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Abstract

Due to their simple applicability score systems are in widespread use as a tool
for decision taking. As it is well-known that probabilistic systems are more powerful
than Score systems, we would like to have automated translations into probabilistic
systems, which overcome some of their limitations. Using a straightforward trans-
lation (as in [KR00], [FS01]) reveals some properties of score systems, but leads to
an exponential number of probabilistic rules. The aim of this paper is to define two
different translations into probabilistic systems, which keep the simplicity of a score
system (i.e. they use the same amount of rules as the score system). Moreover,
the resulting probabilistic systems show their structure more explicitely than score
systems, and they are also open to the addition of further knowledge.

Keywords: Score Systems, Probabilistic Reasoning, Maximum Entropy, Automated Di-
agnosis, Independence, Bayesian Networks

1 Introduction

Medicine, industry and economy abound with problems of diagnosis (and decision). Ex-
emplified by an example from medicine, such problems consist of a knowledge base of
propositions about the problem domain (e.g. ‘Appendicitis is usually accompanied by
strong stomach aches’), the values of certain symptoms in an actual (diagnosis) case (e.g.
‘The patient has stomach aches’), a wanted diagnosis (e.g. ‘Does the patient suffer from
appendicitis?’), and finally, a decision (‘surgical intervention?’).

To solve such problems, Score Systems are frequently developed in research labs, e.g. in
medicine ([SP89, OYF95]), or are in wide-range use, e.g. in economics ([KR00]), whenever
uncertain knowledge plays an important role with the kind of problem to be solved.

A Score System is based on a set of attributes (or variables) which have each a set of
possible (attribute or variable) values.

For instance, in the medical domain, there may be the symptom/attribute ‘body tempera-
ture’ with (discrete) values ‘low’, ‘normal’, ‘high’ and ‘very high’. To each attribute value
a numerical value — its weight or score— is assigned (see Table 1 for an example).

When applying a score system to a concrete case the scores corresponding to the observed
attribute values are added up. If the obtained sum falls in a certain score interval, the
decision associated to this interval is proposed.

Thus, for instance, a proposal for a medical treatment is established on the basis of
symptoms found with a patient and which are represented by a list of attribute values.

When applying a score system to an actual case of decision finding, we feel intuitively that
a score system seems to make some kind of assumption about the unrelatedness of the



Example (Score System): symptom / attribute score, if yes
tenderness in RLQ 4.5
rebound tenderness 2.5
no micturition 2.0
continuous type of pain 2.0
number of leucocytes > 10000 1.5
age < 90 years 1.5
relocation of pain to RLQ 1.0
rigidity 1.0

Table 1:  ’Ohmann Score’ [OFYT95] for the diagnosis of appendicitis: In case of negative
answers the scores are zero. Patients are diagnosed as having appendicitis if score sum > 12, they
are interned in case of 6 — 12, and are sent home in case of < 6. (RLQ: right lower quadrant of
abdomen, seen from the patient.)

variables, because it provides no means to adapt the scores assigned to the values of one
variable in dependence of the selected values of other variables. In [FS01] we discussed
some of their underlying assumptions. Here our aim is different: After defining the
technical background (in Section 2), we recall (in Section 3) the straightforward translation
([KR0O0, FS01]) of score systems into probabilistic systems. In the two sections following
thereafter we present two translations of a score system into a probabilistic system. The
resulting probabilistic systems yield equivalent decisions (see section 2.7) and have a
minimal set of rules, thus meeting the simplicity of score systems. Our first translation
(section4) generates probabilistic rules of the form

‘Given a person showing a symptom value s, the probability of the illness d is p’.
We prove the translation’s consistency and equivalence (in terms of decisions on complete
symptom vectors) to the original score system. Section 5 reconsiders these issues for a
different translation, based on rules like

'If a person has illness d, the probability for him to show symptom value s is p’.
The paper concludes with a comparison of the properties of these translations, including
a comparative view of the difference of score systems and probabilistic systems, where
the latter, of course, are much less limited in representing complex relations between
symptoms and diagnosis.

Examples in this paper are taken from the field of medical diagnosis. Often our general
explanations are tinged by medical language, which — in our opinion — better adds to
clarity, than a more neutral, but less suggestive language.

2 Technical Preliminaries

2.1 Variables

In order to express knowledge about the evidence of a disease in view of certain symptoms
we use a finite set of variables — a set of symptom variables and a variable for the
diagnosis — with each having a finite set of values.

The symptom variables describe properties / symptoms / attributes relevant for the di-



agnosis task, e.g. examination results in the medical case. We denote symptom variables
by S; (1 <14 < m), and we identify them with the set of their values: S; = {s;;|1 < j < k;}.
We denote by § a tuple of values (of different symptoms) (s, ..., $y,) with s; € S;. (The-
oretically, we will always assume S; N S; = 0 for i # j, which however, is not handy in
practical examples.) We further refer to values of variable S; by s;, s} or by the additional
index j (like in s;;).

The values of a diagnosis variable define a classification of the possible diagnostic
results, e.g. in kinds of diseases, based on the values of the symptom variables. For our
purpose it is sufficient to consider a single binary variable D with values {d,d}. If the
probabilistic system is extended, we can, of course, increase the number of values or add
other diagnosis variables to the system (which is not possible in score systems, where D
is implicit and therefore basically one-valued)?.

2.2 Events

Symptoms and diagnosis define our tuple space €2 := 57 X --- X 5, X D.
In order to define arbitrary subsets of events in this space, we consider {2 as an event
space with its power set as set of events or event algebra.

Consequently, an expression (sy,...,S,,0) with s; € S; and § € D is an elementary
event? in () (All general events are sets of elementary events.).
By § we denote the event (si,...,s,) with s; € S;, which corresponds to the set {s;} x

... X {sm} x D, and it will be called an elementary symptom event. In addition, we
denote by (5,9) the elementary event (si,..., 8y, 0) with § € D.

2.3 Conditional Judgment

We also write E —> E' for the conditional event E'|E due to its similarity with the
common sense implication 'if-then’. We make the convention to drop the parentheses if
simple events occur in conditional events. Additional Convention: For sake of simplicity
we will just write § —> ¢ instead of § —> (3, 0).

In addition to the event space, we require a method of judgment to be given, e.g. a
judgment function on (all) the events.

Example: For the standard application of a diagnostic system we have to make a judg-
ment of § —> § which has (for the medical context) the common reading of :

‘If T know a patient showing the symptom values §, what can I say
— in view of this knowledge — about his risk of having the illness § 7’

2.4 Score Systems

Formally, a Score System can be defined as follows:

For each variable S; exists a set W; = {w;1, ..., wi, } of nonnegative weights or scores
and a bijective score function w; with w;(s;;) € W;. We also have a (global) score
function w defined as w(3) := >, w;(s;).

LOf course, score systems can distinguish different degrees of one illness via their border values, but
they cannot cope with really different diseases. (See e.g. [SP89] for attacking this problem via combining
different score systems.)

2Sometimes an elementary event is also called a full conjunction.



With w;(s;) =i and w;(5;) = 0 we receive for w(s) the following values:
w(<8_1, 5) 8_3>) =0 w(<8153_2a §>) =1 w((aa 8275_3>) =2 ’LU(<8_1, 5_2: 83>) =3
’LU((S]_, 8278_?))) =3 ’LU(<81,8_2, S3>) =4 w((av 52, S3>) =95 ’(U((Sl, 52, $3>) =6

Table 2: An example of the global weighting function w(3) for a score system with 3
binary variables S; (whose values we denote as S; = {s;,5;}) together with the 3 score
functions w;.

Additionally, there are score intervals given by a set of border values b; < --- < by,
a decision variable T with values {t1,...,%.} and a decision function ¢ which maps
a sum of scores w(5) to ¢; iff b1 < w(5) < b; (with by := 0). W.r.t.g we assume the
smallest w;(s;;) to be zero (as otherwise we can subtract a certain amount from the weight
of the symptom S; and subtract this amount also from the border values?).

Tab. 2 introduces a simple example of a score system with 3 binary variables, which we
will reuse in the following. For an example including a decision function see Tab. 1 above.

2.5 Probabilistic Systems

Probabilistic systems use a P-measure P, which (in our finite case) can be specified
by mapping every elementary event to a nonnegative real number such that the sum
of function values over all elementary events is equal to 1. Since every event F is a
(unique) union of elementary events es,...,e, we define P(E) := )" | P(e;) and use the
conditional probability for the conditional statement (i.e. P(s —> d) := P({s,0))/P(s)).

2.6 Extending Probabilistic Systems by Indifference, Indepen-
dence and Maximum Entropy

In many cases (including our translations) we will have incomplete knowledge about P
and therefore in general an infinite number of probabilistic models (P-models) which
fulfill our constraints. We then use additional principles to determine a unique P, since
such a unique P-measure is necessary in order to obtain unique probabilistic decisions.
More exactly, we choose the well-known Maximum Entropy Method [PV90, K197,
which extends the principles of Indifference and Independence ([SG95]). For short,
the Maximum Entropy Method chooses a probability model with maximal entropy* from
all probability measures, which fulfill the given constraints.

Notation:

As we know have knowledge from different sources, we want to denote where our rules
come from. We therefore use

e the sign ’c’to mark a (quantitative) statement as constraint, obtained via a trans-
lation from a score, and collected in a certain knowledge base (see e.g. eq. (4)).

3 Assuming b; > min w(5) guarantees that the border values remain > 0. This assumption is very
natural as a border value < min w(5) makes no sense.

“The (Shannon) Entropy on probability vectors v is defined as H(v) = — Y, v; - logv;. (The base of
the logarithm does not matter, in most cases In is taken) . For constraints, linear in v (as in our cases
here), the maximum of H (v) is known to be unique.



e the sign ’me’ to mark a (qualitative) statement, valid if the Maximum Entropy
Method is applied to a certain knowledge base (see e.g. eq. 3). If this kind of
knowledge is used in a proof, we refer to the number of the corresponding equation

(see. e.g. eq.(11)).

e the sign * to mark (quantitative) statements, which are valid under the maximum
entropy distribution in an example for a certain knowledge base (see e.g. eq. Table
4 (right)).

2.7 Equivalence of decisions

We will, depending on the translation, calculate P(5—> d) and prove this probability to
be a strictly monotonic increasing function f : [0, maZscoresum] — [0, 1] with

w(8) = f(w(8)) = P(§ —> d) and maZscoresum = »; Wik;- Given such a function®, we
have

w(3) > w(s') <= P(§—>d) > P(5' —> d) (1)

The definition of the border values & for the obtained probabilistic systems (given the
border values b of the score system and f) is then straightforward, as we define b, = f(b).
Using these border values, the probabilistic system yields the same decisions as the score
system (given a complete symptom vector).

3 Translation 734

3.1 Rule Base
3.1.1 The Translation Rule

Translation 734 generates probabilistic rules for all elementary symptom events, i.e. all
possible combinations of symptom values. As such a combination is expressed by s, the
rule base contains for every possible 5 the probabilistic rule®

P p(8 —>d) = f(w(5)) (2)

For f we choose a strictly monotonic function. We e.g. may define” f(w(3)) := 2. o8

qu(®) -
f(w(3)) = e

— where Wy, := max{w(5)|5 € $}.

5The extension to (partially or completely) unknown symptom values will not be discussed here, as

this extension is implicit in probabilistic systems, e.g.
(P(sy —>d) = P(s1 A sy —> d) - P(s; —> s3) + P(s1 As3 —> d) - P(s; —> 53))

and score systems do normally not discuss this topic. (But see [FS01] for the consequences of introducing
a weighted sum of all the values of a symptom in a probabilistic context).

6The ¢ is for constraint on Pg, p» and the index 3,d is to identify different P-measures of different
translations.

"thus implying a standard difference rule P(5 —> d) — P(8[5;551) —> d) = const[s, 41 (see [FSO1])
8thus implying a logarithmic difference rule P(5 — d)/ P(3[5;—51) —> d) = const(s, 4




3.1.2 Rules valid under the use of Maximum Entropy for 7z,

The following property (which is necessary to guarantee, that Eq. 2 is always defined) is
valid if we complete the specification by the Maximum Entropy principle (and therefore
not necessary to mention in our knowledge base):

"¢Pg 5(5) >0 (Positivity) (3)

3.1.3 Size of the Rule Base

While a score system has a linear number of rules (), k;), the rules base of 7z 4 contains an
exponential number of rules (][, #;) and can therefore not be recommended for practical
use. But as shown in e.g. [FSO01], we cannot exploit any general independence relations in
this translation (which is also true if the specification is completed via Maximum Entropy)
to reduce the amount of rules. We therefore propose to give up this translation and look
for different ones (still equivalent according to their decisions), which allow to reduce the
number of necessary rules via exploiting their independence relations.

3.2 Example

Continuing our Example from Table 2 for the rules of Eq. (2), we get Pp g(5 — d) the
probabilities shown in Table 3 (additionally related to w(35)). °

“Pgp(5 —>d) = (w(8))/Wmas | | w(5)
°Pg ({51, 32, 53) —> d) 0/6 0
°Ps p({s1,352,53) —> d) 1/6 1
“Pg p((31, 89, 353) — d) 2/6 9
“Pg p((s1, 89, 53) —> d) 3/6 3
“Ps p ({51, 52, s3) —> d) 3/6 3
CP§,D(<SlaS_2: s3) —> d) 4/6 4
“Pg ({51, 52, 83) —> d) 5/6 5
Py ({51,582, 53) —>d) = 6/6 6

Table 3: Knowledge Base (resp. Queries) in case of 7z 4

3.3 Consistency of 7z,

Consistency means that there are probability measures, which fulfill all the constraints
in our rule base. As our probabilistic rule base is a (partial) specification of a Bayesian
Network with marginally independent symptoms as parent nodes and the illness node D as
child node (see figure 1 (right)) (with all the rules from Eq. 2 inside D), the specification
is known to be consistent.

9Please note that overlining is part of our succinct notation of values of binary variables and does not
refer to a general concept of set complement. For the general case consider the translation rule (2).



3.4 Preservation of decisions

Using a strictly increasing monotonic function implies that Eq. (1) is valid. In case of
e.g. f(w(3)):= % the probabilities of the diagnoses are the old scores normed by @,
With ¢;/Wyq, as new border values a decision function of the score system can be easily
adapted and we have equivalence of the decisions proposed by the score system and those
proposed by a probabilistic system resulting from translation 7z 4.

4 Translation 7,

4.1 Rule Base
4.1.1 The Translation Rule

Translation 7,5 generates for each symptom value s;; € S; the following constraint 10,
‘Pps(d —>s;) = > 2ot (4)
D,S Si e
Sij ES,’ QUJZ(S”)

With these rules the P-measure Pp g is of course not uniquely determined and we need
additional principles such as Maximum Entropy'! for completing the specification.

4.1.2 Rules valid under the use of Maximum Entropy

The following rules are valid if we complete the specification by Maximum Entropy (and
therefore will not be mentioned in our knowledge base):

e ™ Pps(d) >0 (Positivity)
which is necessary to guarantee, that Eq. 4 is always defined.

e Astherules of Eq. (4) introduce a difference between Pp ¢((d, s;;)) and Pp s({d, 5;;)),
but no difference between Pp s({d, s;;)) and Pp_s((d,3;;)), the Maximum Entropy
P-model obtained from the knowledge base will show ’conditional’ indifference of
the k; values s;;, i.e.

mePp}s(d —> Sz'j) = 1/]% (5)

e As the rule base does not contain a rule including more than one symptom at the
same time (and thus does not draw a direct link between two or more symptoms in
the dependence graph) the Maximum Entropy P-model obtained from the knowledge
base (derived via Eq. (4)) satisfies (see e.g. [Sch96]) conditional independence
of the symptom variables, given a value for D. Formally this means for s; € S;

mePD,S(d —D g) = HPD,S(d —D Si)
=1

2375k wi(si) qu(3) ©)
=4 m wils) m Wi (8
( ) Hi:l Zsﬁesi 2 1( 2]) H’i:l Zsﬁesi 2 z( z])

10The proposed translation rule may be modified by varying the base value without affecting the

following.
"See e.g. [PIT] for theory and implementation of the Maximum Entropy Method.




and for d
mePD,S(a —> g) = H PD,S(E —D Si) =(5) 1/H kz (7)
=1 =1

4.1.3 Size of Rule Base

When using 7, we obtain k; rules for each variable S;. Since each of these rules can
be derived from the k;—1 other rules, only k;—1 rules must be specified for variable S;,
which means that we need to state > . (k;—1) rules in case of m variables (which makes
m rules for the case of m binary symptom variables as in our example of Tab. 4 ).

4.2 Example

Continuing our Example of Table 2, we receive (using Eq. (4)) the knowledge base of Table
4 (left). The probabilities for the queries (calculated by Maximum Entropy) Pp, ¢(5 — d)
are shown in Table 4 (right), additionally related to w(5). > With Maximum Entropy we
get in addition P}, g(d —> ;) = P} g(d —> 5;) = 0.500 (1 < 4 < 3) and P, 5(d) =~ 0.356.

Possible Queries : Pp (5§ —> d) || w(3)
P} o((351,53,53) —>d) ~0.032] 0
Knowledge Base b,5((51, 52, 53) )
ol 5 P (<817 592, S3> —> d) =~ 0.061 1
Pps(d —> s1) = —21;;20) = i = 0.667 P S((s 59,53) —>d) ~0.116| 2
PD,S(d —> §9) = 22;20) = g = 0.800 PBs(<5 50,55) —b d) A 0.207 5
Pp,s(d —> s3) = 35950) = g = 0.889 Py (51, 53,55) —o d) ~0.207 | 3
P} s((s1,53,83) —>d) ~0.344| 4
(For the number of rules see (4.1.2)) D,s((s1,%2,53) )
Pp o((31, 52, 83) —>d) =~ 0512 5
Pp s((s1, 82,83) —>d) ~=0.677| 6

Table 4: Knowledge Base and Comparison of Score Sums and Probabilities in case of 7

4.3 Consistency of 7

The set of constraints is a partial specification of a simple Bayesian Network (expressing
conditional independence) as drawn in Fig. 1 (left). The node D contains a probability
for d (where any choice from (0,1) is admissible), a node S; contains the k; — 1 rules
°Pp,s(d —> s;;), automatically completed by Maximum Entropy (see e.g. [Luk00]) or
by the rules of Eq. (5). As every Bayesian Network defines a distribution, the set of
constraints is consistent. [

12Please note that overlining is part of our succinct notation of values of binary variables and does not
refer to a general concept of set complement. For the general case consider the translation rule (4).



Figure 1: Conditional Independence of the variables S; (given a value for D) (left) and
Marginal Independence of the variables S; (right) in Bayesian Network notation’

4.4 Preservation of decisions

In order to get the same decisions as with the score system, we have to show that the
equivalence (1) holds for Pp s as well. This is proved as follows:
We first compute Pp (5 —> d) for an arbitrary elementary symptom event 3.

Pp 5((5,d))

Pps(5—>d) = = 8
PN B E ) + Pos () ®
p -
DS((S d>) . PD,S(d)
_ Pp,s(d) ~ )
Pp,5((5,d)) p,5((5, d)))
: - Pp g(d) + — = Pp s(d
Pps(d) " “ Pp,s(d) p.sld)
d)
. s
Pp,s(d —> 5) + Ppg(d —> 3) - P s(d)
W1thc—PD5(d—|>§') =) H Pos(d
ki’ Pp s(d
being a constant value (for any choice of PD,S(d)) and with
qu(3)
Pps(d —>5) =@ = (11)
H( Z gwilsis))
1=1 s;€8;
where ¢ := H( Z 9vi(sii)) is constant, we continue:
=1 SijES'i
29 9u(3)
Pps(§—>d) = —= =

qu(&) +ec w(3) +c-c

cI

which is sufficient for Eq. (1) to hold. "
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5 Translation 7,4

5.1 Rule Base

5.1.1 The Translation Rule

With translation 7; 4 we get for each symptom value s; € S; the following rule'?:
qui(si)

Poplsi = d) = e

(12)

With these rules the P-measure Pg p is not uniquely determined and we need additional
principles such as Maximum Entropy'* for completing the specification.

5.1.2 Rules valid under the use of Maximum Entropy for 7,

The following properties are valid if we complete the specification by the Maxent principle
(and will not be mentioned in our knowledge base):

e "™Pgp(si) > 0. (Positivity)
which is necessary to guarantee, that Eq. 12 is always defined.

e Similar to 745 , no rule from (12) connects different symptoms. So we have again
in the Maxent Model — obtained from the knowledge base — Conditional Inde-
pendence of the symptom variables given a value for d:

e Ps,p(d —> §) = [ [ Ps,p(d —> s:) (13)
i=1

for s; € S; (and analogously for d).

5.1.3 Size of the Rule Base

When using 7;4 we obtain k; rules for each variable S; , which means that we need to
state > k; rules in case of m variables.

5.2 Example

For the score system from Tab. 2 we obtain with translation 7;, the Tab. 5 showing
the rule base (left) and (with Maximum Entropy) the values for our possible queries
P¢ (8 —> d) ((right), in comparism to the values of w(3)). **

For this example, Maximum Entropy chooses a value P§p(d) ~ 0.607, where this value
was free to choose from (0.5, %) (see 5.3 for the explanation).

13The proposed translation rule may be modified by varying the base value without affecting the
following. For adjusting such a system in practice, also a shift to negative weigths is possible.

14See [PIT] for theory and implementation of the Maximum Entropy Method.

15Please note that overlining is part of our succinct notation of values of binary variables. For many
valued variables (more than two values) consider the translation rule (12).
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Knowledge Base Possible Queries : Ps p(5 — d) || w(3)
Ps,p(s1 —> d) = 25 = 2 = 0.667 Psp(<81, 5,55) —>d) ~0296 | 0
“Ps,p(ss —> d) = 155 = £ = 0.800 r ((s1,53,53) —> d) ~0.456 || 1
“Ps,p(s3 —> d) = 125 = £ = 0.889 Pw((S 59,53) —> d) ~0.627| 2
“Ps,p(51 —> d) = 155 = £ = 0.500 Pip((s1,82,55) —>d) ~0.771| 3
“Ps,p(52 —> d) = 155 = £ = 0.500 Ps (51,52, 83) —>d) ~0.771| 3
“Ps,p(55 —> d) = 155 = § = 0.500 Pip((s1,53,83) —>d) ~0871| 4
Pg D(< 51, 82,83) —>d) ~0.931| 5
5 p((51,52,83) —>d) ~0.964| 6

Table 5: Knowledge Base and Comparison of Score Sums and Probabilities

5.3 Consistency of 7,4

As the events (s;,d) are conditionally independent given a value for D (see eq. (13) and
compare fig. (1,left)), it is sufficient to choose a common Pgp(d) and then show the
consistency of a single 'node’ S;, containing all the rules for S; and the common value
(shared by all nodes) for Ps p(d) .

Every rule (from eq. 12) fixes the relation between Ps p((s;;,d)) and Ps p({s;,d)) for a
certain s;;, but leaves open the value Pg p(s;;), (beside respecting “Ps p(s;;) > 0 ).

Now lets consider a certain node S; which ’contains’ k; rules. Which set of values Ps p(d)
can be reached by varying Ps p(s;;) in this node ?

As for every probability model we have the 'weighing’ rule

P(d) = Z?i:lP(sij —> d) - P(s;;), the subsystem of node S; can assume every value
for Ps p(d) between (not including) the lowest and the highest value of Pg p(s;; —> d).
Let z; be this maximal value in a certain node S; and Z the vector of these values z; for
all nodes S;. As the lowest probability is (w.r.t.g, see above) 0.5 for every symptom S;,
choose Ps p(d) € (0.5, x,), where z, is the lowest value in & and every node S; can configure
itself to this value. By this choice every single node is consistent and furthermore, as the
only common variable D has the same distribution in every node, the whole system is
consistent.

5.4 Preservation of decisions

In order to get the same decisions as with the score system, we have to show that the
equivalence (1) holds for Psp as well. This is proved as follows:
We will compute Pg p(5 —> d) for an arbitrary elementary symptom event § = (s1,..., Sp).

To prepare this calculation, we first recall that the diagnosis variable D is two valued

here, so we have Ps p(s; —> d) =1 — Psp(s; —> d) = {7506, - We state further that

Ps,p({d, 5:))
PS D((d SZ>) _ PS,DESZ') _ CPS D(Sz —> d) _ 2w(51)
PS D((d Sz>) PS’D(<d, SZ>) CPS D(SZ —D d)

(14)
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We now are ready to calculate

PSD(< §'>) M - Psp(d

Pso((d,3) _ _ Psp(d)  Pso(d) —s) (j=1 Ps,n(d) )+ Fuold)
Psp(d.8) — Psp(d8) Psp(d) 7 7 Pap((d,s:))

PS,D(d) (H PS,D(d) ) S,D(d)

- (5] BBy e gy 0

with a constant ¢ := z>2 g;m We now use this equation to continue with
Ps,p({5,d))
Ps p(s d Ps (5 _
PS,D(§—|> d) = S’D(i_b_ PS,D(S—Dd) = S’DESZ PS,D(g—D d)
Ps,p(§ —> d) Ps,p((5, d))
Ps,p(5)
P s, d
— S,D(<i’—>) (1 _ PSD(g—D d))
Ps,p((5,d))
Solving this equation for Pgs p(5 —> d) yields
= QXL w(si) 927y w(si)
Psp(3—bd)= 24t _ _° - (16)

L4+pgg  14c-22%w0) 1y 9> Ty w(s:)

which is a strictly monotonic increasing function of w(5) and therefore sufficient for equa-
tion (1) to hold. -

6 Discussion and Conclusion

By presenting 3 translations of a score system into a probabilistic system, we want to
emphasize the superiority of probabilistic systems, which allow for a richer representation
of the available knowledge while avoiding unnecessary complexity. Especially we find the
following features worth mentioning:

e Size of the Representation: Probabilistic systems offer a rich language to relate
symptoms and diagnoses. Of course, not every problem needs a complex and large
set of rules. The simplicity of score systems can be reestablished in probabilistic
systems of type Tqs or 7T 4 : While Tz, uses an exponential number of rules to map
the decisions of a corresponding score system, 7;, and 7;4 use a linear number.
For simplicity of the rules, 755 and 7;4 do not reflect the ’difference property’ of
score systems ¢, but use conditional independence, to reduce the necessary number
of rules.

16in standard P(5§ —> d) — P(3},. 511 —> d) = consts, 41 or a logarithmic form
[si—si] [si—si]
P(§ —> d)/ P(3[5;—5) —> d) = const[s, 4] (see e.g. [FSO1])
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e Ability to add additional information

— Probabilistic systems allow to state complex relations between symptoms
and illnesses. Therefore, e.g. the well-known ’exclusive or’ !7 is no problem
for probabilistic systems (but for Score Systems)!®
P((s51,89) —>d) = P({s1,52) —> d) = low .

By the way of translation, most of this ability is lost in 7z4. On the other side,
Tas and 754 allow the specification of e.g. ’contrary’ knowledge.

Example: Both knowledge bases can be extended by the rule
P((Sl, Sa, 83> —> d) = 02,

without becoming inconsistent.

— All three translations'® offer a choice of the (a priori) probability of the
disease d — which may be different at different locations — and the freedom to
add information about the dependence of symptoms. Of course, the conditional
independence, which is now present in 7;, and 7,4 , will get lost if we add
relations between symptoms?.

— Multiple diseases
Probabilistic systems are open to (consistently) combine knowledge about dif-
ferent illnesses in one system. As score systems work by adding more or less
points, they are able to model within the same system different kinds of sever-
ity of a single disease, but are not able to model different diseases with partly
similar, partly different symptoms. Moreover, it is not clear how different score
systems might be integrated into a combined decision system.

e Transparency
Probabilistic systems are more transparent than score systems, as the elements of
their knowledge base may be understood (and checked) in terms of relative frequen-
cies.

e Adaptivity
Probabilistic systems provide a language, with is appropriate to formalize common
sense knowledge about frequencies ([Gig96]). While 7, s uses knowledge similar to
‘cause — effect’ relations as e.g. available in medical books, 7, 4 uses 'symptom —
cause’ relations, as e.g. available from experienced practitioners or by mining in
databases. Moreover, if carefully specified, these two kinds may both be used in one

7which asks for a simple, but non linear separating function on the data (in terms of the machine
learning community).

8For just a few cases this can be treated in score systems via defining a new ’combined’ symptom
including the appropriate table of weights. But as these tables grow exponentially with the number of
symptoms included, they hurt the aim of simplicity of score systems and do not offer a general solution.
Probabilistic systems do not suffer from an exponential growth of the knowledge base in such cases.

197, 4 in a restricted way, but remember that we can change the base or shift the scores, by which the
full range for P(d) can be reached.

20We remember, that using Maximum Entropy means to look for independences (and indifferences)
which can be derived from the available knowledge (in the sense that the amount of additional information,
which leads to those models, is only minimal)
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knowledge base, thus making available different kinds of knowledge from different
sources.

But probabilistic systems enhanced by Maximum Entropy methods do not only deliver a
theoretically well justified method to cope with incomplete and uncertain knowledge (e.g.
[PV90, Sch96]). For several years they have been available in powerful implementations
([PIT, SPI]) and have demonstrated their practical benefit in real world applications (e.g.
[LEX99, SERO01]).

We therefore recommend the use of probabilistic systems, which may be as simple as score
systems, but may also grow and become as complex as necessary for the application.
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