
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Solver Description of riss 2.0 and priss 2.0

Norbert Manthey

KRR Report 12-02

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden



Solver Description of RISS 2.0 and PRISS 2.0

Norbert Manthey

Knowledge Representation and Reasoning Group

Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract—The SAT solver RISS 2.0 and its concurrent paral-
lelization PRISS 2.0 are described in the configuration they have
been submitted to the SAT Challenge 2012.

I. THE SEQUENTIAL SAT SOLVER RISS 2.0

Based on the CDCL procedure, this solver has been im-

plemented as a module based system. The routines for the

decision procedure, the learned clause management, unit prop-

agation, preprocessor and the event heuristics for restart and

removal can be exchanged easily. This style of implementation

comes to a cost, namely the communication overhead among

the components. Whereas plain SAT solver implementations

can alter for example the watched list of the unit propagation

immediately when a clause should be removed, RISS 2.0

has to store this data first, pass it to the unit propagation

module and afterwards this module can execute the wanted

operation. Based on this overhead, the implementation is a

trade-off between providing as many features as possible and

having a good performance on application instances. To still

achieve a high performance, RISS 2.0 is equipped with a strong

preprocessor COPROCESSOR 2.1 [13], which is also be used

during search to simplify the formula and the set of learned

clauses.1

A. Features of RISS 2.0

The main goal if RISS 2.0 is to solve formulas in CNF.

Furthermore, the solver is used as research platform and thus

provides many parameters to enable further techniques. These

techniques are not present in general SAT solvers:

• Enumeration of all solutions of the input formula

• Loading and storing learned clauses of a run

• Searching for a solution with a set of assumed literals

• Passing an initial model to the solver that should be tested

first

Additionally to the named features, RISS 2.0 implements

many deduction techniques on top of CDCL that can be

enabled. Among them there are On-the-fly Self-Subsumption

(OTFSS) [7], Lazy Hyper-Binary-Resolution(LHBR) [3] and

Dominator Analysis [6]. To speed up search, most of the tech-

niques that are available in COPROCESSOR 2.1 can be used

for simplifying the formula during search. The implementation

and handling of data structures and memory accesses is based

on the insights that have been published in [10]. The solver

furthermore uses Blocking Literals introduced in [16] and

1Both the solver and its preprocessor as well as descriptions are available
at tools.computational-logic.org.

Implicit Binary Clauses(e.g. [15]) to speed up unit propagation

and conflict analysis.

The submitted configuration uses the Luby series with a

factor 32 as a restart strategy and a geometric series starting

with 3000 and an increment factor of 1.1 as removal schedule.

The removal is mainly based on the LBD measure [2], but also

short clauses are kept. Both OTFSS and LHBR are enabled.

We started to implemented RISS from scratch in 2009 as a

teaching system in C++. The binary of the tool we provided for

the SAT Challenge has been compiled with the GNU compiler

and the optimization -O3. Although plenty of parameters are

implemented in both RISS 2.0 and its preprocessor automated

parameter setting has not been done yet. This is considered

the next step, because parameter setup is not considered

to be trivial but has high potential to improve the solvers

performance.

B. Features of Coprocessor

The internal preprocessor of RISS 2.0 implements many

simplification techniques, that are executed in the specified

order. Whenever a technique can reduce the formula, the

process is started from the top.

1) Unit propagation

2) Pure literal detection

3) Self-subsuming resolution

4) Equivalence elimination [5]

5) Unhiding [9]

6) Hidden tautology elimination [8]

7) Blocked clause elimination [11]

8) Variable elimination [4]

9) An algorithm based on extended resolution

10) Failed literal probing [12]

11) Clause vivification [14]

Equivalent literal detection is done based on binary clauses and

on output literals of gates in the formula. The algorithm based

on extended resolution to simplify the formula is unpublished,

but submitted for publication. Each technique can be limited

so that the consumed run time remains reasonable. After

preprocessing, COPROCESSOR allows to shrink the formula

so that all assigned or eliminated variables are removed and

the resulting formula contains consecutive variables again.

II. THE PARALLEL SAT SOLVER PRISS 2.0

The SAT solver PRISS 2.0 is a portfolio SAT solver based on

RISS 2.0 and supports up to 64 parallel solver incarnations. Af-

ter using COPROCESSOR on the input formula, n incarnations

tools.computational-logic.org


CP2 MASTER

SOLVER 1

SOLVER 2

CP2 1

CP2 2

F

J

F ′

J ′

J ′

1
F ′

1
L1, E1

J ′

2
F ′

2
L2, E2

F ′, L1, J1

F ′, L2, J2

Fig. 1. Components in the PRISS 2.0 framework

of RISS are started concurrently, where each of the incarnations

uses its own preprocessor to simplify the formula during

search. Learned clauses are shared among the incarnations.

The exchange is filtered both on the sender and the receivers

side. Submitting clauses is based on the length of the clause

and its activity. Whenever the length of a candidate clause is

shorter than the average length since the last restart, the clause

is a candidate to be submitted to the shared storage. Another

criterion is the activity based on the LBD. The reception

of clauses from the storage is based on the same criteria

again. Furthermore, the PSM [1] is used to reject not useful

clauses. In addition to clauses, the RISS incarnations share

informations about equivalent literals, which are found during

search by the simplification methods. Since the simplification

might also add or remove variables from the formula of a

certain thread, only information about common variables is

shared – a clause that contains an eliminated variable will be

rejected by the receiving thread. Based on the current portfolio

implementation, this problem cannot be fixed easily. For the

future it is wanted to integrate the common preprocessor also

as common simplifier, so that all clauses can be shared again.

Figure 1 shows the a pictogram of the components and

their communication. After the input formula F is processed

by the preprocessor, each solver incarnations is started in a

thread with a physical copy of the formula (F ′

1
and F ′

2
).

For inprocessing each solver has its private preprocessor.

Learned clauses and equivalent literals are shared with the

master (e.g. L1 and E1). When a solver finds a solution,

its preprocessor reconstructs eliminated variables, equivalent

variables and literals from blocked clauses. The processed

model is passed back to the master, which stops all other solver

incarnation and also reconstructs the final assignment.

The submitted configuration of the solver uses only 5 cores

out of the 8 available cores. Each incarnation has a slightly

different configuration. The first incarnation uses the default

configuration. The next solver uses permuted trail restarts [17].

The third incarnation keeps 50 % of its learned clause data

based instead of 25 %. The fourth solver uses the PSM value

for removing clauses and bumps variables twice, if they are

used during conflict analysis, are assigned at the conflict

level and if the activity of their reason clause is comparably

high. Finally, the fifth configuration exchanges the VSIDS

heuristic by the VMTF heuristic for variable activities. If

more cores should be used, the next configuration alters the

implementation of the unit propagation by preferring satisfied

literals in clauses to be watched. All further configurations

are similar to the default configuration except the fact that

one percent of their decisions is done randomly to not result

in the same search.

REFERENCES

[1] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar
Saı̈s. On freezing and reactivating learnt clauses. In Proceedings of the

14th international conference on Theory and application of satisfiability

testing, SAT’11, pages 188–200, Berlin, Heidelberg, 2011. Springer-
Verlag.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern sat solvers. In Proceedings of the 21st international jont

conference on Artifical intelligence, IJCAI’09, pages 399–404, San
Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[3] Armin Biere. Lazy hyper binary resolution. In Algorithms and

Applications for Next Generation SAT Solvers, number 09461, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany.

[4] Niklas Eén and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. In In proc. SAT’05, volume 3569 of

LNCS, pages 61–75. Springer, 2005.
[5] Allen Van Gelder. Toward leaner binary-clause reasoning in a satisfia-

bility solver. Ann. Math. Artif. Intell., 43(1):239–253, 2005.
[6] HyoJung Han, HoonSang Jin, and Fabio Somenzi. Clause simplification

through dominator analysis. In DATE, pages 143–148. IEEE, 2011.
[7] Hyojung Han and Fabio Somenzi. On-the-fly clause improvement.

In Proceedings of the 12th International Conference on Theory and

Applications of Satisfiability Testing, SAT ’09, pages 209–222, Berlin,
Heidelberg, 2009. Springer-Verlag.

[8] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause Elimination
Procedures for CNF Formulas. In Christian Fermüller and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and

Reasoning, volume 6397 of LNCS, pages 357–371. Springer, 2010.
[9] Marijn Heule, Matti Järvisalo, and Armin Biere. Efficient CNF Sim-

plification based on Binary Implication Graphs. In K.A. Sakallah and
L. Simon, editors, SAT 2011, volume 6695 of LNCS, page 201–215.
Springer, 2011.

[10] Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving
resource-unaware sat solvers. In Christian G. Fermüller and Andrei
Voronkov, editors, LPAR (Yogyakarta), volume 6397 of Lecture Notes

in Computer Science, pages 519–534. Springer, 2010.
[11] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked Clause

Elimination. In Javier Esparza and Rupak Majumdar, editors, Tools

and Algorithms for the Construction and Analysis of Systems, volume
6015 of LNCS, pages 129–144. Springer, 2010.

[12] Inês Lynce and João Marques-Silva. Probing-Based Preprocessing
Techniques for Propositional Satisfiability. In Proceedings of the 15th

IEEE International Conference on Tools with Artificial Intelligence,
ICTAI ’03, pages 105–. IEEE Computer Society, 2003.

[13] Norbert Manthey. Coprocessor 2.0 – A flexible CNF Simplifier (Tool
Presentation), 2012. Submitted to SAT 2012.

[14] Cédric Piette, Youssef Hamadi, and Lakhdar Saı̈s. Vivifying propo-
sitional clausal formulae. In 18th European Conference on Artificial

Intelligence(ECAI’08), pages 525–529, Patras (Greece), jul 2008.
[15] Mate Soos. Cryptominisat 2.5.0. In SAT Race competitive event booklet,

July 2010.
[16] Niklas Sörensson and Niklas Eén. MiniSat 2.1 and MiniSat++ 1.0 —

SAT Race 2008 Editions. Technical report, 2008.
[17] Peter van der Tak, Antonio Ramos, and Marijn J.H. Heule. Reusing

the assignment trail in cdcl solvers. Journal on Satisfiability, Boolean

Modeling and Computation, 7:133–138, 2011. system description.


	The sequential SAT solver riss 2.0
	Features of riss 2.0
	Features of Coprocessor

	The parallel SAT solver priss 2.0
	References

