
Instantiating Knowledge Bases in Abstract
Dialectical Frameworks?

Hannes Strass

Computer Science Institute, Leipzig University

Abstract We present a translation from defeasible theory bases to ab-
stract dialectical frameworks, a recent generalisation of abstract argu-
mentation frameworks. Using several problematic examples from the lit-
erature, we first show how our translation addresses important issues
of existing approaches. We then prove that the translated frameworks
satisfy the rationality postulates closure and direct/indirect consistency.
Furthermore, the frameworks can detect inconsistencies in the set of
strict inference rules and cyclic (strict and defeasible) supports amongst
literals. We also show that the translation involves at most a quadratic
blowup and is therefore effectively and efficiently computable.

1 Introduction

Abstract argumentation frameworks (AFs) [1] are a formalism that is widely
used in argumentation research. Such an AF consists of a set of arguments and
an attack relation between these arguments. Their semantics determines which
sets of arguments of a given AF can be accepted according to specific criteria.
A common way to employ Dung’s AFs is as abstraction formalism. In this view,
expressive languages are used to model concrete argumentation scenarios, and
translations into Dung AFs provide these original languages with semantics. The
advantage of translating into an argumentation formalism is that the resulting
semantics can be given a dialectical interpretation, which can be used to inform
humans how a particular conclusion was inferred.

However, the approach is not without its problems. Caminada and Amgoud [2]
reported some difficulties they encountered when defining an abstract argument-
ation-based semantics for defeasible theory bases. Defeasible theory bases are
simple logic-inspired formalisms working with inference rules on a set of literals.
Inference rules can be strict, in which case the conclusion of the inference (a
literal) must necessarily hold whenever all antecedents (also literals) hold. Infer-
ence rules can also be defeasible, which means that the conclusion usually holds
whenever the antecedents hold. Here, the word “usually” suggests that there
could be exceptional cases where a defeasible rule has not been applied.

In response to the problems they encountered, Caminada and Amgoud [2]
stated general rationality postulates for AFs based on defeasible theories. The
intention of these postulates is to mathematically capture what humans perceive

? This research has been partially supported by DFG under project BR-1817/7-1.

as rational behaviour from the semantics of defeasible theory bases. First of all
the closure postulate says that whatever model or extension the target formalism
(the AF) produces, it must be closed under application of strict rules, meaning
that all applicable strict rules have been applied. Direct and indirect consistency
postulates express that any model or extension of the target formalism must
be internally consistent with respect to the literals of the defeasible theory base
(directly) and even with respect to application of strict rules (indirectly).

Later, Wyner et al. [3] criticised Caminada and Amgoud’s definition of ar-
guments on ontological grounds and gave an alternative translation. We are
agnostic with respect to Wyner et al.’s criticism, but use their translation as
a starting point for our own work. Such a further refinement is necessary since
the translation of Wyner et al. [3] still yields unintuitive results on benchmark
examples and does not satisfy the closure and indirect consistency postulates.

The basis of our solution to the aforementioned problems is a shift in the
target language. While until now abstract argumentation frameworks were the
formalism of choice, we will use the more general abstract dialectical frameworks
(ADFs) [4]. Where AFs allow only attacks between arguments, ADFs can also
represent support relations and many more. More specifically, in an AF an argu-
ment is accepted if none of its attackers is accepted. The same can be expressed
in an ADF. But ADFs can also express that an argument is only accepted if
all of its supporters are accepted, or the argument is accepted if some of its
supporters are accepted, or it is accepted if some attacker is not accepted or . . .

The expressiveness of ADFs in comparison to AFs – which we studied in
[5,6] – enables us to give a direct and straightforward translation from defeasible
theory bases to abstract dialectical frameworks. We will show that this trans-
lation – the main contribution of this paper – treats the benchmark examples
right and satisfies the rationality postulates of Caminada and Amgoud [2]. We
consider this further important evidence that abstract dialectical frameworks are
useful tools for representing and reasoning about argumentation scenarios. We
also perform a complexity analysis of our translation; this is significant in that
we are not aware of complexity analyses of the mentioned previous approaches.

The availability of support in ADFs (in contrast to AFs) as a target formalism
will be of fundamental importance to our translation. Among other things, it
will allow us to resolve cyclic dependencies among literals in a defeasible theory
base in a straightforward way. The treatment of such support cycles is built
into ADF standard semantics, which can be considered a product of decades of
research into nonmonotonic knowledge representation languages.

In the rest of the paper, we first recall the necessary background on defeasible
theory bases, abstract argumentation frameworks and abstract dialectical frame-
works. In Section 3 we look at the translations of Caminada and Amgoud [2]
and Wyner et al. [3], discuss some problems of these, and introduce generalised
versions of the rationality postulates. In Section 4 we then define our own trans-
lation. We show how it treats the problematic examples, prove that it satisfies the
(generalised versions of the) rationality postulates and analyse its computational
complexity. We conclude with a discussion of related and future work.

2 Background

Defeasible Theories. Following Caminada and Amgoud [2], we use a set Lit of
literals that are built using syntactical negation ¬· and define a semantic negation
function · such that for an atom p we have p = ¬p and ¬p = p. Throughout the
paper, we assume that Lit is closed under negation in the sense that ψ ∈ Lit
implies ψ ∈ Lit . A set S ⊆ Lit of literals is consistent iff there is no literal
ψ ∈ Lit such that both ψ ∈ S and ¬ψ ∈ S. For literals φ1, . . . , φn, ψ ∈ Lit , a
strict rule over Lit is of the form r : φ1, . . . , φn → ψ; a defeasible rule over Lit
is of the form r : φ1, . . . , φn ⇒ ψ. (The only difference is the arrows.) Here r is
the unique rule name, the literals φ1, . . . , φn constitute the rule body and ψ is
the rule head or conclusion. Intuitively, a strict rule says that the rule head is
necessarily true whenever all body literals are true; a defeasible rule says that
the head ψ is usually true whenever all body literals are true. In definitions, we
use the symbol V as meta-level variable for → and ⇒.

For a set M ⊆ Lit of literals and a set StrInf of strict rules over Lit , we say
thatM is closed under StrInf iff r : φ1, . . . , φn → ψ ∈ StrInf and φ1, . . . , φn ∈M
imply ψ ∈ M . Accordingly, the closure of M under StrInf is the smallest set
ClStrInf (M) that contains M and is closed under StrInf . A defeasible theory or
theory base is a triple (Lit ,StrInf ,DefInf) where Lit is a set of literals, StrInf
is a set of strict rules over Lit and DefInf is a set of defeasible rules over Lit .
The semantics of theory bases is usually defined via a translation to abstract
argumentation frameworks, which will be introduced next.

Abstract Argumentation Frameworks. Dung [1] introduced argumentation frame-
works as pairs Θ = (A,R) where A is a set and R ⊆ A×A a relation. The inten-
ded reading of an AF Θ is that the elements of A are arguments whose internal
structure is abstracted away. The only information about the arguments is given
by the relation R encoding a notion of attack: a pair (a, b) ∈ R expresses that
argument a attacks argument b in some sense.

The purpose of semantics for argumentation frameworks is to determine sets
of arguments (called extensions) which are acceptable according to various stand-
ards. We will only be interested in so-called stable extensions, sets S of argu-
ments that do not attack each other and attack all arguments not in the set.
More formally, a set S ⊆ A of arguments is conflict-free iff there are no a, b ∈ S
with (a, b) ∈ R. A set S is a stable extension for (A,R) iff it is conflict-free and
for all a ∈ A \ S there is a b ∈ S with (b, a) ∈ R.

Abstract Dialectical Frameworks. Brewka and Woltran [4] introduced abstract
dialectical frameworks as a powerful generalisation of Dung AFs that are able
to capture not only attack and support, but also more general notions such as
joint attack and joint support.

Definition 1. An abstract dialectical framework is a triple Ξ = (S,L,C) where

– S is a set of statements,

– L ⊆ S × S is a set of links, where par(s) def= {r ∈ S | (r, s) ∈ L}
– C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {in, out}.

Intuitively, the function Cs for a statement s determines the acceptance
status of s, which naturally depends on the status of its parent nodes. Any
such function Cs can alternatively be represented by a propositional formula
ϕs over the vocabulary par(s). The understanding here is that for M ⊆ par(s),
Cs(M) = in iff M is a model of ϕs (written M |= ϕs), where an interpretation
is identified with the set of atoms that are evaluated to true.

Brewka and Woltran [4] introduced several semantical notions for ADFs.
First, for an ADF Ξ = (S,L,C) where C is given by a set of propositional
formulas ϕs for each s ∈ S, a set M ⊆ S is a model for Ξ iff for all statements
s we have: s ∈M iff M |= ϕs.

Example 1 (Abstract dialectical framework). Consider the ADF D = (S,L,C)
with statements S = {a, b, c, d}, links L = {(a, c), (b, b), (b, c), (b, d)} and accept-
ance functions given by the formulas ϕa = >, ϕb = b, ϕc = a ∧ b and ϕd = ¬b.
Intuitively, these acceptance conditions express that (1) a is always accepted, (2)
b supports itself, (3) c needs the joint support of a and b, and (4) d is attacked
by b. The two models of D are M1 = {a, b, c} and M2 = {a, d}.

In recent work [6], we redefined several standard ADF semantics and defined
additional ones. In this paper, we are only interested in two-valued semantics,
that is, models and stable models. The definition of the latter is based on the no-
tion of a reduct and an operator originally introduced by Brewka and Woltran [4].

The operator ΓΞ takes two sets A,R of statements, where the intuition is
that all statements in A are accepted and those in R are rejected. (So those in
S \ (A∪R) are undecided.) According to these acceptance statuses, the operator
evaluates all acceptance formulas and decides which statements can be definitely
accepted or rejected.

The reduct implements the intuition that whatever is false in a stable model
can be assumed false, but whatever is true in a stable model must be construct-
ively provable. The next definition combines all of this.

Definition 2. Let Ξ = (S,L,C) be an abstract dialectical framework. Define an
operator by ΓΞ(A,R) = (acc(A,R), rej (A,R)) for A,R ⊆ S, where

acc(A,R) = {s ∈ S | for all A ⊆ Z ⊆ (S \R),we have Z |= ϕs}
rej (A,R) = {s ∈ S | for all A ⊆ Z ⊆ (S \R),we have Z 6|= ϕs}

For a set M ⊆ S, define the reduced ADF ΞM = (M,LM , CM) by the set of
links LM = L ∩M ×M and for each s ∈M we set ϕM,s = ϕs[r/⊥ : r /∈M].
A model M for Ξ is a stable model of Ξ iff the least fixpoint of the operator
ΓΞM

is given by (M,R) for some R ⊆ S.

Example 1 (Continued). Of the two models M1, M2 we have seen earlier, only
M2 is a stable model. Intuitively, the statement b ∈M1 cyclically supports itself.

It is clear that ADFs are a generalisation of AFs: for an argumentation frame-
workΘ = (A,R), its associated abstract dialectical framework isΞ(Θ) = (A,R,C)
with Ca(B) = in iff B = ∅ for each a ∈ A. But this is not just syntactical; Brewka
and Woltran [4] showed that their semantical notions for ADFs are generalisa-
tions of Dung’s respective AF notions; likewise, in [5,6] we proved correspondence
results for all of the newly defined semantics. Brewka and Woltran [4] defined
a particular subclass of ADFs called bipolar. Intuitively, in bipolar ADFs each
link is supporting or attacking (or both). It will turn out that ADFs resulting
from our automatic translation from defeasible theory bases are all bipolar.

3 Instantiations to Abstract Argumentation Frameworks

The general approach to provide a semantics for defeasible theories is to translate
the defeasible theory into an argumentation formalism and then let the already
existing semantics for that argumentation formalism determine the semantics of
the defeasible theory. In the literature, the target formalism of choice are Dung’s
abstract argumentation frameworks. They abstract away from everything except
arguments and attacks between them, so to define a translation to AFs one has
to define arguments and attacks. We now review two particular such approaches.

3.1 The Approach of Caminada and Amgoud [2]

Caminada and Amgoud [2] define a translation from defeasible theories to argu-
mentation frameworks. They create arguments in an inductive way by applying
one or more inference rules. The internal structure of the arguments reflects
how a particular conclusion was derived by applying an inference rule to the
conclusions of subarguments, and allows arguments to be nested. So the base
case of the induction takes into account rules with empty body, that is, rules
of the form → ψ (or ⇒ ψ) for some literal ψ. Each such rule leads to an ar-
gument A = [→ ψ] (or [⇒ ψ]), and the conclusion of the rule becomes the
conclusion of the argument. For the induction step, we assume there are argu-
ments A1, . . . , An with conclusions φ1, . . . , φn, respectively. If there is a strict
rule φ1, . . . , φn → ψ, we can build a new argument A = [A1, . . . , An → ψ] with
conclusion ψ. (Likewise, from a defeasible rule φ1, . . . , φn ⇒ ψ we can build a
new argument A = [A1, . . . , An ⇒ ψ].) Similar to rules, arguments can be strict
or defeasible, where application of at least one defeasible rule makes the whole
argument defeasible. (So strict arguments exclusively use strict rules.)

Caminada and Amgoud [2] then define two different kinds of attacks between
arguments, rebuts and undercuts. An argument a rebuts another argument b if
a subargument of a concludes some literal ψ, while there is a defeasible subar-
gument of b that concludes ψ. An argument a undercuts another argument b if
the latter has a subargument that results from applying a defeasible rule and
the applicability of that rule is disputed by a subargument of a.1 In any case,
we see that only defeasible arguments can be attacked.

1 We will focus on rebuts in this paper since they are sufficient for our main points.

Example 2 (Married John, [2, Example 4]). Consider the following vocabulary
with intended natural-language meaning: w . . . John wears something that looks
like a wedding ring, g . . . John often goes out late with his friends, m. . . John
is married, b . . . John is a bachelor, h . . . John has a wife. There are several
relationships between these propositions, which are captured in the following
theory base: the literals are Lit = {w, g, h,m, b,¬w,¬g,¬h,¬m,¬b}, the strict
rules are given by StrInf = {r1 :→ w, r2 :→ g, r3 : b→ ¬h, r4 : m→ h} and
the defeasible rules DefInf = {r5 : w ⇒ m, r6 : g ⇒ b}.

In the ASPIC system of Caminada and Amgoud [2], all the literals in the
set S = {w, g,m, b} are sceptical consequences of the constructed AF. Caminada
and Amgoud observe that this is clearly unintended since the natural-language
interpretation would be that John is a married bachelor. Moreover, the closure
of S under StrInf is ClStrInf (S) = {w, g,m, b, h,¬h}, which is inconsistent. So
not only are there applicable strict rules that have not been applied in S, but
their application would lead to inconsistency.

To avoid anomalies such as the one just seen, Caminada and Amgoud [2] went
on to define three natural rationality postulates for rule-based argumentation-
based systems which are concerned with the interplay of consistency and strict
rule application. Our formulation of them is slightly different for various reasons:

– We are concerned with argumentation frameworks as well as with abstract
dialectical frameworks in this paper, so we made the postulates parametric
in the target argumentation formalism.

– We removed the respective second condition on the sceptical conclusions
with respect to all extensions/models. Propositions 4 and 5 in [2] show that
they are redundant in their case.

– We are not constrained to formalisms and semantics where there are only
finitely many extensions/models.

– For the sake of readability, we assume that the literals Lit of the defeasible
theory are contained in the vocabulary of the target formalism.2

The first postulate requires that the set of conclusions for any extension
should be closed under application of strict rules.

Postulate 1 (Closure) Let (Lit ,StrInf ,DefInf) be a defeasible theory. Its trans-
lation satisfies closure for semantics σ iff for any σ-model M , we find that
ClStrInf (Lit ∩M) ⊆ Lit ∩M .

Naturally, the notion of consistency is reduced to consistency of a set of lit-
erals of the underlying logical language. Note that consistency only concerns the
local consistency of a given single model/extension of the target formalism. It
may well be that the formalism is globally inconsistent in the sense of not allow-
ing for any model with respect to a particular semantics. The latter behaviour
can be desired, for example if the original theory base is inconsistent already.

2 This is not a proper restriction since reconstruction of conclusions about the original
defeasible theory is one of the goals of the whole enterprise and so there should be
at least a translation function from argumentation models to theory models.

Postulate 2 (Direct Consistency) Let (Lit ,StrInf ,DefInf) be a defeasible
theory with translation X and σ a semantics. X satisfies direct consistency iff
for all σ-models M we have that Lit ∩M is consistent.

Caminada and Amgoud [2] remark that it is usually easy to satisfy direct con-
sistency, but much harder to satisfy the stronger notion of indirect consistency.
For this to hold, for each model its closure under strict rules must be consistent.

Postulate 3 (Indirect Consistency) Let (Lit ,StrInf ,DefInf) be a defeasible
theory with translation X and σ a semantics. X satisfies indirect consistency iff
for all σ-models M we have that Lit ∩ ClStrInf (Lit ∩M) is consistent.

As a counterpart to Proposition 7 of Caminada and Amgoud [2], we can show
that closure and direct consistency together imply indirect consistency.

Proposition 1. Let (Lit ,StrInf ,DefInf) be a defeasible theory with translation
X and σ a semantics. If X satisfies closure and direct consistency, then it sat-
isfies indirect consistency.

Proof. Let X satisfy closure and direct consistency, and let M be a σ-model for
X. We have to show that Lit ∩ ClStrInf (Lit ∩M) is consistent. Since X satisfies
closure, ClStrInf (Lit ∩M) ⊆ Lit ∩M . Thus Lit ∩ ClStrInf (Lit ∩M) ⊆ Lit ∩M .
Now since X satisfies direct consistency, Lit ∩M is consistent. Hence its subset
Lit ∩ ClStrInf (Lit ∩M) is consistent and X satisfies indirect consistency. ut

3.2 The Approach of Wyner et al. [3]

Wyner et al. [3] identified some problems of the approach of Caminada and
Amgoud [2] and proposed an alternative translation from theory bases to argu-
mentation frameworks. We do not necessarily support or reject their philosoph-
ical criticisms, but rather find the translation technically appealing. They create
an argument for each literal in the theory base’s language and additionally an
argument for each rule. Intuitively, the literal arguments indicate that the literal
holds, and the rule arguments indicate that the rule is applicable. Furthermore,
the defined conflicts between these arguments are straightforward:

(1) opposite literals attack each other; (2) rules are attacked by the negations
of their body literals; (3) defeasible rules are attacked by the negation of their
head; (4) all rules attack the negation of their head.

Definition 3 ([3, Definitions 4,5]). Let TB = (Lit ,StrInf ,DefInf) be a de-
feasible theory. Define an argumentation framework Θ(TB) = (A,R) as follows.

A = Lit ∪ {r | r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf }
R =

{
(ψ,ψ)

∣∣ ψ ∈ Lit
}

∪
{

(φi, r)
∣∣ r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf , 1 ≤ i ≤ n

}
∪
{

(ψ, r)
∣∣ r : φ1, . . . , φn ⇒ ψ ∈ DefInf

}
∪
{

(r, ψ)
∣∣ r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf

}

Let us look at one of their own examples which they adapted from [2].

Example 3 ([3, Example 5]). Consider the following theory base.

Lit = {x1, x2, x3, x4, x5,¬x1,¬x2,¬x3,¬x4,¬x5}
StrInf = {r1 :→ x1, r2 :→ x2, r3 :→ x3, r4 : x4, x5 → ¬x3}
DefInf = {r5 : x1 ⇒ x4, r6 : x2 ⇒ x5}

We can see that x1, x2, x3 are strictly asserted and thus should be contained in
any extension. The AF translation is depicted below.

r2 x2 ¬x2 r6 ¬x5 x5

r3 ¬x3 x3 r4

r1 x1 ¬x1 r5 ¬x4 x4

The stable extensions of this AF are as follows:

S1 = {x1, x2, x3,¬x4,¬x5, r1, r2, r3} S2 = {x1, x2, x3,¬x4, x5, r1, r2, r3, r6}
S3 = {x1, x2, x3, x4,¬x5, r1, r2, r3, r5} S4 = {x1, x2, x4, x5, r1, r2, r3, r4, r5, r6}

While the first three extensions can be considered intended, S4 is not closed
under strict rules and indirectly inconsistent: r3 is applicable but x3 does not
hold, r4 is applicable but ¬x3 does not hold.

A similar observation can be made in Example 2: the AF translation ac-
cording to Wyner et al. [3] has a stable extension {w, g,m, b, r1, r2, r3, r4, r5, r6}
where John is a married bachelor.

4 Instantiations to Abstract Dialectical Frameworks

In this section, we extend the theory base to AF translation of Wyner et al. [3] to
ADFs. Due to the availability of support, this is straightforward. Indeed, support
and attack are sufficient for our purposes.

4.1 From Theory Bases to ADFs

As in the approach of Wyner et al. [3], we directly use the literals from the
theory base as statements that express whether the literal holds. We also use
rule names as statements indicating that the rule is applicable. Additionally,
for each rule r we create a statement -r indicating that the rule has not been
applied. Not applying a rule is acceptable for defeasible rules, but unacceptable
for strict rules since it would violate the closure postulate. This is enforced via

integrity constraints saying that it may not be the case in any model that the
rule body holds but the head does not hold. Defeasible rules offer some degree of
choice, whence we leave it to the semantics whether or not to apply them. This
choice is modelled by a mutual attack cycle between r and -r. The remaining
acceptance conditions are equally straightforward:

– Opposite literals attack each other.

– A literal is accepted whenever some rule deriving it is applicable, that is, all
rules with head ψ support statement ψ.

– A strict rule is applicable whenever all of its body literals hold, that is, the
body literals of r are exactly the supporters of r.

– Likewise, a defeasible rule is applicable whenever all of its body literals hold,
and additionally the negation of its head literal must not hold.

In particular, literals cannot be accepted unless there is some rule deriving them.

Definition 4. Let TB = (Lit ,StrInf ,DefInf) be a theory base. Define an ADF
Ξ(TB) = (S,L,C) by S = Lit ∪ {r, -r | r : φ1, . . . , φn V ψ ∈ StrInf ∪DefInf };
the acceptance functions of statements s can be parsimoniously represented by
propositional formulas ϕs.

3 For a literal ψ ∈ Lit, we define

ϕψ = ¬[ψ] ∧
∨

r:φ1,...,φnVψ∈StrInf∪DefInf

[r]

For a strict rule r : φ1, . . . , φn → ψ ∈ StrInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] and ϕ-r = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r]

For a defeasible rule r : φ1, . . . , φn ⇒ ψ ∈ DefInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r] and ϕ-r = ¬[r]

Finally, there is a link (s′, s) ∈ L iff [s′] occurs in the acceptance formula ϕs.

For strict rules with name r, the self-attack of -r does not materialise whenever
either the rule body is not satisfied or the rule head holds; otherwise the strict
rule is applicable but has not been applied and the constraint -r prevents this
undesirable state of affairs from getting included in a model. (For the formulas
defined above, the empty disjunction leads to ⊥ – logical falsity – and the empty
conjunction to > – logical truth.)

Let us see how our translation treats the examples seen earlier.

3 In these formulas, we write ADF statements in brackets, to avoid confusion between
negation being applied inside a statement name – as in [¬x] – and negation being
applied in the formula outside of the statement’s name – as in ¬[-r]. Thus [¬x] and
¬[x] are syntactically different literals in the language of acceptance formulas; their
meaning is intertwined via the semantics of ADFs.

Example 3 (Continued). Definition 4 yields the following acceptance formulas.

ϕx1 = ¬[¬x1] ∧ [r1] ϕx2 = ¬[¬x2] ∧ [r2] ϕx3 = ¬[¬x3] ∧ [r3]
ϕx4

= ¬[¬x4] ∧ [r5] ϕx5
= ¬[¬x5] ∧ [r6]

ϕ¬x1
= ⊥ ϕ¬x2

= ⊥ ϕ¬x3
= ¬[x3] ∧ [r4] ϕ¬x4

= ⊥ ϕ¬x5
= ⊥

ϕr1 = > ϕr2 = > ϕr3 = > ϕr4 = [x4] ∧ [x5]
ϕr5 = [x1] ∧ ¬[¬x4] ∧ ¬[-r5] ϕr6 = [x2] ∧ ¬[¬x5] ∧ ¬[-r6]
ϕ-r1 = ¬[x1] ∧ ¬[-r1] ϕ-r2 = ¬[x2] ∧ ¬[-r2] ϕ-r3 = ¬[x3] ∧ ¬[-r3]
ϕ-r4 = [x4] ∧ [x5] ∧ ¬[¬x3] ∧ ¬[-r4] ϕ-r5 = ¬[r5] ϕ-r6 = ¬[r6]

Statements with an acceptance condition of the form ¬p1∧ . . .∧¬pn behave like
AF arguments. So in particular r1, r2, r3 are always in since these rules have an
empty body. Similarly, -r1, -r2, -r3 are self-attacking arguments. The statements
¬x1,¬x2,¬x4,¬x5 are always out since there are no rules deriving these literals.
The remaining acceptance conditions are clear from the definitions: literals are
supported by the rules deriving them and rules in turn are supported by their
body literals.

For illustration, we also provide the ADF in form of a labelled graph, where
the labels + and − indicate supporting and attacking links. Several statements
have constant truth values as acceptance conditions, in the picture this is indic-
ated via a link from the surroundings.4

-r2 r2 -r6

¬x2 x2 r6 x5 ¬x5

r3

-r3 x3 ¬x3 r4

-r4

¬x1 x1 r5 x4 ¬x4

-r1 r1 -r5

−

−

−

−

−

−

−

−

−

−

+

+

+
+

+

+

+

+

+
+

+

+

+

− −

− −

−

−

−

−

+

+

−

−

−

−

−

−

−
−

4 This is inspired by conventions from automata theory, where initial states are indic-
ated likewise.

For this ADF, models and stable models coincide, and there are three of them:

M1 = {x1, x2, x3, r1, r2, r3, -r5, -r6} M2 = {x1, x2, x3, x4, r1, r2, r3, r5, -r6}
M3 = {x1, x2, x3, x5, r1, r2, r3, -r5, r6}

Roughly, in M1 none of the defeasible rules r5, r6 has been applied – indicated
by -r5 and -r6 –, while in M2 and M3 either one of them has been applied. As
intended, there is no model where both defeasible rules have been applied, as
this would lead to a set that contains both x4 and x5; this in turn would make
rule r4 applicable, allowing to conclude ¬x3 in contradiction to x3 being strictly
true according to rule r3.

We can furthermore see that all of the models are closed under strict rule
application (they contain x1, x2, x3 and no other strict rule is applicable) and
directly consistent, thus also indirectly consistent.

A similar observation can be made for John (not) being married (Example 2);
our ADF translation has three (stable) models: M1 = {w, g, r1, r2, -r5, -r6},
M2 = {w, g, h,m, r1, r2, r4, r5, -r6} and M3 = {w, g, b,¬h, r1, r2, r3, -r5, r6}.
Again, the argumentation translation of the theory base satisfies closure and
direct and indirect consistency. We will later prove that the satisfaction of the
postulates is not a coincidence in our approach. But first of all let us consider
another problem which often arises in knowledge representation and reasoning.

4.2 Support Cycles in Theory Bases

When logical, rule-based approaches are used for knowledge representation, a re-
curring issue is that of cyclic dependencies between propositions of the knowledge
base. If such support cycles are carelessly overlooked or otherwise not treated
in an adequate way, they can lead to counterintuitive conclusions. Consider this
famous example from Denecker et al. [7].

Example 4 (Gear Wheels [7]). There are two interlocked gear wheels x and y
that can be separately turned and stopped. Let x0 and y0 denote whether x
(resp. y) turns at time point 0, and likewise for a successive time point 1. At
any one time point, whenever the first wheel turns (resp. stops), it causes the
second one to turn (resp. stop), and vice versa. This is expressed by strict rules
r1 to r8. Without a cause for change, things usually stay the way they are from
one time point to the next, which is expressed by the defeasible rules ra to rd.

Lit = {x0, y0, x1, y1,¬x0,¬y0,¬x1,¬y1}
StrInf = {r1 : x0 → y0, r2 : y0 → x0, r3 : ¬x0 → ¬y0, r4 : ¬y0 → ¬x0,

r5 : x1 → y1, r6 : y1 → x1, r7 : ¬x1 → ¬y1, r8 : ¬y1 → ¬x1}
DefInf = {ra : x0 ⇒ x1, rb : ¬x0 ⇒ ¬x1, rc : y0 ⇒ y1, rd : ¬y0 ⇒ ¬y1}

For later reference, we denote this theory base by TBGW = (Lit ,StrInf ,DefInf).
To model a concrete scenario, we add the rules StrInf ′ = {ri :→ ¬x0, rj :→ ¬y0}

expressing that both wheels initially stand still. We denote the augmented theory
base for this concrete scenario by TB ′

GW = (Lit ,StrInf ∪ StrInf ′,DefInf). It is
clearly unintended that there is some model for TB ′

GW where the gear wheels
magically start turning with one being the cause for the other and vice versa.

Example 5. Consider the following defeasible rules saying that rain and wet
grass usually go hand in hand: Lit = {rain,wet ,¬rain,¬wet}, StrInf = ∅ and
DefInf = {r1 : rain ⇒ wet , r2 : wet ⇒ rain}. The intended meaning is that one
is usually accompanied by the other, not that both may appear out of thin air.

To see how argumentation translations of theory bases treat such cycles, let
us look at a simplified version of the gear wheels example.

Example 6. Consider a theory base with two literals mutually supporting each
other through strict rules: Lit = {x1, x2,¬x1,¬x2}, the strict rules are given by
StrInf = {r1 : x1 → x2, r2 : x2 → x1} and DefInf = ∅. Our ADF translation
of this example yields the acceptance formulas

ϕx1
= [r2] ϕ¬x1

= ⊥ ϕr1 = [x1] ϕ-r1 = [x1] ∧ ¬[x2] ∧ ¬[-r1]

ϕx2
= [r1] ϕ¬x2

= ⊥ ϕr2 = [x2] ϕ-r2 = [x2] ∧ ¬[x1] ∧ ¬[-r2]

The ADF has two models, M1 = {x1, x2, r1, r2} and M2 = ∅. Only M2 is a
stable model due to the cyclic self-support of the statements in M1. Note that
not only do x1 and x2 not hold in M2, neither do ¬x1 and ¬x2 (there are no
rules possibly deriving them). In contrast, the translation of Wyner et al. [3]
yields the AF

r1

r2
x1 x2¬x1 ¬x2

with two stable extensions S1 = {x1, r1, x2, r2} and S2 = {¬x1,¬x2}. In S1, x1
and x2 hold due to self-support while in S2 they are “guessed” to be false.

In our view, this is problematic since it is not made clear to the user that
these different extensions arise due to self-support. Even if we grant that for
some application domains, cyclic self-support of literals might be intended or at
least not unintended, the user should be able to distinguish whether different
models/extensions arise due to present or absent self-support on the one hand, or
due to conflicts between defeasible conclusions on the other hand. ADFs provide
this important distinction, since cycles are allowed in models and disallowed in
stable models, while both semantics are identical in their treatment of conflicts
between defeasible conclusions.

In the approach of Caminada and Amgoud [2], treatment of cycles is built into
the definition of the set of arguments in the resulting argumentation framework.
The arguments are created using structural induction, where rules with empty
bodies form the induction base and all other rules form the induction step. For
the general gear wheel domain TBGW of Example 4, and for Examples 5 and

6, their translation would not create any arguments (there are no assertions in
the theory bases), and the approach could not draw any conclusions about these
examples. The concrete scenario of the interlocked gear wheel domain TB ′

GW in
Example 4, where both wheels initially stand still, would be treated correctly by
the approach of Caminada and Amgoud [2]. But note that the well-foundedness
of the treatment of cyclic dependencies is built into the syntax of the resulting
argumentation framework – there are no arguments that could conclude that
any of the wheels is turning, although there are (strict and defeasible) rules
with such conclusions. Consequently, a part of the semantics of the theory base
is already fixed by the translation, irrespective of the argumentation semantics
that is used later on.

4.3 Inconsistent Theory Bases

Example 7 (Inconsistent Theory Base). Consider the following (obviously incon-
sistent) theory base in which both a literal and its negation are strictly asserted:
Lit = {x,¬x}, StrInf = {r1 :→ x, r2 :→ ¬x} and DefInf = ∅. Our ADF trans-
lation yields the acceptance formulas

ϕx = ¬[¬x] ∧ [r1] ϕr1 = > ϕ-r1 = ¬[x] ∧ ¬[-r1]

ϕ¬x = ¬[x] ∧ [r2] ϕr2 = > ϕ-r2 = ¬[¬x] ∧ ¬[-r2]

This ADF has no models, and so the theory base’s inconsistency is detected.
On the other hand, the associated argumentation framework due to Wyner

et al. [3] is given by the set of arguments A = {x,¬x, r1, r2} and the attacks
R = {(x,¬x), (¬x, x), (r1,¬x), (r2, x)}. In the only stable extension {r1, r2} both
rules are applicable but none of the head literals hold due to immanent conflict.

In the approach of Caminada and Amgoud [2], we can construct two strict
arguments that conclude x and ¬x, respectively. There are no attacks between
these arguments since they are both strict. The resulting AF has a stable exten-
sion from which both x and ¬x can be concluded, which detects the inconsistency.

4.4 Properties of the Translation

In this section, we analyse some theoretical properties of our translation. First
we show that it satisfies (our reformulations of) the rationality postulates of
Caminada and Amgoud [2]. Then we analyse the computational complexity of
translating a given theory base and show that the blowup is at most quadratic.

Postulates. It is elementary to show that the ADFs resulting from our translation
satisfy direct consistency. This is because the statements ψ and ψ mutually
attack each other.

Proposition 2. For any theory base TB = (Lit ,StrInf ,DefInf), its associated
ADF Ξ(TB) satisfies direct consistency with respect to the model semantics.

Proof. Let M be a model for Ξ(TB) and assume to the contrary that M ∩ Lit
is inconsistent. Then there is a ψ ∈ Lit such that ψ ∈ M and ¬ψ ∈ M . Since
¬ψ ∈M , the acceptance condition of ¬ψ yields ψ /∈M . Contradiction. ut

We can also prove that they satisfy closure: by construction, the (acceptance
conditions of) statements -r for strict rules r guarantee that the rule head is
contained in any model that contains the rule body.

Proposition 3. For any theory base TB = (Lit ,StrInf ,DefInf), its associated
ADF Ξ(TB) satisfies closure with respect to the model semantics.

Proof. Let M be a model of Ξ(TB) and r : φ1, . . . , φn → ψ ∈ StrInf such that we
find φ1, . . . , φn ∈M . We have to show ψ ∈M . By definition, Ξ(TB) has a state-
ment -r with parents par(-r) = {φ1, . . . , φn, ψ, -r}. We next show that -r /∈M :
assume to the contrary that -r ∈M . Then by the acceptance condition of -r we
get -r /∈ M , contradiction. Thus -r /∈M . Now the acceptance condition of -r
yields φ1 /∈M or . . . or φn /∈M or ψ ∈M or -r ∈M . By assumption, we have
φ1, . . . , φn ∈M and -r /∈M , thus we get ψ ∈M . ut

By Proposition 1 the translation satisfies indirect consistency.

Corollary 1. For any theory base TB = (Lit ,StrInf ,DefInf), its associated
ADF Ξ(TB) satisfies indirect consistency with respect to the model semantics.

Since any stable model is a model, our translation also satisfies the postulates
for the stable model semantics.

Corollary 2. For any theory base TB = (Lit ,StrInf ,DefInf), its associated
ADF Ξ(TB) satisfies closure and direct and indirect consistency with respect to
the stable model semantics.

It should be noted that defeasible rules may or may not be applied – the
approach is not eager to apply defeasible rules.

Complexity. For a theory base TB = (Lit ,StrInf ,DefInf), we define the size of
its constituents as follows. Quite straightforwardly, the size of a set of literals is
just its cardinality, the size of a rule is the number of literals in it, the size of a
set of rules is the sum of the sizes of its elements and the size of a theory base
is the sum of the sizes of its components.

We want to analyse the size of its ADF translation Ξ(TB) = (S,L,C) ac-
cording to Definition 4. Clearly, the number of statements is linear in the size of
the theory base, since we have one statement for each literal and two statements
for each rule: |S| = |Lit |+ 2 · (|StrInf |+ |DefInf |). Since L ⊆ S×S, the number

of links in L is at most quadratic in the cardinality of S: |L| ≤ |S|2. Finally, we
have seen in Definition 4 that the acceptance conditions of statements can be
parsimoniously represented by propositional formulas. It can be checked that the
size of each one of these formulas is at most linear in the size of the theory base.
Since there are linearly many statements with one acceptance formula each, the

acceptance conditions can be represented in quadratic space. So overall, the res-
ulting ADF Ξ(TB) = (S,L,C) can be represented in space which is at most
quadratic in the size of the original theory base. In particular, in our approach
a finite theory base always yields a finite argumentation translation. This is in
contrast to the definition of Caminada and Amgoud [2], where the strict rule
set StrInf = {r0 :→ a, r1 : a→ b, r2 : b→ a} allows to construct infinitely many
arguments A1 = [→ a], A2 = [A1 → b], A3 = [A2 → a], A4 = [A3 → b], . . .5

5 Conclusion

We presented a translation from theory bases to abstract dialectical frameworks.
The translated frameworks satisfy the rationality postulates closure and dir-
ect/indirect consistency, which we generalised to make them independent of a
specific target formalism. Furthermore, the translated frameworks can detect
inconsistencies in the rule base and cyclic supports amongst literals. We also
showed that the translation involves at most a quadratic blowup and is there-
fore effectively computable. Furthermore, our translation produces a number of
statements which is linear in the size of the theory base and can be considered
efficient in this regard. (In the approach of [2] the number of produced argu-
ments is unbounded in general.) In terms of desired behaviour, we compared our
translation to previous approaches from the literature [2,3] and demonstrated
how we avoid common problems.

In earlier work, Brewka and Gordon [8] translated Carneades [9] argument
evaluation structures (directly) to ADFs. They extended the original Carneades
formalism by allowing cyclic dependencies among arguments. Meanwhile, Van
Gijzel and Prakken [10] also translated Carneades into AFs (via ASPIC+ [11],
that extends and generalises the definitions of Caminada and Amgoud [2]). They
can deal with cycles, but there is only one unique grounded, preferred, complete,
stable extension. Thus the semantic richness of abstract argumentation is not
used, and the user cannot choose whether they want to accept or reject circular
justifications of arguments. In contrast, in the approach of Brewka and Gor-
don [8] the user can decide whether cyclic justifications should be allowed or
disallowed, by choosing models or stable models as ADF semantics.

We regard this work as another piece of evidence that abstract dialectical
frameworks are well-suited as target formalisms for translations from less directly
accessible languages such as theory bases. A natural next step would be to
consider as input the specification language of ASPIC+ [11]. A recent approach
to preferences between statements [6] might be a good starting point for this.
Further work could also encompass the study of additional ADF semantics, like
complete or preferred models [6], and whether the approach can be modified

5 Even if we exclude cycles in rules, there are rule sets which allow for exponentially
many arguments: Set D0 = {⇒ p0,⇒ ¬p0}, D1 = D0∪{p0 ⇒ p1,¬p0 ⇒ p1} and for
i ≥ 1, Di+1 = Di ∪ {p0, pi ⇒ pi+1,¬p0, pi ⇒ pi+1}. For any n ∈ N, the size of Dn is
linear in n and Dn leads to 2n+1 arguments, among them 2n arguments for pn.

such that it is eager to apply defeasible rules. Finally, we can compare existing
approaches to cycles in AFs [12,13] with the treatment of cycles in ADFs.

Acknowledgements. The author is grateful to Gerhard Brewka for informative
discussions. He also thanks Leila Amgoud and Martin Caminada for clarifying
some aspects of the ASPIC framework.

References

1. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial
Intelligence 77 (1995) 321–358

2. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171(5–6) (2007) 286–310

3. Wyner, A., Bench-Capon, T., Dunne, P.: Instantiating knowledge bases in abstract
argumentation frameworks. In: Proceedings of the AAAI Fall Symposium – The
Uses of Computational Argumentation. (2009)

4. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: Proceedings of the
Twelfth International Conference on the Principles of Knowledge Representation
and Reasoning (KR). (2010) 102–111

5. Strass, H.: Approximating operators and semantics for Abstract Dialectical Frame-
works. Technical Report 1, Institute of Computer Science, Leipzig University
(January 2013)

6. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Dia-
lectical Frameworks Revisited. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, AAAI Press (August 2013) To appear.

7. Denecker, M., Theseider-Dupré, D., Van Belleghem, K.: An Inductive Definition
Approach to Ramifications. Linköping Electronic Articles in Computer and In-
formation Science 3(7) (January 1998) 1–43

8. Brewka, G., Gordon, T.F.: Carneades and Abstract Dialectical Frameworks: A
Reconstruction. In: Computational Models of Argument: Proceedings of COMMA
2010, Desenzano del Garda, Italy, September 8-10, 2010. Volume 216 of Frontiers
in Artificial Intelligence and Applications., IOS Press (2010) 3–12

9. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and
burden of proof. Artificial Intelligence 171(10–15) (2007) 875–896

10. Van Gijzel, B., Prakken, H.: Relating Carneades with Abstract Argumentation.
In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence – Volume Two, AAAI Press (2011) 1113–1119

11. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation 1(2) (2010) 93–124

12. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: A general schema for
argumentation semantics. Artificial Intelligence 168(1–2) (2005) 162–210

13. Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract
argumentation semantics and its grounded instance. Artificial Intelligence 175(3–
4) (2011) 791–813

	Instantiating Knowledge Bases in Abstract Dialectical Frameworks
	Hannes Strass

