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A GENERALIZED RESOLUTION THEOREM

Pascal Hitzler
∗

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of resolution on algebraic domains [2]. This

framework allows reasoning with knowledge which is hierarchically structured and forms a (suitable) domain, more precisely,

a coherent algebraic cpo as studied in domain theory. In this paper, we give conditions under which a resolution theorem —

in a form underlying resolution-based logic programming systems — can be obtained. The investigations bear potential for
engineering new knowledge representation and reasoning systems on a firm domain-theoretic background.
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1 INTRODUCTION

Domain Theory [2] is an abstract mathematical the-
ory for programming semantics and has grown into a re-
spected field on the borderline between mathematics and
computer science. Relationships between domain theory
and logic were noted early on by Scott [3], and subse-
quently developed by many authors, including Smyth [4],
Abramsky [5], and Zhang [6]. There has been much work
on the use of domain logics as logics of types and of pro-
gram correctness, with a focus on functional and imper-
ative languages. However, there has been only little work
relating domain theory to logic programming or other
AI paradigms, two exceptions being the application of
methods from quantitative domain theory to the seman-
tic analysis of logic programming paradigms studied by
Hitzler and Seda [7, 8], and the work of Rounds and Zhang
on the use of domain logics for disjunctive logic program-
ming and default reasoning [1 9].

The latter authors, in [1], introduced a form of clausal
logic generalized to coherent algebraic domains, moti-
vated by theoretical investigations into the logical nature
of ordered spaces occuring in domain theory. In essence,
they propose to interpret finite sets of compact elements
as abstract formal clauses, yielding a theory which links
standard domain-theoretic notions to corresponding logi-
cal notions. Amongst other things, they establish a sound
and complete proof theory based on a generalized reso-
lution rule, and a form of disjunctive logic programming
in domains. A corresponding semantic operator turns out
to be Scott-continuous.

In this paper, we study this clausal logic, henceforth
called logic RZ for convenience. The occurrence of a
proof theory based on a generalized resolution rule poses
the question whether results underlying resolution-based
logic programming systems can be carried over to the
logic RZ. One of the most fundamental results underly-
ing these systems is the resolution theorem which states
that a clause X is a logical consequence of a theory T if
and only if it is possible to derive a contradiction, iethe
empty clause, via resolution from the theory T ∪ {¬X}
[10, 11].

What we just called resolution theorem is certainly
an immediate consequence of the fact that resolution is
sound and complete for classical logic. However, it is not
obvious how it can be transfered to the logic RZ, mainly
because it necessitates negating a clause, and negation
is not available in the logic RZ in explicit form. This
observation will lead our thoughts, and in the end we
will develop conditions on the underlying domain which
ensure that a negation is present which allows to prove
an analogon of the theorem.

The paper is structured as follows. In Section 2 we
review the most fundamental definitions from the logic
RZ, as laid out in [1]. In Section 2.2 we recall the corre-
sponding proof theory, based on a form of resolution for
this framework. In Section 3 we will simplify the proof
theory and provide a rule system which is simpler and
easier to work with. The remainder of the paper is de-
voted to determining conditions under which a resolution
theorem, in the form mentioned above, can be proven for
the logic RZ. These conditions will involve atomicity of
the underlying domain, studied in Section 4, and a form
of negation for these spaces, studied in Section 5. We will
conclude in Section 6.

An extended abstract of this paper appeared in [12].

2 PRELIMINARIES

2.1 The Logic RZ

A partially ordered set is a pair (D,v) , where D is
a nonempty set and v is a relexive, antisymmetric, and
transitive relation on D . A subset X of a partially or-
dered set is directed if for all x, y ∈ X there is z ∈ X
with x, y v z . An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially
ordered set (D,v) with a least element ⊥ , called the bot-

tom element of (D,v) , and such that every directed set
in D has a least upper bound, or supremum,

⊔

D . An
element c ∈ D is said to be compact or finite if whenever
c v

⊔

L with L directed, then there exists e ∈ L with
c v e . The set of all compact elements of a cpo D is de-
noted by K(D) . An algebraic cpo is a cpo such that every
e ∈ D is the directed supremum of all compact elements
below it.
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A set U ⊆ D is said to be Scott open, or just open, if
it is upward closed and for any directed L ⊆ D we have
⊔

L ∈ U if and only if U ∩ L 6= 0. The Scott topology

on D is the topology whose open sets are all Scott open
sets. An open set is compact open if it is compact in the
Scott topology. A coherent algebraic cpo is an algebraic
cpo such that the intersection of any two compact open
sets is compact open. This coincides with the coherency
notion defined in [2], which may be consulted as basic
reference for domain theory. We will not make use of
many topological notions in the sequel. So let us note
that coherency of an algebraic cpo implies that the set of
all minimal upper bounds of a finite number of compact
elements is finite, ieif c1, . . . , cn are compact elements,
then the set mub{c1, . . . , cn} of minimal upper bounds of
these elements is finite. Note that mub ∅ = {⊥} , where
⊥ is the least element of D .

In the following, (D,v) will always be assumed to be
a coherent algebraic cpo. We will also call these spaces
domains. Two elements c, d ∈ D are called inconsistent,
symbolically c 6↑ d , if c and d have no common upper
bound.

Following [13], an element a ∈ D is called an atom, or
an atomic element, if whenever x v a we have x = a or
x = ⊥ . The set of all atoms of a domain is denoted by
A(D) .

Definition 2.1. Let D be a coherent algebraic cpo with
set K(D) of compact elements. A clause is a finite subset
of K(D) . We denote the set of all clauses over D by C(D) .
If X is a clause and w ∈ D , we write w |= X if there
exists x ∈ X with x v w , ie X contains an element
below w .

A theory is a set of clauses, which may be empty. An
element w ∈ D is a model of a theory T , written w |= T ,
if w |= X for all X ∈ T or, equivalently, if every clause
X ∈ T contains an element below w .

A clause X is called a logical consequence of a theory
T , written T |= X , if w |= T implies w |= X . If T =
{E} , then we write E |= X for {E} |= X . Note that this
holds if and only if for every w ∈ E there is x ∈ X with
x v w .

For two theories T and S , we say that T |= S if
T |= X for all X ∈ S . We say that T and S are (logically)
equivalent, written T ∼ S , if T |= S and S |= T . In order
to avoid confusion, we will throughout denote the empty
clause by {} , and the empty theory by ∅ . A theory T is
(logically) closed if T |= X implies X ∈ T for all clauses
X . It is called consistent if T 6|= {} or, equivalently, if
there is w with w |= T .

Rounds and Zhang originally set out to characterize
logically the notion of Smyth powerdomain of coherent al-
gebraic cpos. It naturally lead to the clausal logic RZ from
Definition 2.1. Indeed, as was shown in [1], the Smyth
powerdomain of any coherent algebraic domain is isomor-
phic to the set of all consistent closed theories over the
domain, ordered by set-inclusion. A corollary from the
proof is that a clause is a logical consequence of a theory

if and only if it is a logical consequence of a finite sub-
set of the theory, which is a compactness theorem for the
logic RZ.

Example 2.2. In [1], the domain T
ω from [14], here

denoted T
V , was given as a running example. Consider

some three-valued logic in the propositional case, with
the usual (knowledge)-ordering on the set T = {f ,u, t}
of truth values given by u < f and u < t . This induces a
pointwise ordering on the space T

V of all interpretations
(or partial truth assignments), where V is the (count-
ably infinite) set of all propositional variables in the lan-

guage under consideration. The partially ordered set T
V

is a coherent algebraic cpo. Compact elements in T
V are

those interpretations which map all but a finite number
of propositional variables to u . We denote compact ele-
ments by strings such as pqr , which indicates that p and
q are mapped to t and r is mapped to f .

We note that {e | e |= φ} is upward-closed for any
logical formula φ if considering eg Kleene’s strong three-
valued logic, which has been recognized as being impor-
tant in a logic programming context [15]. A clause in T

V

is a formula in disjunctive normal form, eg {pqr, pq, r}
translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r .

We also note that every compact element in T
V can be

uniquely expressed as the supremum of a finite number
of atomic elements, and the set of all atomic elements is
A

(

T
V
)

= V ∪ {v | v ∈ V} . Furthermore, there exists a

bijective function : A
(

T
V
)

→ A
(

T
V
)

: p → p which
extends naturally to a Scott-continuous involution on all
of T

V via p1 . . . pn = p1 . . . pn . In the following, a clause
over a domain D will be called an atomic clause if it is a
finite subset of A(D) . Atomic clauses on T

V correspond
to propositional clauses in the classical sense. Note that
p 6↑ p for p ∈ A

(

T
V
)

and in general for all c ∈ K
(

T
V
)

we have c 6↑ c .

The following example shows how knowledge can be
represented in algebraic domains. For convenience, exam-
ples will be presented as subsets of T

V , in the notation
from Example 2.2.

Example 2.3. Consider the subspace of T
V constituted

by the elements ⊥ , b (is a bird), f (flies), f (does not
fly), a (lives in australia), s (lives near south pole),

bfs (is a penguin), and bfa (is an ostrich). Then eg
{

{b},
{

f
}}

|= {a, s} .

As to the knowledge representation capabilities of the
logic RZ, we remark that some first investigations have
exhibited a strong link to formal concept analysis [16, 17].

2.2 Resolution in the logic RZ

In [1], a sound and complete proof theory, using clausal

hyperresolution, was given as follows, where {X1, . . . , Xn}
is a clause set and Y a clause.

Xi; ai ∈ Xi (i ≤ n); mub{ai | i ≤ n} |= Y

Y ∪
⋃

i≤n (Xi \ {ai})
(hr)
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This rule is sound in the following sense: Whenever
w |= Xi for all i , then for any admissible choice of
the ai and Y in the antecedent, we have w |= Y ∪
⋃n

i=1
(Xi \ {ai}) .

For completeness, it is necessary to adjoin to the above
clausal hyperresolution rule a special rule which allows
the inference of any clause from the empty clause. We
indicate this rule as follows.

{}; Y ∈ C(D)

Y
(spec)

With this addition, given a theory T and a clause X with
T |= X , we have that T `∗ X , where `∗ stands for a fi-
nite number of applications of the clausal hyperresolution
rule together with the special rule.

Furthermore, [1, Remark 4.6] shows that binary hy-
perresolution, together with (spec), is already complete,
ie the system consisting of the binary clausal hyperreso-

lution rule

X1 X2; ai ∈ Xi; mub{a1, a2} |= Y

Y ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(bhr)

together with the special rule is sound and complete.

If the set {a1, a2} is inconsistent, then mub{a1, a2} =
{} . Since {} |= {} , clausal hyperresolution generalizes the
usual notion of resolution, given by the following rule.

X1 X2; ai ∈ Xi; a1 6↑ a2

(X1 \ {a1}) ∪ (X2 \ {a2})
(r)

Example 2.4. Returning to Example 2.3, note that

eg
{

{b},
{

f
}}

`
{

bfs, bfa
}

using (bhr).

3 SIMPLIFYING THE RESOLUTION SYSTEM

Note that two special instances of the clausal hyper-
resolution rule are as follows, which we call the reduction

rule and the extension rule.

X; {a, y} ⊆ X; y v a

X \ {a}
(red),

X; y ∈ K(D)

{y} ∪ X
(ext)

Indeed, the first rule follows from (hr) since a ∈ X and
{a} |= {y} , while the latter rule follows since {a} |=
{a, y} for all y ∈ K(D) . The special rule (spec) can be
understood as an instance of (ext). Note also that reso-
lution (r) together with (ext) and (red) is not complete.
In order to see this, we refer again to Example 2.2. Let
T = {{p}, {q}} and X = {pq} . Then T |= X but there
is no way to produce X from T using (r), (ext) and (red)
alone. Indeed, it is easy to show by induction that any X
which can be derived from T by using only (r), (ext) and
(red), contains either p or q , which suffices.

It is our desire to provide a sound and complete sys-
tem whose rules are as simple as possible. Consider the

following rule, which we call simplified hyperresolution.
It is easy to see that it is an instance of (hr) and more
general than (r).

X1 X2; ai ∈ Xi

mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(shr)

Theorem 3.1. The system consisting of (shr), (ext) and

(red) is complete.

P r o o f . In order to show completeness, we derive
(bhr) from (shr), (ext) and (red). Let X1 , X2 be given
with a1 ∈ X1 and a2 ∈ X2 with a1 ↑ a2 . Furthermore, let
Y be a clause with mub{a1, a2} |= Y . Let mub{a1, a2} =
{b1, . . . , bn} . Then for every bi there exists yi ∈ Y with
yi v bi . Using (shr), from X1 and X2 we can derive
X3 = mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2}) , and with
repeated application of (ext) and (red) we obtain from this
X4 = {y1, . . . , yn}∪(X1\{a1})∪(X2\{a2}) . Finally, using
(ext) repeatedly, we can add to X4 all remaining elements
from Y . The argumentation for a1 6↑ a2 is similar. This
completes the proof.

We note that a rule with weaker preconditions than
(red) suffices, which we call the weakening rule:

X; a ∈ X; y v a

{y} ∪ (X \ {a})
(w)

Indeed, (red) can be derived from (w) as follows. Let
{a, y} ⊆ X with y v a . Then in particular a ∈ X ,
ieusing (w) we can derive {y} ∪ (X \ {a}) which is equal
to X \ {a} since y is already contained in X . On the
other hand, (w) can be derived from (red) and (ext) as
follows. Let a ∈ X and y v a . If a = y then there is
nothing to show, so assume a 6= y . Then X ` X ∪{y} by
the extension rule, so the reduction rule can be applied,
yielding (X ∪ {y}) \ {a} as required.

The following technical result is inspired by
[18, Theorem 7].

Proposition 3.2. For clauses X1, . . . , Xn we have

{X1, . . . , Xn} |= X if and only if {{a1}, . . . , {an}} |= X
for all (a1, . . . , an) ∈ X1 × . . . × Xn .

P r o o f . Assume {X1, . . . , Xn} |= X and let ai ∈ Xi

be arbitrarily chosen for i = 1, . . . , n . Then {ai} Xi for
all i = 1, . . . n by (ext) and therefore {{a1}, . . . , {an}} |=
{X1, . . . , Xn} |= X .

Conversely, assume that {{a1}, . . . , {an}} |= X for
all (a1, . . . , an) ∈ X1 × . . . × Xn and let w ∈ D with
w |= {X1, . . . , Xn} , ie w |= Xi for all i = 1, . . . , n . Then
for all i = 1, . . . , n there is ai ∈ Xi with ai v w . So
for all i = 1, . . . , n choose ai with ai v w . Then w |=
{{a1}, . . . , {an}} and by assumption we obtain w |= X .

We call the system consisting of the rules (red), (ext)
and (shr) the RAD system, from Resolution in Algebraic

Domains. For two theories T and S , we write T `∗ S
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if T `∗ A for each A ∈ S , and for clauses X and Y
we write X `∗ Y , respectively X `∗ T , for {X} `∗ Y ,
respectively {X} `∗ T . The symbol ` denotes derivation
by a single application of one of the rules in RAD. With
slight abuse of notation, for two theories T and S we
allow to write T ` S if T ` X for some clause X and
S ⊆ T ∪ {X} .

We interpret the RAD rules in the setting of Example
2.2. We already know that clauses correspond to formulas
in disjunctive normal form (DNF), and theories to sets of
DNF formulas. The weakening rule acts on single clauses
and replaces a conjunction contained in a DNF formula by
a conjunction which contains a subset of the propositional
variables contained in the original conjunction, eg (p∧q)∨
r becomes p∨r . The extension rule disjunctively extends
a DNF formula by a further conjunction of propositional
variables, eg (p ∧ q) ∨ r becomes (p ∧ q) ∨ r ∨ (s ∧ q) .
The simplified hyperresolution rule finally takes two DNF
formulas, deletes one conjunction from each of them, and
forms a disjunction from the resulting formulas together
with the conjunction of the deleted items, eg (p ∧ q) ∨ r
and ¬p∨(s∧r) can be resolved to (p∧q)∨(r∧¬p)∨(s∧r) .

A more abstract interpretation of the RAD system
comes from a standard intuition underlying domain the-
ory. Elements of the domain D are interpreted as pieces
of information, and if x v y , this represents that y con-
tains more information than x . Compact elements are
understood as items which are computationally accessi-
ble. From this point of view, RAD gives a calculus for
reasoning about disjunctive information in computation,
taking a clause, iea finite set of computationally acces-
sible information items as disjunctive knowledge about
these items. The rules from RAD yield a system for de-
riving further knowledge from the given disjunctive in-
formation. The weakening rule states that we can replace
an item by another one which contains less information.
The extension rule states that we can always extend our
knowledge disjunctively with further bits of information.
Both rules decrease our knowledge. The simplified hy-
perresolution rule states that we can disjunctively merge
two collections of disjunctive information, while strength-
ening our knowledge by replacing two of the items from
the collections by an item which contains both pieces of
information, and deleting the original items.

Example 3.3. For Example 2.3, note that
{

{b},
{

f
}}

`
{

bfs, bfa
}

using (shr),
{

bfs, bfa
}

`
{

s, bfa
}

using (w),

and finally
{

s, bfa
}

` {s, a} using (w) again.

4 ATOMIC DOMAINS

We simplify proof search via resolution by requiring
stronger conditions on the domain.

Definition 4.1. An atomic domain is a coherent alge-
braic cpo D with the following property: For all c ∈
K(D) , the set A(c) = {p ∈ A(D) | p v c} is finite and
c =

⊔

A(c) .

The domain T
V from Example 2.2 is an example of an

atomic domain. In the remainder of this section, D will
always be an atomic domain.

We seek to represent a clause X by a finite set A(X) of
atomic clauses which is logically equivalent to X . Given
X = {a1, . . . , an} , we define A(X) as follows.

A(X) = {{b1, . . . , bn} | bi ∈ A(ai) for all i = 1, . . . , n}

Then the following theorem holds.

Theorem 4.2. For any clause X we have A(X) ∼ {X} .

P r o o f . For a clause X = {a1, . . . , an} set X/a1 =
{{b, a2, . . . , an} | b ∈ A(a1)} . Then X/a1 |= X . Indeed,
since

⊔

A(a1) = a1 we obtain mub A(a1) |= {a1} , and
therefore X/a1 `∗ X from (hr).

Now let X = {a1, . . . , an} and let Y = {b1, . . . , bn} ∈
A(X) with bi ∈ A(ai) for all i . Then bi v ai for all i and
hence X `∗ Y by repeated application of the weakening
rule. Conversely, define for any compact element a and
any set T of clauses: T/a = {Z ∈ T | a 6∈ Z} ∪ {{b} ∪
(Z \ {a}) | b ∈ A(a), a ∈ Z ∈ T} . So for any clause Z
and a ∈ Z we have {Z}/a = Z/a and we obtain that
T/a |= T for all sets of clauses T and a ∈ K(D) . Now let
X = {a1, . . . , an} . Then (. . . (X/a1)/a2 . . . )/an = A(X)
and consequently A(X) |= X , which completes the proof.

In view of Theorem 4.2, it suffices to study T `∗ X for
theories T and atomic clauses X . We can actually obtain
a stronger result, as follows, which provides some kind
of normal forms of derivations. For a theory T , define
A(T ) = {A(X) | X ∈ T} .

Theorem 4.3. Let D be an atomic domain, T be a

theory, X be a clause and

T ` T1 ` · · · ` TN ` X

be a derivation in RAD. Then there exists a derivation

A(T ) `∗ A(T1) `
∗ · · · `∗ A(TN ) `∗ A(X)

using only the atomic extension rule

X; y ∈ A(D)

{y} ∪ X
(axt)

and the multiple atomic shift rule (mas), as follows.

ai ∈ Xi; mub{ai | i ≤ n} = {xj | j ≤ m}; bi ∈ A(xi)

{b1, . . . , bm} ∪
⋃

i≤n(Xi \ {ai})

Furthermore, all clauses occuring in the derivation are

atomic.

P r o o f . Let X1, X2, X be clauses. We distinguish
three cases, from which the assertion follows easily by
induction on N .
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1. X1 ` X using the reduction rule. First note that
the following atomic shift rule (ash) is a special instance
of the multiple atomic shift rule.

a1 ∈ X1 a2 ∈ X2; a ∈ A(x) for all x ∈ mub{a1, a2}

{a} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

Indeed, (ash) follows from (mas) with n = 2 and
a = b1 = . . . = bk . Now let a, y ∈ X1 with y v
a and X = X1 \ {a} = {y, x1, . . . , xn} . Let A ∈
A(X) , say A = {y′, x′

1, . . . , x
′
n} with y′ ∈ A(y) and

x′
i ∈ A(xi) for all i . Without loss of generality we

can assume that A(y) ⊂ A(a) , so there is {a′} ∪
A ∈ A(X1) for some a′ ∈ A(a) \ A(y) . So we now
have a′, y′ v a and y′ v y , ie {y′, a′, x′

1, . . . , x
′
n} ∈

A(X1) and {y′, y′, x′
1, . . . , x

′
n} = A ∈ A(X1) . So a′ ∈

{y′, a′, x′
1, . . . , x

′
n} , y′ ∈ {y′, y′, x′

1, . . . , x
′
n} and since

y′ v x for all x ∈ mub{y′, a′} we can derive {y′} ∪
({y′, a′, x′

1, . . . , x
′
n} \ {a

′})∪ ({y′, y′, x′
1, . . . , x

′
n} \ {y

′}) =
{y′, x′

1, . . . , x
′
n} = A using the atomic shift rule.

2. X1 ` X using the extension rule, ie X = X1 ∪ {y}
for some y . Let A ∈ A(X) . Then A = {y′} ∪ Y for some
y′ ∈ A(y) and Y ∈ A(X1) . Using the atomic extension
rule we can derive Y ` A and therefore A(X1) ` A using
the atomic extension rule only, which suffices.

3. {X1, X2} ` X using the simplified hyperresolution
rule. Let a1 ∈ X1 , a2 ∈ X2 and X = mub{a1, a2}∪(X1\
{a1})∪(X2\{a2}) . Furthermore, let M = mub{a1, a2} =
{m1, . . . ,mk} and let A ∈ A(X) , ie A = {m′

1, . . . ,m
′
k} ∪

B1 ∪B2 , where m′
i ∈ A(mi) for all i , B1 ∈ A(X1 \ {a1})

and B2 ∈ A(X2 \ {a2}) . Note that for all a′
1 ∈ A(a1) we

have that B1 ∪ {a′
1} ∈ A(X1) and for all a′

2 ∈ A(a2) we
have that B2 ∪ {a′

2} ∈ A(X2) . Let A(a1) = {a′
1, . . . , a

′
k1
}

and A(a2) = {a′
k1+1

, . . . , a′
k1+k2

} . For i = 1, . . . , k1 let

Yi = B1 ∪ {a′
i} ∈ A(X1) and for i = k1, . . . , k1 + k2 let

Yi = B2 ∪ {a′
i} ∈ A(X2) . Since a1 =

⊔

A(a1) and a2 =
⊔

A(a2) we have mub (A(a1) ∪ A(a2)) = mub{a1, a2} =
{m1, . . . ,mk} = M . From the multiple atomic shift rule
we obtain (with i ≤ k1 + k2 and j ≤ k )

ai ∈ Yi mub{a′
1, . . . , a

′
k1+k2

} = M, m′
j ∈ A(mj)

{m′
1, . . . ,m

′
k} ∪

⋃

i≤k1+k2
(Yi \ {ai})

Since Yi \{a
′
i} ⊆ B1 for i = 1, . . . , k1 and Yi \{a

′
2} ⊆ B2

for i = k1, . . . , k1 + k2 , we obtain {m′
1, . . . ,m

′
k} ∪

⋃

(Yi \
{ai}) ⊆ A which suffices by the atomic extension rule.

Note that the atomic extension rule is a special case of
the extension rule, and that the multiple atomic shift rule
can be obtained as a subsequent application of first the
hyperresolution rule (with Y = mub{a1, . . . , an}) and
then multiple instances of the reduction rule, hence both
rules are sound.

R e m a r k 4.4 . We note that Theorem 4.3 does not
hold if (mas) is replaced by its binary version (bas), as
follows.

a1 ∈ X1, a2 ∈ X2;mub{a1, a2} = {x1 | i ≤ k}; bi ∈ A(xi)

{b1, . . . , bk} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

In order to see this, consider three atomic elements
a1, a2, a3 which are mutually consistent with supre-
mum sup{ai, aj} = aij , but do not have a common
upper bound. Then {{a1}, {a2}, {a3}} |= {} , but the
empty clause {} cannot be derived from the theory
T = {{a1}, {a2}, {a3}} using (axt) and (bas) alone. In-
deed it is easy to show by induction that every clause
which is derived from T using applications of (axt) and
(bas) always contains one of the elements a1 , a2 or a3 .

5 DOMAINS WITH NEGATION

We introduce and investigate a notion of negation on
domains, motivated by classical negation as in Exam-
ple 2.2.

Definition 5.1. An atomic domain is called an atomic

domain with negation if there exists an involutive and
Scott-continuous negation function : D → D with the
following properties:

(i) maps A(D) onto A(D) .

(ii) For all p, q ∈ A(D) we have p 6↑ q if and only if
q = p .

(iii) For every finite subset A ⊆ A(D) such that p ↑ q
for all p, q ∈ A , the supremum

⊔

A exists.

T
V from Example 2.2 is an example of an atomic

domain with negation.

Proposition 5.2. Let D be an atomic domain with

negation. Then for all c ∈ K(D) we have

c =
⊔

{a | a ∈ A(c)} .

P r o o f . Let c ∈ K(D) . Then c =
⊔

A(c) , hence A(c)
is consistent. By (ii) of Definition 5.1, we obtain that
every pair of elements from {a | a ∈ A(c)} is consistent,
and by (iii) the supremum d =

⊔

{a | a ∈ A(c)} exists.
From monotonicity of , we obtain first d v c , and then

d v c = c . But, again by monotonicity of , we know

that d is an upper bound of A(c) , hence c v d , and

consequently c = d and c = d =
⊔

{a | a ∈ A(c)} as
required.

The following result, an analogon to the resolution the-
orem mentioned in the introduction, allows one to replace
the search for derivations by search for contradiction.

Theorem 5.3. Let D be an atomic domain with nega-

tion. Let T be a theory and X be an atomic clause. Then

T |= X if and only if T ∪ {{ā} | a ∈ X} `∗ {} .

P r o o f . Assume T |= X .
Then T `∗ X and {X} ∪ {{ā} | a ∈ X} `∗ {} follows
easily by repeated application of the resolution rule (r).

Conversely, assume T ∪ {{a} | a ∈ X} `∗ {} , ie

T∪{{a} | a ∈ X} |= {} . If T |= {} then T `∗ {} `∗ X . So
assume that T 6|= {} , iethere exists w ∈ D with w |= T .
We have to show that w |= X for every such w . Since
w |= T but w 6|= T ∪ {{a} | a ∈ X} , we have that there
is a ∈ X with a 6↑ w . Hence there exists x ∈ A(w) with
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x 6↑ a . From the hypothesis we obtain x = a . Hence
a v w and therefore, by the weakening rule, w `∗ X , ie

w |= X .

On atomic domains with negation, we can therefore
establish the following sound and complete proof princi-
ple.

Theorem 5.4. Let T be a theory and X a clause. Con-

sider T ′ = A(T ) . For every atomic clause A ∈ A(X)
attempt to show T ′ ∪ {{a} | a ∈ A} `∗ {} using (axt)
and (mas). If this succeeds, then T |= X . Conversely, if

T |= X then there exists a derivation

T ′ ∪ {{a} | a ∈ A} `∗ {} for each A ∈ A(X) using only

the above mentioned rules.

P r o o f . If T ′ ∪ {{a} | a ∈ A} `∗ {} , then by Theo-
rem 4.3 the derivation can be carried out using only the
mentioned rules and we obtain T ′ ∪ {{a} | a ∈ A} |= {} .
By Theorem 5.3 we obtain T ′ |= A , so T ′ |= A for all
A ∈ A(X) . By Theorem 4.2 this yields T ′ |= X and fi-
nally we obtain T |= X by application of Theorem 4.2,
noting that T ′ = A(T ) ∼ T .

Conversely, if T |= X then we have T ′ |= A for all
A ∈ A(X) , again by Theorems 4.2. Theorem 5.3 then
yields T ′ ∪ {{a} | a ∈ A} `∗ {} for all A ∈ A(X) , and
finally from Theorem 4.3 we obtain that this derivation
can be done using only the designated rules.

Example 5.5. We give an abstract example, again using
notation from Example 2.2, which shows that reasoningin
atomic domains with negation does not lead directly back
to resoning in T

V . Consider the subcpo constituted by the
elements {⊥, p, q, r, p, q, r, pqr, pqr, pq, pr, qp, qr, rp, rq} ,
which is an atomic domain with negation. Then eg

{{p}, {q}} |= {r} . Indeed, {{p}, {q}, {r}} ` {} by (mas)
because mub{p, q, r} = {} .

6 CONCLUSIONS

We have shown that for certain domains logical con-
sequence in the logic RZ can be reduced to search for
contradiction, a result which yields a proof mechanism
similar to that underlying the resolution principle used
in resolution-based logic programming systems. The re-
sult should be understood as foundational for establish-
ing logic programming systems on hierarchical knowledge
— like eg in formal concept analysis — built on a firm
domain-theoretic background. Further research is being
undertaken to substantiate this.
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