Foundations of Semantic Web Technologies

Tutorial 5

Dorthe Arndt
WS 2022/23

Exercise 5.1. Consider the data below relating to creatures that appear in the works of H.P. Lovecraft (among other
authors).

@base <http://example.org/>

@prefix ex: <http://ex.org/>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

ex:Cthulhu ex:knownAs "Cthulhu" , "The Great Dreamer"
ex:father ex:Nug ;

ex:createdBy ex:HPLovecraft ;

ex:0ffspring ex:Cthylla , ex:Nctosa , ex:Nctolhu ;
ex:partOf ex:GreatOldOnes

ex:Hastur a ex:GreatOldOne ;
ex:knownAs "Hastur" , "The King in Yellow"

ex:YogSothoth ex:knownAs "Yog-Sothoth"
ex:partOf ex:OuterGods ;
ex:o0ffspring ex:Nug

ex:LaviniaWhateley a ex:FictionalCharacter ;
ex:memberOf ex:FirstUnitedChurchOfCthulhu ;
ex:givenName "Lavinia Whateley"

ex:WilburWhateley a ex:FictionalCharacter ;
ex:memberOf ex:FirstUnitedChurchOfCthulhu ;
ex:father ex:YogSothoth ;

ex:mother ex:LaviniaWhateley

ex:Nyarlathotep ex:createdBy ex:HPLovecraft ;
ex:partOf ex:0uterGods

ex:Azathoth ex:createdBy ex:HPLovecraft ;
ex:partOf ex:0OuterGods

ex:Necronomicon a ex:Book ;

ex:writtenBy ex:AbdulAlhazred , ex:MadArab ;
ex:describes ex:Cthulhu , ex:YogSothoth , ex:Hastur ;
ex:createdBy ex:HPLovecraft

ex:CthulhuMythos a ex:FictionalUniverse

ex:Great0ldOnes a ex:Group

ex:0uterGods a ex:Group

ex:FirstUnitedChurchOfCthulhu a ex:ReligiousCult

ex:LovecraftianDeity ex:partOf ex:CthulhuMythos .

As in exercise 4.4, we want to add additional OWL triples to derive new data. You can either use http://
rdfplayground.dcc.uchile.cl or http://ppr.cs.dal.ca:3002/n3/editor/s/8DkcyTy6. If
you choose the second option, just add the data and the axioms you write bolow the rules which are already stated.

For the first option, you need to copy and paste the from data above to either the text filed on the left. On the right-
hand side, you should add RDFS/OWL definitions and axioms that allow to infer what is specified in the question (note
that you cannot add the required data explicitly; it must be inferred through the requested RDFS/OWL definitions).
The definitions you add should accumulate. Note that you can define nested definitions as follows, which will count as
one axiom (it states that: the class of DCC students who are also masters or PhD students is a sub-class-of the class of entities
that have a supervisor who is a professor on the DCC staff):

[owl:intersectionOf (:DCCStudent [owl:unionOf (:MastersStudent :PhDStudent)])]
rdfs:subClassOf
[owl:someValuesFrom [owl:intersectionOf (:Professor :DCCStaff) 1 ;

owl:onProperty :supervisor]

In this (rather complex) example we used rdfs: subClassOf (rather than owl:equivalentClass) since other
types of students may have DCC professors as supervisors. As another example relating to the data provided about
Lovecraftian characters that you can copy and paste into the system to get started, consider:

@prefix ex: <http://ex.org/>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

[owl:hasValue ex:FirstUnitedChurchOfCthulhu ; owl:onProperty ex:memberOf]
rdfs:subClassOf [owl:hasValue ex:Cthulhu ; owl:onProperty ex:worships]

This defines that any member of the First United Church of Cthulhu worships Cthulhu, but not vice versa (entities that
worship Cthulhu may not necessarily be in the First United Church of Cthulhu). We will see that this infers:

ex:LaviniaWhateley ex:worships ex:Cthulhu .
ex:WilburWhateley ex:worships ex:Cthulhu .

You might also see that Lavinia Whateley and Wilbur Whateley are now instances of blank nodes; these blank nodes
refer to the class you defined as [owl:hasValue ex:Cthulhu ; owl:onProperty ex:worships 1],
i.e., the class of entities that worship Cthulhu (such blank nodes can be ignored). If we also, hypothetically, wanted
to infer, vice versa, that any entity that worships Cthulhu is in the First United Church of Cthulhu, we could replace
rdfs:subClassOf in the definition with owl :equivalentClass (but we don’t want to infer this).

Extend this example with RDFS/OWL axioms to answer the following:

(a) Add one axiom to define that anyone who is part of the Great Old Ones group is an instance of the Great Old One
class, and vice-versa, inferring that:

ex:Hastur ex:partOf ex:GreatOldOnes
ex:Cthulhu a ex:GreatOldOne .

(b) Add one axiom to state that all offspring of an instance of Great Old One are also instances of Great Old One,
inferring that:

ex:Cthylla a ex:GreatOldOne .
ex:Nctosa a ex:GreatOldOne .
ex:Nctolhu a ex:GreatOldOne .

(c) Add one axiom to state that all those that are part of the Outer Gods or are part of the Great Old Ones are all
instances of Lovecraftian Deity (but not vice versa), inferring that:

ex:Cthulhu a ex:LovecraftianDeity
ex:Hastur a ex:LovecraftianDeity
ex:YogSothoth a ex:LovecraftianDeity

(d) Add one axiom to state that anyone with a father or mother that is a Lovecraftian Deity is a Supernatural Being,
inferring that:

ex:WilburWhateley a ex:SupernaturalBeing

(e) Add one axiom to define that a Lovecraftian Deity created by H.P. Lovecraft is part of the Cthulhu Mythos (but not
vice versa).

ex:Cthulhu ex:partOf ex:CthulhuMythos
ex:Nyarlathotep ex:partOf ex:CthulhuMythos

(f) Add one axiom to state that any Book created by H.P. Lovecraft was authored by at most one entity.! This should
infer:

ex:AbdulAlhazred owl:sameAs ex:MadArab
ex:MadArab owl:sameAs ex:AbdulAlhazred

Exercise 5.2. In our last OWL-exercise, we will look at more complex entailments involving existentials, disjunctions
and counting. For this we will use a reasoner called HermiT?: an OWL 2 DL reasoner based on a tableau rather than
rules. HerMiT will find all possible entailments and will halt on any valid input, but (unlike the previous rule-based
reasoner) may reject ontologies with features that may lead to undecidability.

Navigateto http://cc7220.dcc.uchile.cl/1ab06/ tofind a simple interface with the following default
data loaded for you:

@prefix ex: <http://ex.org/>.

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

ex:divisor a owl:ObjectProperty
ex:value a owl:DatatypeProperty , owl:FunctionalProperty

ex:Number a owl:Class
ex:0ddNumber a owl:Class
ex:EvenNumber a owl:Class
ex:PrimeNumber a owl:Class
ex:CompositeNumber a owl:Class
ex:UnitNumber a owl:Class
ex:PowerOfTwoNumber a owl:Class

ex:N1 a ex:UnitNumber ; ex:value 1

I'The property created by indicates that Lovecraft created the book for his fiction, while the property written by indicates the author of the book
according to his fiction.
’http://www.hermit-reasoner.com/

ex:0ne a ex:UnitNumber

ex:N2 a ex:Number ; ex:value 2

ex:N3 a ex:0ddNumber ; ex:value 3

ex:N4 a ex:Number , ex:PowerOfTwoNumber ; ex:value 4 ;
ex:divisor ex:N2

ex:N5 a ex:Number ; ex:value 5

ex:N6 a ex:EvenNumber ; ex:value 6 ;
ex:divisor ex:N3 ;

ex:N7 a ex:PrimeNumber ; ex:value 7

ex:N8 a ex:Number ; ex:value 8 ;
ex:divisor ex:N4

ex:N15 a ex:0ddNumber ; ex:value 15 ;
ex:divisor ex:N5 , ex:N3

You can simply write your solutions at the bottom of the data (there is only one input form).

We use ex :divisor to indicate a factor of a number. We consider numbers to be positive (non-zero) integers.

You should add RDFS/OWL definitions and axioms that allow to infer the given data. Other (reasonable) infer-
ences not listed may also arise. Your answers should only define axioms on classes and properties. Axioms should
accumulate from question to question. You can invent new classes or new properties, but this reasoner requires that
classes (that do not have explicit instances in the data) are declared as such, and that properties are declared as datatype
properties (taking literal values), or object properties (taking IRI or blank node values). So (though not necessary) if
you wish to add a class such as ex : NonPrimeNumber and a new (object) property such as ex :multiple, be sure
to add:

ex:NonPrimeNumber a owl:Class
ex:multiple a owl:0bjectProperty

When we say “axioms” it can be one or more (not necessarily multiple). There might be multiple equivalent ways
to answer a question. Also please note that some triples that are entailed will not be shown (the set of entailed triples
would be infinite). Of particular note is that, for some reason, the reasoner does not print owl : sameAs inferences
(rather you can see that the two terms will be used interchangeably in the results).

(a) Add axioms to state that all numbers have 1 (ex :N1) and themselves as divisors. These axioms should infer that:

ex:N2 ex:divisor ex:N1l , ex:N2
ex:N4 ex:divisor ex:N1 , ex:N4

(b) Add axioms to state that an even number is a number with 2 (ex : N2) as a divisor, while an odd number is a number
that is not even. These axioms should infer that:

ex:N2 a ex:EvenNumber

ex:N3 a ex:Number

ex:N4 a ex:EvenNumber

ex:N6 a ex:Number ; ex:divisor ex:N2
ex:N15 a ex:Number

Note: we have nothing to prove that something is an odd number yet since (under the Open World Assumption) it
is possible that any number has 2 as a divisor, just that we have not stated it in the data.

©

(d)

Add axioms to state that a composite number is a number with more than two divisors, a prime number is a number
with precisely two divisors, and a unit number is a number with precisely one divisor. (The counts of divisors
include the number itself and 1.) These axioms should infer that:?

ex:N1 a ex:Number , ex:0ddNumber .
ex:0ne a ex:Number .
ex:N2 ex:divisor ex:0One

ex:N4

a ex:CompositeNumber
ex:N6 a ex:CompositeNumber
ex:N7 a ex:0ddNumber .
ex:N8 a ex:CompositeNumber

ex:N15 a ex:CompositeNumber

Note: There are a number of very indirect conclusions pseudo-magically appearing here: try to figure out why
each such triple is entailed (e.g., how do we know that ex : N1 and ex :One are the same, how do we know that
1 is odd, how do we know that 7 is odd, how do we know that 4, 6, 8 and 15 are composite, etc.?). But still, we
cannot yet infer any new primes: under the Open World Assumption, numbers (other than the unit number) may
have other divisors that we have not yet included in the data: we cannot yet prove that any number has precisely
two divisors to conclude that it is prime.

Add axioms to state that an even number is a number that has at least one even number as a divisor, that any
composite number has a prime divisor (not vice versa: we know that prime numbers have themselves as a divisor),
and that a number is a power of 2 if and only if it has precisely one divisor that is odd. This should infer:

ex:N1 a ex:PowerOfTwoNumber

ex:N2 a ex:PrimeNumber , ex:PowerOfTwoNumber .
ex:N5 a ex:0ddNumber .

ex:N8 a ex:EvenNumber .

Note: Again we get some indirect inferences: for example, how do we know that 1 is a power of two, why do we
now infer that 5 is odd when we said nothing in our axioms about odd numbers, and how do we know that 2 is a
power of 2 and also prime?

If you look through the results, you’ll find some other interesting conclusions. Of course here we used numbers
as an example, but these rich types of inferences could also be applied for zebroids, medical treatments, car parts,
magnetic fields, etc. Note that if you try your solutions in RDF Playground, you will miss inferences because the
(OWL 2 RL/RDF) rules that RDF Playground uses are incomplete. On the other hand, if you define that divisor is
transitive, then the HermiT reasoner used here will reject the input as it does not allow for defining cardinalities on
transitive properties (in order to ensure decidability).

3We should infer that ex :N1 owl:sameAs ex:One, but the reasoner seems to not show owl : sameAs inferences, maybe for conciseness.

