TECHNISCHE Technische Universitat Dresden
UNIVERSITAT Institute for Theoretical Computer Science
DRESDEN Chair for Automata Theory

LTCS—Report

Exploiting SAT Technology for Axiom
Pinpointing

Norbert Manthey Rafael Penaloza

LTCS-Report 15-05

Postal Address: http://lat.inf.tu-dresden.de
Lehrstuhl fur Automatentheorie

Institut fur Theoretische Informatik Visiting Address:
TU Dresden Nethnitzer Str. 46

01062 Dresden Dresden




Exploiting SAT Technology for Axiom
Pinpointing

Norbert Manthey
Knowledge Representation and Reasoning Group
Technische Universitat Dresden, Germany
norbert .manthey@tu-dresden.de

Rafael Penaloza
KRDB Research Centre
Free University of Bozen-Bolzano, Italy
rafael.penaloza@unibz.it

Abstract

Axiom pinpointing is the task of identifying the axioms that are respon-
sible for a consequence. It is a fundamental step for tasks like ontology
revision and context-based reasoning, among many others. One known ap-
proach is to reduce axiom pinpointing to an enumeration problem over a set
of Horn clauses. We introduce the new SATPIN system, which combines
techniques from axiom pinpointing and minimal unsatisfiable subformula
enumeration, and exploits the numerous optimizations developed for SAT
solving in the last two decades. By adding a novel optimization method the
runtime can improve by a factor up to 4300. Our experiments show that
SATPIN can find all the MinAs of large biomedical ontologies an order of
magnitude faster than existing tools.

1 Introduction

Description logics (DLs) [2] are a family of knowledge representation formalisms
that have been successfully employed for modeling large knowledge domains.
They are also the logical bases for the standard web ontology language OWL
2 and its profiles.! As more and larger ontologies are being built, it becomes
necessary to provide automated tools for explaining and correcting unexpected
or unwanted consequences.

http://www.w3.org/TR/owl2-overview/



Axiom pinpointing is the task of finding all the axioms that are responsible for
a consequence c to follow from a given ontology. This is achieved by finding all
the minimal sub-ontologies that still entail ¢. These sub-ontologies are called
MinAs or justifications in the literature [19, 5, 10]. Knowing these MinAs pro-
vides a complete view of what the ontology states about the consequence. For
that reason, axiom pinpointing is at the heart of many supplemental reasoning
tasks like context-based [3], probabilistic [18], defeasible [7], and error-tolerant
reasoning [14], to name just a few.

For the light-weight DL EL£™ [1], one approach suggested in [20] is to translate the
problem into an enumeration problem over a Horn formula. In a nutshell, Horn
clauses represent the derivation steps of the reasoning algorithm, and the axioms
are represented through distinguished variables significantly. One can then use
search and unit propagation to find the axioms that, when made true, lead to a
successful derivation of the consequence. Such a translation allows us to exploit
the numerous optimizations and techniques that make modern SAT solvers so
efficient. In particular, we show that axiom pinpointing can be reduced to the
enumeration of minimal unsatisfiable subformulas (MUS) of the Horn translation
of the ontology.

In this paper we introduce the new SATPIN system for axiom pinpointing.
SATPIN takes advantage of the sophisticated data structures underlying SAT
solvers; in particular the two-watched-literal structure [9, 16]. In order to enumer-
ate all the MinAs, several very similar formulas need to be tested for satisfiability.
To reduce the overhead of these repeated calls, SATPIN uses incremental SAT
solving [8]. Moreover, we developed a novel optimization method that reduces
the number checks over the distinguished variables.

Our experiments show that SATPIN can be effectively used for axiom pinpointing
in very large bio-medical ontologies. For SNOMED CT, which has almost 400,000
axioms, SATPIN was able to solve hard instances that had never been solved
before. Compared to the state-of-the-art MUS enumeration system MARCO [12],
SATPIN showed a much better performance in execution time and in memory
consumption.

2 Preliminaries

The logic ££7 is a light-weight DL that allows for polynomial-time reasoning. As
all DLs, it is based on concepts (unary first-order predicates) and roles (binary
predicates). Let N¢ and Ng be two disjoint sets of concept names and role names,
respectively. Complex concepts are built using the grammar rule C' ::= A | CNC' |
Ir.C' | T, where A € Nc and 7 € Ng. An ELT-ontology is a finite set of azioms
that can be general concept inclusions (GCIs) C' T D with C, D two concepts,
or role inclusions (RIs) ryo---or, Cr,n>1, with r;,r € Ng.



Table 1: ££7 Completion Rules

Precondition: S C 7" ‘ Add: «
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The semantics of this logic is given by interpretations Z = (AZ,-T), where AZ
is a non-empty domain and - maps every A € N¢ to a set AT C AZ, and
every r € Ng to a binary relation v C A? x AZ. This function is extended to
arbitrary concepts inductively by setting T = A%, (C N D)* = C* N D%, and
(Fr.C)E = {6 € AT | F7.(6,v) € r*,v € CT}. The interpretation Z satisfies the
GCICCDifCt C DY and the Rl ryo---or, Criffrfo-.-orZ Crt. T a
model of the ontology T if it satisfies all axioms in 7T .

The main reasoning problem in £V is atomic subsumption: given two concept
names A, B € N¢ and an ontology 7, decide whether AZ C BZ holds for all
models Z of T. In this case, we denote it as T = A C B. Subsumption between
two concept names can be decided in E£" using a completion-based algorithm [1].
Completion algorithms, also called ground tableaux [4], work in two phases. The
first phase, called normalization, transforms the ontology into an equivalent one,
where all the axioms have a restricted simplified shape. In ££7 GCls in normal
form are A;M---MA, C B,3r AC B,and AC 3r.B, wheren > 1, A;,; A, B € N¢,
and r € Ng; all RIs are in normal form. To achieve this, every axiom « is mapped
to a set of axioms NF(«) in normal form. The normalization of the ontology T

is then NF(T) := U,c7 NF(o).

In the second phase, called completion, the normalized ontology 7' := NF(T)
is saturated through an exhaustive application of completion rules of the form
(S,a), where S U {a} is a finite set of axioms in normal form. This rule is
applicable if S C T, and its application adds a to 7'. To ensure termination, the
rule is only applicable if a ¢ T’. The EL£T completion rules are shown in Table 1.
Each rule checks whether all the axioms appearing in the first two columns appear
in 77, and if so, adds the axiom from the third column. We denote as R the set
of all completion rules (S, ). Let c¢(7) be the ontology obtained from T after
normalization and completion. For every two concept names A, B appearing in

T, T ACBiff AC B e c(T).

Rather than just deciding whether 7 = A C B, we are interested in finding the
axiomatic causes for this subsumption. Formally, a subontology M C T is a
MinA for AC Bwat. Tif (i) Ml AL Band (ii) foral SC M, S = AC B.
That is, a MinA is a minimal subontology that entails the subsumption. Axiom-
pinpointing refers to the task of finding all MinAs for a subsumption w.r.t. an
ontology.



One approach for solving this problem is to create a Horn formula whose satis-
fying interpretations can be mapped to subontologies entailing the subsumption
relation. Before describing in detail how this propositional formula is constructed,
we recall some basic notions of propositional logic.

We consider a fixed infinite set V of Boolean variables. A literal is a variable v
(positive literal) or a negated variable U (negative literal). The complement T of
a positive (resp., negative) literal z is the negative (resp., positive) literal with
the same variable as x. The variable v of a literal = is denoted as var(z). The
complement of a set of literals S, denoted by S is defined as S := {7 | v € S}. A
clause C' is a finite set of literals, and is understood as disjunction of literals. A
clause that contains only a single literal is called unit clause. Formulas are finite
multisets of clauses, and are understood as conjunction of clauses. A sequence of
literals M is consistent, if whenever x € M, then T ¢ M. Whenever convenient,
we view consistent sequences M as sets throughout this paper.

An interpretation I is a set of literals, such that if x € I, then T ¢ I. The reduct
F|; of a formula F with respect to I is the multiset F|; := {C\I |C € F,CNI =
(}. An interpretation I satisfies a formula F', if F|; = (. F is satisfiable if there
is an interpretation that satisfies it.

Let Cy and Cy be clauses and x € C} and T € Cy. Then the clause (C; \ {z}) U
(Cy \ {T}), denoted by C} ®, Cy, is the resolvent of the clauses Cy and Cy upon
the literal x.

We now show how to compute all MinAs for a consequence w.r.t. an ££17 TBox
using satisfiability solving techniques. For every axiom a € TUc(T) we introduce
a unique Boolean variable x,. Using these variables, we build the formula Fy :=
F, U F., where

Fy={{Za, 25} [a € T,B € NF(a)}
Fo:={{a}U{z5| B €S} (S, a)e R SU{a} C (T}

Intuitively these formulas describe all the possible causes for an axiom « to appear
in ¢(7). For a subontology S C T, let X5 := {{z,} | « € §}. If an interpretation
I satisfies X A Fr, then {a | 2z, € I} =S Uc(S). It follows that S = A C B iff
xacp € I for all interpretations I satisfying Xs A Fr. This means that, in order
to find all MinAs for A C B w.r.t. T, it suffices to compute all minimal subsets
M of X7 such that M A Fr A {ZTacp} is unsatisfiable.

Before showing how to enumerate all the MinAs of a consequence using SAT
technology, it is worth noticing that the translation above can be applied to any
kind of completion-like algorithm with a bounded number of consequences. Thus,
this approach can be used for other logics, or other ££7 decision methods [11].



UP (CNF formula F', sequence literals M, map reason)

Output: Set of propagated literals, updated map

wi J =M // add all literals of M to J
w2 while C € F and C|; = {z} // if there is a unit

up3 J:=JuU{x} // add the literal to J

uP4 reason(var(z)) = C // update reason information
ws return J // return set of literals

Figure 1: The UP procedure, which finds the set of literals that can be propagated
w.r.t. F' and the literals M.

3 Satisfiability Testing

A major operation in modern SAT solvers is unit propagation. A unit clause
C' = {z} can only be satisfied if the literal x occurs in the interpretation. Given a
formula F', and a consistent sequence M of literals that is used to initialize prop-
agation, the algorithm in Figure 1 returns the set of all literals (including those
in M) that must occur in an interpretation to satisfy F'|y;. The interpretation
J is initialized in line UP1. Next, if there are unit clauses in the current reduct
(line UP2), the interpretation J is extended with the corresponding literal. Ad-
ditionally, the clause C' is stored as the reason for this extension (line UP3). If no
further unit clauses can be found, the algorithm returns the final interpretation.

The SAT problem consists in deciding whether a formula is satisfiable. Briefly,
modern SAT solvers use the following approach [15]. First, unit propagation is
performed as long as possible. Afterwards, if there is no conflict (i.e., a clause
that is falsified by the current interpretation), a search decision is applied, and
unit propagation is executed again. If a conflict is found, then conflict analysis
is performed, and a learned clause C'is generated by resolution and added to the
formula. This clause C' is used to undo parts of the current partial interpretation
in a way that unit propagation can be applied again. If a conflict is detected
independently of search decisions, then the formula is found to be unsatisfiable.
Otherwise, if all variables of the formula can be assigned a truth value without
finding a conflict, then the formula is satisfiable.

With specialized data structures, heuristics and simplification techniques, modern
SAT solvers are used as a back-end for many industrial tasks [6].



4 Enumerating Implicants

We now show how the MinAs for a consequence are enumerated using SAT tech-
nology. Recall that we have constructed, from an ontology 7, the formula F7
that encodes the derivation steps made by the completion algorithm, and the
set of choice variables X7. By construction, X+ A Fr is satisfiable (denoted as
X7 A Fr=T). Given a consequence «, we are interested in enumerating all the
minimal subsets M C X7 such that M A Fr A T, is unsatisfiable (denoted as
MAFrANTq=1).

Our approach does not depend on the precise shape of the formula F7-, but rather
in the properties described above. Hence, for the rest of this paper, let F' be an
arbitrary satisfiable formula, and X a set of propositional variables such that
X ANF = T. Moreover, let ¢ be a propositional variable such that X AFAG = L,
which is (X A F) — gq.

The task of enumerating all minimal subsets M of X such that the given formula
is unsatisfiable is strongly related to the task of finding all minimal unsatisfiable
subformulas (MUS) of a given formula [6]. We consider the group-MUS problem,
in which some clauses have to be handled together. In our case, only the clauses
in X can be selected separately from the rest of the formula. For finding a single
group-MUS, the set X is reduced to a minimal subset M, such that M AFAG = L
still holds. As we are interested in finding all MinAs, we solve the all-group-MUS
problem [17, 12], and enumerate all such minimal sets M. However, we need to
solve only a special case of all-group-MUS, since for axiom pinpointing we need
each group to contain exactly one unit clause, corresponding to an axiom from the
ontology. In its general form, all-group-MUS allows for arbitrary sets of clauses
to be grouped together.

In order to enumerate all the MinAs, one could then use a general-purpose all-
group-MUS extraction tool [12]. However, the specific properties of the enumera-
tion problem required for axiom pinpointing can be further exploited to improve
the performance.

We use incremental SAT solving [6] to find the next MinA M. Let F' be the
working formula. In incremental SAT solving, we can initialize the execution of
a SAT solver with a set of assumption literals. These assumption literals are
satisfied as search decisions before the usual search is performed. In our case, we
use the set of activation variables X as assumption literals. When a decision has
to be made, the algorithm will first activate one of the variables in X, meaning
that a new axiom is added to the MinA. Furthermore, we modify the incremental
SAT call such that it checks the implication (M A F') — ¢, where M C X is the
set of currently assigned assumption literals. This way, we can interrupt the SAT
call as soon as ¢ is implied by the current set M. The corresponding pseudo code
is given in Figure 2.



implies (formula F, literal g, literal sequence X, map reason)

Output: L, or set of literals R with (FF'A R) — ¢

w1 M=) // initialize as empty set
w2 while X # () // while there are literals
np3 q € UP(F, M, reason) // check value of ¢
P4 return analyze(q, reason) // reduce candidate
ps M:=MU{xz} forsomeze X //addze X toM
1iPs X =X\ {z} // and remove x from X
wer - return L // return the result

Figure 2: The implies procedure, which returns a set of literals R C X that lead
to the implication (F'A R) — ¢.

analyze (map reason, literal q)

Output: Set of literals R that imply ¢ wrt to F', (FAR) — g

mar C = reason(var(q)) // find clause that implied ¢

w2 while C' # () // as long as there are literals left
anA3 ceC,C:=C\{c} // select and erase a literal c € C
aag if reason(var(c)) # L // if there exists a reason for ¢
aNAs C:=C®.D // resolve with this reason

aa else R := RU{¢} // otherwise add ¢ to the result
aar - return R // return the result

Figure 3: The analyze procedure, which returns a set of literals R that lead to
the implication (F' A R) — q.

This procedure finds a set M such that (M A F') — ¢q. However, M might not
be minimal. Such a minimal M’ C M can be obtained checking the implication
(F'AMN\ {m'}) — q for each m' € M’. In SAT solving, M can also be reduced
by performing conflict analysis once more [8]. Based on M and the reason clause
for ¢, a subset of literals of M is selected based on resolving all literals from
this reason clause away with their reason clauses. This procedure is illustrated
in the algorithm in Figure 3, and could also be used to solve specialized group-
MUS problems. Starting with the reason clause C' for the literal ¢ we perform
resolution on all literals of the intermediate resolvents, until there is no more
literal that has a reason clause. Hence, the clause contains only variables that
have been assigned a truth value as search decision, actually as assumption.

The set R obtained from this conflict analysis is only a candidate for a MinA,
which needs to be minimized. For each literal » € R we check the implication
(RN F\ {r}) — ¢, and remove r from R, if the check succeeds. If no more



removals are possible, the set R is returned. The corresponding pseudo code is
presented in Figure 4.

So far, we have described how to compute one MinA. We now show how to use
this method as a sub-procedure for enumerating all MinAs. The algorithm we
propose is presented in Figure 5. First we check whether there is a MinA (line
ENU2) and abort if this is not the case. Otherwise, an enumeration object is
created, which is responsible for enumerating all candidate subsets M of literals.
Details on this major part of the algorithm are presented in Section 4.1.

If R represents a potential MinA, then it is minimized and added to the result
set of MinAs S (ENU6-ENUS). This set is also added to the enumeration ob-
ject, such that this solution is excluded from any future answer (ENU9). If this
addition makes no further candidate sets possible (ENU9), or if there are no
other candidate sets (ENU11), then the algorithm stops (ENU10 and ENU12).
Otherwise, the next candidate set M C X is tested (ENU14). Finally, after
enumeration stopped, the result set S is returned (ENU15).

The check in ENU14 might not return a new potential MinA R, as there are
problems that have only a single MinA. Still, to ensure completeness, for all
r € R the imply check has to be performed for the candidate sets M := X \ {r}.

4.1 Enumerate Candidates

The candidate enumeration is initialized with the set of literals X. As long as
there are candidates left, a new M C X has to be returned in the above algorithm
(ENU13). A naive approach would be to enumerate all subsets of X as candidates.
Clearly, this approach is unfeasible as it would need to verify 2/X| candidates.

A first improvement is to partition X into the set of relevant literals V' = lits(.S)
and the remaining literals 7. The relevant literals are those that represent axioms
that belong to at least one MinA. When the enumeration starts, we do not know
which literals are relevant and which not. Hence, T is initialized to contain all the
variables in X. Whenever a MinA R is found, V' and T are updated accordingly;

minimize (formula F, set of literals R, literal ¢

Output: Set of literals R’ such that (FA M) — gand R C R

wwi for r € R // test all literals
HINZ if g € UP(F, R\ {r},reason) [/ is r necessary?
HIns R:=R\{r} // remove r

uve  return R // return the result

Figure 4: The minimize procedure, which returns a minimal set of literals R C R
that lead to (FFAR') — q.



enumerate (formula F, set of literals X, literal ¢

Output: Set S of set of literals R with R C X and (F A R) — ¢

mor S =)

mv2 R := implies(F,q, X, reason) // |s there a MinA?

mus  if R = 1 then return () // there are no MinA

mus  setup enumerator(X) // setup enumeration

mus  while T // check all candidates
ENUG if R# L // if there was a MinA
ENU7 R :=minimize(F, R, q) // minimize candidate
ENUS S:=SUR // add R to set of MinAs
ENUS if enumerator.avoid(R) = L // disallow this MinA
ENU10 break // no more MinAs

ENUL1 if enumerator.hasNext() = L // Do other MinAs exist?
ENU12 break // no more MinAs

muis M := enumerator.next() // next MinA candidate
ENU14 R := implies(F,q, M,reason) // Is there a MinA?

muis  return S // return set of MinAs

Figure 5: The enumerate procedure, which returns all minimal sets of literals
R C X that lead to (FFAR) — q.

that is, V := VUR, and T := T \ R. Given these sets, the new candidates
are the sets V' UT for V! C V. Using this approach the number of candidates
is bounded by 25 Since [lits(S)| is typically much smaller than |X| this
partition reduces the search space considerably. Based on CDCL SAT solvers,
we furthermore ensure that candidates that have been tested already are never
tested again. This check is obvious in the naive enumeration, but since the sets
T and V' change over time, this check is important.

We also apply the Hitting Set Tree (HST) enumeration approach developed for
axiom pinpointing in DLs [10]. The idea is that, after one MinA M has been
found, one can try to find a new MinA over the set of candidate variables X \ {m}
for every m € M. This guarantees that any new solution found is different from
M. By iteratively repeating this approach, one constructs a search tree, where
each solution is different from all its predecessors. As in the relevant enumeration,
the current set V' is extended with 7" to form a candidate.

Finally, we also use an idea developed for reducing the search space in the group-
MUS-enumeration tool MARCO [12]. Given the candidate M C X, if the imply
check of M fails, i.e. (M AF) # ¢, but (X AF) — ¢ holds, then we can conclude
that in any future set of literals M’ at least one literal m’ € (X \ M) has to
be present to result in (M’ A F') — g. Briefly, if (M A F) /4 q, then the same



statement holds for any subset of M. Hence, once we found a candidate M that
failed the imply check, we store the set X \ M and any future candidate has to
pick one of these literals. In combination with the relevant enumeration, this set
is equal to V' '\ V.

4.2 Implementing The Candidate Enumeration

The enumerator object is realized as SAT solver. Model enumeration based on
the CDCL algorithm is simple: once a model I is found, a clause I is added to
the formula, and the next model is generated. Smaller clauses are possible by
using only the decision literals of I, because the other literals of I are implied by
these literals. To avoid finding the same MinA twice, the literals of a MinA R
are added to the formula as clause R as well.

For the naive enumeration, we initialize the solver with the variables of X and
enumerate all models, where we only consider satisfied literals X for the next
candidate M. For the relevant enumeration, we incrementally add the variables
of the last MinA R to the solver. Previously added clauses remain valid: pre-
vious candidates are not enumerated twice and previously found MinAs cannot
be found again. For the HST enumeration the decision heuristic of the solver is
modified. Instead of using the default heuristic, a stack of all found solutions is
created and the decision heuristic follows the scheme described above to enumer-
ate all candidates. Finally, the inverse enumeration can be realized by adding the
necessary clause X \ M to include one of the missing literals.

The algorithm spends most time in the imply check, as all literals x € X have to
be applied to the formula. Depending on the used ontology, X can be very large;
for instance, the encoding of SNOMED contains 378579 literals. In the way the
algorithm was described, each call to the implies method assigns all literals, and
afterwards undoes all of them once the current check is completed. As already
discussed in the relevant enumeration, the relevant literals V' = lits(S) of all
MinAs might be a much smaller subset. Considering again SNOMED, the largest
set V found by our experiments contained 88 literals. For each imply check,
378491 (378579 — 88) literals could be kept in line IMP1. Instead of initializing
M = (b, we could initialize M = T to the set of (currently) irrelevant literals. The
initialization is sound, since (F' A T) 4 ¢. In the implementation we actually do
not undo and recreate the set M in the routine, but keep the last state and only
perform the necessary updates.

From an algorithmic point of view, this implementation method improves the al-
gorithm by two orders of magnitude over SNOMED: 99.98 % of the work are saved
in the implies routine, and the run time of the tool (theoretically) improves by
factor 4300. Hence, maintaining relevant variables makes the difference between
being solvable and not being solvable.
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Table 2: Structure of the translation of ontologies
GO NCI FGALEN SNOMED

Axioms 20466 46800 36544 378579
Variables 237389 338380 2729734 13419995
Clauses 294782 342825 3843812 38276251

The cone-of-influence reduction of the ontology, which is used in other tools [20]
is also implemented on the CNF level in our tool, but deactivated as this opti-
mization turns out to not improve the performance beyond the gain provided by
relevant variables.

5 Experimental Evaluation

We implemented the previous algorithms in the tool SATPIN, which is based on
the SAT solver MINISAT 2.2. To test our approach we ran SATPIN over four
well-known biomedical ontologies written in E£%, which have been widely used
as benchmarks for standard DL reasoners. These are the Gene Ontology (GO),
NCI, the ELT version of FULLGALEN, and the 2010 version of SNOMED. All
computations have been performed with a five hour timeout (18000 seconds) on
an Intel Xeon CPU at 2.6 GHz and a memory limit of 6.5 GB. As comparison to
state-of-the-art MUS enumeration tools, we use MARCO [12].

The ontologies were transformed into a propositional formula as described in Sec-
tion 2 using el2sat_all [20]. Table 2 summarizes the properties of these ontologies
and their translation. The first row shows the number of axioms in the original
ontology, which is also the number of selection variables used by SATPIN. As it
can be seen, SNOMED is an order of magnitude larger than the other three test
ontologies. In fact, one of the main problems when dealing with this ontology is
to be able to handle the memory consumption issues effectively.

For each of the three smaller ontologies, we computed all the MinAs for 100
different consequences: 50 randomly chosen consequences, and 50 selected as
those where the variable x 4c p appears the most often in £, which is an indication
for them to have the most MinAs. For SNOMED, we selected 34 consequences that

are known to be problematic for axiom pinpointing, due to the number and size
of their MinAs.

We ran SATPIN and the MUS enumeration tool MARCO on all 334 problems,
where SATPIN uses the combination of all four enumeration mechanisms as well
as the relevant variable selection from Section 4.2. Both systems terminated

2The used ontologies, created CNF formulas, used tools including command lines, and the
logs of the executed runs are available at http://goo.gl/CDkvEb.
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Table 3: CPU time (s) required by SATPIN and MARCO

‘ Tool Avg StDev Max Median p-90

o] Marco 20.01  26.73 171.79 10.11 4229
O | SATPIN  3.74 754  46.93 1.16  7.76
5| Marco 75.95 184.44 1071.42 13.81 151.91
Z | SATPIN 190.15 990.93 8823.32 0.72 87.57
Z| Marco 100.94 9.71  163.94 97.59 106.45
U | SATPIN 738 1180  90.25 391 13.83
3| MaRco 65.64 112.61 1071.42 21.04 105.80
< | SATPIN  67.09 576.88 8823.32 298 14.75

successfully on the 300 instances corresponding to GO, NCI, and FULLGALEN.
However, MARCO ran out of memory on all SNOMED instances. Thus we consider
only the first 300 tests for our comparison. The results of the execution are
summarized in Table 3. All the numbers correspond to CPU time in seconds.
The results are separated by ontology, and accumulated at the bottom.

As it can be seen, SATPIN clearly outperforms MARCO in GO and FULLGALEN.
At first sight, it might seem that MARCO behaves much better in the NCI sam-
ples, taking in average less than half the time required by SATPIN. However,
MARCO was faster only in 6 out of the 100 NCI instances, and was much slower
in most of them. This can be verified by looking at the last two columns of
Table 3: the median and 90th-percentile for SATPIN over NCI are 0.72s and
87.57s, respectively, while for MARCO these numbers grow to 13.81s and 151.91s,
respectively. What affects SATPIN’s average performance are three instances
that took over 3000s. Removing these three instances reduces the average time
to 50.60s for MARCO, and 40.55s. for SATPIN. Notice moreover that in all
instances MARCO consumed at least 3 times as much memory as SATPIN. This
is perhaps the main reason why MARCO could not handle any of the SNOMED
instances.

The efficiency of SATPIN is affected by the branching factor produced by the
HST algorithm, and the number of relevant variables used. The plot from Figure 6
confirms this observation. The plot shows the proportional speedup of SATPIN
w.r.t. MARCO against the average MinA size in each experiment. As the average
size of the MinAs increases, the improvement shown by SATPIN decreases. The
size of each dot is proportional to the number of MinAs found in that instance.
Clearly, the relative performance of SATPIN decreases as the number of MinAs
increases.

Our experiments suggest that MARCO tends to spend more time trying to de-
crease the search space for the successive solutions. This overhead is helpful for
instances with many large solutions, but is too expensive for simple instances.

12
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Figure 6: Proportional speedup of SATPIN w.r.t. MARCO against the average
MinA size (horizontal axis) and number of MinAs (node size and tone).

It is worth noticing that real-world ontologies are typically well-structured, and
hence their consequences usually have only a few MinAs of small size. This is
certainly the case for our experiments, as shown in Table 4.

We did an additional experiment to understand the influence of (i) the order
in which the selection variables are provided, and (ii) the variable separation
optimization. For this, we took the 20 instances of GO in which SATPIN behaved
the worst, and ran them again on SATPIN with (i) the order of the selection
variables reversed, and (ii) with the variable separation optimization deactivated.
In the second case, the average CPU time was increased 21 times, from 13 to 279
seconds; in the worst case, it increased from 47 to 1239s. Thus, the optimization
is really effective. The theoretical speedup is 681, as at most 30 out of 20466
axioms are present in the MinAs, however, as the assumption literals have to
be reordered, this speedup cannot be reached. When the order of the selection
variables was reversed, the CPU time variated to up to 2x in both directions:

Table 4: Number and sizes of MinAs found

#MinAs #Relevant Axioms

Avg Max Mdn MaxSize Avg Max Mdn

GO 11.34 38 7 9 13.15 30 13
NCI 6.78 36 4 10 14.65 43 12
FGALEN  1.39 10 1 19 741 24 6
ALL 6.50 38 2 19 11.74 43 9
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some cases required half the time, while others required double. Regardless of
the ordering used, SATPIN was still much faster than MARCO.

As a stress test, we ran SATPIN on 34 consequences of SNOMED known to have
many large MinAs. In fact, the full set of MinAs for these consequences had never
been computed before. As expected, these instances were hard for SATPIN,
which timed-out in 25 of them. In the nine cases where it succeeded, SATPIN
found in average 16.4 MinAs (maximum 33) with an average size of 14 axioms
each. In the remaining cases, before timing-out it found in average 32 MinAs
containing 16 axioms each. In one extreme case, SATPIN found 96 MinAs,
and the largest of them contained 30 axioms. Recall that these test cases were
specially selected for their hardness. In fact, most SNOMED consequences have
less than 10 MinAs [22].

Discussion We know three other axiom-pinpointing systems for ££*: CEL [21],
ELTSAT [20], and Just [13]. Despite several efforts, we were not able to execute
our test ontologies on either of the two last systems. On the other hand, CEL
limits its execution to the computation of 10 MinAs, and at most 1000 seconds.
For those reasons, these systems are not included in our evaluation.

6 Conclusions

We have introduced SATPIN, a new tool for axiom pinpointing based on the Horn
encoding of a reasoning procedure. Since it relies on the formula only, SATPIN
can be used for axiom pinpointing in any logic that allows for a completion-like
reasoning algorithm. It is not restricted to ELT or the specific completion rules
presented here, as long as a translation is available.

Our experiments show that SATPIN can be effectively used for pinpointing in
very large practical ontologies. Its median answer time over our experiments
was under 3s, and it was capable of answering very hard instances of SNOMED.
Compared to the MUS enumeration tool MARCO, SATPIN was at least 10 times
faster in more than 65% of all the experiments, and consistently required less
than a third of the memory. We have also identified the parts of the system
that need to be optimized to improve its performance. These optimizations and
parallel enumeration will be in the focus of future work.

We also intend to study the impact of using different translations for the per-
formance of SATPIN. Finally, we will extend the approach to provide a better
support for supplemental reasoning tasks in DLs and other logics.
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