
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Second-Order Characterizations of Definientia in Formula Classes

Christoph Wernhard

KRR Report 14-03

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden

Second-Order Characterizations of

Definientia in Formula Classes

Christoph Wernhard

Technische Universität Dresden

Abstract. Predicate quantification can be applied to characterize defini-
entia of a given formula that are in terms of a given set of predicates.
Methods for second-order quantifier elimination and the closely related
computation of forgetting, projection and uniform interpolants can then
be applied to compute such definientia. Here we address the question,
whether this principle can be transferred to definientia in given classes
that allow efficient processing, such as Horn or Krom formulas. Indeed, if
propositional logic is taken as basis, for the class of all formulas that are
equivalent to a conjunction of atoms and the class of all formulas that
are equivalent to a Krom formula, the existence of definientia as well
as representative definientia themselves can be characterized in terms
of predicate quantification. For the class of formulas that are equivalent
to a Horn formula, this is possible with a special further operator. For
first-order logic as basis, we indicate guidelines and open issues.

1 Introduction

Tasks in knowledge processing such as view-based query rewriting with exact
rewritings [2, 20, 22, 8, 28] involve the computation of a definiens R of a given
“query” formula Q within a second given “background” formula F , such that R
meets certain conditions, for example, that it is expressed in terms of a given
set S of predicates. That is, for given Q,F and S, a formula R must be com-
puted, such that F |= (R ↔ Q) and only predicates from S do occur in R.
If the requested property of R is indeed that it involves only predicates from a
restricted set, then the class of solution formulas R can be characterized straight-
forwardly with predicate quantification. This allows to relate the computation
of formulas R to the various advances concerning applications of and methods
for second-order quantifier elimination and its variants, the computation of for-
getting, of projection, and of uniform interpolants, in particular with respect to
knowledge representation in first-order logic and description logics [10, 3, 9, 13,
18, 25, 4, 26, 14], and in the preprocessing of propositional formulas [1, 7, 11, 19].
The underlying basic principle is that the second-order formula ∃P F , where F

is a first-order formula and P is a predicate, is – if it admits elimination of the
predicate quantifier – equivalent to a first-order formula that does not involve P
but is equivalent to F with respect to the other predicates.

The question addressed here is whether also definientia in given classes of
formulas that are typically characterized by other means than vocabulary restric-
tions, such as Horn formulas, conjunctions of atoms or Krom formulas, can be
specified with predicate quantification and can thus be computed by second-
order quantifier elimination methods. The envisaged main application is to com-
pute such definientia as query rewritings that are in restricted classes which
allow further processing in particularly efficient ways or by engines with limited
deductive capability. It seems that also the requirement that the negation of a

2 Section 2

definiens R is in some given formula class can be useful: R might be evaluated
by proving that a given knowledge base is unsatisfiable when conjoined with ¬R.
The case of negated definientia is subsumed by the general case: The requirement
that R is a definiens for Q, where ¬R is in some formula class, can be expressed
just as the requirement that R′ is a definiens in some formula class for ¬Q and
letting R be ¬R′.

A starting point for the second-order characterizations of the considered for-
mula classes is the semantic characterization of the class of propositional Horn
formulas [5, 21]: A propositional formula is equivalent to a Horn formula if and
only if it has the model intersection property. Literal projection [15, 24] is a gen-
eralization of predicate quantification that allows to specify that only positive
or negative predicate occurrences are affected. It can be combined with the se-
mantic characterization of Horn formulas to express the requirement that the
definiens is a conjunction of atoms. This restriction can be – up to equivalence
– characterized purely by second-order operators that can be defined in terms
of predicate quantification. It can be applied to express restrictions to further
classes as vocabulary restrictions by meta-level encodings. We show this for
Krom formulas, which can be represented as conjunctions of “meta-level” atoms
of the form clause(L,M), defined in the background formula with equivalences
(clause(L,M)↔ L ∨M) for literals L,M of the original vocabulary.

The rest of the paper is structured as follows: The background framework
of classical logic extended by second-order operators is introduced in Sect. 2.
Then the class of formulas that are equivalent to a Horn formula is considered:
A semantic characterization and a notion of approximation, stemming from the
literature on knowledge compilation, are rendered, along with a further weaker
notion of approximation that is expressible in terms of predicate quantification.
In Sect. 4 two further classes are considered, formulas that are equivalent to a
conjunction of atoms and formulas that are equivalent to a Krom formula. For
all three considered classes, characterizations of definability and of a definiens
in the respective class, provided definability holds, are given. For the latter two
classes, these characterizations can be expressed by predicate quantification. In
the conclusion (Sect. 5), inherent features of the approach are summarized and
possible generalizations and ways to implement it are indicated.

2 Classical Logic Extended by Second-Order Operators

2.1 Notation and Preliminaries

Although the envisaged underlying logic is classical first-order logic, we consider
here technically just propositional logic as basis, for simplicity of presentation
and because the considered formula classes have in propositional logic immediate
correspondence to syntactic restrictions. With the first-order generalization in
mind, we often speak of predicates instead of atoms. Actually, the background
framework, definitions, propositions and theorems given in the paper transfer to
a large extent easily to first-order logic, following the principles in [24, 25, 28].
When there are particularities to consider, these will be discussed.

We assume a fixed finite set of atoms, denoted by ATOMS. An interpretation
is a set of literals that contains each atom either in a positive or negative literal.
(This representation of interpretations facilitates the set-oriented specification of

Classical Logic Extended by Second-Order Operators 3

second-order operators shown further down below.) The satisfaction relation |=
between interpretations and formulas is defined with a clause for atoms and
one for each logical operator. For instance, for all interpretations I, atoms P

and formulas F,G, define: I |= P iffdef P ∈ I; I 6|= ⊥; I |= ¬F iffdef I 6|= F ;
I |= (F ∧ G) iffdef I |= F and I |= G. Entailment and equivalence are defined
as usual: F |= G iffdef for all interpretations I it holds that if I |= F , then
I |= G; F ≡ G iffdef F |= G and G |= F . We call a set of literals a scope. The

complement of a literal L is denoted by L. The set of complement literals of the
members of a scope S is denoted by S. As special cases of scopes, the sets of all
positive and all negative literals are denoted by POS and NEG, respectively.

2.2 Literal Projection

We now add a second-order operator to classical propositional logic, defined
semantically by a clause analogously to the standard connectives. The introduced
operator has, aside of a formula, a scope as argument, written as subscript:

Definition 1 (Second-Order Operator project). For all interpretations I,
scopes S and formulas F define:

I |= projectS(F) iffdef There exists an interpretation J such that
J |= F and J ∩ S ⊆ I.

The formula projectS(F) expresses the literal projection of formula F onto scope S
[15, 24]. It generalizes existential Boolean quantification: If S = S, then projectS(F)
is equivalent to ∃P1, . . . , ∃Pn F , where P1, . . . , Pn are those atoms in F that do
not occur in S. Literal projection can also express that quantification affects only
positive or only negative atom occurrences (considering also implicit negation
through implication and biconditional as well as cancellation of negation in even
nestings). For example, the “forgetting” just about the negative occurrences of
atom P can be expressed as project(POS∪NEG)\{¬P}(F), which is equivalent to

((P ∧ F) ∨ F [P 7→ ⊥]), where F [P 7→ ⊥] denotes F with all occurrences of
P replaced by ⊥. The following notation serves to express that a formula is
semantically “in” a scope, or, in other words, just “about” literals in a scope:

Definition 2 (⋐). For all formulas F and scopes S define:

F ⋐ S iffdef F ≡ projectS(F).

The statement F ⋐ S holds if and only if F is equivalent to a formula in negation
normal form whose literals are all in S.

2.3 Definientia and Definability

The second-order operators gsnc and gwsc, defined in the following in terms of
projection, express the globally strongest necessary condition (GSNC) and the
globally weakest sufficient condition (GWSC) of formula G on scope S within for-
mula F [25], which are variants of the strongest necessary condition and weakest
sufficient condition [17, 6]. As shown in [25], aside of the possibility to differen-
tiate between negative and positive predicate occurrences, the main difference
to the variants introduced in [17] is that for a given formula and scope only
the “global” variants are unique up to equivalence. This justifies speaking of the
GSNC and the GWSC.

4 Section 2

Definition 3 (Second-Order Operators gsnc, gwsc). For all scopes S and
formulas F,G define:
(i) gsncS(F,G) def= projectS(F ∧G).

(ii) gwscS(F,G) def= ¬projectS(F ∧ ¬G).

The GSNC as well as the GWSC on scope S are in scope S:

Proposition 4 (Scope of gsnc and gwsc). For all scopes S and formulas F,G
it holds that: (i) gsncS(F,G) ⋐ S. (ii) gwscS(F,G) ⋐ S.

The dual concepts GSNC and GWSC are application patterns of projection
that arise in many contexts such as non-monotonic reasoning [25], abductive
reasoning [26], and provide a basis to characterize the notions of definiens and
definability [28]:

Definition 5 (Definiens, Definability). For all formulas F,G,H and scopes S
define:
(i) H is a definiens of G in terms of S within F iffdef

gsncS(F,G) |= H |= gwscS(F,G) and H ⋐ S.

(ii) G is definable in terms of S within F iffdef

gsncS(F,G) |= gwscS(F,G).

This characterization states that definientia are exactly the formulas in the given
scope S that are stronger than the GSNC and weaker than the GWSC of the
definiendum G on S within the background formula F . It can be shown that
for all formulas F,G,H and scopes S it holds that H is a definiens of G in
terms of S within F in the sense of the above characterization if and only if
F |= H ↔ G and H ⋐ S [28]. A formula is definable if and only if there exists a
definiens of it in terms of the given scope within the given formula.

2.4 Circumscription

We define a further basic second-order operator raise and on its basis another
second-order operator circ, which allows to express a generalization of predicate
circumscription. These operators have been introduced and discussed in more
detail in [25]:

Definition 6 (Second-Order Operators raise, circ). For all interpretations I,
scopes S and formulas F define:

(i) I |= raiseS(F) iffdef There exists an interpretation J such that
J |= F and J ∩ S ⊂ I ∩ S.

(ii) circS(F) def= F ∧ ¬raiseS(F).

As special cases, the models of circPOS(F) and circNEG(F) are the minimal and
maximal models, respectively, of F , with respect to the following partial order
on interpretations:

I ≤POS J def= I ∩ POS ⊆ J ∩ POS. (i)

It is well known that, if first-order logic is used as basis, there are satisfi-
able sentences F and scopes S, such that circS(F) is unsatisfiable, where well-
foundedness is a sufficient condition for the satisfiability of circS(F), given that F
is satisfiable [16]. Well-foundedness can be defined as follows [25]:

Classical Logic Extended by Second-Order Operators 5

Definition 7 (Well-Founded Formula). A formula F is called well-founded
with respect to scope S if and only if F |= projectS(circS(F)).

Well-foundedness holds for all universal first-order formulas with respect to all
scopes and thus also for propositional formulas. Nevertheless, we make this prop-
erty explicit here, since it allows generalize the definitions and properties dis-
cussed here straightforwardly to first-order logic. It is referenced below in Prop. 8
and Prop. 16.ix, which are applied in the proof of Thm. 23.i. The following
proposition shows a precondition under which entailment from a circumscribed
formula reduces to entailment from the original formula [25]:

Proposition 8 (Consequences of Scope-Determined Circumscriptions).
For all formulas F,G and scopes S such that F is well-founded with respect to
S and G ⋐ S it holds that circS(F) |= G iff F |= G.

2.5 The diff Second-Order Operator and the Greatest Lower Bound

We define a third basic second-order operator, diff (“scoped difference”), which
is defined like project, except that the condition J ∩ S ⊆ I is replaced by its
negation:

Definition 9 (Second-Order Operator diff). For all interpretations I, scopes
S and formulas F define:

I |= diffS(F) iffdef There exists an interpretation J such that
J |= F and J ∩ S 6⊆ I.

The diff second-order operator can be applied, for example, to express the fol-
lowing: If S = S, then the statement I |= ¬diffS(F) holds if and only if all
models of F satisfy exactly those of the atoms occurring in S that are satisfied
by I. The statement I |= ¬diffNEG(F) means that I is a lower bound w.r.t. ≤POS

of the set of models of F . Based on diff, the greatest lower bound of the models
of a formula can be expressed with the following second-order operator:

Definition 10 (Second-Order Operator glb). For all formulas F define:

glb(F) def= circNEG(¬diffNEG(F)).

For all formulas F , the formula glb(F) has a single model that is this greatest
lower bound of the set of models of F . A precise characterization of that model,
based on entailment of atoms, is implied by the following proposition:

Proposition 11 (Characterization of the Greatest Lower Bound). For
all sentences F and atoms P it holds that (i) glb(F) |= P iff F |= P . (ii)
glb(F) |= ¬P iff F 6|= P .

2.6 Second-Order Operators in Terms of Predicate Quantification

Actually, all the three considered basic second-operators, project, raise and diff

can be expressed in terms of predicate quantification only, analogously to the
common way in which predicate circumscription is expressed by means of second-
order quantification [16]. Recall that, as sketched in Sect. 2.2, if S = S, then
projectS(F) is equivalent to ∃P1, . . . , ∃Pn F , where P1, . . . , Pn are those atoms
in F that do not occur in S. We thus show the expressibility in terms of

6 Section 3

project onto a scope S such that S = S. We assume that ATOMS can be par-
titioned into two disjoint subsets of equal cardinality ATOMS0 = {P1, . . . , Pn}
and ATOMS1 = {P 1

1 , . . . , P
1
n}. Only atoms from ATOMS0 are allowed in the

user input formulas. Their correspondents ATOMS1 are auxiliary atoms used to
encode the second-order operators. For formulas F in which only atoms from
ATOMS0 do occur, let F 1 denote F after renaming each atom Pi ∈ ATOMS0

to its correspondent P 1
i ∈ ATOMS1. The expression of project, raise and diff in

terms of predicate quantification is then justified by the following equivalences,
which hold for all finite scopes S and formulas F in which only atoms from
ATOMS0 do occur:

projectS(F) ≡ projectS∪S(F
1 ∧

∧
L∈S(L

1 → L)). (ii)

raiseS(F) ≡ projectS∪S(F
1 ∧

∧
L∈S(L

1 → L) ∧ ¬
∧

L∈S(L
1 ← L)). (iii)

diffS(F) ≡ projectS∪S(F
1 ∧ ¬

∧
L∈S(L

1 → L)). (iv)

Also the systematic renaming of atoms to obtain F 1 from F can be expressed in
terms of predicate quantification: Let LITS1 denote the set of all literals whose
atom is in ATOMS1. Then F 1 ≡ projectLITS1(F ∧

∧
P∈ATOMS0(P 1 ↔ P)).

These encodings can be straightforwardly lifted to first-order logic if the
scope S meets a certain restriction: On a first-order basis, scopes are sets of
ground literals, which are possibly infinite [24, 25]. The requirement for lifting
the encodings is that the scope contains for each predicate in some finite set of
predicates either all ground literals, all positive ground literals or all negative
ground literals with that predicate, and it does not contain any other literals. The
scope then represents a finite set of predicates, possibly with associated signs.
The first-order versions of (ii)–(iv) can be obtained from these equivalences by re-
placing

∧
L∈S(L

1 → L) with ∀x1, . . . , ∀xn

∧
L∈predlits(S)(L

1 → L), where n is the

maximal arity of the predicates occurring in S and predlits(S) denotes the set of
first-order literals that contains P (x1, . . . , xarity(P)) (¬P (x1, . . . , xarity(P)), resp.)
for all predicates P such that all positive (negative, resp.) ground literals with P

are in S and contains no other literals. Note that if all positive as well as all
negative ground literals with predicate P are in S, then both P (x1, . . . , xarity(P))
and ¬P (x1, . . . , xarity(P)) are in predlits(S). The required assumption on the sig-
nature is that the set of predicates can be partitioned analogously to the set of
atoms in the propositional case: Literal L1 denotes literal L with its predicate
P replaced by P 1, formula F 1 denotes F with all predicates P replaced by their
correspondents P 1. Equivalence (iii) also requires to replace

∧
L∈S(L

1 ← L) in
an analogous way.

3 MIP Formulas and MIP Approximations

Recall that a Horn formula is a conjunction of Horn clauses, where a Horn
clause is a clause with at most a single positive literal and an arbitrary number,
including zero, of negative literals. We consider here just propositional Horn
formulas. An important feature of them is that satisfiability can be decided in
polynomial time. A satisfiable Horn formula has a single minimal model, whose
representation as a set of atoms can be computed in polynomial time.

MIP Formulas and MIP Approximations 7

3.1 Model Intersection Steps, Horn and MIP Formulas

Horn formulas can be characterized not just syntactically, but also by a semantic
property, based on the concept of “model intersection”, which can be rendered
with the following second-order operator im (“intersect models”):

Definition 12 (Second-Order Operator im – Model Intersection Step).
For all interpretations I and formulas F define:

I |= im(F) iffdef There exist interpretations J,K such that
J |= F, K |= F and J ∩K ∩ POS = I ∩ POS.

The models of im(F) are all the models that are obtained by “intersecting” two
models of F , that is, all the models whose set of positive literals is the intersection
of the sets of the positive literals of two models of F . The following property is
immediate from the definition of im:

Proposition 13 (Entailment of Model Intersection Step). For all formu-
las F it holds that F |= im(F).

The im operator can also be expressed in terms of predicate quantification, sim-
ilarly as explained in Sect. 2.6. It is required that ATOMS can be partitioned
not just into two, but into three corresponding partitions, ATOMS0, ATOMS1

and ATOMS2. Let F be a formula in which only atoms from ATOMS0 do oc-
cur, let F 1, F 2 denote F after replacing all atoms with their correspondents from
ATOMS1 and ATOMS2, respectively. Let LITS0 denote the set of all literals whose
atom is in ATOMS0. The following equivalence, which justifies the expression of
im in terms of predicate quantification, then holds:

im(F) ≡ projectLITS0(F 1 ∧ F 2 ∧
∧

P∈ATOMS0(P ↔ P 1 ∧ P 2)). (v)

Based on im, we define the class of MIP formulas (“formulas with the model
intersection property”):

Definition 14 (MIP Formula). A formula F is called a MIP formula if and
only if F ≡ im(F).

By Prop. 13, MIP formulas can equivalently be characterized as the formulas F
for which it holds that im(F) |= F . MIP formulas provide a semantic characteri-
zation of Horn formulas: A formula is a MIP formula if and only if it is equivalent
to a Horn formula [21, 5].

3.2 MIP Approximations

The least Horn upper bound [23] (also called Horn approximation [12]) of a
given formula is the strongest Horn formula that is weaker than or equivalent
to the given formula. It is equivalent to the conjunction of all prime implicates
that are Horn [23]. A semantic characterization can be based on the model
intersection property, but, as it seems, not straightforwardly in terms of the
introduced second-order operators. We express it with an operator lmub (“least
MIP upper bound”), defined as follows:

Definition 15 (Operator lmub – Least Upper MIP Bound). For all in-
terpretations I and formulas F define I |= lmub(F) if and only if I is in the
smallest set I of interpretations such that I ⊇ {I | I |= F} and for all J,K ∈ I

it holds that the interpretation I such that I ∩POS = J ∩K ∩POS is also in I.

8 Section 3

The set of models of lmub(F) can also be characterized as the least fixed point
of the function that maps the set of models of satisfiable formulas G to the set
of models of im(G) and maps {} to the models of F . For all formulas F , the
formula lmub(F) is the strongest MIP formula that is weaker than or equivalent
to formula F . The following proposition gathers properties of lmub:

Proposition 16 (Properties of lmub). For all formulas F,G it holds that:

(i) F |= lmub(F).
(ii) lmub(F) is a MIP formula.
(iii) If F |= G and G is a MIP formula, then lmub(F) |= G.
(iv) F is a MIP formula if and only if F ≡ lmub(F).
(v) glb(F) |= lmub(F).
(vi) glb(F) ≡ glb(lmub(F)).
(vii) glb(F) ≡ circPOS(lmub(F)).
(viii) projectPOS(glb(F)) ≡ projectPOS(lmub(F)).
(ix) lmub(F) is well-founded with respect to POS.

The least upper MIP bound of a given formula is entailed by the given formula
(Prop. 16.i), is a MIP formula (Prop. 16.ii) and entails all MIP formulas that
are entailed by the given formula (Prop. 16.iii). MIP formulas can not just be
characterized as the formulas F such that F ≡ im(F) (Def. 14), but also as the
formulas F such that F ≡ lmub(F) (Prop. 16.iv). This follows from Prop. 16.i,
16.ii and 16.iii. The greatest lower bound is contained in the set of models of
the least upper MIP bound (Prop. 16.v), is also the greatest lower bound of
that set (Prop. 16.vi) and is the minimal element of that set (Prop. 16.vii). All
comparisons between interpretations are understood here with respect to ≤POS.
Under projection to POS, the greatest lower bound and the least upper MIP
bound are equivalent, or, in other words: The set of all interpretations that are
greater or equal to than the greatest lower bound is equal to the set of all in-
terpretations that are greater than or equal to some model of the least upper
MIP bound (Prop. 16.viii). Prop. 16.ix holds trivially since all propositional
formulas are well-founded with respect to any scope. Nevertheless, it is explic-
itly stated here, since it can be derived in another way that also applies in a
general setting with first-order logic as basis, where well-foundedness can not
be taken as granted: lmub(F) |= projectPOS(lmub(F)) ≡ projectPOS(glb(F)) ≡
projectPOS(circPOS(lmub(F))), which follows from Prop. 16.viii and 16.vii and
since a projection of a formula is always entailed by the formula.

The operator fmub (“filled MIP upper bound”) defined in the following ex-
presses another unique distinguished MIP formula that is weaker than or equiv-
alent to its argument formula:

Definition 17 (Second-Order Operator fmub – “Filled” MIP Upper
Bound). For all formulas F define:

fmub(F) def= projectPOS(glb(F)) ∧ projectNEG(F).

Its definiens in terms of second-order operators makes fmub easier to handle
than lmub. The set of models of fmub, so-to-speak, completely “fills” the space
of possibilities “between” the greatest lower bound and the maximal models.

Expressing Definientia in Given Classes 9

More precisely, the models of fmub(F) are all those interpretations that are
greater than or equal to the greatest lower bound of the set of models of F and
at the same time less than or equal to some model of F . The following properties
follow from the definitions of the involved operators:

Proposition 18 (Properties of fmub). For all formulas F it holds that:

(i) F |= fmub(F).
(ii) fmub(F) is a MIP formula.
(iii) glb(F) |= fmub(F).
(iv) glb(F) ≡ glb(fmub(F)).
(v) glb(F) ≡ circPOS(fmub(F)).
(vi) projectPOS(glb(F)) ≡ projectPOS(fmub(F)).
(vii) lmub(F) |= fmub(F).
(viii) fmub(projectPOS(F)) ≡ lmub(projectPOS(F)).
(ix) projectNEG(fmub(F)) ≡ projectNEG(lmub(F)).

Propositions 18.i–18.vi are analogous to Prop. 16.i, 16.ii and 16.v–16.viii. The
left sides of Prop. 18.iii–18.vi are identical to the left sides of Prop. 16.v–16.viii,
respectively. For all formulas F , the least upper MIP bound of F entails fmub(F)
(Prop. 18.vii). If F is positive, then both are equivalent (Prop. 18.viii). For all
formulas F it holds that under projection to NEG the formulas fmub(F) and
lmub(F) are equivalent, or, in other words: The set of all interpretations that
are less than or equal to some model of fmub(F) is identical to the set of all
interpretations that are less than or equal to some model of the least upper MIP
bound of F (Prop. 18.ix). From Prop. 18.vi and 16.viii it follows that also under
projection to POS the formula fmub(F) and the least upper MIP bound of F
are equivalent, that is, projectPOS(fmub(F)) ≡ projectPOS(lmub(F)).

4 Expressing Definientia in Given Classes

We consider here the class of MIP formulas as well as two further classes that
are also closed under equivalence. For such a class C, we call a definiens in C a
C-definiens and term the property that a C-definiens exists C-definability. A for-
mula that is a C-definiens under the sole precondition of C-definability is called
a representative C-definiens. The representative definientia presented in the fol-
lowing theorems are second-order formulas, which, when their arguments are
instantiated, are equivalent to a propositional formula in the respective syntac-
tic class that underlies the considered semantically characterized class.

4.1 Expressing MIP-Definientia

The following theorem gives a characterization of MIP-definability and a repre-
sentative MIP-definiens:

Theorem 19 (MIP-Definability and Representative MIP-Definiens).
For all scopes S and formulas F,G it holds that:

(i) G is MIP-definable in terms of S within F if and only if

lmub(gsncS(F,G)) |= gwscS(F,G).

(ii) If G is MIP-definable in terms of S within F , then the following formula
is a MIP-definiens of G in terms of S within F :

lmub(gsncS(F,G)).

10 Section 4

Proof. (19.i) Left-to-right: Assume the left side of the theorem. Then, there exists
a MIP formulaH such that gsncS(F,G) |= H |= gwscS(F,G). From Prop. 16.iii it
follow that lmub(gsncS(F,G)) |= H |= gwscS(F,G), which implies the right side.
Right-to-left: Assume lmub(gsncS(F,G)) |= gwscS(F,G). Then, by Prop. 16.i
and Def. 5.i it follows that lmub(gsncS(F,G)) is a definiens of G in terms of S
within F . By Prop. 16.ii it is also a MIP formula, hence a MIP-definiens. (19.ii)
Follows from Thm. 19.i, Prop. 16.i, Prop. 16.ii and Def. 5.i. ⊓⊔

The MIP-definiens according to Thm. 19.ii is the strongest MIP-definiens, that
is, it entails all MIP-definientia, which follows from Def. 5.i and Prop. 16.iii:

Proposition 20 (The Representative MIP-Definiens is the Strongest).
Let S be a scope and let F,G be formulas such that G is MIP-definable in terms
of S within F . Then for all MIP-definientia H of G in terms of S within F it
holds that lmub(gsncS(F,G)) |= H.

By Prop. 18.i, for all formulas F it holds that F |= fmub(F). Thus, if

fmub(gsncS(F,G)) |= gwscS(F,G), (vi)

then it follows from Def. 5.i that fmub(gsncS(F,G)) is a MIP-definiens of G in
terms of S within F . In contrast to the MIP-definiens according to Thm. 19.ii,
that is, lmub(gsncS(F,G)), the formula fmub(gsncS(F,G)) only involves second-
order operators that can be expressed by predicate quantification. However,
MIP-definability does not imply that fmub(gsncS(F,G)) is a definiens – it might
be too weak, as shown in the following simple example:

Example 21 (MIP-Definiens: lmub vs. fmub). Let F = ⊤, G = (p → q)
and S = {p, q}. Then gsncS(F,G) ≡ lmub(gsncS(F,G)) ≡ gwscS(F,G) ≡ G.
Thus there is a single definiens of G in terms of S within F , which is G itself.
Moreover, this definiens is a MIP-definiens. However fmub(gsncS(F,G)) ≡ ⊤ 6|=
gwscS(F,G) ≡ G. Thus fmub(gsncS(F,G)) is too weak to be a definiens of G.

4.2 Expressing COA-Definientia

We now turn to a formula class for which definability and a representative
definiens can be characterized purely with second-order operators that can be
expressed in terms of predicate quantification:

Definition 22 (COA Formula). A formula F is called a COA formula if and
only if F is MIP formula and it holds that F ⋐ POS.

A formula is a COA (“conjunction of atoms”) formula if and only if it is equiva-
lent to a positive Horn formula, or, in other words, equivalent to a conjunction of
atoms. The following theorem gives a characterization of COA-definability and
a representative COA-definiens, in terms of glb and fmub:

Theorem 23 (COA-Definability and Representative COA-Definiens).
For all scopes S and formulas F,G it holds that:

(i) G is COA-definable in terms of S within F if and only if

glb(gsncS∩POS(F,G)) |= gwscS∩POS(F,G).

Expressing Definientia in Given Classes 11

(ii) If G is COA-definable in terms of S within F , then the following formula
is is a COA-definiens of G in terms of S within F :

fmub(gsncS∩POS(F,G)).

Proof. (23.i) Consider the following equivalences: G is COA-definable in terms
of S within F iff (by Def. 22) G is MIP-definable in terms of S ∩ POS within F

iff (by Thm. 19.i) lmub(gsncS∩POS(F,G)) |= gwscS∩POS(F,G) iff (by Prop. 4.ii,
16.ix, 8) circPOS(lmub(gsncS∩POS(F,G))) |= gwscS∩POS(F,G) iff (by Prop. 16.vii)
glb(gsncS∩POS(F,G)) |= gwscS∩POS(F,G). (23.ii) From Def. 22 and Thm. 19.ii it
follows that lmub(gsncS∩POS(F,G)) is a COA-definiens of G in terms of S within
F . By Prop. 4.i and 18.viii the following equivalence holds: lmub(gsncS∩POS(F,G))
≡ fmub(gsncS∩POS(F,G)). ⊓⊔

The following example shows a case where the strongest and weakest definientia,
characterized by the GSNC and the GWSC, are no COA formulas, but there
exists a COA-definiens between these extremes:

Example 24 (COA-Definiens). Let F be the formula

(q→ r ∨ s) ∧ (t→ q) ∧ ((r ∨ s) ∧ u→ p) ∧ (p→ t ∧ u).

Consider the task of finding definientia of p within F , in terms of positive oc-
currences of the other symbols. Let S = {+q,+r,+s,+t,+u}. It holds that

gsncS(F, p) ≡ q ∧ t ∧ u ∧ (r ∨ s), and
gwscS(F, p) ≡ u ∧ (q ∨ r ∨ s ∨ t).

It is easy to see that gsncS(F, p) |= gwscS(F, p). Thus, we know that p is de-
finable in terms of S within F , and, moreover, that gsncS(F, p) provides the
strongest such definiens and gwscS(F, p) the weakest one. Neither one of these
two definientia is a COA formula. However, by applying Thm. 23.i, there must
exist a COA-definiens, since, assuming that ATOMS = {p, q, r, s, t, u}, it holds
that glb(gsncS(F, p)) ≡ (q∧t∧u∧¬p∧¬r∧¬s) |= gwscS(F, p). We can thus ap-
ply Thm. 23.ii to justify that the formula fmub(gsncS(F, p)) is a COA-definiens
of p in terms of S within F . This formula is equivalent to (q∧ t∧ u). It is indeed
easy to verify that gsncS(F, p) |= fmub(gsncS(F, p)) |= gwscS(F, p).

4.3 Expressing KRO-Definientia with a Meta-Level Representation

A seemingly straightforward idea to express syntactic constraints by means of
vocabulary restrictions would be enriching the vocabulary by “meta-level” sym-
bols for logic operators, and applying restrictions on these. However, this is
typically not sufficient, since arbitrary combinations of disjunctions and nega-
tions of formulas would also meet such restrictions. For formula classes that are
not closed under disjunction and negation this must be prevented. Negation can
be excluded with literal projection. By excluding negation as well as disjunc-
tion, COA-definientia provide a means to encode other formula classes on the
meta-level as vocabulary restrictions. This is now shown for a particular class of
formulas: Recall that a Krom formula is a formula in clausal form, where each
clause contains at most two literals. Like Horn formulas, Krom formulas can
be decided in polynomial time. We define KRO formulas as semantic version of
Krom formulas:

12 Section 4

Definition 25 (KRO Formulas). A KRO formula is a formula that is equiv-
alent to a Krom formula.

The following theorem gives a characterization of KRO-definability and a rep-
resentative KRO-definiens:

Theorem 26 (KRO-Definability and Representative KRO-Definiens).
Assume a fixed total order ≤ on literals. For all scopes S let:

KD(S) def= (empty↔ ⊥) ∧
∧

L,M∈S, L≤M, L 6=M (clause(L,M)↔ L ∨M).

KS(S) def= {empty} ∪ {clause(L,M) | L,M ∈ S, L ≤M, L 6= M}.

For all scopes S and formulas F,G it holds that:

(i) G is KRO-definable in terms of S within F if and only if

G is COA-definable in terms of KS(S) within (F ∧ KD(S)).

(ii) If G is KRO-definable in terms of S within F , then the following formula
is a KRO-definiens of G in terms of S within F :

projectS(fmub(gsncKS(S)(F ∧ KD(S), G)) ∧ KD(S)).

In the theorem statement, KD(S) denotes the conjunction of the definitions
of the auxiliary atoms empty, representing the empty clause, and of the form
clause(L,M), representing nonempty Krom clauses, where L,M are those lit-
erals from the original vocabulary that are in the scope S. Evidently, the size
of KD(S) is polynomially bounded by the cardinality of of the original vocab-
ulary. The set of the positive literals with the auxiliary atoms is denoted by
KS(S). KRO-definability is then expressed in Thm. 26.i as COA-definability
with respect to KS(S) within the original background formula F , conjoined with
the definitions KD(S). Justified by Thm. 23.ii, the inner formula of Thm. 26.ii,
that is, fmub(gsncKS(S)(F ∧ KD(S), G)), then denotes the representative COA-

definition of G in terms of KS(S). The actual KRO-definiens is then obtained
from this COA-definiens by conjoining it with the definition KD(S) of the aux-
iliary atoms and then applying projection onto the original vocabulary. We note
that, as for COA, also for KRO, definability and a representative definiens can be
characterized purely with operators that can be expressed in terms of predicate
quantification.

The following example shows a case where, analogously to Examp. 24, the
strongest and weakest definientia, characterized by the GSNC and the GWSC,
are no KRO formulas, but there exists a KRO-definiens between these extremes:

Example 27 (KRO-Definiens). Let F be the formula

((q↔ r)→ s ∨ t ∨ u) ∧ (s ∨ t ∨ u→ p) ∧ (p→ (q↔ r)).

Consider the task of finding definientia of p within F in terms of the other
symbols. Let S = {+q,−q,+r,−r,+s,−s,+t,−t,+u,−u}. It holds that

gsncS(F, p) ≡ (r↔ q) ∧ (s ∨ t ∨ u), and
gwscS(F, p) ≡ (r→ q ∨ s ∨ t ∨ u) ∧ (q→ r ∨ s ∨ t ∨ u)

Since gsncS(F, p) |= gwscS(F, p), we know that p is definable in terms of S

within F , and, moreover, that gsncS(F, p) provides the strongest such definiens
and gwscS(F, p) the weakest one. Clearly, neither one of these two definientia is
equivalent to a Krom formula. If the scope is restricted to {q, r}, there exists a

Conclusion 13

unique definiens, which is equivalent to a Krom formula: gsnc{q,r}(F, p) ≡ (q↔

r) ≡ gwsc{q,r}(F, p). However, for scope S as specified above, this is neither
the weakest nor the strongest definiens. Also from Theorem. 26.i it follows that
there must exist a Krom definiens, since, assuming that ATOMS is the union of
{p, q, r, s, t, u} and the set of atoms occurring in KS(S) it can be verified that
glb(gsncKS(S)((F ∧ KD(S)), p)) |= gwscKS(S)((F ∧ KD(S), p). We can thus apply
Thm. 26.ii to justify that the following formula is a Krom definiens of p in
terms of S within F : projectS(fmub(gsncKS(S)((F ∧ KD(S)), p)) ∧ KD(S)). This

formula is equivalent to projectS(clause(q,¬r) ∧ clause(¬q, r) ∧ KD(S)), and thus
equivalent to (q↔ r).

5 Conclusion

We have begun to investigate a formalized and mechanizable way of combining
two different aspects: Expressibility in formula classes is viewed from the point
of expressibility in restricted vocabularies, which can be formulated by predicate
quantification. In particular, we considered whether definability and representa-
tive definientia with respect to given formula classes that are not just specified as
vocabulary restrictions can be characterized in terms of second-order operators
which ultimately can be expressed just by predicate quantification. We have seen
that with propositional logic as basis, such characterizations are possible for the
class of formulas that are equivalent to a conjunction of atoms and the class of
formulas that are equivalent to a Krom formula. For the class of formulas that
are equivalent to a Horn formula, a further operator is required, which seems
not straightforwardly reducible to predicate quantification.

An inherent feature or limitation of the presented approach is that it applies
only to formula classes that are closed under equivalence. Nevertheless, with re-
spect to vocabulary restrictions, elimination methods usually produce outputs
that do no longer contain the quantified predicates, thereby ensuring that results
are also in the corresponding syntactic classes. It needs to be investigated, in
which way elimination methods applied to the suggested second-order expres-
sions for the considered formula classes yield results that are actually also in the
corresponding syntactic classes.

The underlying framework of second-order operators straightforwardly ex-
tends from propositional to first-order logic (see, e.g., [24, 25, 28]). However, for
the first-order case the correspondence of the semantic characterizations of for-
mula classes to expressibility in syntactic classes such as Horn formulas, con-
junctions of atoms and Krom formulas still needs to be examined.

In the paper, operators and properties have been formally defined in terms
of each other in a way that fits mechanization. In fact, they have been defined
similarly on top of the ToyElim system [27].1 This is currently only suitable for
small experiments and an advanced implementation of the suggested operators
seems to be a major challenge on its own. At least in principle, the presented
characterizations of definientia should be expressible also on top of other sys-
tems for second-order quantifier elimination and its variants, the computation
of forgetting, projection and uniform interpolants.

1 See http://cs.christophwernhard.com/toyelim/.

14 Section 5

References

1. Biere, A.: Resolve and expand. In: Theory and Applications of Satisfiability Test-
ing: 7th Int. Conf., SAT 2004. LNCS, vol. 3542, pp. 238–246. Springer (2004)

2. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: View-based query pro-
cessing: On the relationship between rewriting, answering and losslessness. Theor.
Comput. Sci. 371(3), 169–182 (2007)

3. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

4. Cuenca Grau, B., Motik, B.: Reasoning over ontologies with hidden content: The
import-by-query approach. J. Artif. Intell. Res. 45, 197–255 (2012)

5. Dechter, R., Pearl, J.: Structure identification in relational data. Artif. Intell. 58,
237–270 (1992)

6. Doherty, P., Lukaszewicz, W., Sza las, A.: Computing strongest necessary and weak-
est sufficient conditions of first-order formulas. In: Proc. 17th Int. Joint Conf. on
Artif. Intell., IJCAI-01. pp. 145–151. Morgan Kaufmann (2001)

7. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Theory and Applications of Satisfiability Testing, 8th Int. Conf.,
SAT 2005. LNCS, vol. 3569, pp. 61–75 (2005)

8. Franconi, E., Kerhet, V., Ngo, N.: Exact query reformulation over databases with
first-order and description logics ontologies. J. Artif. Intell. Res. 48, 885–922 (2013)

9. Gabbay, D.M., Schmidt, R.A., Sza las, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. CollegePublications, Lon-
don (2008)

10. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for con-
servative extensions in description logics. In: Proc. 10th Int. Conf. on Princ. of
Knowledge Rep. and Reasoning, KR 2006. pp. 187–197. AAAI Press (2006)

11. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Logic for Prog., Artif. Intell. and Reasoning: 17th Int. Conf., LPAR-17.
LNCS, vol. 6397, pp. 357–371. Springer (2010)

12. Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artif.
Intell. 74, 129–145 (1995)

13. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-
scale description logic terminologies. In: Proc. 21nd Int. Joint Conf. on Artif. Intell.,
IJCAI-09. pp. 830–835. AAAI Press (2009)

14. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using fix-
points. In: 9th Int. Symp. on Frontiers of Combining Systems, FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 87–102. Springer (2013)

15. Lang, J., Liberatore, P., Marquis, P.: Propositional independence – formula-
variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

16. Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A.
(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3,
pp. 298–352. Oxford University Press (1994)

17. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128,
143–159 (2001)

18. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proc. 22nd Int. Joint Conf. on Artif. Intell., IJCAI-
11. pp. 989–995. AAAI Press (2011)

19. Manthey, N., Philipp, T., Wernhard, C.: Soundness of inprocessing in clause sharing
SAT solvers. In: Theory and Applications of Satisfiability Testing, 16th Int. Conf.,
SAT 2013. LNCS, vol. 7962, pp. 22–39. Springer (2013)

Conclusion 15

20. Marx, M.: Queries determined by views: Pack your views. In: Proc. 25th ACM
SIGMOD-SIGACT-SIGART Symp. on Princ. of Database Systems, PODS ’07.
pp. 23–30. ACM (2007)

21. McKinsey, J.C.C.: The decision problem for some classes of sentences without
quantifiers. J. Symb. Log. 8, 61–76 (1943)

22. Nash, A., Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting.
ACM Trans. Database Syst. 35(3) (2010)

23. Selman, B., Kautz, H.A.: Knowledge compilation using Horn approximations. In:
Proc. 9th Nat. Conf. on Artif. Intell., AAAI-91, Volume 2. pp. 904–909. AAAI
Press (1991)

24. Wernhard, C.: Literal projection for first-order logic. In: Logics in Artif. Intell..:
11th European Conf., JELIA 08. LNCS (LNAI), vol. 5293, pp. 389–402. Springer
(2008)

25. Wernhard, C.: Projection and scope-determined circumscription. J. Symb. Com-
put. 47(9), 1089–1108 (2012)

26. Wernhard, C.: Abduction in logic programming as second-order quantifier elimina-
tion. In: 9th Int. Symp. on Frontiers of Combining Systems, FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 103–119. Springer (2013)

27. Wernhard, C.: Computing with logic as operator elimination: The ToyElim system.
In: Applications of Declarative Programming and Knowledge Management, 19th
Int. Conf. (INAP 2011) and 25th Workshop on Logic Prog. (WLP 2011), Revised
Selected Papers. LNCS (LNAI), vol. 7773. Springer (2013)

28. Wernhard, C.: Expressing view-based query processing and related approaches
with second-order operators. Tech. Rep. Knowledge Representation and Rea-
soning 14–02, Technische Universität Dresden (2014), http://www.wv.inf.tu-
dresden.de/Publications/2014/report-2014-02.pdf

