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0-1 Law

A different perspective: a coarser view on expressiveness...

What percentage of graphs verity a given FO sentence?
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0-1 Law

ux(P) = “probability that property P holds in a random graph with z nodes”

Uniform distribution

( each pair of nodes has an

edge with probability % )
G, =1 graphs with 7 nodes } 5 L y

GeG,|GEP ) | )
un(P) = (GGl /1 E.g. for P = “the graph is complete
G| 1 1
N 72 P — =
2 13(P) G| >3

ue(P) = lim w,(P)

7 > 00



0-1 Law

Theorem. [Glebskii et al. 69, Fagin "70]
For every FO sentence ¢, p.( ¢ ) iseither 0 or 1.

Examples:
e ¢ = “there is a triangle” wi3(d) = Ve wa(d) 21-(1-1/g)" » 1
o &g = “there is an occurrence of H as induced sub-graph” oo 1) = 1
o & = “there no 5-clique” teo(( ) =0
e ¢ = “even number of edges” 1 (¢) =1/
Your turn!
e ¢ = “even number of nodes” u-( ¢ ) noteven defined
e & = “more edges than nodes” Ueo(( D) =1

( yet not FO-definable! )



5 Zero-one laws

5.1 Random graphs
We consider the class G, of (undirected) graphs over {0,...,n —1}, i.e.
Gn:={G=(V,E): Ggraph,V={0,...,n—1}},

In order to introduce random graphs we consider a sequence of probability
distributions 7 = (p1, p2,...) on (G1,Ga,...), i.e. py : G — [0,1] and
Yceg, #(G) =1 for all n > 1. This defines a sequence of probability
spaces (G1, 1), (G2, y2), . .. on classes of graphs of increasing size.
Example 5.1.

(1) The uniform distribution y, assigns equal probability to each graph:

(2) Let p : N — [0,1] be an arbitrary mapping. Then the probability
space Gup = (G, Jipn) is defined by the following random experi-
ment: determine for every pair (#,v) with 0 < u < v < n whether
(u,v) € E using a random variable X taking values 0,1 (False and
True) with Pr[X = 1] = p(n) and Pr[X = 0] = (1 — p(n)). Observe
that for p = % one obtains the uniform distribution.

We make the following convention: unless otherwise stated, y,, denotes
the uniform distribution. For a class KC of graphs we set

Hn(K) = un(KNGy) = 2 #n(G).
GeKngG,

This definition formalises what it means that a random graph G € G, has
a certain property K. However, in what follows, we are not interested
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5 Zero-one laws

in random graphs of some fixed size n € IN but much more in the
behaviour of the probability i, (K) if we increase the size of graphs, i.e.
if we let n approach infinity.

Definition 5.2. The asymptotic probability of a class K of graphs (with
respect to 7) is defined as

u(K) = nlg{}o Hn(K),

in the case that this sequence has a limit. In particular, if ¢ is a sentence
over vocabulary {E} in some logic £, then the asymptotic probability of i
(with respect to 7) is defined as

k() = lim (G € G- G = ),
again only for the case that the limit exists.

Example 5.3.

(1) Let K = {G : G is a clique}. Then

. 1
dim pn(K) = lim o5 = 0.

(2) Let H be a graph and let Ky = {G : G contains H as subgraph}.
For n > k- |H| we have

pn(Kp) > 1 (1— (27 B,

hence u(Kpy) = 1 since k — oo for n — oo.

(3) Let K = {G : G is three-colourable}. Then

}ij&oyn(K) <1- }Sr;oyn({G € G, : G contains K4 }) = 0.

(4) Recall that we have lim,, e 11, ({G : (3,17) € E}) = L.

(5) The asymptotic probability is not defined for every class of graphs.
For instance, consider K = {G : G has an even number of nodes}.
Then the sequence (3,(K)),>1 = (0,1,0,1,...) has no limit.
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5.2 Zero-one law for first-order logic

5.2 Zero-one law for first-order logic

In this section we prove the zero-one law for first-order logic:
Theorem 5.4. For sentences ¢ € FO (over relational vocabulary) we have

W) =0 or p(y)=1

To put it in words, every first-order definable property of graphs either
holds almost never or almost surely on random graphs of increasing size.
Definition 5.5. An atomic graph k-type is a maximal consistent set t of
FO({E})-literals in variables x1, ..., X, i.e. Exixj, ~Ex;xj, X; = Xj, X; # X},
which is consistent with the graph axioms (Vx—Exx, VxVy(Exy <+ Eyx)).
Furthermore, for a graph G = (V,E) and @ € V* we define the atomic

graph k-type of a by
tc(@) := {@(x;,x;) : ¢ an FO({E})-literal such that G |= ¢(a;,4;)}.

Formally, an atomic k-type t is a set but we frequently identify it
with the formula #(¥) = Agye; ¢(%) (this formula is an FO-formula, since
there are only finitely many {E}-literals in k variables).

In what follows, let s(¥) and #(¥) denote atomic graph types of
tuples of distinct elements, ie. s, |= Ni<j<kXi # xk. We say that
an atomic (m + 1)-type t(x1,...,Xm, Xpu41) extends an atomic m-type
s(x1,...,x%y) if s C t, or equivalently, if ¢ |= s.

Definition 5.6. Let s(x1,..., %) and £(xy, ..., Xm, Xp41) be atomic types
such that s C t. We define the extension axiom o5 by

Ot i=Vxp -+ -V (s(X) = i1t (X, xp11))-

Furthermore, we let T be the set of all extension axioms together with
the graph axioms.

The proof of the zero-one law for FO relies on the following proper-
ties of the extension axioms and the set T:

(1) p(os¢) =1forall oz € T.
(2) T is w-categorical, i.e. there is, up to isomorphism, only one count-
able model of T. This structure is known as the Rado graph.
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5 Zero-one laws

(3) T is complete, i.e. for all p € FO either T |= ¢ or T |= —¢.

We proceed to establish these three properties.
Lemma 5.7. Let 05¢ € T be an extension axiom. Then p(0s;) = 1.

Proof. Let o4 = Vxy---Vam(s(X) — Fxyp1t(X, xmy1)). For every
i =1,...,m we have t |= Exjxy,.1 or t = —Ex;x, 1. Let G € G,
be a random graph and ay,...,a, € {0,...,n —1}. For every fixed
a1 € V\{a1,...,an}, the experiments G = Ea;a,,1 are stochastically
independent and have probability % Hence

Pr(G = 1@ a1)[G = 5(@)] = 55

Thus, probability that no element a,,41 € V \ {ay,...,a,} extends a
realisation @ of s to a realisation of (a,a,1) of tis (1 — —)" " In
conclusion, we obtain

pn(0s1) = pn (31 -+~ 32 (8(X) A VX1 2H(E, X))
1.,_ exp. fast
7?1"1'(1—27)" m iy 0,

and thus p(0s;) = 1. Q.E.D.

The compactness theorem implies that also every logical conse-
quence of the extensions axioms almost surely holds in a random graph.
Corollary 5.8. If T |= ¢ then u(¢) = 1, and the set T is satisfiable.

Proof. If T = 1, then by the compactness theorem there is a finite set
To C T such that Ty |= ¢. Hence, we have p,, () > pn(A Tp). Observe
that pn(—¢) = 1= pu(@) and (@1 V @2) < pu(91) + pn(g2) are true
for every sentences ¢, ¢1, ¢». Furthermore, by Lemma 5.7, it follows that
Hn(—0) =1 —pu(oc) — 0 for n — co. Putting everything together, we
obtain

W) S (G ATo) =V ) < L pnl0)

ceTy ceTy

and the sum on the right converges to 0 for n — oo, which implies that
n (1) converges to 1 or, to put it differently, p(y) = 1. Q.E.D.
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5.2 Zero-one law for first-order logic

Interestingly, one can give explicit description of models of T and
we present two different possibilities here. However, as we show later
that T is w-categorical, these models are isomorphic.

Definition 5.9 (Rado graph). The following graphs are models of T.

(1) Let p; denote the i-th prime number. We define G = (N, E) with
E:={(i,j) e NxN:p;|jorp;|i}

We claim that G |= T. To see this, we choose an arbitrary extension
axiom o ¢ := Yoy - - Vo (s(X) — Iy 1H(X, xmy1)) € T.

Let IU] ={1,...,m} be the partition defined by ¢ with respect to
the following condition

o If t = Ex;jxy41 theni € I, and

o if t = —Ex;X;;11 theni € J.
Let a1,...,ar € A such that G = s(ay,...,a;). We set ay4q =
[Tic1 Pa;qg where q is a prime number with g > py, - - - pa,,. Then it is
easy to check that G |= Ea;a,11 for alli € I and G |= —Ea;ja;;41 for
allje].

(2) The set HF of heriditarily finite sets is defined by:

e @ c HF

e If ay,...,a; € HF, then also {ay,...,a,} € HF.
Let G = (HF,E) with E := {(a,b) : a € borb € a}. Similarly as
above, one can show that G = T.

Theorem 5.10. Let G = (V;, Eg) and H = (Vy, Efy) be two countable
models of T. Then G = H. The unique countable model of T is known
as the Rado graph R.

Proof. First of all, it is clear that T has no finite models, hence G and
H are infinite graphs. We fix two enumerations of Vi and Vg and
inductively construct a sequence of partial isomorphism py, p1, pa, . . .
between G and H such that pgp C p; € po € ---. For the base case,
we set pg := @. For the induction step let p; = {(a1,b01),...,(a;, b;)} €
Loc(G, H) be already defined. We distinguish between the following
two cases:
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5 Zero-one laws

e If i is even, choose 4,1 € V to be the minimal element (with respect
to the enumeration of V) which is not in the domain of p;, i.e.
aiq & {al, .. .,ai}. Let s := tg(al, .. .,ai) and t := tG(al, .. '/aH—l)-
Since p; is a partial isomorphism we know that H |= s(by, ..., b;).
Since H |= 0y, there exists an element b;.; € Vy such that H =
t(by, ..., biy1). Weset piyq := p;U{(a;41,bi+1)} and obtain a partial
isomorphism extending p;.

If i is odd, we proceed analogously, but this time we let b; 1 €
Vh be the minimal element (with respect to the enumeration of
V) which is not in the image of p;, i.e. bjyq & {by,...,b;}. For
s := ty(by,...,b;) and t := ty(by,...,biy1), the same reasoning
as above yields an element a;,1 € V such that G = t(ay,...,4;11.
Again we obtain an extended partial isomorphism by setting p;1 :=
piU{(aiy1,biy1)}-

Finally we let p := U;>¢ pi- By construction we have that dom(p) = Vg
and im(p) = Vi, hence p: G -~ H. Q.E.D.

In particular, w-categorical theories are complete:
Theorem 5.11. T axiomatises a complete theory, i.e. for all sentences
p € FO({E}) wehave T = ¢ or T = —¢.

Proof. Assume for some sentence i € FO({E}) it holds that T [~ o
and T & —1p. Then by the downwards Léwenheim-Skolem theorem,
there exist two countable graphs G and H with G = T U {¢} and
H | TU{-¢}. In particular this implies G ¥ H, which contradicts
Theorem 5.10. Q.E.D.

Theorem 5.12. [Glebskii et al., R. Fagin] For all ¢y € FO({E}) it holds:

() =0 or p(yp)=1

Proof. If T = 1, then p(¢) = 1. Otherwise, T = —p, and hence u(y) =
1—p(-y) =0. Q.E.D.

In particular, we can give a precise characterisation of those first-
order properties which hold almost surely in random graphs.
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5.2 Zero-one law for first-order logic

Corollary 5.13. Let iy € FO({E}). Then

py)=1 iff TEy iff REy

5.2.1 Applications

We can use Theorem 5.12 to show that certain classes of graphs are
not definable in first-order logic: if a class K of graphs has undefined
asymptotic probability or an asymptotic probability different from 0
and 1, then clearly K cannot be defined in first-order logic. More gen-
erally, this method yields non-definability of K for every logic that
has a 0-1-law, e.g. for LY, as we see later. For instance, consider
the class EvenV = {G = (V,E) : |V] is even} with undefined asymp-
totic probability or the class EvenE = {G = (V,E) : |E| is even} with
u(EvenE) = % Moreover, we can use our results as a convenient method
to determine the asymptotic probability for many natural classes of
graphs.

(1) We want to determine y(Con) where Con denotes the class of con-
nected graphs. Let s be an atomic 2-type in variables x, y containing
—Exy and let t be the atomic 3-type in variables x, i, z which extends
s and contains Exz A Eyz. Then G |= 05 iff G has diameter at most
2. Hence, G |= 0, implies G € Con, which means that y(Con) = 1.

(2) Let K be any class of graphs which exclude a forbidden sub-
graph H = ({v1,...,v¢},E). Then p(K) = 0. To see this, we
set s;(x1,...,%;) := ty(vy,...,v;) for i < k and consider the ex-
tension axioms o;s;.,. Then clearly ¢ := A; 4 05;s,., is a logical
consequence of T, which means that y(i) = 1. Moreover, if G = ¢,
then G contains H as an induced subgraph. We conclude that
w(K) < 1—pu(p) = 0. As an application, consider the class of
planar graphs which exclude K5 (the complete graph on 5 vertices)
and the class of k-colourable graphs which exclude Ky (where k is
fixed). To put it in words, a random graph is almost never planar
nor k-colourable.
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5 Zero-one laws

5.3 Generalised zero-one laws

In this section we want to generalise our considerations in two different
ways. Firstly, instead of restricting ourselves to graphs, we want to work
on more general classes of structures and analyse whether the zero-one-
law for FO still holds. Secondly, as FO has rather limited expressive
power, we look for zero-one laws for more powerful logics as well.

Let T be an arbitrary vocabulary (not necessarily relational). By
Str, (T) we denote the set of all T-structures over the universe {0, ..., n —
1}. As before we define a sequence 7 = (1, ji2,...) of uniform prob-
ability distributions y,, : Str,(t) — [0,1], i.e. for every 2 € Str,(7) we
set

1
() = ST

We claim that FO(7) has a zero-one law if, and only if, T contains
no function symbols. To this end, we first consider the case where T
contains function symbols:

(1) Assume {P,c} C T where c is a constant symbol and P a monadic
relation. Then for ¢ := Pc we have ju, (1) = § for all n > 1, hence
() = 1, ie. the zero-one law does hold in this case.

(2) Assume f € T where f is a unary function symbol. Consider the
FO(t)-sentence 1 := Jx(fx = x) stating that f has a fixed point.
For n > 1 we have

i =11 (51 =1 (1)’

i=0
=Pr[f(i)#i

n
Since (1 — %) — e~ ! for n — oo, the zero-one law does not hold
in this case either.

For the other direction, let T be purely relational, T = {Ry, ..., R¢}.
The proof strategy we used over graphs generalises for this general in a
straightforward way:

® An atomic T-type in k variables is a maximal, consistent set of 7-

80



5.3 Generalised zero-one laws

literals over variables x1, ..., x;. For a T-structure 2l and @ € 2 we
set to(7) = {@(X) : ¢ a T-literal with 2 |= ¢(a@)}.

® The t-extension axiom os; for two atomic T-types s and ¢ (in k and
k + 1 variables, respectively) with s C t is defined as

O 1= VX(s(X) = 1t (X, Xps1))-

As before, we let T denote the set of all T-extension axioms

e Again we can show that y(os¢) = 1 for all o5 € T. Let r denote
the number of literals in ¢ which contain x,,.1. Then, for a random
structure 2 € Str,(7), @ € A and a,,11 it holds

Pri2l = t(a@,ap1) |A Es(@)] =27"
Thus

pn(—0st) = pu (3% (5(X) A V1 7H(E, Xiy1)))

S nm(l _ 2—1/)11—111

exp. fast
3

e T is w-categorical: analogously!

Our analysis raises the question why even basic functions but not
arbitrary relations inhibit a zero-one law. The reason is that atomic
experiments are not longer stochastically independent. For instance,
consider the experiments f(a) = b and f(a) = ¢ (for b # c), then

Pr[f(a) = c| f(a) = b] = 0 # Pr[f(a) = .

5.3.1 Zero-one law for LY,

We proceed to show that the zero-one law holds for LY, as well (re-
stricted to relational vocabularies). In particular, since LFP < LY,
this means that a random graph either almost surely has an LFP-
definable property or almost never does. With FO* we denote the
k-variable fragment of FO, i.e. FO* = FONLk, = {9 € FO :
¢ only contains variables x1, ..., x;}. If we restrict the set of extension
axioms T to FO* we obtain finite sets of approximations of T which are
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