybrid knowledge
representation formalisms that combine aspects of rules and description logics.
We conclude by summing up the results that have been accomplished toward that
goal (Section 10.1), and by discussing their significance for applied and founda-
tional research (Section 10.2). Finally, we give an extended overview of future
research questions that arise from our work (Section 10.3).

10.1 Summary of the Results

To summarise and discuss the results of this work, we refer to the three main goals
as specified in Section 1.4.

10.1.1 Decidable Fragments of SWRL

In Chapter 8, we have introduced DL Rules as a new family of decidable SWRL
fragments. The defining feature of DL Rules is that they can be semantically
emulated by knowledge bases of an underlying description logic, and that the
computation of these knowledge bases is possible in polynomial time (actually
even in logarithmic space). Although computationally simple, however, the re-
quired translation is not necessarily obvious since it combines expressive features
of SROZQ in a rather unusual way. Moreover, the resulting DL representations of
SWRL rules involve multiple auxiliary axioms that are harder to manipulate and
maintain than the original rule. Thus, even though DL Rules can only express log-
ical sentences that could also be captured by DL knowledge bases, the rule-based
perspective is arguably more adequate for modelling certain kinds of information.

We have not made any attempt to arrive at maximal (in any sense) DL Rules
languages herein. Based on our experiences in maximising DLP in Chapter 7, we
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expect any such attempt to lead to prohibitively complex syntactic descriptions
due to the intricate interplay of various DL features. Therefore, the definition of
DL Rules was rather designed to allow for an easy generalisation to a large class
of description logics, allowing us to transfer numerous complexity results from
DL to fragments of SWRL. This approach also encompasses DLs with additional
role constructors as studied in Chapter 5 which are of natural interest when study-
ing SWRL. As shown in this chapter, certain logical operations on roles can be
allowed without increasing the worst-case complexity of reasoning, thus provid-
ing interesting extensions of DLs in their own right. The use of these operations
in Chapter 8 illustrates that especially conjunctions of simple roles and (simple or
non-simple) concept products allow a DL to express more SWRL rules.

In addition to their utility for providing a rule-based view on description log-
ics, DL Rules constitute a powerful vehicle for re-using decidability and com-
plexity results that have been established for DLs. This has been illustrated in
Chapter 9 where DL+safe rules have been defined as a new class of decidable
SWRL fragments that extend both DL Rules and the known class of DL-safe
rules [MSS05]. This was established by introducing DL-safe variables that, in ef-
fect, can assume only values that are represented by some individual name. In
this sense, DL+safe rules are compact representations of the DL Rules obtained
by grounding DL-safe variables. Yet, it can be argued that they truly extend the
expressivity of DLs since this grounding leads to an exponential number of rules.

A major insight of this approach was that DL-safe rules can be considered
as an abbreviation for an exponential number of ground DL Rules. The same is
true for recursive role-safe CARIN [LR98], which has hitherto been incomparable
to DL-safe rules and other approaches [Mot06, Ros06]. DL+safe rules thus pro-
vide a common conceptual framework for DL Rules, DL-safe rules, and role-safe
CARIN. Moreover, DL+safe rules can easily be further extended to accommodate
future extensions of DL expressiveness by adopting the modular definition of DL
Rules as illustrated for the case of role constructors in Chapter 8. For example,
conjunctions of non-simple roles, regular expressions on roles, or other new mod-
elling primitives as in [TSS09] could be exploited. In this way, one could even try
to obtain (monotonic) DL+Iog as a special case [Ros06].

While the exponential grounding of DL+safe rules may incur an exponen-
tial increase in reasoning complexity, we have shown that this is not the case
for SROI Q+safe rules. For tractable rule languages such as SROE L(,, X)+safe
rules, however, the DL-safe component does lead to higher complexities, and the
tractable formalism ELP has been introduced as a response.
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10.1.2 Rule Fragments of Description Logics

The study of DL fragments that share some properties with first-order Horn logic
has mainly been conducted in Chapter 6 and 7. The former is based on the def-
inition of Horn-SH7Q which it generalised to arbitrary fragments of SROZQ.
While Horn-SROZ @ as such is not studied, all of its features occur in some of
the Horn DLs that are. The main results of Chapter 6 beyond the general defini-
tion of Horn DLs are a number of complexity results for various Horn description
logics. It has been well-known that reasoning in all fragments of Horn-SHIZQ
can be achieved in time polynomial in the number of atomic ABox axioms (data
complexity), but no results on combined complexities had been established yet.

The main conclusion of these complexity studies is that reasoning in Horn log-
ics becomes intractable even for very simple DLs: PSpace-complete for all DLs be-
tween Horn-7L~ and Horn-FLOH ™, and ExpTiMe-complete for all DLs between
Horn-7ZLE& and Horn-SH 7 Q. This might indicate a slight decrease for Horn-72£~
since reasoning for ¥L is ExpTiMe-complete, but overall these intractabilities
mostly serve to complete our understanding of Horn DLs rather than hinting at
practically useful DL fragments. Another important result of Chapter 6 is in the
proofs themselves which establish intractability in a direct way while using only
very little expressive features. Theorem 7.2.7 (page 122) gives an example of how
these techniques can be re-used to establish proofs in other contexts.

In Chapter 7, we have focussed on the study of the principal relationship be-
tween DL and datalog, seeking a maximal fragment of SROJQ that can be se-
mantically emulated in datalog. A first contribution has been to define this task
in a rigorous way, using the new notion of structurality to ensure that the prob-
lem can have a solution. We have then explicitly defined DL# as the maximal
fragment of SROZQ that satisfies our design principles, and shown that (1) it can
indeed be expressed in datalog, and (2) no larger DL has this property. The en-
codings required for (1) have been surprisingly intricate — this was also reflected
in the definition of DLP —, but the most complex proof was required for showing
maximality (2).

In conclusion, the result of Chapter 7 is not so much the (necessarily complex)
definition of a maximal DLP language, but rather the development and applica-
tion of proof techniques for establishing such results at all. Another conclusion
of this work is that the syntactic complexity of DL can impose a real barrier for
relating it to other logical formalisms. Nevertheless, the complexity of DLP can
not be attributed to this characteristic of DL only; rather it also reflects the fun-
damental difference between the paradigms of Horn logic and description logic.
In this sense, Chapter 7 also truly increases our understanding of the relationship
between these formalisms.

Finally, it should be noted that a major difference between Horn DLs and DLP
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is that the former, in essence, refers to first-order Horn logic with function sym-
bols, while the latter excludes function symbols. This is apparent from the fact that
Horn DLs do not restrict the use of existential quantifiers, while DLP supports ex-
istentials only on the left-hand side of GClIs. Thus, while DLP in the sense of
Chapter 7 appears as a Horn DL, it still belongs to a more specific class of logics
for which stricter properties must hold. This is also reflected in the fact that the
model-theoretic properties of datalog that are exploited in Chapter 7 are not ob-
tained as special cases of well-known closure of first-order Horn sentences under
reduced products, but require the use of sub-model constructions that are related
to universal logic [CK90].

10.1.3 Tractable Knowledge Representation Languages

Our research on tractable knowledge representation formalisms has led to positive
and — just as important — negative results. The latter includes new intractability
results for logics for which one might have hoped for polynomial-time inferencing
procedures. Such results have specifically been obtained in the framework of Horn
DLs as studied in Chapter 6. Whereas the original motivation for introducing Horn
DLs was their reduced data complexity, we have shown that reasoning in Horn
DLs is still intractable with respect to the overall size of the knowledge base,
even when restricting to very small DLs such as Horn-#£". The only exception is
Horn-#L, for which reasoning is possible in polynomial time, which is essentially
a known result due to the close relationship of Horn-#ZL, to DLP (in the sense
of [Vol04]). Further intractability results have been established for Horn-E L7,
Horn-¥Lo~, and Horn-#L7 ", all of which turn out to be ExpTimMme-hard.

Yet, the fact that no new tractable fragments could be discovered by studying
Horn DLs does not indicate that Horn restrictions are not relevant in this con-
text. Namely, we simply did not discover new tractable Horn DLs, but all known
tractable DLs are also Horn in the sense of our definition.

Conversely, we have also obtained a number of positive results which estab-
lished the tractability of new and extended formalisms. The first result of this kind
is the tractability of the description logic SROEL(M, X) in Chapter 5. This result
is not unexpected, since SROEL(, X) is closely related to the tractable OWL EL
profile of the OWL 2 standard [MCH"09], which it extends with conjunctions of
simple roles and concept products on the left-hand side of RIAs. Yet, it seems
that no proof of this tractability has been given in the literature yet, and — more
importantly — no reasoning algorithm that specifically addresses this DL has been
published.

The tractability result for SROE.L(M, X) depends on the correctness of a data-
log reduction for SROEL(, X) rules that is given in Chapter 8. While the proof
of this result is rather lengthy, the resulting datalog translation is indeed very easy
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and can be performed in logarithmic space. This line of research has been fur-
ther extended in Chapter 9, where ELP was introduced as a tractable extension of
SROEL(M, X) rules with DL-safe variables. Tractability in this case is not ob-
vious since direct grounding of DL-safe variables would lead to an exponential
increase of the rule base, while standard rolling-up techniques are not applicable
due to the lack of inverse roles in SROEL(M, X).

Interestingly, ELP also accommodates the expressive power of two of the most
important tractable DLs: E£" (and our extension SROEL(M,, X)) and DLP (and
our extension RL). Although it is known that the union of these DLs is intractable,
ELP can still support all logical inferences of DLP knowledge bases by consider-
ing DLP axioms as DL-safe. Since ELP also subsumes SROEL(, X), we thus
obtain a tractable formalism that supports all individual consequences of the two
DLs, and some (but not all) consequences of their union.

10.2 Significance of the Results

The successful adoption of Semantic Web technologies in many areas of appli-
cation leads to new challenges for the underlying knowledge representation for-
malisms. Description logics have traditionally played a major role in ontological
modelling but they are faced with new challenges as the focus of applications
shifts from schema information toward instance data. And indeed, recent years
have seen a massive increase in the amount of data that is published in machine-
readable formats on the Semantic Web — now often called the Web of Data — while
large parts of this semantic information refer to instances.! Rule languages, e.g.
from logic programming or deductive databases, can help to address these chal-
lenges, but their combination with DLs remains an open problem.

This work has addressed this practically relevant challenge by investigating
combinations of DLs and rule languages that allow for a tight semantic integration
in the framework of SWRL, with the goal of extending expressivity of DLs and
of improving the interoperability between rule-based and DL-based models and
tools. A significant contribution toward these goals was the identification of DL
Rules in Chapter 8 as a new class of decidable SWRL fragments that provides an
alternative to the known DL-safe rules. By combining both approaches in DL+safe
rules in Chapter 9, we were able to reconcile a number of hitherto incomparable
DL rule extensions within a single conceptual framework. The modular definition
of DL+safe rules allows us to instantiate them for a broad class of DLs, and it
highlights ways for incorporating possible future extensions. We therefore believe

I'This trend is supported by the increased adoption of Semantic Web technologies in “Web 2.0”
scenarios [AKTVO08], e.g. in semantic wikis [KVV*07, KVV06], where structured data is ex-
ploited for knowledge management and syndication.
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that DL+safe rules are an important contribution for understanding first-order DL
rule extensions.

Standard reasoning tasks in many DLs, and therefore also in many DL+safe
rule languages, have very high worst-case complexities. Another major contri-
bution of this work therefore is to propose light-weight formalisms that allow
for polynomial-time inferencing while still providing additional expressiveness
for DLs. The peak of this development in this work is the hybrid DL rule lan-
guage ELP that integrates the expressiveness of the OWL 2 profiles OWL EL and
OWL RL within a single rule-based formalism. The practical significance of this
insight is that it opens a way for supporting multiple OWL 2 profiles in a single
system, in spite of the fact that the unrestricted union of these profiles would lead
to a highly intractable ontology language.

This outcome of this work has influenced language design and ongoing tool
development in ontology-driven applications. In particular, the new v2.0 revision
of the Web Service Modeling Language WSML? bases its sublanguage WSML-
DL on ELP, thus establishing basic interoperability both with OWL 2 and with
other rule-based sub-languages of WSDL [BFH*09]. ELP arguably is also an at-
tractive formalism for implementers since it allows a single implementation to
support a number of ontology languages. This is reflected by the recent effort of
researchers at Semantic Technology Institute Innsbruck to develop an ELP rea-
soner ELLY? based on the datalog engine IRIS* [BF08].

Another software project that is based on the algorithms for ELP is the Orel
ontology management system developed at Karlsruhe Institute of Technology.’
This system focusses on large-scale ontology management and inferencing using
secondary storage such as an on-disk database instead of executing inferences in
primary memory. The goal of such an approach is to increase the scalability of
reasoning by reducing the memory requirements and exploring the use of mech-
anisms for distribution, optimisation, and parallelisation that exist for databases.
At the time of this writing, Orel is a very recent prototype. Yet it is able to clas-
sify the large OWL EL ontology SNOMED CT using a standard MySQL storage
backend.

These ongoing implementation efforts also take advantage of the datalog re-
duction that we have developed for ELP (and thus, in particular, for the DL under-
lying the OWL EL profile). This outcome illustrates that the increased interoper-
ability between rules and ontologies that has been established in this work is not
merely of interest for improving the capabilities of modelling languages, but that
it also enables the re-use of tools and algorithms available in both fields.

2http://www.wsmo.org/wsml/wsml—syntax
Shttp://elly.sourceforge.org
4http://www.iris—reasoner.org
Shttp://code.google.com/p/orel/
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10.3 FuturReE WORK

Besides this practical impact of our work, we have also advanced the under-
standing of the elementary relationship of first-order Horn logic and description
logics in general. The insight that DL Rules can indirectly be expressed in de-
scription logics is relevant for ontology engineering, but it also has a didactic
dimension in explaining the “hidden” expressiveness of DLs. The latter aspect
is exploited, e.g., in [HKRO09] to provide a textbook introduction to rules in the
context of Semantic Web technologies.

Nevertheless, many of our insights about the relationship of rules and DLs
are more foundational in nature. In particular, this applies to our characterisation
of DLP as a datalog-expressible fragment of description logics that is maximal
in a concrete sense. The significance of these results is not so much the actual
definition of this fragment — its grammatical structure is rather too complex to
suggest direct practical usage — but the development of paradigms and methods
for investigating (maximal) syntactic fragments that are characterised by seman-
tic criteria. This work can also be considered in the context of Lindstrom-type
model-theoretic characterisations of fragments of first-order logic, though our
study adds an additional syntactic twist based on the new notion of name sepa-
ration. Considering emulation instead of equivalence complicates matters further.
Yet we are convinced that investigations of the relationship between knowledge
representation formalisms should in general be based on variants of emulation or
conservative extension, since such notions can capture the practical requirements
of semantic interoperability in a more precise way.

10.3 Future Work

The results of this work can, in essence, be extended in two ways: by further
advancing the theoretical insights about the investigated logics and logical frag-
ments, and by focussing on the practical application of our results by developing
optimised algorithms and software tools.

Various open questions on the theoretical side have already been discussed in
the respective chapters. From our point of view, the following research questions
are specifically interesting:

— How can DL+safe rules be further generalised and extended? An obvious path
for doing so is the use of additional expressive features of DLs to encompass
more SWRL rules by extended normalisations. More interesting, however, is
the question how new decidability results can be obtained based on the original
rule form of SWRL, for example by making connections to decidable frag-
ments of first-order Horn logic. In this context, one could also incorporate
structural properties that have been studied for logic programs, e.g. stratifi-
cation, linearity, or the polynomial fringe property [DEGVO1].
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— How can regularity and simplicity restrictions on DLs be weakened while pre-
serving decidability and implementability? Both types of structural restrictions
directly affect the admissibility of DL rule bases, and we have already pre-
sented some measures to overcome problems related to simplicity by means of
concept products in Chapter 8. Another related question is how to weaken the
simplicity restrictions on roles in role conjunctions so as to further extend the
results of [GKOS8]. Relevant contributions for weakening regularity have been
made in [Kaz09b].

— How can universal function-free first-order Horn logic be characterised by
model-theoretic properties? We are aware of an according result for Horn logic
with function symbols, but not of any such work on datalog. Chapter 7 pro-
vides certain necessary conditions that turned out to be sufficient for the “data-
log fragment” of SROZ @, but the complex constructions that were required to
show this for the relevant cases do not allow for an easy generalisation to arbi-
trary first-order logic formulae with the respective model-theoretic properties.

— What is the “intersection” of other interesting fragments of first-order logic?
Chapter 7 showed that “intersection” is rather not an appropriate term since
the question of expressibility of one logic in terms of another is not symmet-
ric but depends on the direction of this embedding. Yet, determining maximal
structural, modular sub-logics that can be semantically emulated in some other
formalism can be a worthwhile endeavour, especially if the related logics do
not have the unusual syntactic complexity that DLs have. Candidates of such
fragments include Guarded Fragments [AvBN98], modal logics [BVBWO06], or
the two-variable fragment with counting quantifiers C> [PHO5].

Further questions could of course be raised, but the above are most directly re-
lated to the research reported herein, while being significant and complex enough
to provide a basis for independent research efforts.

Regarding the practical application of our results, we have already mentioned
ongoing implementation efforts for ELP in the previous section. Further efforts are
required, however, to support the adoption of rule-based DL extensions in applied
contexts. At least three different topic areas have to be addressed in this respect:

(1) inference engines and rule base management systems,
(2) rule editors and rule-enabled ontology engineering environments,
(3) establishing standards for serialising and interchanging rule bases.
The aforementioned ELLY and Orel reasoners aim at item (1) by exploiting the

datalog reduction. Various optimisations are essential to achieve efficient process-
ing in practice. Besides well-known optimisation techniques for datalog, such as
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magic sets (see, e.g., [AHV94]) or incremental materialisation (see, e.g., [GM99]),
it is also necessary to apply optimisations to equality reasoning and DL-safety. For
clarity, we have used a general-purpose axiomatisation of equality, but the inspec-
tion of the datalog programs obtained for ELP reveals that only specific inferences
need to be computed from equality statements in this case, so that the use of a sim-
plified equality theory would be feasible (see [Mot06] for a related discussion).
Regarding DL-safety, it is clearly desirable to directly take DL-safe variables into
account, e.g. when computing unifications for applying datalog rules, instead of
using a general purpose algorithm that considers all possible instantiations even
for DL-safe variables.

Reasoning with other types of DL+safe rules could be based on existing imple-
mentations of DL inference engines, which would require suitable extensions of
their current algorithms for that purpose. Directly using rules internally promises
better performance than translating rules to auxiliary knowledge bases, since the
axioms of the latter admit more unintended interpretations than the original form.
Managing rules is already required for handling DL-safe rules and has been ad-
dressed by various commonly used APIs such as the KAON2 API [Mot06] and
the popular OWL API [HBNO7, GHPPS09]. Further research is needed, however,
to develop and evaluate suitable implementation techniques for handling DL +safe
rules efficiently. Recent works have shown that some rule-like features can be ad-
dressed in tableaux algorithms in a more direct fashion [TSS09]. Another promis-
ing approach is to integrate the handling of DL-safe variables into inference algo-
rithms, so as to avoid the unnecessary computation of ground rules.

Item (2) above is essential to enable the creation of rule-based data models in
the first place. The integration of rule modelling into ontology editing environ-
ments have been attempted previously, but more work is needed to establish this
modelling paradigm in application areas. A prototypical plug-in for graphically
editing DL rules in the ontology editor Protégé [KFNMO04] has been presented
in [GHO8]. Another related approach is pursued in the development of the NeOn
Toolkit which can be used for creating OWL ontologies as well as F-Logic rule
bases [HLS*08]. More work is required to establish a tight integration of OWL
and rules in these cases, but the existing implementations indicate the feasibility
of and potential demand for such approaches.

Item (3) is closely related to both of the other aspects, and may even be the
essential component for connecting editors and reasoners, or — in other terms —
creators and users of DL rule bases. Two main approaches provide promising
foundations for exchanging rules: the SWRL proposal and its recent extensions,
and the Rule Interchange Format (RIF) developed at W3C. SWRL is the syntac-
tic form that 1s most widely used and supported in DL-based applications today,
e.g. in Pellet [SPG*07] or KAON2 [MSO06]. Further extensions and alternative
serialisations have recently been proposed for a better integration of SWRL with
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OWL 2 and related tools [GHPPS09]. RIF, in contrast, takes a more rule-centric
perspective but includes a specification for combining RIF rules with OWL on-
tologies that semantically resembles SWRL while using the different RIF syntax
[dB09]. Future work is needed in both cases to elaborate and explore these ap-
proaches in application scenarios, since it is not clear yet which exchange syntax
for SWRL-like rule bases will be used in the future.

In summary, this work opens up a wide range of possible research directions
both on the applied and on the foundational side. The separation of both aspects
in the above discussion should not be misunderstood: we are convinced that the
fruitful interplay of theory and practice is vital for ensuring the healthy future of
this field of research.
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