Reasoning over existential Rules
with Acyclicity Notions and the
Datalog-first Restricted Chase

bavid Carral () SRESEES
aVi alra DRESDEN

Slides available at https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

Preliminaries

Existential Rules
Vx,y,2. (HasParent(x, y) A HasSister(y, z) — HasAunt(x, z))
Vx. (Human(x) — Jy. (HasParent(x, y) A Human(y))>

Vx,y,w. (P(x, a,y) AR(y,w) AS(w,x) —» Fv. (R(w, V) A A(v)))

Existential Rules

HasParent(x, y) A HasSister(y, z7) — HasAunt(x, z)
Human(x) — Jy.HasParent(x,y) A Human(y)
P(x,a,y) AR(y,w) AS(w,x) = v.R(w,v) A A(v)

Existential Rules

HasParent(x, y) A HasSister(y, z7) — HasAunt(x, z)
Human(x) — Jy.HasParent(x,y) A Human(y)
P(x,a,y) AR(y,w) AS(w,x) = v.R(w,v) A A(v)

Facts

HasFriend(stan, kyle)
P(a,c,d)

Existential Rules

HasParent(x, y) A HasSister(y, z7) — HasAunt(x, z)
Human(x) — Jy.HasParent(x,y) A Human(y)
P(x,a,y) AR(y,w) AS(w,x) = v.R(w,v) A A(v)

Facts BCQs

HasFriend(stan, kyle) Jx, y.HasConflictOfInterest(x, y)
P(a,c,d) 3x, v, 2, w. P(x, ¥, 2) ARG, w) A A(w)

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

Director(spielberq)

ActsIn(judeLaw, ai i i, Spi
ctsIn(judeLaw, ai) DirectedBy/(ai, spielberq)

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw
o spielberg
®
Director(spielberq)
ActsIn(judeLaw, ai) ®

ai DirectedBy(ai, spielberq)

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw
spielberg

Director(spielberq)
Actsin
DirectedBy

ActsIn(judeLaw, ai i i, Spi
ctsIn(judeLaw, ai) DirectedBy/(ai, spielberq)

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw
spielberg

Director(spielberq)

Actsln
DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw

spielberg : Director

Director(spielberq)

Actsln
DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw

spielberg : Director

Actsln
DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw

spielberg : Director

Features

Actsln
DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw : Actor

spielberg : Director

Features

Actsln
DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw : Actor

spielberg : Director

Features

Actsln Directs

DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Chase Algorithm

Features(x, y) — Actor(y) DirectedBy(x, y) — Directs(y, x)

ActsIn(x, y) — Features(y, x)

judeLaw : Actor

spielberg : Director

Features

Actsln Directs

DirectedBy

al

Reasoning over Existential Rules with Acyclicity Notions David Carral 4/33

The Skolem Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
®

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, f,(x)) A Wheel(fy(x))
Wheel(x) — IsPartOf(x, fw(x)) A Bicycle(fw(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
®

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(X))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
®

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(X))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart

®
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(X))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
w(v(b)) : Bicycle
HasPart

IsPartOf

v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(X))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
w(v(b)) : Bicycle
HasPart

IsPartOf

v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
HasPart w(v(b)) : Bicycle
HasPart
IsPartOf
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I

IsPartOf
@

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I

IsPartOf
@

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I .

IsPartOf
&

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I .

~
~
~
~
~
~
~
~
~
s~
~

IsPartOf

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I .

~
~
~
~
~
~
~
~
~
s~
~

IsPartOf

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Skolem Chase

Bicycle(x) — HasPart(x, v(x)) A Wheel(v(x))
Wheel(x) — IsPartOf(x, w(x)) A Bicycle(w(x)) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasPart w(v(b)) : Bicycle

HasPart I -

~
~
~
~
~
~
~
~
~
s~
~

IsPartOf

v(b) : Wheel v(w(v(b))) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 5/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
o

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The

Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — Iw . IsPartOf(x, w) A Bicycle(w)

b : Bicycle

HasPart

[
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions

IsPartOf(x, y) — HasPart(y, x)

David Carral

6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
Bicycle : w(v(b))
{lasPart IsPartOf
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle
Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b)) (]

HasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle
Bicycle : w(v(b))
flasPart IsPartOf 1
HasPart 3
< 4

v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle b : Bicycle

Bicycle : w(v(b))

{lasPart IsPartOf

HasPart

e
v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 6/33

The Datalog-

~|rst

Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

Reasoning over Existential Rules with Acyclicity Notions

David Carral

7/33

The Datalog-

~|rst

Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasP
’\aﬂ)'v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions

David Carral

7/33

The Datalog-

~|rst

Restricted Chase

Bicycle(x) — 3dv . HasPart(x, v) A Wheel(v)
Wheel(x) — 3w . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

b : Bicycle

HasP
’\aﬂ)'v(b) : Wheel

Reasoning over Existential Rules with Acyclicity Notions

David Carral

7/33

Acyclicity Notions

Acyclicity Notions

Restricted Chase (Non)Termination for

Existential Rules with Disjunctions
David Carral, Irina Dragoste, and Markus Krétzsch

[IJCAI 2017]

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [I[JCAI 2011]

* Model-Summarising Acyclicity () and
Model-Faithful Acyclicity () [J. Artif. Intell. Res. 2013]

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [I[JCAI 2011]
* Model-Summarising Acyclicity (MSA) and

MFA
T

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013] MSA

Reasoning over Existential Rules with Acyclicity Notions

T
JA

T
WA

Skolem
Chase

David Carral

9/33

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [I[JCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]

* Restricted Joint Acyclicity (RJA),

Restricted Model-Summarising Acyclicity (RMSA), and
Restricted Model-Faithful Acyclicity (RMEA) [IJCAI 2017]

Reasoning over Existential Rules with Acyclicity Notions

MFA

T
MSA

T
JA

T
WA

Skolem
Chase

David Carral

9/33

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]

* Joint Acyclicity (JA) [I[JCAI 2011] MFA
* Model-Summarising Acyclicity (MSA) and T
Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013] MSA
* Restricted Joint Acyclicity (RJA), T
Restricted Model-Summarising Acyclicity (RMSA), and \
Restricted Model-Faithful Acyclicity (RMFA) [I[JCAI 2017] JTA
WA
Skolem
Chase

R“FA
RMSA

T
RJA

Datalog-first
Restricted
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral

9/33

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005] _«RMFA
* Joint Acyclicity (JA) [IJCAI 2011] MFA T
* Model-Summarising Acyclicity (MSA) and T "RMSA
Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013] MSA~ T
* Restricted Joint Acyclicity (RJA), T
Restricted Model-Summarising Acyclicity (RMSA), and \ —— RJA
Restricted Model-Faithful Acyclicity (RMFA) [I[JCAI 2017] JA Datalog-first
T Restricted
WA Chase
Skolem
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral 9/33

Acyclicity Notions for Universal Termination

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005] _"RMFA
« Joint Acyclicity (JA) [IJCAI 2011] MFA |
* I\/IodeI-Sulmmarising .Alcyclicity (MSA) gnd T | o RMSA
Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013] MSA T
* Restricted Joint Acyclicity (RJA), T
Restricted Model-Summarising Acyclicity (RMSA), and \ _—a RJA
Restricted Model-Faithful Acyclicity (RMFA) [I[JCAI 2017] JA .
T Datalog-first
Bicycle(x) — 3v . HasPart(x, v) A Wheel(v) WA Restricted
Wheel(x) — Jw . IsPartOf(x, w) A Bicycle(w) Chase
Skolem
IsPartOf(x, y) — HasPart(y, x) Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral 9/33

The MFA Check

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

Bicycle, Wheel : %

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : %

w(>) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
®

HasPart

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : %

w(>) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral

10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
O

HasPart

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : %

w(>) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral

10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
O

HasPart

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : % >e

DirectedBy v(w())

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
O

HasPart

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : % e

DirectedBy v(w())

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
O

HasPart

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : % e

DirectedBy v(w())

HasPart w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3y . HasPart(x, v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(*)
O

HasPart

MFA

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : % e

DirectedBy v(w())

HasPart w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 10/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

Bicycle, Wheel : %

Reasoning over Existential Rules with Acyclicity Notions David Carral 11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

Bicycle, Wheel : %

IsPartOf ®

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w)

Wheel : v(%)

HasPart, HasPart

IsPartOf

Bicycle, Wheel : %

IsPartOf ®

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions

IsPartOf(x, y) — HasPart(y, x)

David Carral

11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w)

Wheel : v(%)

HasPart, HasPart

IsPartOf

Bicycle, Wheel : %

IsPartOf ®

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions

IsPartOf(x, y) — HasPart(y, x)

David Carral

11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Wheel : v(%)

HasPart, HasPart

IsPartOf

IsPartOf

®
w(v()) : Bicycle

Bicycle, Wheel : %

IsPartOf ®

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Wheel : v() HasPart

IsPartOf\.

w(v()) : Bicycle

HasPart, HasPart

IsPartOf

Bicycle, Wheel : %

IsPartOf ®

w() : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 11/33

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Wheel : v() HasPart

IsPartOf\.

w(v()) : Bicycle

HasPart, HasPart

IsPartOf

Bicycle, Wheel : % P
IsPartOf o
srar , HasPart v(W(%)) : Wheel
w() : Bicycle
David Carral 11/33

Reasoning over Existential Rules with Acyclicity Notions

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Wheel : v() HasPart

IsPartOf\.

w(v()) : Bicycle

HasPart, HasPart

IsPartOf

Bicycle, Wheel : % Se
IsPartOf
srar ¥ HasPart v(W(%)) : Wheel
w() : Bicycle
David Carral 11/33

Reasoning over Existential Rules with Acyclicity Notions

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(v(x))) : Wheel

Wheel : v() HasPart
HasPart, HasPart [sPartOf HasPart

IsPartOf w(v(%)) : Bicycle

Bicycle, Wheel : % >e
IsPartOf
srar ¥ HasPart v(W(%)) : Wheel
w() : Bicycle
David Carral 11/33

Reasoning over Existential Rules with Acyclicity Notions

The MFA Check

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “x”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(v(x))) : Wheel

Wheel : v() HasPart
HasPart, HasPart [sPartOf HasPart

IsPartOf w(v(%)) : Bicycle N ot M F A |

Bicycle, Wheel : % >e
IsPartOf
srar ¥ HasPart v(W(%)) : Wheel
w() : Bicycle
David Carral 11/33

Reasoning over Existential Rules with Acyclicity Notions

he

RM

A Check:

Blocked Checks

he

RM

A Check:

Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w)

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The

RM

A Check:

Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w)

Reasoning over Existential Rules with Acyclicity Notions

David Carral

IsPartOf(x, y) — HasPart(y, x)

12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(t)) : Wheel

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is e

derived during the computation of a chase sequence.

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(t)) : Wheel

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is e

derived during the computation of a chase sequence.
* Such a fact may only be derived via application of the red rule on Bicycle(w(t))

which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(t)) : Wheel

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is e

derived during the computation of a chase sequence.
* Such a fact may only be derived via application of the red rule on Bicycle(w(t))

which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and @ w(t) : Bicycle
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

IsPartOf

t : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is v(w(t)) : Wheel

. . . ®
derived during the computation of a chase sequence.
* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and @ w(t) : Bicycle
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.
* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase. IsPartOf
t : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is v(w(t)) : Wheel

. . . o
derived during the computation of a chase sequence.
* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and w(t) : Bicycle
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived. HasPart
* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase. IsPartOf
t : Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check: Blocked Checks

* Problem: Datalog-first restricted chase termination is not monotone!

* In particular, it always terminates on the critical instance.

* |dea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the
must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(w(t)) : Wheel

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is e

derived during the computation of a chase sequence.
* Such a fact may only be derived via application of the red rule on Bicycle(w(t))

which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and w(t) : Bicycle
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived. HasPart

* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase. IsPartOf

* The red rule may not be applied to introduce Director(v(w(t))) since its application
with respect to the substitution {x / w(t)} is restricted. t - Wheel

Reasoning over Existential Rules with Acyclicity Notions David Carral 12/33

The RMFA Check

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

Bicycle, Wheel : »%

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf
Bicycle, Wheel : % "~-~-..____I§I.’z.a}rf(-).f9‘

W(‘A") : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

HasPart,
IsPartOf

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel
HasPart, \ .-~ 7
IsPaxtOf \ = _.--°7
_______ HasPart
IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral

13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral

13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

[sPartOf \ = —— risaseeTe w(v(*)) : Bicycle

flasPart IsPartOf YT

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral

13/33

The RMFA Check

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)
Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

HasPart .

v(w(x)) : Wheel

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral 13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral

13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral

13/33

The RMFA Check

* Perform a chase like construction on the critical instance.

* Only apply an existential rule with respect to a substitution if this pair is not blocked.

* Qive up if the procedure does not stop before the occurrence of a cyclic term.

Bicycle(x) — 3Jy . HasPart(x, v) A Wheel(v)

Wheel(x) — 3y . IsPartOf(x, w) A Bicycle(w) IsPartOf(x, y) — HasPart(y, x)

v(%) : Wheel

HasPart,

IsPartOf
HasPart

IsPartOf

Bicycle, Wheel : »%
w (%) : Bicycle

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral

RMFA

13/33

Real-world Coverage

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Real-world Coverage

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form A(x) = dy.R(x,y) A B(y)

Real-world Coverage

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form A(x) = dy.R(x,y) A B(y)

* We also considered (all) the rule sets in
the Oxford Ontology Library.

Real-world Coverage

* We selected all rule sets from the 1220
MOWLCorp with less than 1000 rules of
the form A(x) — dy.R(x,y) A B(y) 915 -
* We also considered (all) the rule sets in 510
the Oxford Ontology Library.
305 -
O J

MFA (884) RMFA (936)

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Real-world Coverage

* We selected all rule sets from the 1220
MOWLCorp with less than 1000 rules of
the form A(x) — dy.R(x,y) A B(y) 915 -
* We also considered (all) the rule sets in 510
the Oxford Ontology Library.
305 -
O J

MFA (884) | RMFA (936)
+6%

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Real-world Coverage

* \We selected all rule sets from the 1220
MOWLCorp with less than 1000 rules of
the form A(x) — dy.R(x,y) A B(y) 915
* We also considered (all) the rule sets in 510
the Oxford Ontology Library.
* We developed a cyclicity notion, i.e., 305 1
sufficient condition for chase non-
termination: Restricted Model-Faithful 0 - ,
Cyclicity (RMFC) MFA (884) RMFA (936)

+6%

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Real-world Coverage

* We selected all rule sets from the 1220

MOWLCorp with less than 1000 rules of

the form A(x) — dy.R(x,y) A B(y) 915
* We also considered (all) the rule sets in 510
the Oxford Ontology Library.
* We developed a cyclicity notion, i.e., 305 1

sufficient condition for chase non-
termination: Restricted Model-Faithful 0 -
Cyclicity (RMFC) MFA (884) RMFA (936)

+6%

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Real-world Coverage

* We selected all rule sets from the 1220

MOWLCorp with less than 1000 rules of

the form A(x) — dy.R(x,y) A B(y) 915
* We also considered (all) the rule sets in 510
the Oxford Ontology Library.
* We developed a cyclicity notion, i.e., 305 1

sufficient condition for chase non-
termination: Restricted Model-Faithful 0 -
Cyclicity (RMFC) MFA (884) RMFA (936)

+6% +54%

Reasoning over Existential Rules with Acyclicity Notions David Carral 14/33

Membership Checks

rule bounded

RJA RMSA RMFA
No restrictions ExpTime ExpTime | 2-ExpTime
Variables per = = > ExpTime

Reasoning over Existential Rules with Acyclicity Notions

David Carral

15/33

Membership Checks

RJA RMSA RMFA
No restrictions ExpTime ExpTime | 2-ExpTime
Variables per .
rule bounded ° ° 2-Explime

BCQ entailment: 2-ExpTime

Reasoning over Existential Rules with Acyclicity Notions David Carral 15/33

Ensuring Tractability
of the Chase

Ensuring Tractability
of the Chase

Tractable Query Answering for Expressive

Ontologies and Existential Rules

David Carral, Irina Dragoste, and Markus Krétzsch
[ISWC 2017]

—xistential Dependency Graph

A(x) — 3y.S(x,y) A B(y)
B(x) = 3z.R(x,2) A D(2)
D(x) — E(x)
E(x) - Iw.R(x, w)
B(x) A C(x) = E(x)
S(x,y) = C(x)

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

® =

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

® =

A(x) = S(x, y(x)) A B(y(x))
B(x) — R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
D(x) - E(x) Z
E(x) = R(x, w(x))

B(x) A C(x) - E(x)

S(x,y) = L) Al
S(c, ¥(€)), B(/(0)) y
RO/(©0), 2((€))), D(y(e)

® =

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

B(x) — R(x, z(x)) A D(z(x))
D(x) — E(x) :
E(x) = R(x, w(x))
B(x) A C(x) — E(x) 2(y(0)
S(x, y) — C(X) A(c)

5(¢, y(0)), B(y(c)) y
R(y(c), 2(y(c))), D(z(y(c)))

® =

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

® =

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

® =

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

® =

Ax) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x) Z

E(x) = R(x, w(x))
B(x) A C(x) - E(x) 2(y(c))

B(c)

R(c, z(¢)), D(z(c)),
E(z(c)),

R(z(c), w(z(c)))

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

S(x,y) = C(x)

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)

E(x) = R(x, w(x))
B(x) AC(x) = E(%)
S(x,y) = C(x)

B(c)

R(c, z(¢)), D(z(c)),
E(z(c)),

R(z(c), w(z(c)))

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) — R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) = R(x, w(x))

B(x) A C(x) - E(x)

S(x,y) = C(x)

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

A(x) — 5(x, y(x)) A B(y(x))
B(x) — R(x, z(x)) A D(z(x))

D(x) - E(x)
E(x) = R(x, w(x))
B(x) A C(x) - E(x) A(c)
S(x,y) = C(x) S(c, y(c)), B(y(c)),
C(y(e)),
E(y(c)),

R(y(c), w(y(c)))

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

A(x) — 5(x, y(x)) A B(y(x))
B(x) — R(x, z(x)) A D(z(x))

o) > =) W((O)) i
E(x) = R(x, w(x))
B(x) A C(x) - E(x) A(c)
S(x,y) — C(x) S(c, y(€)), BOY(0)),
C(y(c)), v
E(y(0)),

R(y(c), w(y(c)))

Reasoning over Existential Rules with Acyclicity Notions David Carral 17/33

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

—xistential Dependency Graph

A(x) = S(x, y(x)) A B(y(x))
B(x) = R(x, z(x)) A D(z(x))
D(x) - E(x)
E(x) — R(x, w(x))
B(x) A C(x) - E(x)
S(x,y) = C(x)

(a) Acyclicity

(a) Acyclicity

z(c)

(a) Acyclicity

z(c)

w(z(c))

(a) Acyclicity

z(c)
W Z
y(w(z(c)))

w(z(c))

(a) Acyclicity

z(c)
W Z
y(w(z(c)))

w(z(c))

2(y(w(z(c))))

(a) Acyclicity

z(¢)
W Z
y(w(z(c)))

w(z(c)) w(z(y(w(z(c)))))

z(y(w(z(c))))

(a) Acyclicity

z(¢)
W Z
y(w(z(c)))

w(z(c)) w(z(y(w(z(c)))))

z(y(w(z(c))))

(a) Acyclicity

w . If the existential
dependency graph of a given set
of rules is acyclic, then the set of
terms introduced during the
computation of the chase is finite.

(f) Arity at Most 1

Film(x) — Jy.IsFilmDirectedBy(x, y) A Director(y)
A(x) AB(x, w) A C(x,2) = Jz.R(x, w, 2)

(f) Arity at Most 1

Film(x) — 3y .IsFilmDirectedBy(x, y) A Director(y)
Film(x) — IsFilmDirectedBy(x, y(x)) A Director(y(x))
A(x) AB(x,y) AC(x,2) = 3z.R(x,y,2)
A(x) A B(x, w) A C(x,2) = R, w, z(x, w))

(f) Arity at Most 1

Film(x) — 3y .IsFilmDirectedBy(x, y) A Director(y)
Film(x) — IsFilmDirectedBy(x, y(x)) A Director(y(x))
A(x) AB(x,y) AC(x,2) = 3z.R(x,y,2)
A(x) A B(x, w) A C(x,2) = R, w, z(x, w))

[f the arity of every function symbol in the
Skolemisation of a program is at most 1, then every term
in the chase is of the form x1(...xn(c)...) with ¢ constant.

(f) Arity at Most 1

Hemark. If the arity of every function symbol in the

Skolemisation of a program is at most 1, then every term
in the chase is of the form x1(...xn(c)...) with ¢ constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral 20/33

(f) Arity at Most 1

Hemark. If the arity of every function symbol in the
Skolemisation of a program is at most 1, then every term
in the chase is of the form x1(...xn(c)...) with ¢ constant.

Corollary. Every term
occurring in the chase
corresponds to a path
In the dependency
graph and a constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral 20/33

(f) Arity at Most 1

[f the arity of every function symbol in the

skolemisation of a program is at most 1, then every term
in the chase is of the form x1(...xn(c)...) with ¢ constant.

Every term °

occurring in the chase
corresponds to a path M Z
In the dependency

graph and a constant.

(f) Arity at Most 1

Hemark. If the arity of every function symbol in the
Skolemisation of a program is at most 1, then every term
in the chase is of the form x1(...xn(c)...) with ¢ constant.

Corollary. Every term A
occurring in the chase v(w(z(y(c)))
corresponds to a path M , YV(©)

In the dependency
graph and a constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral 20/33

-nsuring Iractability

Reasoning over Existential Rules with Acyclicity Notions David Carral 21/33

-nsuring Iractability

(a) The dependency graph
Is acyclic.

-nsuring Iractability

(a) The dependency graph
Is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

-nsuring Iractability

(a) The dependency graph

Is acyclic.

All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant

the program is at
most 1.

-nsuring Iractability

(a) The dependency graph

Is acyclic.

All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

-nsuring Iractability

(a) The dependency graph

Is acyclic.

All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.

Rules can be applied

(w) The number iIn polynomial time
W u

of variables per

rule is bounded. The number of facts is

polynomial in the
number of terms

-nsuring Iractability

(a) The dependency graph

Is acyclic.
All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.
Rules can be app“ed The number of paths Ig
in polynomial time the dependency graph
(w) The number is polynomial

of variables per

rule is bounded. The number of facts is

polynomial in the
number of terms

-nsuring Iractability

(a) The dependency graph Polynomiality

Is acyclic.
All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.
Rules can be app“ed The number of paths Ig
in polynomial time the dependency graph
(w) The number is polynomial

of variables per

rule is bounded. The number of facts is

polynomial in the
number of terms

-nsuring Iractability

(a) The dependency graph

Is acyclic.

All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.

Rules can be applied

(w) The number iIn polynomial time
W u

of variables per

rule is bounded. The number of facts is

polynomial in the
number of terms

Polynomiality

The number of paths in
the dependency graph
IS polynomial

[

(?)

Bralds

Bralds

Bralds

Bralds

-nsuring Iractability

(a) The dependency graph

IS acyclic.

All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.

Rules can be applied

(w) The number In polynomial time
W u

of variables per

rule is bounded. The number of facts is

polynomial in the
number of terms

Polynomiality

The number of paths in
the dependency graph
IS polynomial

[

(?)

-nsuring Iractability

(a) The dependency graph Polynomiality

is acyclic.
All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.
Rules can be app“ed The number of paths Ig
in polynomial time the dependency graph
(w) The number is polynomial

of variables per

rule is bounded. The number of facts is

polynomial in the (b) The length of the braids in the
number of terms dependency graph is bounded.

EnSU”ng TraCtablllty 1. Fixed query size.

2. Horn rule set.

(a) The dependency graph Polynomiality

is acyclic.
All skolem terms
(f) The arity of all correspond to some path in
function symbols in the dependency graph and
the skolemisation of some constant
the program is at
most 1.
Rules can be app“ed The number of paths Ig
in polynomial time the dependency graph
(w) The number is polynomial

of variables per

rule is bounded. The number of facts is

polynomial in the (b) The length of the braids in the
number of terms dependency graph is bounded.

Real-world coverage: S

An..NA,CB ~» NA® - B
i=1

2
-
X
C
C
>
!

, P A = /B
i=1

A(Y) A R(x,y) — B(x)
A(x) —» dy.R(x,y) A B(y)
R(x,y) — S(x,y)

R(x,y) AS(y,2) = S(x,2)

/\Ri(x’y) - S(X,y)

i=1
A(a)
R(a,b)

1111

=
m
=
=
M
%)
!

=

S
SIS
U

Rl Ontologies

1111 1

!

I

I

N\ A - B)
i=1

A = \/ B
i=1

A(Y) A R(x,y) — B(x)
A(x) —» dy.R(x,y) A B(y)

R(x,y) — S(x,y)

R, y) AS(y,2) = S(x,2)

/\Ri(x’y) - S(X,y)

i=1
A(a)
R(a,b)

Real-world coverage: SRI Ontologies

Deciding CQ entailment for SR
ontologies is 2ExpTime-Hard and in
3ExpTime.

An..NA,CB ~» NA® - B

ACB,U...UB

n

ACVR.B
ACdR.B
RCS
RoSLCV

RM..MRLCS

A(a)
R(a, b)

1111 1

!

I

I

=1
A = \/ B
=1

A(Y) A R(x,y) — B(x)
A(x) —» dy.R(x,y) A B(y)
R(x,y) — S(x,y)

R(x,y) AS(y,2) = S(x,2)

/\Ri(x’y) - S(X,y)

i=1
A(a)
R(a,b)

Real-world coverage: SRI Ontologies

Deciding CQ entailment for SR
ontologies is 2ExpTime-Hard and in
3ExpTime.

1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Real-world coverage: SRI Ontologies

Femark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

An..NA,CB ~» NA® - B
i=1
ACBU...UB, » AR - \/B®
i=1
ACVR.B » A()AR(Kx,y) — B(x)
AC3dR.B » A(x) —» dy.R(x,y) A B(y)
RCS — R(x,y) > S(x,y)
ReSCV — Ry AS(Y,2) — Sx,2)

RM..MRLCS

A(a)
R(a, b)

!

I

I

/\Ri(x’ y) - S(X, y)

i=1
A(a)
R(a, b)

Reasoning over Existential Rules with Acyclicity Notions

Remark 2.

1. SRI rules feature at most 3 variables.

2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

David Carral 24/33

An..NA,CB ~» NA® - B

ACB,U...UB

n

ACVR.B
ACdR.B
RCS
RoSLCV

RM..MRLCS

A(a)
R(a, b)

1111 1

!

I

I

=1
A = \/ B
=1

A(Y) A R(x,y) — B(x)
A(x) —» dy.R(x,y) A B(y)
R(x,y) — S(x,y)

R(x,y) AS(y,2) = S(x,2)

/\Ri(x’y) - S(X,y)

i=1
A(a)
R(a,b)

Real-world coverage: SRI Ontologies

Deciding CQ entailment for SR
ontologies is 2ExpTime-Hard and in
3ExpTime.

1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Real-world coverage: SRI Ontologies

Femark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

An..NA,CB ~» NA® - B
i=1
ACBU...UB, » AR - \/B®
i=1
ACVR.B » A()AR(Kx,y) — B(x)
AC3dR.B » A(x) —» dy.R(x,y) A B(y)
RCS — R(x,y) - S(x,y)
ReSCV = Ry AS(Y,2) — Sx,2)

RM..MRLCS

A(a)
R(a, b)

!

I

I

/\Ri(x’ y) - S(X, y)

i=1
A(a)
R(a, b)

Reasoning over Existential Rules with Acyclicity Notions

Remark 2.

1. SRI rules feature at most 3 variables.

2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

David Carral 24/33

An..NA,CB ~» NA® - B

ACB,U...UB

n

ACVR.B
ACdR.B
RCS
RoSLCV

RM..MRLCS

A(a)
R(a, b)

1111 1

!

I

I

=1
A = \/ B
=1

A(Y) A R(x,y) — B(x)
A(x) —» dy.R(x,y) A B(y)
R(x,y) — S(x,y)

R(x,y) AS(y,2) = S(x,2)

/\Ri(x’y) - S(X,y)

i=1
A(a)
R(a,b)

Real-world coverage: SRI Ontologies

Deciding CQ entailment for SR
ontologies is 2ExpTime-Hard and in
3ExpTime.

1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

SRI| Axioms

Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.

2. Every function symbol in the skolemisation of a SR
ontology has arity one

Reasoning over Existential Rules with Acyclicity Notions David Carral 25/33

SRI| Axioms

Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.

2. Every function symbol in the skolemisation of a SR
ontology has arity one

Corollary. To guarantee that tractable CQ entailment over a
SRI ontology is possible we only need to verity the following:
1. Acyclicity.

2. Braid length in the dependency graph is bounded.

Reasoning over Existential Rules with Acyclicity Notions David Carral 25/33

—valuation Results

Reasoning over Existential Rules with Acyclicity Notions David Carral 26/33

—valuation Results
Acyclicity
MOWL Corpus Oxford Ontology Repo
Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Reasoning over Existential Rules with Acyclicity Notions

David Carral

26/33

—valuation Results
Acyclicity
MOWL Corpus Oxford Ontology Repo
Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Braid Length

MOWL Corpus + Oxford

(max. length
of a braid) 1 2 3 4 o e 11 | 22 | 23 | 25 |Total
(count)| 851 | 153 | 56 | 61 | 11 | 1 1 2 | 7 | 1 |1144
74 | 83 | 93 | 98 | 99 | 99 | 99 [99.1]199.3]99.9| 100

Reasoning over Existential Rules with Acyclicity Notions

David Carral

26/33

(a, f, b, w, p)

coNP /P /
(a b, w) 7 (afbp) T Ky
./’//coNPNP/NP. (a, f,.w, p) . (& b,.w, p)
(a, f, p)
7 a ED) (afw) P b, w) (a, b, p) (a, w, p)
g CONEXPTIME/EXPTIME/,’/
(af) .7 (ab) (aw (ap)
o coN2ExPTIME/2ExPTIME

/
[]

(a)

Reasoning over Existential Rules with Acyclicity Notions David Carral 27/33

V0Log

V0Log

Efficient Model Construction for Horn Logic

with VLog — System Description
Jacopo Urbani, Markus Krotzsch, Ceriel J. H. Jacobs,

rina Dragoste, and David Carral
[IJCAR 2018]

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

| = F

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

R>X<

| =Fi——G1

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

An Implementation for the DF Restricted Chase

Consider a rule set R and an instance I.
Let R, and Ry = {r, ..., 1,} be the sets of all Datalog and non-Datalog rules in R, respectively.

The Datalog-first restricted chase of R and I, denoted with Ch(R,I),is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral 29/33

VLog vs RDFox

Performance

EM ()] ototototototatototetotetototetotetet RIS e e T o 0 OM-Q&OU

% 00z-doop

&% 00T-doap
Alowaw Jo 1no
005 € G S ey MT-INGN1

........... ; [

% oto-wan
@ INT-s10100p

MOT-SI0100p

821-91S
0r0-Wgon
0zo-Wgon
0TO-WgOoN
% 080-10e9Y
090-10e9y
0v0-10e9y

g VLog time
RDFox time

e G00-101dun

sec
20
15
10
5

0

10°
10°
10
06
10°
10*
10°
0
0

00z-daap

% 00T-dosp
Alowauw Jo 1no
............ s M T-INEG N

% 00T-WaN

< FHE 0T0-wan

INT-S10100p

8¢T-91S
g 0v0-INGoN
020-Ngon

@ number of derived facts (right axis)

@ 0TO-WEOoN
080-"10e9Y
090-"10e3Y
0t0-10e9Y

g VLog memory
RDFox memory

MiB
5120
2048
1024

4096
3072

asey) palolsay

2 010-101dIUN

M0T-SI0100p

0T0-l0idiun

@ S00-10idiun

% 95z-ABojojuo

sec

10°

96z-ABojouQ

MiB

Fig. 1. Memory usage (left) and materialisation time (right) for VLog and RDFox

30/33

David Carral

Reasoning over Existential Rules with Acyclicity Notions

Conclusions

Problem Solved?

This is it, everybody should use existential rules +
acyclicity notions!

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

Problem Solved?

This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

Problem Solved?

This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

Problem Solved?

This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

’> S v v B O % BPvOvQv H#Gv ®cCyv. PP elE W 8 viveo oy o Q
I O | I I O V % Package Explorer 2 = 8 4] drone-control.dpg 1l demo-rules.dpg % = o G2 System 2 = a
e e [}
2 &%|® T @BASE <file:///home/markus/Documents/demo-rules.dpg#> Resource Monitor
@PREFIX tr: <http://example.org/transitivity-example/> Oocuplod RAM: 141516204 W6
Rule IDE example Project -~
% Building a double exponential chain as per [Cali, Gottlog, P 2
£ project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
@ tracet [1.3M facts] % Conmstructing level 1 from level
r0(?x), r0(2y) -> s0(?x,?y,!z)
rules-example s0(?x,?y,?2z) -> rl(?z) Derivation steps

s0(?x,c0,?2), s0(2x,c1,?2zn) -> succl(?z,?zn)

This is it, everybody should use existential rules + i B e s

i) constraints.dpg

;
o
i

% Constructing level 2

& 109-2018-09-03 [2.1K facts] r1(?x), rl(2y) -> sl(?x,?y,!z)

| . .t tl '

dCyCIICIly NOlIoNS SR

y y " 10g-2018-09-04 [1.7K facts] s1(2x,?y,?z), s1(2x,?yn,?zn), succl(?y,?yn) -> sucel(?z,?zn) .
s1(?x,?y,?z), s1l(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s

minl(?x), s1(?x,?x,?y) -> min2(?y)

max1(?x), sl(?x,?x,?y) -> max2(?y)

Surely not, a lot of work still needs to be done: ' —_

=Reasonert
*
Initializing ... loaded 542 rules in 0.104 sec.
Xper” r ler] S WI r lor I_ eXIS er] Ia rl I e Se S Coading exiernal data sources-...3 external sources connected
Detected acyclic rule set — using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations

View detailed statistics

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

File Edit Source Refactor Navigate Sear

S

% Package Explorer 3%

10}

Problem Solved?

& Rule IDE example Pr

& project
@ tracet [1.3M facts]
& rules-example

[demo-rules.dpg

This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

1) drone-control.dpg
[9) constraints.dpg

i 10g-2018-09-03 [2.1K facts]

 10g-2018-09-04 [1.7K facts]

QB<= sao

/home/markus/Documents/demo-rules.dpg - Rule IDE

Rules list

spouse is symmetric

(?x.spouseP?®
— (?y.spouseP?®

Amale parent is a father

(?father.chi
(?father.sex

— (?child.father??

Afemale parent is a mother

(?mother.chi
(?mother.sex

— (?child.mother®® = ?mother)

amale parent of a parent is a grandfather

(?grandfathe

(?grandfather.child™®
(?parent.child®®
— (?child.relative

a male child of a child is a grandson

(?son.sex or

Reasoning over Existential Rules with Acyclicity Notions

David Carral

ch Project Run Window Help
0vQv WGy Mo+ v . PMe @ GO @ O = Q
drone-control.dpg | 1) demo-rules.dpg % = o | ZEsystemx)
@BASE <file:///home/markus/Documents/demo-rules.dpg# Resourco Monitor
@PREFIX tr: <http://example.org/transitivity-example/> 0‘““”“"’2" 141916384 MB
% Building a double tial chain as per [Cali, Gottl 21
x0(c0). x0(c1). suce0(c0,c1). minO(c0). max0(cl). 8%
% Constructing level 1 from level 0
ro(?x), r0(?y) -> s0(2?x,?y,!z)
s0(?x,?y,?2) -> r1(?z) Derivation steps
50(2x,c0,22), s0(?x,c1,?zn) -> succl(?z,?2zn)
50(c0,c1,22), s0(ci,c0,2zn) -> sucel(?z,?zn)
s0(c0,c0,2y) -> minl(?y)
50(ci,cl,2y) -> maxl(2y)
% Constructing level 2 from level 1:
ri(ex), ri(zy) -> sl(2x,?y,!2)
s1(2x,7y,22) -> r2(22)
s1(2x,2y,22), s1(?x,2yn,?zn), sucel(?y,?yn) -> succl(?z,?zn)
s1(?x,?y,?z), s1l(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y)
maxl(2x), s1(?x,?x,2y) -> max2(?y)
=Reasoneri3 & 9 2 H @ =0
Initializing .. loaded 542 rules in 0.104 sec.
Loading external data sources....... . 3 external sources connected
Detected acyclic rule set - using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations
View detailed statistics
Writable SmartInsert | 25:12
Search Item Q | Start Properties Classes Rules About
materialisable consequences
= ?y)@?s
= ?x)@?S
materialisable consequences
1d™@ = 2child)@?X,
or genderP?! = male581097)@7y
= ?father)
materialisable consequences
1d™ = ?child)e?x,
or gender™! = female%581072)@7y
informational consequences
r.sex or genderP?! = male@381097)@7x,
= ?parent)@?Y,
= 7child)@?z
P1038 = ?grandfather)@{type of kinshipPl®3® = grandfather9238344}
informational ~ consequences

genderP?l = male581997)@7x,

32/33

Problem Solved?

This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

L Boi v iPvOoOvAav H#Gv O v P Fe@E@n:dvive
I# Package Explorer 8 = 0 141 drone-control.dpg 2] demo-rules.dpg 2
S-S v @BASE <file:///home/markus/Documents/demo-rules.dpg#>

@PREFIX tr: <http://example.org/transitivity-example/>

& Rule IDE example Project

% Building a double exponential chain as per [Cali, Gottlo Pieris
& project r0(c0). r0(c1). suee0(c0,c1). min0(c0). max0(
trace1 [1.3M facts] % Constructing level 1 from level 0:

r0(?x), r0(?y) -> s0(?x,?y,

s0(?x,?y,?2z) -> rl(?z) .

s0(?x,c0,?2), s0(?x,c1,?zn) -> succl(?z,?zn)
80(c0,c1,?2), 80(cl,c0,?zn) -> sucel(?z,?zn)
[3) drone-control.dpg 221 . g; e :::i‘(:zg

@ rules-example

[demo-rules.dpg

1) constraints.dpg
i 10g-2018-09-03 [2.1K facts]
 10g-2018-09-04 [1.7K facts]

% Constructing level 2 from level 1:
ri(?x), ri(?y) -> sl(?x,?y,

s1(2x,?y,?z) -> r2(2z) .

s1(2x,?y,?z), sl(2x,2?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .
s1(?x,?y,?z), sl(?xn,?yn,?zn), maxl(?y), minl(?yn), sucel(?x,?xn)
minl(?x), s1(?x,?x,?y) -> min2(?y)

maxl(?x), s1(?x,?x,?y) -> max2(2y)

=Reasoners3

Initializing ... loaded 542 rules in 0.104 sec.
Loading external data sources 3 external sources connected

Detected acyclic rule set — using restricted chase ...
.. Inferred 1,432,891 facts in 2.3 sec using 34 iterations

View detailed statistics

Writable Smart Insert 25:12

Search Item

SB<= oo

Rules list

spouse is symmetric
(?x.spouse”?® = ?y)@?s

—> (?y.spouseP?® = ?x)@?s
Amale parent s a father
(?father.child™® = ?child)@?X,

(?father.sex or genderf! = male?6581097)@7y
— (?child.fatherP?? = ?father)

Afemale parent is a mother
(?mother.child®® = ?child)@?X,

(?mother.sex or gender™! = female%581072)@7y
— (?child.mother’ = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

?son.sex or genderf?! = male! X,
) derP2l 1e06581097) g7

David Carral

> s

= A 9= System 52 = 8

Resource Monitor
Occupiod RAM: 1419/16384 MB

-

8%

Derivation steps

Q Start Properties Classes Rules About

materialisable consequences

materialisable consequences

https://tools.wmflabs.org/sqid/

32/33

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

‘> NvEvYHBO R i BvOvQv #GY ®c v PWe @8 vilvo v .. a
I O E }l I I O V() 1% Package Explorer 8 = a8 1] drone-control.dpg Xl demo-rules.dpg % = 8 22 System &2 = g
[}
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
& Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlo Pieris, 2/
& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 from level 0:

r0(?x), r0(?y) -> s0(?x,?y,
@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

.

50(?x,c0,22), s0(?x,c1,?zn) -> sucel(?z,?zn)

This is it, everybody should use existential rules + s R o i
! [3) drone-control.dpg s0(c0,c0,2y) -> minl(?y) .
50(c1,c1,2y) -> maxl(?y) .

1) constraints.dpg

acyc lic |’[y notions! & 1og 2016090312 R
s1(2x,2y,22) -> r2(2z) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), sl(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> &
minl(?x), s1(?x,?x,?y) -> min2(?y)

Surely not, a lot of work still needs to be done:

=Reasoners3 ¢ 9 BE @ = 0o

* Experiments with non-DL existential rule sets i

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

* Efficient implementation for acyclicity checks

View detailed statistics

Writable Smart Insert 25:12

% sQID Search Item Q | Start Properties Classes Rules About

Rules list

spouse is symmetric

(?x.spouse”?® = ?y)@?s

— (?y.spouseP?®

Amale parent is a father

(?father.child™®

= 7x)@?s

= ?child)@?X,

materialisable consequences

materialisable consequences

(?father.sex or genderf! = male?6581097)@7y
— (?child.fatherP?? = ?father)

Afemale parent is a mother

https://tools.wmflabs.org/sqid/

(?mother.child®® = ?child)@?X,
(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

‘> NvEvYHBO R i BvOvQv #GY ®c v PWe @8 vilvo v .. a
I O E }l I I O V() 1% Package Explorer 8 = a8 1] drone-control.dpg Xl demo-rules.dpg % = 8 22 System &2 = g
[}
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2I

& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 from level 0:
r0(?x), r0(?y) -> s0(?x,?y,!z) .
H h ' . . i rules-example 50(?x,2y,22) -> ri(2z) . Derivation steps
s0(?x,c0,?z), s0(?x,c1,?zn) -> succl(?z,?zn) .
IS IS It, everyono should use existential rules + i windim o st
! [3) drone-control.dpg s0(c0,c0,2y) -> minl(?y) .

50(c1,c1,2y) -> maxl(?y) .
1) constraints.dpg

acyc| |C|’[y notions! & 1og 2016090312 s v 2t o
sl(?x,?y,?z) -> r2(?z) .
M 10g-2018-09-04 [1.7K facts] s1(?x,?y,?z), sl(?x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

=Reasoneri? & 2E B = 0o

* Experiments with non-DL existential rule sets i

* Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

* Efficient implementation for acyclicity checks W|<s T

Rules list

* Optimise chase reasoners

(?x.spouse”?® = ?y)@?s
—> (?y.spouseP?® = ?x)@?s

View detailed statistics

Writable Smart Insert 25:12

Amale parent s a father materialisable consequences

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

Afemale parent is a mother

:/Itgols.wmflabs.org/sqid/

(?mother.child®® = ?child)@?X,
(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

Ir ‘> HvEYEHRO R i$PvOoOvQRv #Gv @AV PIsE@W:EvEve v = Q
O E }l I I O V(> 1% Package Explorer & = 8 4] drone-control.dpg 1l demo-rules.dpg % = 8 22 System &2 = 8
[}
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor

Occupiod RAM: 1419/16384 MB

@PREFIX tr: <http://example.org/transitivity-example/>
Rule IDE example Project -~

% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2!
(% project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
trace1 [1.3M facts] % Constructing level 1 from level 0:
r0(?x), r0(?y) -> s0(?x,?y,!z) .

@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

This is it, everybody should use existential rules + o | BETE s

s0(cl,cl,?y) -> maxl(?y) .

1) constraints.dpg
Constructing level 2 from level 1:

acyc| IC |’[y notions! & 1og 2016090312 s v 2t o
s1(2x,2y,22) -> r2(2z) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s
minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

=Reasoneri3 e 9 S| @ = 0

* Experiments with non-DL existential rule sets A e

Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Efficient implementation for acyclicity checks W|<s T
Rules list

Optimise chase reasoners

(?x.spouse”?® = ?y)@?s
—> (?y.spouseP?® = ?x)@?s

The disjunctive case

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

View detailed statistics

*

Writable Smart Insert 25:12

*

*

*

Afemale parent is a mother

(?mother.child®® = ?child)@?X,
(?mother.sex or gender™! = female%581072)@7y
— (?child.motherP? = ?mother)

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

/home/markus/Documents/demo-rules.dpg - Rule IDE

File Edit Source Refactor Navigate Search Project Run Window Help

‘> HvEvH@BO N BvOrQAY H#GY S Yy P W gLy ey - Q
I O < e | I I O V< e 1% Package Explorer X = 8 [drone-controldpg [demo-rules.dpg % = O ESystem R = g
[]
2 &% @ ¥ @BASE <file:///home/markus/Documents/demo-rules.dpg# Resource Monitor
@PREFIX tr: <http://example.org/transitivity-example/> Occupled RAM: 1419/16384 MB
& Rule IDE example Project -~
% Building a double exponential chain as per [Cali, Gottlog, Pieris, 2!
& project £0(c0). r0(c1). suceO(cO,c1). min0(c0). max0(cl). 8%
& tracel [1.3M facts] % Constructing level 1 £
r0(?x), r0(?y) -> s0(?x,?y

@ rules-example S0(2%, 7y, 22) -> £1(22) Derivation steps

This is it, everybody should use existential rules + oo i s st

s0(cl,cl,?y) -> maxl(?y) .

1) constraints.dpg

% Constructing level 2 fro

. . .
acyclicity notions! e ||
s1(ex,7y,22) -> 12(72) .
" & 10g-2018-09-04 [1.7K facts] s1(2x,2y,22), s1(2x,?yn,?zn), succl(?y,?yn) -> succl(?z,?zn) .

s1(?x,?y,?z), s1(?xn,?yn,?zn), maxl(?y), minl(?yn), succl(?x,?xn) -> s

minl(?x), s1(?x,?x,?y) -> min2(?y) .

Surely not, a lot of work still needs to be done:

~Reasoners ¢ > Bac

Initializing ... loaded 542 rules in 0.104 sec.

* Experiments with non-DL existential rule sets A
Develop tools that can assist knowledge
engineers in “repairing” non-acyclic rule sets

Efficient implementation for acyclicity checks W|<s T

Rules list

Optimise chase reasoners

Non-Deterministic e o BTE

View detailed statistics

*

Writable Smart Insert 25:12

*

*

—> (?y.spouseP?® = ?x)@?s

The disjunctive case = . =

(?father.child™® = ?child)@?X,
(?father.sex or genderf! = male?6581097)@7y
— (?child.father®® = ?father)

*

Afemale parent is a mother

mother. ehite = renisran, https://tools.wmflabs.org/sqid

(?mother.sex or gender™! = female%581072)@7y N
— (?child.mother’ = ?mother) 5

amale parent of a parent is a grandfather

(?grandfather.sex or genderP?! = male@381097)@7x)
(?grandfather.child™® = ?parent)@?Y,
(?parent.child®® = ?child)@?z

— (?child.relativeP93® = ?grandfather)@{type o

a male child of a child is a grandson

(?son.sex or genderP?l = male581097)@7x,

MFA (90) RMFA (123)

Reasoning over Existential Rules with Acyclicity Notions David Carral 32/33

Bibliography

Reasoning over existential Rules
with Acyclicity Notions and the
Datalog-first Restricted Chase

bavid Carral () SRESEES
aVi alra DRESDEN

Slides available at https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

Sibliography:
Sections

* First section
Restricted Chase (Non)Termination for Existential Rules with Disjunctions [[JCAI 2017]

https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en

* Second section
Tractable Query Answering for Expressive Ontologies and Rules [ISWC 2017]

https://iccl.inf.tu-dresden.de/web/Inproceedings3163/en

* Third section
Efficient Model Construction for Horn Logic with VLog [I[JCAR 2018]

https://iccl.inf.tu-dresden.de/web/Article3046/en

Reasoning over Existential Rules with Acyclicity Notions David Carral

35

https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3163/en
https://iccl.inf.tu-dresden.de/web/Article3046/en

Sibliography:
Rule Engines

* VLog
Efficient Model Construction for Horn Logic with VLog [[JCAR 2018]
https://iccl.inf.tu-dresden.de/web/Article3046/en
Column-Oriented Datalog Materialization for Large Knowledge Graphs [AAAI 2016]
http://korrekt.org/papers/Urbani-Jacobs-Kroetzsch Vlog-datalog-materialization-AAAI2016.pdf

* RDFox

Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems [AAAl 2014]
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2014/MNPHO 14a.pdf

Reasoning over Existential Rules with Acyclicity Notions David Carral

36

https://iccl.inf.tu-dresden.de/web/Article3046/en
http://korrekt.org/papers/Urbani-Jacobs-Kroetzsch_Vlog-datalog-materialization-AAAI2016.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2014/MNPHO14a.pdf

Sibliography:
Acyclicity Notions

* Restricted Model-Faithful Acyclicity (RMFA)
Restricted Chase (Non)Termination for Existential Rules with Disjunctions. [IJCAI 2017]
https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en

* Model-Faithful Acyclicity (MFA)
Acyclicity Notions for Existential Rules and Their Application to QA in Ontologies [J. Artif. Intell. Res. 47]
https://iccl.inf.tu-dresden.de/web/Article4005/en

* Joint Acyclicity (JA)
Extending Decidable Existential Rules by Joining Acyclicity and Guardedness [IJACI 2011]
https://iccl.inf.tu-dresden.de/web/Inproceedings3149/en

* Weak Acyclicity (WA)
Data Exchange: Semantics and Query Answering [Theor. Comput. Sci. 336]
https://www.sciencedirect.com/science/article/pii/S030439750400725X

Reasoning over Existential Rules with Acyclicity Notions David Carral

https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en
https://iccl.inf.tu-dresden.de/web/Article4005/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3149/en
https://www.sciencedirect.com/science/article/pii/S030439750400725X

