

Fakultät Informatik, Institut für Theoretische Informatik, Lehrstuhl für Automatentheorie

Formale Systeme 10. Übungsblatt

Wintersemester 2023/24

Aufgabe 1

Geben Sie präzise eine deterministische Turingmaschine \mathcal{M} zur Erkennung der Sprache $L = \{a^n b^m c^k : n, m, k \ge 1, n = 2m \text{ oder } m = k\}$ an. Sie können wahlweise eine Ein- oder Mehrband-DTM verwenden.

- (a) Begründen Sie, warum $\mathcal{L}(\mathcal{M}) = L$.
- (b) Geben Sie die Berechnungen für $w_1 = abcc$ und $w_2 = aabc$ an.

Aufgabe 2

Wie in der Vorlesung dargelegt wurde, werden Turingmaschinen als allgemeines Rechenmodell verstanden (18. Vorlesung, Folie 19).

Geben Sie Turingmaschinen an, die folgende Funktionen berechnen. Dabei wird eine Eingabe $n \in \mathbb{N}$ als \emptyset^n mit $\emptyset \in \Sigma$ dargestellt. Es kann vorausgesetzt werden, dass die Eingabe wohlgeformt auf dem Band vorliegt. Am Ende der Berechnung hält die Turingmaschine in einem Finalzustand und das Band enthält nur das Berechnungsergebnis.

- a) Die Turingmaschine \mathcal{M}_0 berechnet die Funktion $f: \mathbb{N} \to \mathbb{N}$, $n \mapsto 0$, d. h. das Eingabewort auf dem Band wird gelöscht.
- b) Die Turingmaschine \mathcal{M}_{succ} berechnet die Funktion $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$.
- c) Für $i, n \in \mathbb{N}$ berechnet die Turingmaschine \mathcal{M}_n^i die Funktion $f_n^i : \mathbb{N}^n \to \mathbb{N}$ mit $(x_1, \ldots, x_n) \mapsto x_i$. Es wird empfohlen, zunächst die Turingmaschine \mathcal{M}_4^2 anzugeben und diese dann zu \mathcal{M}_n^i zu verallgemeinern.

Hinweis: (3,2,4,0) in der Eingabe wird dargestellt als $(\emptyset\emptyset\emptyset,\emptyset\emptyset,\emptyset\emptyset\emptyset\emptyset,0)$.