RFuzzy: An Expressive Simple Fuzzy Compiler

Susana Munoz-Hernandez, Victor Pablos Ceruelo, and Hannes Strass

Universidad Politécnica de Madrid*
{susana,vpablos}@fi.upm.es, hannes.strass@alumnos.upm.es
http://babel.ls.fi.upm.es/

Abstract. Fuzzy reasoning is a very productive research field that dur-
ing the last years has provided a number of theoretical approaches and
practical implementation prototypes. Nevertheless, the classical imple-
mentations, like Fril, are not adapted to the latest formal approaches,
like multi-adjoint logic semantics.

Some promising implementations, like Fuzzy Prolog, are so general
that the regular user/programmer does not feel comfortable because ei-
ther the representation of fuzzy concepts is complex or the results of the
fuzzy queries are difficult to interpret.

In this paper we present a modern framework, RFuzzy, that is model-
ing multi-adjoint logic in a practical way. It provides some extensions as
default values (to represent missing information), partial default values
(for a subset of data) and typed variables. RFuzzy represents the truth
value of predicates using facts, rules and also can define fuzzy predi-
cates as continuous functions. Queries are answered with direct results
(instead of providing complex constraints), so it is easy to use for any
person that wants to represent a problem using fuzzy reasoning in a sim-
ple way (just using the classical fuzzy representation with real numbers).
The most promising characteristic of RFuzzy is that the user can obtain
constructive answers to queries that restrict the truth value.

Keywords: Fuzzy reasoning, Implementation tool, Fuzzy Logic,
Multi-adjoint logic, Logic Programming Implementation, Fuzzy Logic
Application.

1 Introduction

One of the reasoning models that is more useful to represent real situations is
fuzzy reasoning. Indeed, world information is not represented in a crisp way. Its
representation is imperfect, fuzzy, etc., so that the management of uncertainty
is very important in knowledge representation. There are multiple frameworks
for incorporating uncertainty (in the sense of fuzziness) in logic programming.

* This work is partially supported by the project DESAFIOS - TIN 2006-15660-C02-
02 from the Spanish Ministry of Education and Science, by the Spanish Ministry of
Science and Innovation Research Staff Training Program - BES-2008-008320 and by
the project PROMESAS - S-0505/TIC/0407 from the Madrid Regional Government.

J. Cabestany et al. (Eds.): IWANN 2009, Part I, LNCS 5517, pp. 270 2009.
© Springer-Verlag Berlin Heidelberg 2009

http://babel.ls.fi.upm.es/

RFuzzy: An Expressive Simple Fuzzy Compiler 271

Despite of the multitude of theoretical approaches to this issue, few of them
resulted in current usable tools. Since Logic Programming is traditionally used
in Knowledge Representation and Reasoning, we argue (as in [15]) that it is
perfectly well-suited to implement a fuzzy reasoning tool as ours.

1.1 Fuzzy Approaches in Logic Programming

Introducing Fuzzy Logic into Logic Programming has provided the development
of several fuzzy systems over Prolog. These systems replace its inference mech-
anism, SLD-resolution, with a fuzzy variant that is able to handle partial truth.
Most of these systems implement the fuzzy resolution introduced by Lee in [4],
as the Prolog-Elf system, the FRIL Prolog system and the F-Prolog language.
However, there is no common method for fuzzifying Prolog, as noted in [I1].

Some of these Fuzzy Prolog systems only consider fuzziness on predicates
whereas other systems consider fuzzy facts or fuzzy rules. There is no agreement
about which fuzzy logic should be used. Most of them use min-max logic (for
modelling the conjunction and disjunction operations) but other systems just
use Lukasiewicz logic.

There is also an extension of constraint logic programming [2], which can
model logics based on semiring structures. This framework can model min-max
fuzzy logic, which is the only logic with semiring structure. Another theoreti-
cal model for fuzzy logic programming without negation has been proposed by
Vojtés in [14], which deals with many-valued implications.

1.2 Fuzzy Prolog

One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system
[1313]. The most important advantages against the other approaches are:

1. A truth value is represented as a finite union of sub-intervals on [0, 1]. An
interval is a particular case of union of one element, and a unique truth
value (a real number) is a particular case of having an interval with only one
element.

2. A truth value is propagated through the rules by means of an aggregation op-
erator. The definition of this aggregation operator is general and it subsumes
conjunctive operators (triangular norms like min, prod, etc.), disjunctive
operators (triangular co-norms, like max, sum, etc.), average operators (av-
erages as arithmetic average, quasi-linear average, etc) and hybrid operators
(combinations of the above operators).

3. Crisp and fuzzy reasoning are consistently combined [10].

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP(R) instead of
implementing a new fuzzy resolution method, as other former fuzzy Prologs do. It
represents intervals as constraints over real numbers and aggregation operators as
operations with these constraints, so it uses Prolog built-in inference mechanism
to handle the concept of partial truth.

272 S. Munoz-Hernandez, V.P. Ceruelo, and H. Strass

1.3 Motivation and RFuzzy Approach

Over the last few years several papers have been published by Medina et al.
([6r7)5]) about multi-adjoint programming, which describe a theoretical model,
but no means of serious implementations apart from promising prototypes [I]
and recently the FLOPER tool [9/g].

FLOPER implementation is inspired in Fuzzy Prolog [3] and adds the model-
lization of multi-adjoint logic. On one side Fuzzy Prolog is more expressive in the
sense that can represent continuous fuzzy functions and its truth value is more
general (union of intervals of real numbers), on the other side Fuzzy Prolog syn-
tax is so flexible and general that can be complex for non-expert programmers
just interested in modelling simple fuzzy problems.

This is the reason why we propose here the RFuzzy approach that is simpler
than Fuzzy Prolog for the user because the truth values are simple real numbers
instead of the general structures of Fuzzy Prolog. RFuzzy also models multi-
adjoint logic and moreover provides some interesting improvements with respect
to FLOPER: default values, partial default values (just for a subset of data),
types for variables, and a useful sugar-syntax (for representing facts, rules and
functions). Additionally RFuzzy inherits Fuzzy Prolog characteristics that are
more expressive than other tools (uses Prolog-like syntax, has flexibility in the
queries syntax, combines crisp and fuzzy predicates, uses general aggregation
operators and provides constructive answers querying data and querying truth
values).

Besides, RFuzzy implements multi-adjoint logic with a simple representation
of the concept of credibility of the rules of multi-adjoint logid].

2 RFuzzy Expressiveness

RFuzzy enhances regular Prolog with truth values and with credibility values.
In this section we enumerate and describe some of the most interesting charac-
teristics of RFuzzy expressiveness through its syntax.

2.1 Types Definition

Prolog does not have types. It assigns values to the variables taking terms from
the Herbrand Universe that can be created from the set of constants and con-
structors defined in a program. Nevertheless if we use types, then we can con-
straint the domain of values of the variables and this help us to return finite
constructive answers (semantically correct). In RFuzzy types are defined accord-
ing to (1) syntax.

:- set prop pred/ar => type pred 1/1 [, type pred n/1]* . (1)

L' A complete formalization of the semantics of RFuzzy with a description of a least
model semantics, a least fixpoint semantics, an operational semantics and the proof
of their equivalence can be downloaded at
http://babel.ls.fi.upm.es/software/rfuzzy/

http://babel.ls.fi.upm.es/software/rfuzzy/

RFuzzy: An Expressive Simple Fuzzy Compiler 273

where set prop is a reserved word, pred is the name of the typed predicate, ar
is its arity and type pred 1, type pred n (n € 2,3,...,ar) are predicates used to
define types for each argument of pred. They must have arity 1. The definition
is constraining the values of the n th argument of pred to the values of the
type type pred n. This definition of types ensures that the values assigned to the
arguments of pred are correctly typed.

The example below shows that the arguments of predicates has lower price/2
and expensive car/1 have to be of type car/1. The domain of type car is enu-
merated.

: —set prop has lower price/2 => car/1, car/1.
: —set prop expensive car/l => car/l.
car(vw caddy). car(al fa romeo gt).

car(aston martin bulldog). car(lamborghini urraco).

2.2 Simple Truth Value Assignment

It is possible to assign a truth value to an individual using fuzzy facts. Their
syntax, that we can see in ([2)), is different than regular Prolog facts syntax.

pred(args) value truth val. (2)

Arguments, args, should be ground and the truth value, truth val, must be a
real number between 0 and 1. The example below defines that the car
alfa romeo gt is an expensive car with a truth value 0.6.

expensive car(al fa romeo gt) value 0.6.

2.3 Continuous Function to Represent Truth Values

Facts definition (see subsection 22)) is worth for a finite (and relative small)
number of individuals. Nevertheless, it is very common to represent fuzzy truth
using continuous functions. Fig. [l shows an example in which the continuous
function assigns the truth value of being teenager to each age.

Functions used to define the truth value of some group of individuals are
usually continuous and linear over intervals. To define those functions there is
no necessity to write down the value assigned to each element in their domains.
We have to take into account that the domain can be infinite.

teenager

0
9 10 19 20 age

Fig. 1. Teenager truth value continuous representation

274 S. Munoz-Hernandez, V.P. Ceruelo, and H. Strass

RFuzzy provides the syntax for defining functions by stretches. This syntax is
shown in ([B]). External brackets represent the Prolog list symbols and internal
brackets represent cardinality in the formula notation. Predicate pred has arity
1, wall, ..., valN should be ground terms representing numbers of the domain
(they are possible values of the argument of pred) and truth vall, ..., truth valN
should be the truth values associated to these numbers. The truth value of the
rest of the elements is obtained by interpolation.

pred 3 ([(vall, truth vall), (val2,truth val2) [, (valn,truth valn) 1*]) . (3)
The RFuzzy syntax for the predicate teenager/1 (represented in Figll)) is:

teenager : #([(9,0), (10,1), (19, 1), (20,0)]).

2.4 Rule Definition with Truth Values and Credibility

A tool which only allows the user to define truth values through functions and
facts lacks on allowing him to combine those truth values for representing more
complex situations. A rule is the tool to combine the truth values of facts, func-
tions, and other rules.

Rules allow the user to combine truth values in the correct way (by means of
aggregation operators, like minimum, mazimum, product, etc.). The aggregation
operator combines the truth values of the subgoals of the body of the rule to
obtain the truth value of the head of the rule.

Appart from this, rules are assigned a credibility value to obtain the final truth
value for the head of the clause. Credibility is used to express how much we trust
a rule. It is used another opperator to aggregate the truth value obtained (from
the aggregation of the subgoals of the body) with the rule’s credibility.

RPFuzzy offers a simple syntax for representing these rules, defined in (H).
There are two aggregation operators, op2 for combining the truth values of the
subgoals of the rule body and opI for combining the previous result with the
rule’s credibility. The user can choose for any of them an aggregation operator
from the list of the available onedd or define his /her own aggregation operator.

pred(argl [, argn]®) [cred (opl,valuel) | : ~ op2 (4)
predl(args pred 1) [, predm(args pred m)] .
The following example uses the operator prod for aggregating truth values of

the subgoals of the body and min to aggregate the result with the credibility of
the rule (which is 0.8). “cred (opl,valuel)” can only appear 0 or 1 times.

good player(J) cred(min,0.8) : ~ prod swift(J), tall(J), has experience(J).
2 Aggregation operators available are: min for minimum, maz for maximum, prod for

the product, luka for the Lukasiewicz operator, dprod for the inverse product, diuka
for the inverse Lukasiewicz operator and complement.

RFuzzy: An Expressive Simple Fuzzy Compiler 275

2.5 General and Conditioned Default Truth Values

Unfortunately, information provided by the user is not complete in general. So
there are many cases in which we have no information about the truth value for a
fuzzy predicate of an individual or a set of them. Nevertheless, it is interesting not
to stop a complex query evaluation just because we have no information about
one or more subgoals if we can use a reasonable approximation. A solution to
this problem is using default truth values for these cases. The RFuzzy extension
to define a default truth value for a predicate when applied to individuals for
which the user has not defined an explicit truth value is named general default
truth value. The syntax for defining a general default truth value is shown in (H).
Conditioned default truth value is used when the default truth value only ap-
plies to a subset of the domain. This subset is defined by a membership predicate
which is true only when an individual belongs to the subset. The membership
predicate (membership predicate/ar) and the predicate to which it is applied
(pred/ar) need to have the same arity (ar). The syntax is shown in (G).

:- default(pred/ar, truth value) . (5)
:- default(pred/ar, truth value) => membership predicate/ar. (6)

pred/ar is in both cases the predicate to which we are defining default values.
As expected, when defining the three cases (explicit, conditioned and default
truth value) only one will be given back when doing a query. The precedence
when looking for the truth value goes from the most concrete to the least one.

The code from the example below joint with the code from examples in sub-
sections 2.I] and assigns to the predicate expensive car a truth value of 0.5
when the car is vw caddy (default truth value), 0.9 when it is lamborghini urraco
or aston martin bulldog (conditioned default truth value) and 0.6 when it is
alfa romeo gt (explicit truth value).

: —default(expensive car/1,0.9) => expensive make/1.
: —de fault(expensive car/1,0.5).
expensive make(lamborghini urraco).

expensive make(aston martin bulldog).

2.6 Constructive Answers

A very interesting characteristic for a fuzzy tool is being able to provide con-
structive answers for queries. The regular (easy) questions ask for the truth value
of an element. For example, how expensive is an Volkswagen Caddy? (See left
hand side example below)

? — expensive car(vw caddy,V). | 7 — expensive car(X,V),V > 0.8.
V =057 | V =0.9,X = aston martin bulldog?;
no | V =0.9, X = lamborghini urraco?;

| no

276 S. Munoz-Hernandez, V.P. Ceruelo, and H. Strass

But the really interesting queries are the ones that ask for values that satisfy
constraints over the truth value. For example, which cars are very expensive? (See
right hand side example above). RFuzzy provides this constructive functionality.

3 Implementation Details

RFuzzy has to deal with two kinds of queries, (1) queries in which the user
asks for the truth value of an individual, and (2) queries in which the user asks
for an individual with a concrete or a restricted truth value. For this reason
RFuzzy is implemented as a Ciao Prolog [12] package because Ciao Prolog
offers the possibility of dealing with a higher order compilation through the
implementation of Ciao packages.

The compilation process of a RFuzzy program has two pre-compilation steps:
(1) the RFuzzy program is translated into CLP(R) constraints by means of the
RPFuzzy package and (2) the program with constraints is translated into ISO
Prolog by using the CLP(R) package. Fig. 2l shows the whole process.

RFuzzy RFuzzy CLP(R) CLP(R) ISO Prolog
program package program package program
preprocessing preprocessing

Fig. 2. RFuzzy architecture

4 Conclusions

RFuzzy is not a work in progress. It is an available implementatiorﬁ that offers
to the users/programmers a new framework to represent fuzzy problems over
real numbers. Main RFuzzy advantages over Fuzzy Prolog are a simpler syntax
and the elimination of answers with constraints. Moreover RFuzzy is one of the
first tools modelling multi-adjoint logic, as explained in subsection All the
advanced characteristics of RFuzzy are missing in other tools as FLOPER[9Ig].

Extensions added to Prolog by RFuzzy are: types (subsection 2JJ), default
truth values conditioned or general (subsection 25]), assignment of truth values
to individuals by means of facts (subsection 22]), functions (subsection [Z3]) or
rules with credibility (subsection [Z7]).

One of the most important consequences of these extensions is the construc-
tivity of the answers with the possibility of constraining the truth value in the
queries as we describe in section

There are countless applications and research lines which can benefit from the
advantages of using the fuzzy representations offered by RFuzzy. Some examples
are: Search Engines, Knowledge Extraction (from databases, ontologies, etc.),
Semantic Web, Business Rules, Coding Rules, etc.

3 The RFuzzy module with installation instructions and examples can be downloaded
from http://babel.ls.fi.upm.es/software/rfuzzy/

http://babel.ls.fi.upm.es/software/rfuzzy/

RFuzzy: An Expressive Simple Fuzzy Compiler 277

References

10.

11.

12.

13.

14.

15.

. Abietar, J.M., Morcillo, P.J., Moreno, G.: Designing a software tool for fuzzy logic

programming. In: Simos, T.E., Maroulis, G. (eds.) Proc. of the Int. Conf. of Com-
putational Methods in Sciences and Engineering. ICCMSE 2007. Computation in
Mordern Science and Engineering, vol. 2, pp. 1117-1120. American Institute of
Physics (2007) (Distributed by Springer)

. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint Logic Program-

ming: syntax and semantics. In: ACM TOPLAS, vol. 23, pp. 1-29 (2001)

. Guadarrama, S., Munoz-Hernandez, S., Vaucheret, C.: Fuzzy Prolog: A new ap-

proach using soft constraints propagation. Fuzzy Sets and Systems 144(1), 127-150
(2004)

. Lee, R.C.T.: Fuzzy Logic and the resolution principle. Journal of the Association

for Computing Machinery 19(1), 119-129 (1972)

. Medina, J., Ojeda-Aciego, M., Votjas, P.: A completeness theorem for multi-adjoint

Logic Programming. In: International Fuzzy Systems Conference, pp. 1031-1034.
IEEE, Los Alamitos (2001)

. Medina, J., Ojeda-Aciego, M., Votjas, P.: Multi-adjoint Logic Programming with

continuous semantics. In: Eiter, T., Faber, W., Truszczynski, M. (eds.) LPNMR
2001. LNCS, vol. 2173, pp. 351-364. Springer, Heidelberg (2001)

. Medina, J., Ojeda-Aciego, M., Votjas, P.: A procedural semantics for multi-adjoint

Logic Programming. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS,
vol. 2258, pp. 290-297. Springer, Heidelberg (2001)

. Morcillo, P.J., Moreno, G.: Floper, a fuzzy logic programming environment for re-

search. In: Proceedings of the Spanish Conference on Programming and Computer
Languages, PROLE 2008, Gijén, Spain (2008)

. Moreno, G.: Building a fuzzy transformation system. In: SOFtware SEMinar 2006:

Theory and Practice of Computer Science, pp. 409-418 (2006)
Munoz-Hernandez, S., Vaucheret, C., Guadarrama, S.: Combining crisp and fuzzy
Logic in a prolog compiler. In: Moreno-Navarro, J.J., Marifo, J. (eds.) Joint Conf.
on Declarative Programming: APPIA-GULP-PRODE 2002, Madrid, Spain, pp.
23-38 (September 2002)

Shen, Z., Ding, L., Mukaidono, M.: Fuzzy resolution principle. In: Proc. of 18th
International Symposium on Multiple-valued Logic, vol. 5 (1989)

The CLIP Lab. The Ciao Prolog Development System WWW Site,
http://www.clip.dia.fi.upm.es/Software/Ciao/

Vaucheret, C., Guadarrama, S., Munoz-Hernandez, S.: Fuzzy prolog: A simple gen-
eral implementation using clp(r). In: Baaz, M., Voronkov, A. (eds.) LPAR 2002.
LNCS (LNAI), vol. 2514, pp. 450-463. Springer, Heidelberg (2002)

Vojtas, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(1), 361-370
(2001)

Ehud, Y., Shapiro: Logic programs with uncertainties: A tool for implementing
rule-based systems. In: International Joint Conference on Artificial Intelligence,
pp. 529-532 (1983)

http://www.clip.dia.fi.upm.es/Software/Ciao/

	RFuzzy: An Expressive Simple Fuzzy Compiler
	Introduction
	Fuzzy Approaches in Logic Programming
	Fuzzy Prolog
	Motivation and RFuzzy Approach

	RFuzzy Expressiveness
	Types Definition
	Simple Truth Value Assignment
	Continuous Function to Represent Truth Values
	Rule Definition with Truth Values and Credibility
	General and Conditioned Default Truth Values
	Constructive Answers

	Implementation Details
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

