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Preliminaries



Existential Rules
Vx,y,2. (HasParent(x, y) A HasSister(y, z) — HasAunt(x, z))
Vx. (Human(x) — Jy. (HasParent(x, y) A Human(y))>

Vx,y,w. (P(x, a,y) AR(y,w) AS(w,x) —» Fv. (R(w, V) A A(v)))
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Human(x) — Jy.HasParent(x,y) A Human(y)
P(x,a,y) AR(y,w) AS(w,x) = v.R(w,v) A A(v)
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The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

Director(spielberq)

ActsIn(judeLaw, ai i i, Spi
ctsIn(judeLaw, ai) DirectedBy/(ai, spielberq)
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The Skolem Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w)  IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
®
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Acyclicity Notions

Restricted Chase (Non)Termination for

Existential Rules with Disjunctions
David Carral, Irina Dragoste, and Markus Krétzsch

[IJCAI 2017]



Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [I[JCAI 2011]

* Model-Summarising Acyclicity ( ) and
Model-Faithful Acyclicity ( ) [J. Artif. Intell. Res. 2013]
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* In particular, it always terminates on the critical instance.
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* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.
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Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.
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* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase. IsPartOf

* The red rule may not be applied to introduce Director(v(w(t))) since its application
with respect to the substitution {x / w(t)} is restricted. t - Wheel
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(a) Acyclicity

w . If the existential
dependency graph of a given set
of rules is acyclic, then the set of
terms introduced during the
computation of the chase is finite.
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1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.
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SRI| Axioms

Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.

2. Every function symbol in the skolemisation of a SR
ontology has arity one
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SRI| Axioms

Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.

2. Every function symbol in the skolemisation of a SR
ontology has arity one

Corollary. To guarantee that tractable CQ entailment over a
SRI ontology is possible we only need to verity the following:
1. Acyclicity.

2. Braid length in the dependency graph is bounded.
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Acyclicity
MOWL Corpus Oxford Ontology Repo
Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Braid Length

MOWL Corpus + Oxford

(max. length
of a braid) 1 2 3 4 o e 11 | 22 | 23 | 25 |Total
(count)| 851 | 153 | 56 | 61 | 11 | 1 1 2 | 7 | 1 |1144
74 | 83 | 93 | 98 | 99 | 99 | 99 [99.1]199.3]99.9| 100
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with VLog — System Description
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Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.
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VLog vs RDFox

Performance
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/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

’> S v v B O % BPvOvQv H#Gv ®cCyv. PP elE W 8 viveo oy o Q
I O | I I O V % Package Explorer 2 = 8 4] drone-control.dpg 1l demo-rules.dpg % = o G2 System 2 = a
e e [}
2 &%|® T @BASE <file:///home/markus/Documents/demo-rules.dpg#> Resource Monitor
@PREFIX tr: <http://example.org/transitivity-example/> Oocuplod RAM: 141516204 W6
# Rule IDE example Project -~
% Building a double exponential chain as per [Cali, Gottlog, P 2
£ project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
@ tracet [1.3M facts] % Conmstructing level 1 from level
r0(?x), r0(2y) -> s0(?x,?y,!z)
# rules-example s0(?x,?y,?2z) -> rl(?z) Derivation steps

s0(?x,c0,?2), s0(2x,c1,?2zn) -> succl(?z,?zn)

This is it, everybody should use existential rules + i B e s

i) constraints.dpg

;
o
i

% Constructing level 2

& 109-2018-09-03 [2.1K facts] r1(?x), rl(2y) -> sl(?x,?y,!z)

| . .t tl '

dCyCIICIly NOlIoNS SR

y y "  10g-2018-09-04 [1.7K facts] s1(2x,?y,?z), s1(2x,?yn,?zn), succl(?y,?yn) -> sucel(?z,?zn) .
s1(?x,?y,?z), s1l(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s

minl(?x), s1(?x,?x,?y) -> min2(?y)

max1(?x), sl(?x,?x,?y) -> max2(?y)

Surely not, a lot of work still needs to be done: ' —_

=Reasonert
* . . . .
Initializing ... loaded 542 rules in 0.104 sec.
Xper” r ler ] S WI r lor I_ eXIS er ] Ia rl I e Se S Coading exiernal data sources-...3 external sources connected
Detected acyclic rule set — using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations

View detailed statistics

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets
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& Rule IDE example Pr
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& rules-example
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1) drone-control.dpg
[9) constraints.dpg

i 10g-2018-09-03 [2.1K facts]

 10g-2018-09-04 [1.7K facts]

QB<= sao

/home/markus/Documents/demo-rules.dpg - Rule IDE

Rules list

spouse is symmetric

(?x.spouseP?®
— (?y.spouseP?®

Amale parent is a father

(?father.chi
(?father.sex

— (?child.father??

Afemale parent is a mother

(?mother.chi
(?mother.sex

— (?child.mother®® = ?mother)

amale parent of a parent is a grandfather

(?grandfathe

(?grandfather.child™®
(?parent.child®®
— (?child.relative

a male child of a child is a grandson

(?son.sex or
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ch Project Run Window Help
0vQv WGy Mo+ v . PMe @ GO @ O = Q
drone-control.dpg | 1) demo-rules.dpg % = o | ZEsystemx )
@BASE <file:///home/markus/Documents/demo-rules.dpg# Resourco Monitor
@PREFIX tr: <http://example.org/transitivity-example/> 0‘““”“"’2" 141916384 MB
% Building a double tial chain as per [Cali, Gottl 21
x0(c0). x0(c1). suce0(c0,c1). minO(c0). max0(cl). 8%
% Constructing level 1 from level 0
ro(?x), r0(?y) -> s0(2?x,?y,!z)
s0(?x,?y,?2) -> r1(?z) Derivation steps
50(2x,c0,22), s0(?x,c1,?zn) -> succl(?z,?2zn)
50(c0,c1,22), s0(ci,c0,2zn) -> sucel(?z,?zn)
s0(c0,c0,2y) -> minl(?y)
50(ci,cl,2y) -> maxl(2y)
% Constructing level 2 from level 1:
ri(ex), ri(zy) -> sl(2x,?y,!2)
s1(2x,7y,22) -> r2(22)
s1(2x,2y,22), s1(?x,2yn,?zn), sucel(?y,?yn) -> succl(?z,?zn)
s1(?x,?y,?z), s1l(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y)
maxl(2x), s1(?x,?x,2y) -> max2(?y)
=Reasoneri3 & 9 2 H @ =0
Initializing .. loaded 542 rules in 0.104 sec.
Loading external data sources....... . 3 external sources connected
Detected acyclic rule set - using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations
View detailed statistics
Writable SmartInsert | 25:12
Search Item Q | Start  Properties  Classes  Rules  About
materialisable consequences
= ?y)@?s
= ?x)@?S
materialisable consequences
1d™@ = 2child)@?X,
or genderP?! = male581097)@7y
= ?father)
materialisable consequences
1d™ = ?child)e?x,
or gender™! = female%581072)@7y
informational  consequences
r.sex or genderP?! = male@381097)@7x,
= ?parent)@?Y,
= 7child)@?z
P1038 = ?grandfather)@{type of kinshipPl®3® = grandfather9238344}
informational ~ consequences

genderP?l = male581997)@7x,
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File Edit Source Refactor Navigate Search Project Run Window Help

L Boi v iPvOoOvAav H#Gv O v P Fe@E@n:dvive
I# Package Explorer 8 = 0 141 drone-control.dpg 2] demo-rules.dpg 2
S-S v @BASE <file:///home/markus/Documents/demo-rules.dpg#>

@PREFIX tr: <http://example.org/transitivity-example/>

& Rule IDE example Project

% Building a double exponential chain as per [Cali, Gottlo Pieris
& project r0(c0). r0(c1). suee0(c0,c1). min0(c0). max0(
# trace1 [1.3M facts] % Constructing level 1 from level 0:

r0(?x), r0(?y) -> s0(?x,?y,

s0(?x,?y,?2z) -> rl(?z) .

s0(?x,c0,?2), s0(?x,c1,?zn) -> succl(?z,?zn)
80(c0,c1,?2), 80(cl,c0,?zn) -> sucel(?z,?zn)
[3) drone-control.dpg 221 . g; e :::i‘(:zg

@ rules-example

[ demo-rules.dpg

1) constraints.dpg
i 10g-2018-09-03 [2.1K facts]
 10g-2018-09-04 [1.7K facts]

% Constructing level 2 from level 1:
ri(?x), ri(?y) -> sl(?x,?y,

s1(2x,?y,?z) -> r2(2z) .

s1(2x,?y,?z), sl(2x,2?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .
s1(?x,?y,?z), sl(?xn,?yn,?zn), maxl(?y), minl(?yn), sucel(?x,?xn)
minl(?x), s1(?x,?x,?y) -> min2(?y)

maxl(?x), s1(?x,?x,?y) -> max2(2y)

=Reasoners3

Initializing ... loaded 542 rules in 0.104 sec.
Loading external data sources ........ 3 external sources connected

Detected acyclic rule set — using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations

View detailed statistics

Writable Smart Insert 25:12

Search Item

SB<= oo

Rules list

spouse is symmetric
(?x.spouse”?® = ?y)@?s

—> (?y.spouseP?® = ?x)@?s
Amale parent s a father
(?father.child™® = ?child)@?X,

(?father.sex or genderf! = male?6581097)@7y
— (?child.fatherP?? = ?father)

Afemale parent is a mother
(?mother.child®® = ?child)@?X,

(?mother.sex or gender™! = female%581072)@7y
— (?child.mother’ = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

?son.sex or genderf?! = male! X,
) derP2l 1e06581097) g7

David Carral

> s

= A 9= System 52 = 8

Resource Monitor
Occupiod RAM: 1419/16384 MB

-

8%

Derivation steps

Q  Start  Properties  Classes  Rules  About

materialisable consequences

materialisable consequences

https://tools.wmflabs.org/sqid/
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‘> NvEvYHBO R i BvOvQv #GY ®c v  PWe @8 vilvo v .. a
I O E }l I I O V( ) 1% Package Explorer 8 = a8 1] drone-control.dpg Xl demo-rules.dpg % = 8 22 System &2 = g
[}
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
& Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlo Pieris, 2/
& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 from level 0:

r0(?x), r0(?y) -> s0(?x,?y,
@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

. . . . .

50(?x,c0,22), s0(?x,c1,?zn) -> sucel(?z,?zn)

This is it, everybody should use existential rules + s R o i
! [3) drone-control.dpg s0(c0,c0,2y) -> minl(?y) .
50(c1,c1,2y) -> maxl(?y) .

1) constraints.dpg

acyc lic |’[y notions! & 1og 2016090312 R
s1(2x,2y,22) -> r2(2z) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), sl(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> &
minl(?x), s1(?x,?x,?y) -> min2(?y)

Surely not, a lot of work still needs to be done:

=Reasoners3 ¢ 9 BE @ = 0o

* Experiments with non-DL existential rule sets i

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

* Efficient implementation for acyclicity checks

View detailed statistics
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https://tools.wmflabs.org/sqid/
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(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z
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File Edit Source Refactor Navigate Search Project Run Window Help

‘> NvEvYHBO R i BvOvQv #GY ®c v  PWe @8 vilvo v .. a
I O E }l I I O V( ) 1% Package Explorer 8 = a8 1] drone-control.dpg Xl demo-rules.dpg % = 8 22 System &2 = g
[}
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2I

& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 from level 0:
r0(?x), r0(?y) -> s0(?x,?y,!z) .
H h ' . . i rules-example 50(?x,2y,22) -> ri(2z) . Derivation steps
s0(?x,c0,?z), s0(?x,c1,?zn) -> succl(?z,?zn) .
IS IS It, everyono should use existential rules + i windim o st
! [3) drone-control.dpg s0(c0,c0,2y) -> minl(?y) .

50(c1,c1,2y) -> maxl(?y) .
1) constraints.dpg

acyc| |C|’[y notions! & 1og 2016090312 s v 2t o
sl(?x,?y,?z) -> r2(?z) .
M  10g-2018-09-04 [1.7K facts] s1(?x,?y,?z), sl(?x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

=Reasoneri? & 2E B = 0o

* Experiments with non-DL existential rule sets i

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

* Efficient implementation for acyclicity checks W|<s T

Rules list

* Optimise chase reasoners

(?x.spouse”?® = ?y)@?s
—> (?y.spouseP?® = ?x)@?s

View detailed statistics

Writable Smart Insert 25:12

Amale parent s a father materialisable consequences

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

Afemale parent is a mother

:/Itgols.wmflabs.org/sqid/

(?mother.child®® = ?child)@?X,
(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,
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2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2!
(% project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
# trace1 [1.3M facts] % Constructing level 1 from level 0:
r0(?x), r0(?y) -> s0(?x,?y,!z) .

@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

This is it, everybody should use existential rules + o | BETE s

s0(cl,cl,?y) -> maxl(?y) .

1) constraints.dpg
Constructing level 2 from level 1:

acyc| IC |’[y notions! & 1og 2016090312 s v 2t o
s1(2x,2y,22) -> r2(2z) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

=Reasoneri3 e 9 S| @ = 0

* Experiments with non-DL existential rule sets A e

Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Efficient implementation for acyclicity checks W|<s T
Rules list

Optimise chase reasoners

(?x.spouse”?® = ?y)@?s
—> (?y.spouseP?® = ?x)@?s

The disjunctive case

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

View detailed statistics

*

Writable Smart Insert 25:12

*

*

*

Afemale parent is a mother

(?mother.child®® = ?child)@?X,
(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,
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/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

‘> HvEvH@BO N BvOrQAY H#GY S Yy P W gLy ey - Q
I O < e | I I O V< e 1% Package Explorer X = 8 [ drone-controldpg [ demo-rules.dpg % = O  ESystem R = g
[ ]
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor
@PREFIX tr: <http://example.org/transitivity-example/> Occupled RAM: 1419/16384 MB
& Rule IDE example Project -~
% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2!
& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 £
r0(?x), r0(?y) -> s0(?x,?y

@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

This is it, everybody should use existential rules + oo i s st

s0(cl,cl,?y) -> maxl(?y) .

1) constraints.dpg

% Constructing level 2 fro

. . .
acyclicity notions! e ||
s1(ex,7y,22) -> 12(72) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s

minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

~Reasoners ¢ > Bac

Initializing ... loaded 542 rules in 0.104 sec.

* Experiments with non-DL existential rule sets A
Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Efficient implementation for acyclicity checks W|<s T

Rules list

Optimise chase reasoners

Non-Deterministic e o BTE

View detailed statistics

*

Writable Smart Insert 25:12

*

*

—> (?y.spouseP?® = ?x)@?s

The disjunctive case = . =

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

*

Afemale parent is a mother

mother. ehite = renisran, https://tools.wmflabs.org/sqid

(?mother.sex or gender™! = female%581072)@7y N
— (?child.mother’ = ?mother) 5

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,

MFA (90) RMFA (123)
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