
Computational
Logic ∴ Group

Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Approximation Fixpoint Theory
Lecture 12, 23rd Jan 2023 // Foundations of Knowledge Representation, WS 2022/23

https://iccl.inf.tu-dresden.de/web/Foundations_of_Knowledge_Representation_(WS2022)

Motivation: Objective
Goal: Define semantics for (rule-based) KR formalisms in the presence of:
Recursion

• transitive closure
• indirect effects of actions

Negation

• shorter and more intuitive descriptions
• defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

• mutually exclusive alternatives
• non-deterministic effects of actions

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 2 of 43 Computational
Logic ∴ Group

Motivation: Objective
Goal: Define semantics for (rule-based) KR formalisms in the presence of:
Recursion

• transitive closure
• indirect effects of actions

Negation

• shorter and more intuitive descriptions
• defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

• mutually exclusive alternatives
• non-deterministic effects of actions

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 2 of 43 Computational
Logic ∴ Group

Motivation: Objective
Goal: Define semantics for (rule-based) KR formalisms in the presence of:
Recursion

• transitive closure
• indirect effects of actions

Negation

• shorter and more intuitive descriptions
• defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

• mutually exclusive alternatives
• non-deterministic effects of actions

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 2 of 43 Computational
Logic ∴ Group

Motivation: Basic Idea
Approximation Fixpoint Theory

• Framework for studying semantics of (non-monotonic) KR formalisms
• Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
• Based on lattice theory and fixpoint theory:

KB Models
has

Operator

defines

Fixpointshas

correspond

Approximator

defines

Fixpointshas

approximate

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 3 of 43 Computational
Logic ∴ Group

Motivation: Basic Idea
Approximation Fixpoint Theory

• Framework for studying semantics of (non-monotonic) KR formalisms
• Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
• Based on lattice theory and fixpoint theory:

KB Models
has

Operator

defines

Fixpointshas

correspond

Approximator

defines

Fixpointshas

approximate

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 3 of 43 Computational
Logic ∴ Group

Motivation: Basic Idea
Approximation Fixpoint Theory

• Framework for studying semantics of (non-monotonic) KR formalisms
• Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
• Based on lattice theory and fixpoint theory:

KB Models
has

Operator

defines

Fixpointshas

correspond

Approximator

defines

Fixpointshas

approximate

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 3 of 43 Computational
Logic ∴ Group

Motivation: History and Context

Approximation Fixpoint Theory

. . . emerged from similarities in the semantics of
• Default Logic [Reiter, 1980]
• Autoepistemic Logic [Moore, 1985]
• Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
. . . and has since been applied to define/reconstruct semantics of . . .
• Abstract Argumentation Frameworks
• Abstract Dialectical Frameworks
• Active Integrity Constraints
• Recursive SHACL

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 4 of 43 Computational
Logic ∴ Group

Agenda

Preliminaries
Lattice Theory
Logic Programming

Approximating Operators
Approximator
Defining Semantics

Stable Operators
Semantics via Fixpoints

Conclusion

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 5 of 43 Computational
Logic ∴ Group

Preliminaries

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 6 of 43 Computational
Logic ∴ Group

Partially Ordered Sets
Definition
A partially ordered set is a pair (L,⩽) with
• L a set, and (carrier set)
• ⩽ ⊆ L× L a partial order. (reflexive, antisymmetric, transitive)

A partially ordered set (L,⩽) has a
• bottom element ⊥ ∈ L iff ⊥ ⩽ x for all x ∈ L,
• top element ⊤ ∈ L iff x ⩽ ⊤ for all x ∈ L.

Examples

• (N,≤): natural numbers with “usual” ordering, ⊥ = 0, no ⊤
• (2S,⊆): any powerset with subset relation, ⊥ = ∅, ⊤ = S

• (N, |): natural numbers with divisibility relation, ⊥ = 1, ⊤ = 0

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 7 of 43 Computational
Logic ∴ Group

Partially Ordered Sets
Definition
A partially ordered set is a pair (L,⩽) with
• L a set, and (carrier set)
• ⩽ ⊆ L× L a partial order. (reflexive, antisymmetric, transitive)
A partially ordered set (L,⩽) has a
• bottom element ⊥ ∈ L iff ⊥ ⩽ x for all x ∈ L,
• top element ⊤ ∈ L iff x ⩽ ⊤ for all x ∈ L.

Examples

• (N,≤): natural numbers with “usual” ordering, ⊥ = 0, no ⊤
• (2S,⊆): any powerset with subset relation, ⊥ = ∅, ⊤ = S

• (N, |): natural numbers with divisibility relation, ⊥ = 1, ⊤ = 0

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 7 of 43 Computational
Logic ∴ Group

Partially Ordered Sets
Definition
A partially ordered set is a pair (L,⩽) with
• L a set, and (carrier set)
• ⩽ ⊆ L× L a partial order. (reflexive, antisymmetric, transitive)
A partially ordered set (L,⩽) has a
• bottom element ⊥ ∈ L iff ⊥ ⩽ x for all x ∈ L,
• top element ⊤ ∈ L iff x ⩽ ⊤ for all x ∈ L.

Examples

• (N,≤): natural numbers with “usual” ordering, ⊥ = 0, no ⊤
• (2S,⊆): any powerset with subset relation, ⊥ = ∅, ⊤ = S

• (N, |): natural numbers with divisibility relation, ⊥ = 1, ⊤ = 0

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 7 of 43 Computational
Logic ∴ Group

Minimal, Maximal, Least, Greatest
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ S. We say that:
• x is aminimal element of S iff for each y ∈ S, y ⩽ x implies y = x, dually,
• x is amaximal element of S iff for each y ∈ S, x ⩽ y implies y = x;

• x is the least element of S iff for each y ∈ S, we have x ⩽ y, dually,
• x is the greatest element of S iff for each y ∈ S, we have y ⩽ x.

Example

In (N, |) (natural numbers with divisibility a | b ⇐⇒ (∃k ∈N)a · k = b), . . .
• the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
• the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

2 3

6

2

4 6

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 8 of 43 Computational
Logic ∴ Group

Minimal, Maximal, Least, Greatest
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ S. We say that:
• x is aminimal element of S iff for each y ∈ S, y ⩽ x implies y = x, dually,
• x is amaximal element of S iff for each y ∈ S, x ⩽ y implies y = x;
• x is the least element of S iff for each y ∈ S, we have x ⩽ y, dually,
• x is the greatest element of S iff for each y ∈ S, we have y ⩽ x.

Example

In (N, |) (natural numbers with divisibility a | b ⇐⇒ (∃k ∈N)a · k = b), . . .
• the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
• the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

2 3

6

2

4 6

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 8 of 43 Computational
Logic ∴ Group

Minimal, Maximal, Least, Greatest
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ S. We say that:
• x is aminimal element of S iff for each y ∈ S, y ⩽ x implies y = x, dually,
• x is amaximal element of S iff for each y ∈ S, x ⩽ y implies y = x;
• x is the least element of S iff for each y ∈ S, we have x ⩽ y, dually,
• x is the greatest element of S iff for each y ∈ S, we have y ⩽ x.

Example

In (N, |) (natural numbers with divisibility a | b ⇐⇒ (∃k ∈N)a · k = b), . . .
• the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
• the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

2 3

6

2

4 6

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 8 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.

The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .

• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.

We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.

We denote the glb of S by
∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

Least Upper and Greatest Lower Bounds
Definition
Let (L,⩽) be a partially ordered set with S ⊆ L and x ∈ L.
• x is an upper bound of S iff for each s ∈ S, we have s ⩽ x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x ⩽ s.
The set of all upper bounds of S is denoted by Su, its lower bounds by Sℓ .
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if Sℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
We denote the glb of S by

∧
S, and the lub of S by

∨
S.

Examples

• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 9 of 43 Computational
Logic ∴ Group

(Complete) Lattices
Definition
Let (L,⩽) be a partially ordered set.
1. (L,⩽) is a lattice if and only if for all x, y ∈ L, both x ∧ y and x ∨ y exist;

2. (L,⩽) is a complete lattice iff for all S ⊆ L, both
∧
S and

∨
S exist.

In particular, a complete lattice has
∨
∅ =

∧
L = ⊥ and

∧
∅ =

∨
L = ⊤.

Examples

• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆N | M is finite},⊆) is a lattice.
• Every lattice (L,⩽) with L finite is a complete lattice. (induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Second Edition.
Cambridge University Press, 2002

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 10 of 43 Computational
Logic ∴ Group

(Complete) Lattices
Definition
Let (L,⩽) be a partially ordered set.
1. (L,⩽) is a lattice if and only if for all x, y ∈ L, both x ∧ y and x ∨ y exist;
2. (L,⩽) is a complete lattice iff for all S ⊆ L, both

∧
S and

∨
S exist.

In particular, a complete lattice has
∨
∅ =

∧
L = ⊥ and

∧
∅ =

∨
L = ⊤.

Examples

• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆N | M is finite},⊆) is a lattice.
• Every lattice (L,⩽) with L finite is a complete lattice. (induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Second Edition.
Cambridge University Press, 2002

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 10 of 43 Computational
Logic ∴ Group

(Complete) Lattices
Definition
Let (L,⩽) be a partially ordered set.
1. (L,⩽) is a lattice if and only if for all x, y ∈ L, both x ∧ y and x ∨ y exist;
2. (L,⩽) is a complete lattice iff for all S ⊆ L, both

∧
S and

∨
S exist.

In particular, a complete lattice has
∨
∅ =

∧
L = ⊥ and

∧
∅ =

∨
L = ⊤.

Examples

• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆N | M is finite},⊆) is a lattice.
• Every lattice (L,⩽) with L finite is a complete lattice. (induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Second Edition.
Cambridge University Press, 2002

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 10 of 43 Computational
Logic ∴ Group

(Complete) Lattices
Definition
Let (L,⩽) be a partially ordered set.
1. (L,⩽) is a lattice if and only if for all x, y ∈ L, both x ∧ y and x ∨ y exist;
2. (L,⩽) is a complete lattice iff for all S ⊆ L, both

∧
S and

∨
S exist.

In particular, a complete lattice has
∨
∅ =

∧
L = ⊥ and

∧
∅ =

∨
L = ⊤.

Examples

• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆N | M is finite},⊆) is a lattice.
• Every lattice (L,⩽) with L finite is a complete lattice. (induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Second Edition.
Cambridge University Press, 2002

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 10 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.

• O is ⊆-monotone:
– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).

– Then there is a K ⊆ M1 with k =
∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Operators and Their Properties
Definition
Let (L,⩽) be a partially ordered set.
An operator O : L→ L is ⩽-monotone if and only if for all x, y ∈ L,

x ⩽ y implies O(x) ⩽ O(y)

Intuition: Operator application preserves ordering.

Example

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).
– Then there is a K ⊆ M1 with k =

∏
K .

– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 11 of 43 Computational
Logic ∴ Group

Fixpoints of Operators
Definition
Let (L,⩽) be a partially ordered set and O : L→ L be an operator.
• x ∈ L is a fixpoint of O iff O(x) = x;
• x ∈ L is a prefixpoint of O iff O(x) ⩽ x;
• x ∈ L is a postfixpoint of O iff x ⩽ O(x).

Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.
Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 12 of 43 Computational
Logic ∴ Group

Fixpoints of Operators
Definition
Let (L,⩽) be a partially ordered set and O : L→ L be an operator.
• x ∈ L is a fixpoint of O iff O(x) = x;
• x ∈ L is a prefixpoint of O iff O(x) ⩽ x;
• x ∈ L is a postfixpoint of O iff x ⩽ O(x).

Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 12 of 43 Computational
Logic ∴ Group

Fixpoints of Operators
Definition
Let (L,⩽) be a partially ordered set and O : L→ L be an operator.
• x ∈ L is a fixpoint of O iff O(x) = x;
• x ∈ L is a prefixpoint of O iff O(x) ⩽ x;
• x ∈ L is a postfixpoint of O iff x ⩽ O(x).

Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.
Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.
Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 12 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.

• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.

• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.

• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.

• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.

• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =
∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,⩽) be a complete lattice and O : L→ L be a monotone operator.
Then the set F of fixpoints of O has a least element and a greatest element.

Proof.
Define A = {x ∈ L | O(x) ⩽ x} and α =

∧
A. (A ̸= ∅ as ⊤ ∈ A.)

• For every x ∈ A, we have α ⩽ x and by monotonicity O(α) ⩽ O(x) ⩽ x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) ⩽ α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) ⩽ O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α ⩽ O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x ⩽ O(x)}, β =

∨
B.

(F ,⩽) is a complete lattice: for G ⊆ F , take ([
∨
G,

∨
L],⩽) and ([

∧
L,

∧
G],⩽).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 13 of 43 Computational
Logic ∴ Group

Fixpoints of Operators (3)
Nice to know there is one, but how do we get there?
Theorem
Let (L,⩽) be a complete lattice and O : L→ L be a ⩽-monotone operator. For
ordinals α,β, define

O
0(⊥) = ⊥

O
α+1(⊥) = O(Oα(⊥)) for successor ordinals
O
β(⊥) =

∨ {
O
α(⊥)

∣∣ α < β}
for limit ordinals

Then for some ordinal α, the element Oα(⊥) is a fixpoint of O.

Example (Continued.)

Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {
∏
K | K ⊆ M, K finite}.

We obtain the chain O0(∅) = ∅⇝ O1(∅) = {1}⇝ O2(∅) = O({1}) = {1}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 14 of 43 Computational
Logic ∴ Group

Definite Logic Programs
Consider a set A of propositional atoms.
Definition
A definite logic program over A is a set P of rules of the form

a0 ← a1, . . . , am

for a0, . . . ,am ∈ A with 0 ≤ m.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set S ⊆ A is closed under a rule a← a1, . . . , am if and only if
{a1, . . . ,am} ⊆ S implies a ∈ S.

• The least model of P is the ⊆-least set that is closed under all rules in P.

Does such a least model always exist?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 15 of 43 Computational
Logic ∴ Group

Definite Logic Programs
Consider a set A of propositional atoms.
Definition
A definite logic program over A is a set P of rules of the form

a0 ← a1, . . . , am

for a0, . . . ,am ∈ A with 0 ≤ m.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set S ⊆ A is closed under a rule a← a1, . . . , am if and only if
{a1, . . . ,am} ⊆ S implies a ∈ S.

• The least model of P is the ⊆-least set that is closed under all rules in P.

Does such a least model always exist?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 15 of 43 Computational
Logic ∴ Group

Definite Logic Programs
Consider a set A of propositional atoms.
Definition
A definite logic program over A is a set P of rules of the form

a0 ← a1, . . . , am

for a0, . . . ,am ∈ A with 0 ≤ m.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set S ⊆ A is closed under a rule a← a1, . . . , am if and only if
{a1, . . . ,am} ⊆ S implies a ∈ S.

• The least model of P is the ⊆-least set that is closed under all rules in P.

Does such a least model always exist?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 15 of 43 Computational
Logic ∴ Group

Definite Logic Programs
Consider a set A of propositional atoms.
Definition
A definite logic program over A is a set P of rules of the form

a0 ← a1, . . . , am

for a0, . . . ,am ∈ A with 0 ≤ m.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set S ⊆ A is closed under a rule a← a1, . . . , am if and only if
{a1, . . . ,am} ⊆ S implies a ∈ S.

• The least model of P is the ⊆-least set that is closed under all rules in P.

Does such a least model always exist?
Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 15 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Proof.
Let S1 ⊆ S2 ⊆ A and a ∈ PT (S1).

Then there is a rule a← a1, . . . , am ∈ P with {a1, . . . ,am} ⊆ S1.
But then {a1, . . . ,am} ⊆ S1 ⊆ S2, thus a ∈ PT (S2).

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Proof.
Let S1 ⊆ S2 ⊆ A and a ∈ PT (S1).
Then there is a rule a← a1, . . . , am ∈ P with {a1, . . . ,am} ⊆ S1.

But then {a1, . . . ,am} ⊆ S1 ⊆ S2, thus a ∈ PT (S2).

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Proof.
Let S1 ⊆ S2 ⊆ A and a ∈ PT (S1).
Then there is a rule a← a1, . . . , am ∈ P with {a1, . . . ,am} ⊆ S1.
But then {a1, . . . ,am} ⊆ S1 ⊆ S2, thus a ∈ PT (S2).

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Semantics via Operators
Definition
Let P be a definite logic program over atoms A.
The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . ,am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT (S).

Proposition

For any definite logic program P, the operator PT is ⊆-monotone.

Theorem
Every definite logic program P has a least model, given by the least fixpoint
of PT in (2A,⊆).

The least model of P captures its intended meaning.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 16 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpoint

Complete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Definite Logic Programs: Example
Example

Consider A = {a,b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

Least fixpoint

Greatest fixpoint

Complete lattice of fixpoints

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 17 of 43 Computational
Logic ∴ Group

Normal Logic Programs
Definition
A normal logic program over A is a set P of rules of the form
a0 ← a1, . . . , am, ∼am+1, . . . , ∼an for a0, . . . ,an ∈ A with 0 ≤ m ≤ n.

Allow negated atoms ∼a in rule bodies.

Definition
Let P be a normal logic program. The operator PT on (2A,⊆) assigns thus:
S 7→ {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,

{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A set S ⊆ A is a supported model of P iff it is a fixpoint of PT .

Allow to derive the rule head from S whenever the rule body is satisfied in S.
Alternative definition of supported models via Clark completion.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 18 of 43 Computational
Logic ∴ Group

Normal Logic Programs
Definition
A normal logic program over A is a set P of rules of the form
a0 ← a1, . . . , am, ∼am+1, . . . , ∼an for a0, . . . ,an ∈ A with 0 ≤ m ≤ n.

Allow negated atoms ∼a in rule bodies.

Definition
Let P be a normal logic program. The operator PT on (2A,⊆) assigns thus:
S 7→ {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,

{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A set S ⊆ A is a supported model of P iff it is a fixpoint of PT .

Allow to derive the rule head from S whenever the rule body is satisfied in S.
Alternative definition of supported models via Clark completion.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 18 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.
∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Normal Logic Programs: Example
Example

Let A = {a,b, c}.
Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.

Operator PT visualised by

PT is not ⊆-monotone.

In {a, c}, atom c justifies itself.
∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 19 of 43 Computational
Logic ∴ Group

Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.
The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . ,an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.

In other words, PS is obtained from P by:
• removing all rules containing ∼a for some a ∈ S;
• removing all ∼a from the remaining rules.
Example (Continued.)

Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} with
supported models {a,b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a,b}, so {a,b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 20 of 43 Computational
Logic ∴ Group

Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.
The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . ,an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:
• removing all rules containing ∼a for some a ∈ S;
• removing all ∼a from the remaining rules.

Example (Continued.)

Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} with
supported models {a,b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a,b}, so {a,b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 20 of 43 Computational
Logic ∴ Group

Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.
The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . ,an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:
• removing all rules containing ∼a for some a ∈ S;
• removing all ∼a from the remaining rules.
Example (Continued.)

Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} with
supported models {a,b} and {a, c}. Are they stable models?

• P{a,b} = {a←, b← a} with least model {a,b}, so {a,b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 20 of 43 Computational
Logic ∴ Group

Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.
The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . ,an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:
• removing all rules containing ∼a for some a ∈ S;
• removing all ∼a from the remaining rules.
Example (Continued.)

Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} with
supported models {a,b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a,b}, so {a,b} is a stable model.

• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 20 of 43 Computational
Logic ∴ Group

Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.
The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . ,an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:
• removing all rules containing ∼a for some a ∈ S;
• removing all ∼a from the remaining rules.
Example (Continued.)

Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} with
supported models {a,b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a,b}, so {a,b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 20 of 43 Computational
Logic ∴ Group

Stocktaking

• Monotone operators in complete lattices have (least and greatest)
fixpoints.

• Operators can be associated with knowledge bases such that their
fixpoints correspond to models.

• Definite logic programs lead to an operator that is monotone on (2A,⊆),
and thus have unique least models.

• Normal logic programs lead to a non-monotone operator;
model existence and uniqueness cannot be guaranteed.

• Stable model semantics deals with self-justification.
• Can we find an operator-based version of stable model semantics?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 21 of 43 Computational
Logic ∴ Group

Approximating Operators

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 22 of 43 Computational
Logic ∴ Group

Approximating Operators
Main Idea
Use a more fine-grained structure to keep track of (partial) truth values.

Desiderata

• Preserve “interpretation revision” character of operators
• Preserve correspondence of fixpoints with models
• Obtain useful properties of operators

Approach

• Approximate sets of models by intervals.
• Use an information ordering on these approximations.
• Approximate operators by approximators – operators on intervals.
• Guarantee that fixpoints of approximators contain original fixpoints.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 23 of 43 Computational
Logic ∴ Group

From Lattices to Bilattices
Definition
Let (L,⩽) be a partially ordered set.
Its associated information bilattice is (L2,≤i) with L2 = L× L and

(u, v) ≤i (x, y) iff u ⩽ x and y ⩽ v

• A pair (x, y) approximates all z ∈ L with x ⩽ z ⩽ y.
• Information ordering =̂ interval inclusion: (u, v) ≤i (x, y) iff [x, y] ⊆ [u, v]

Proposition

If (L,⩽) is a complete lattice, then (L2,≤i) is a complete lattice. For S ⊆ L2:∧
i
S = (

∧
S1,

∨
S2) and

∨
i
S = (

∨
S1,

∧
S2)

S1= {x | (x,y)∈ S}
S2= {y | (x,y)∈ S}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 24 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

{a 7→ u,b 7→ u}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

{a 7→ t,b 7→ u}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

{a 7→ t,b 7→ f}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

{a 7→ i,b 7→ f}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

{a 7→ i,b 7→ i}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

We will mostly be concerned with the consistent pairs.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

We will mostly be concerned with the consistent pairs.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

({a} , {b}) ({b} , {a})

({a} , ∅) ({b} , ∅) ({a,b} , {a}) ({a,b} , {b})

({a,b} , ∅)

Original lattice
(
2{a,b},⊆

)
Bilattice

(
2{a,b} × 2{a,b},≤i

)
Pairs in the bilattice correspond to four-valued interpretations v : {a,b} → {t, f,u, i}.

Elements of the original lattice correspond to exact pairs.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 25 of 43 Computational
Logic ∴ Group

Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,⩽) be a complete lattice and O : L→ L be an operator.
An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x),O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.

Approximator coincides with the operator on exact pairs.

A : L2 → L2 induces A1, A2 : L2 → L with A(x, y) = (A1(x, y), A2(x, y)).
Definition
An approximator is symmetric iff A1(x, y) = A2(y, x).

If A is symmetric, then A(x, y) = (A1(x, y), A1(y, x)), so A1 fully specifies A.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 26 of 43 Computational
Logic ∴ Group

Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,⩽) be a complete lattice and O : L→ L be an operator.
An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x),O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.

Approximator coincides with the operator on exact pairs.
A : L2 → L2 induces A1, A2 : L2 → L with A(x, y) = (A1(x, y), A2(x, y)).

Definition
An approximator is symmetric iff A1(x, y) = A2(y, x).

If A is symmetric, then A(x, y) = (A1(x, y), A1(y, x)), so A1 fully specifies A.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 26 of 43 Computational
Logic ∴ Group

Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,⩽) be a complete lattice and O : L→ L be an operator.
An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x),O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.

Approximator coincides with the operator on exact pairs.
A : L2 → L2 induces A1, A2 : L2 → L with A(x, y) = (A1(x, y), A2(x, y)).
Definition
An approximator is symmetric iff A1(x, y) = A2(y, x).

If A is symmetric, then A(x, y) = (A1(x, y), A1(y, x)), so A1 fully specifies A.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 26 of 43 Computational
Logic ∴ Group

Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,⩽) be a complete lattice and O : L→ L be an operator.
An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x),O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.

Approximator coincides with the operator on exact pairs.
A : L2 → L2 induces A1, A2 : L2 → L with A(x, y) = (A1(x, y), A2(x, y)).
Definition
An approximator is symmetric iff A1(x, y) = A2(y, x).

If A is symmetric, then A(x, y) = (A1(x, y), A1(y, x)), so A1 fully specifies A.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 26 of 43 Computational
Logic ∴ Group

Approximator: Example
Example

Let P be a normal logic program.
Recall its one-step consequence operator PT , defined by

PT (S) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A symmetric approximator for PT is given by PT with

PT1(L,U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ L, {am+1, . . . ,an} ∩U = ∅}

That is, PT(L,U) = (PT1(L,U), PT1(U, L)).

For new lower bound: check truth against lower, falsity against upper bound.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 27 of 43 Computational
Logic ∴ Group

Approximator: Example
Example

Let P be a normal logic program.
Recall its one-step consequence operator PT , defined by

PT (S) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A symmetric approximator for PT is given by PT with

PT1(L,U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ L, {am+1, . . . ,an} ∩U = ∅}

That is, PT(L,U) = (PT1(L,U), PT1(U, L)).

For new lower bound: check truth against lower, falsity against upper bound.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 27 of 43 Computational
Logic ∴ Group

Approximator: Example
Example

Let P be a normal logic program.
Recall its one-step consequence operator PT , defined by

PT (S) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A symmetric approximator for PT is given by PT with

PT1(L,U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ L, {am+1, . . . ,an} ∩U = ∅}

That is, PT(L,U) = (PT1(L,U), PT1(U, L)).

For new lower bound: check truth against lower, falsity against upper bound.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 27 of 43 Computational
Logic ∴ Group

Approximator: Example
Example

Let P be a normal logic program.
Recall its one-step consequence operator PT , defined by

PT (S) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ S, {am+1, . . . ,an} ∩ S = ∅}

A symmetric approximator for PT is given by PT with

PT1(L,U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ L, {am+1, . . . ,an} ∩U = ∅}

That is, PT(L,U) = (PT1(L,U), PT1(U, L)).

For new lower bound: check truth against lower, falsity against upper bound.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 27 of 43 Computational
Logic ∴ Group

Approximator PT: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Normal logic program
P = {a←, b← ∼a, ∼b}

PT :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator PT for PT :

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 28 of 43 Computational
Logic ∴ Group

Approximator PT: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Normal logic program
P = {a←, b← ∼a, ∼b}

PT :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator PT for PT :

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 28 of 43 Computational
Logic ∴ Group

Approximator PT: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Normal logic program
P = {a←, b← ∼a, ∼b}

PT :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator PT for PT :

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 28 of 43 Computational
Logic ∴ Group

Approximator PT: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Normal logic program
P = {a←, b← ∼a, ∼b}

PT :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator PT for PT :

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 28 of 43 Computational
Logic ∴ Group

Approximator PT: Example

∅

{a} {b}

{a,b}

(∅, {a,b})

(∅, {a}) (∅, {b}) ({a} , {a,b}) ({b} , {a,b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a,b} , {a,b})

Original lattice
(
2{a,b},⊆

)
Normal logic program
P = {a←, b← ∼a, ∼b}

PT :

Bilattice
(
2{a,b} × 2{a,b},≤i

)
Approximator PT for PT :

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 28 of 43 Computational
Logic ∴ Group

Quiz: Approximator PT

Recall that for L,U ⊆ A we defined PT(L,U) = (PT1(L,U), PT1(U, L)) with

PT1(L,U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . ,am} ⊆ L, {am+1, . . . ,an} ∩U = ∅}

Quiz
Consider the normal logic program P: . . .

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 29 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2).

In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2.

Hence
∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z).

A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)).

In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (1)
Lemma
Let (L,⩽) be a complete lattice and A an approximator on (L2,≤i).
1. If C is a non-empty chain of consistent pairs, then

∨
i
C is consistent.

2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let a,b ∈ C. Since C is a chain, a ≤i b (then a1 ⩽ b1 ⩽ b2) or b ≤i a (then
a1 ⩽ a2 ⩽ b2). In any case, a1 ⩽ b2. So every c2 ∈ C2 is an upper bound of
C1, and

∨
C1 ⩽ c2. Hence

∨
C1 is a lower bound of C2 and

∨
C1 ⩽

∧
C2.

2. If x ⩽ y, then for z with x ⩽ z ⩽ y we have (x, y) ≤i (z, z). A is ≤i-monotone,
thus A(x, y) ≤i A(z, z). A approximates some O, thus A(z, z) = (O(z),O(z)). In
combination A1(x, y) ⩽ O(z) ⩽ A2(x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗).

It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:

Define Q =
{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q.

Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.

Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).
2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator: Observations (2)
Theorem
Let (L,⩽) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ ⩽ y∗.
2. Every fixpoint z of O satisfies x∗ ⩽ z ⩽ y∗.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:
Define Q =

{
(x, y) ∈ L2

∣∣ x ⩽ y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}
.

Q is non-empty as (⊥,⊤) ∈ Q. Each non-empty chain in Q has an upper
bound in Q,

Let ∅ ̸= C ⊆ Q

be a chain. Define
d =

∨
i
C. (1) By

the previous lemma,
d is consistent. (2)
For every c ∈ C we
have c ≤i d and thus
c ≤i A(c) ≤i A(d); thus
A(d) is an upper bound
of C, whence d ≤i
A(d). (3) We know that
C ⊆ Qwhence (x∗, y∗) is
an upper bound of C,
thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.
Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).

2. If O(z) = z then A(z, z) = (O(z),O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 31 of 43 Computational
Logic ∴ Group

Approximator PT: Examples

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 32 of 43 Computational
Logic ∴ Group

Approximator PT: Examples

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 32 of 43 Computational
Logic ∴ Group

Approximator PT: Examples

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P2 = {a← b, a← c, b← ∼c, c← ∼b}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 32 of 43 Computational
Logic ∴ Group

Recovering Semantics

Approximator fixpoints give rise to several semantics.
Proposition

Let P be a normal logic program over A with approximator PT, X ⊆ Y ⊆ A.
• X is a supported model of P iff PT(X , X) = (X , X).
• (X , Y) is a three-valued supported model of P iff PT(X , Y) = (X , Y).
• (X , Y) is the Kripke-Kleene semantics of P iff (X , Y) = lfp(PT).

But what about stable model semantics?

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 33 of 43 Computational
Logic ∴ Group

Stable Operators

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 34 of 43 Computational
Logic ∴ Group

Stable Operator: Intuition
The Gelfond-Lifschitz Reduct of P . . .

• . . . starts out with a two-valued interpretation S ⊆ A;
• . . . removes all rules requiring some a ∈ S to be false;
• . . . assumes all a ∈ A \ S to be false in the remaining rules.

• To obtain reduct PS, assume all and only atoms a ∈ A \ S to be false.
• Using PS, try to constructively prove all and only atoms a ∈ S to be true.
• PS is a definite logic program, so PST is a ⊆-monotone operator on (2A,⊆).
Expressing the Reduct via an Operator

• For pair (X , Y), an a ∈ A is true iff a ∈ X ; atom a is false iff a /∈ Y .
• Use PT1 to reconstruct what is true, fixing the upper bound to S:

PT1(·, S) : 2A → 2A, X 7→ PT1(X , S)

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 35 of 43 Computational
Logic ∴ Group

Stable Operator: Intuition
The Gelfond-Lifschitz Reduct of P . . .

• . . . starts out with a two-valued interpretation S ⊆ A;
• . . . removes all rules requiring some a ∈ S to be false;
• . . . assumes all a ∈ A \ S to be false in the remaining rules.

• To obtain reduct PS, assume all and only atoms a ∈ A \ S to be false.
• Using PS, try to constructively prove all and only atoms a ∈ S to be true.
• PS is a definite logic program, so PST is a ⊆-monotone operator on (2A,⊆).

Expressing the Reduct via an Operator

• For pair (X , Y), an a ∈ A is true iff a ∈ X ; atom a is false iff a /∈ Y .
• Use PT1 to reconstruct what is true, fixing the upper bound to S:

PT1(·, S) : 2A → 2A, X 7→ PT1(X , S)

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 35 of 43 Computational
Logic ∴ Group

Stable Operator: Intuition
The Gelfond-Lifschitz Reduct of P . . .

• . . . starts out with a two-valued interpretation S ⊆ A;
• . . . removes all rules requiring some a ∈ S to be false;
• . . . assumes all a ∈ A \ S to be false in the remaining rules.

• To obtain reduct PS, assume all and only atoms a ∈ A \ S to be false.
• Using PS, try to constructively prove all and only atoms a ∈ S to be true.
• PS is a definite logic program, so PST is a ⊆-monotone operator on (2A,⊆).
Expressing the Reduct via an Operator

• For pair (X , Y), an a ∈ A is true iff a ∈ X ; atom a is false iff a /∈ Y .
• Use PT1 to reconstruct what is true, fixing the upper bound to S:

PT1(·, S) : 2A → 2A, X 7→ PT1(X , S)

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 35 of 43 Computational
Logic ∴ Group

Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.
Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) ⩽ A1(x2, y).

2. Let x ∈ L and y1 ⩽ y2.
Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) ⩽ A2(x, y2).

• A1(·, y) has a ⩽-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a ⩽-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 36 of 43 Computational
Logic ∴ Group

Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.

Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) ⩽ A1(x2, y).
2. Let x ∈ L and y1 ⩽ y2.

Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) ⩽ A2(x, y2).

• A1(·, y) has a ⩽-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a ⩽-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 36 of 43 Computational
Logic ∴ Group

Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.
Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) ⩽ A1(x2, y).

2. Let x ∈ L and y1 ⩽ y2.
Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) ⩽ A2(x, y2).

• A1(·, y) has a ⩽-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a ⩽-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 36 of 43 Computational
Logic ∴ Group

Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.
Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) ⩽ A1(x2, y).

2. Let x ∈ L and y1 ⩽ y2.

Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) ⩽ A2(x, y2).

• A1(·, y) has a ⩽-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a ⩽-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 36 of 43 Computational
Logic ∴ Group

Stable Operator: Preparation
Proposition

Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
For every pair (x, y) ∈ L2, the following operators are ⩽-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.

1. Let x1 ⩽ x2 and y ∈ L.
Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) ⩽ A1(x2, y).

2. Let x ∈ L and y1 ⩽ y2.
Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) ⩽ A2(x, y2).

• A1(·, y) has a ⩽-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a ⩽-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 36 of 43 Computational
Logic ∴ Group

Stable Operator: Definition
Definition
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
The stable approximator for A is given by Ast : L2 → L2 with

A
st
1 : L2 → L, (x, y) 7→ lfp(A1(·, y))
A
st
2 : L2 → L, (x, y) 7→ lfp(A2(x, ·))

• Ast1 : improve lower bound for all fixpoints of O at or below upper bound;
• Ast2 : obtain tightmost new upper bound (eliminate non-minimal fixpoints).

Proposition

Let (x, y) be a postfixpoint of approximator A. Then
a ∈ [⊥, y] implies A1(a, y) ∈ [⊥, y] and b ∈ [x,⊤] implies A2(x,b) ∈ [x,⊤].

In particular, lfp(A1(·, y)) ⩽ y and x ⩽ lfp(A2(x, ·)).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 37 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y).

Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone.

In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v).

Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).

In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.
2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have

Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y).

Ast2 : dual.
2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have

Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator: Observations
Theorem
Let (L,⩽) be a complete lattice and A be an approximator on (L2,≤i).
1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.

Proof.

1. Let (u, v) ≤i (x, y). Now y ⩽ v implies A1(z, v) ⩽ A1(z, y) for all z ∈ L since A is
≤i-monotone. In particular, for z∗ = lfp(A1(·, y)), A1(z∗, v) ⩽ A1(z∗, y) = z∗

whence z∗ is a prefixpoint of A1(·, v). Thus lfp(A1(·, v)) ⩽ z∗ = lfp(A1(·, y)).
In combination, Ast1 (u, v) = lfp(A1(·, v)) ⩽ lfp(A1(·, y)) = Ast1 (x, y). Ast2 : dual.

2. Let x ⩽ y with (x, y) ≤i A(x, y). For every z ∈ L with x ⩽ z ⩽ y, we have
Ast1 (x, y) ⩽ Ast1 (z, z) = lfp(A1(·, z)) ⩽ z ⩽ lfp(A2(z, ·)) = Ast2 (z, z) ⩽ Ast2 (x, y).

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 38 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c}

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st(∅, {a,b, c}) = (lfp(PT1(·, {a,b, c})), lfp(PT2(∅, ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st(∅, {a,b, c}) = (lfp(PT1(·, {a,b, c})), lfp(PT2(∅, ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st(∅, {a,b, c}) = ({a} , lfp(PT2(∅, ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st(∅, {a,b, c}) = ({a} , {a,b})

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st({a} , {a,b}) = (lfp(PT1(·, {a,b})), lfp(PT2({a} , ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st({a} , {a,b}) = (lfp(PT1(·, {a,b})), lfp(PT2({a} , ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st({a} , {a,b}) = ({a,b} , lfp(PT2({a} , ·)))

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st({a} , {a,b}) = ({a,b} , {a,b})

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} PT
st({a,b} , {a,b}) = (PT ({a,b}), PT ({a,b})) = ({a,b} , {a,b})

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P1 = {a←, b← a, ∼c, c← c} lfp(PTst) = ({a,b} , {a,b}): well-founded semantics of P1

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P2 = {a← ∼b, b← ∼a, c← c} lfp(PTst): well-founded semantics of P2

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Operator PT
st: Example

(∅, {a,b, c})

(∅, {a,b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a,b, c}) ({b} , {a,b, c}) ({c} , {a,b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a,b})

({a} , {a, c})
({b} , {a,b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a,b} , {a,b, c})

({a, c} , {a,b, c})
({b, c} , {a,b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a,b} , {a,b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a,b, c} , {a,b, c})

P2 = {a← ∼b, b← ∼a, c← c} three-valued stable models of P2

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 39 of 43 Computational
Logic ∴ Group

Stable Semantics: Definition via Operators
Definition
Let (L,⩽) be a complete lattice, O : L→ L be an operator.
Let A : L2 → L2 be an approximator of O in (L2,≤i). A pair (x, y) ∈ L2 is
• a two-valued stable model of A iff x = y and Ast(x, y) = (x, y);
• a three-valued stable model of A iff x ⩽ y and Ast(x, y) = (x, y);
• the well-founded model of A iff it is the least fixpoint of Ast.

Names inspired by notions from logic programming.

Theorem

1. lfp(A) ≤i lfp(Ast);
2. Ast(x, y) = (x, y) implies A(x, y) = (x, y);
3. if Ast(x, x) = (x, x) then x is a ⩽-minimal fixpoint of O;

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 40 of 43 Computational
Logic ∴ Group

Reprise: How to Find an Approximator?
Definition
Let O : L→ L be an operator in a complete lattice (L,⩽).
Define the ultimate approximator of O as follows:

UO : L2 → L
2, (x, y) 7→ (

∧
{O(z) | x ⩽ z ⩽ y} ,

∨
{O(z) | x ⩽ z ⩽ y})

Intuition: Consider glb and lub of applying O pointwise to given interval.

Theorem
For every approximator A of O and consistent pair (x, y) ∈ L2, we find

A(x, y) ≤i UO(x, y)

Ultimate approximator is most precise approximator possible.
Used e.g. for (PSP-)semantics of aggregates in logic programming.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 41 of 43 Computational
Logic ∴ Group

Conclusion

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 42 of 43 Computational
Logic ∴ Group

Conclusion
Summary

• Operators in complete lattices can be used to define semantics of KR
formalisms.

• Approximation fixpoint theory provides a general account of
operator-based semantics.

• Stable approximator reconstructs well-founded and stable model
semantics of logic programming.

Outlook
AFT can be used to show correspondence of . . .
• . . . extensions of default theories with stable models of logic programs;
• . . . expansions of autoepistemic theories with supported models of LPs;
• . . . semantics of argumentation frameworks with semantics of LPs.

Approximation Fixpoint Theory (Lecture 12)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 43 of 43 Computational
Logic ∴ Group

	Preliminaries
	Lattice Theory
	Logic Programming

	Approximating Operators
	Approximator
	Defining Semantics

	Stable Operators
	Semantics via Fixpoints

	Conclusion

