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Abstract

A novel approach to human conditional reasoning based on the
three-valued Łukasiewicz logic is presented. We will demon-
strate that the Łukasiewicz logic overcomes problems the so-
far proposed Fitting logic has in reasoning with the suppression
task. The approach can be implemented by an appropriate con-
nectionist network. While adequately solving the suppression
task, the approach gives rise to a number of open questions
concerning the use of Łukasiewicz logic, contractions, com-
pletion versus weak completion, explanations, negation, and
sceptical versus credulous approaches in human reasoning.

Keywords: Łukasiewicz logic; computational logic; suppres-
sion task; human reasoning.

Introduction

Within Cognitive Science human reasoning is often studied

within well-defined experiments. One of the most analyzed

experiments is the suppression task, in which Byrne (1989)

has shown that graduate students with no previous expo-

sure to formal logic did suppress previously drawn conclu-

sion when additional information became available. Inter-

estingly, in some instances the previously drawn conclusions

were valid whereas in other instances the conclusions were

invalid with respect to classical two-valued logic. Consider

the following example: If she has an essay to write then she

will study late in the library and If she has a textbook to read

then she will study late in the library and She has an essay to

write. Then most participants (96%) conclude: She will study

late in the library. If participants, however, receive, instead

of the second conditional: If the library stays open she will

study late in the library then only 38% participants conclude:

She will study late in the library. This shows, that, although

the conclusion is still correct, the conclusion is suppressed by

an additional conditional. This is an excellent example for

human capability to draw non-monotonic inferences.

Table 1 shows the abbreviations that will be used through-

out the paper, whereas Table 2 gives an account of the find-

ings of Byrne (1989).

It is straightforward to see that classical two-valued logic

cannot model the suppression task adequately: Applying the

classical logical consequence operator to some instances of

the suppression task yields qualitatively wrong answers. At

least, a non-monotonic operator is needed. As argued by

Stenning and Lambalgen (2008) human reasoning should be

modeled by, firstly, reasoning towards an appropriate repre-

sentation and, secondly, by reasoning with respect to this rep-

resentation. As appropriate representation Stenning and van

Table 1: The suppression task (Byrne, 1989) and used ab-

breviations. Participants received conditionals (A, B, C) and

facts E,E,L,L and they had to draw inferences.

A If she has an essay to write

then she will study late in the library.

B If she has a textbook to read

then she will study late in the library.

C If the library stays open

she will study late in the library.

E She has an essay to write.

E She does not have an essay to write.

L She will study late in the library.

L She will not study late in the library.

Table 2: The drawn conclusions in the study of Byrne (1989).

Conditional(s) Fact Experimental Findings

A E 96% of subjects conclude L.

A, B E 96% of subjects conclude L.

A, C E 38% of subjects conclude L.

A E 46% of subjects conclude L.

A, B E 4% of subjects conclude L.

A, C E 63% of subjects conclude L.

A L 53% of subjects conclude E.

A, B L 16% of subjects conclude E.

A, C L 55% of subjects conclude E.

A L 69% of subjects conclude E.

A, B L 69% of subjects conclude E.

A, C L 44% of subjects conclude E.

Lambalgen propose logic programs under completion seman-

tic based on the three-valued logic used by Fitting (1985),

which itself is based on the three-valued Kleene (1952) logic.

Unfortunately, some technical claims made by Stenning

and Lambalgen (2008) are wrong. It turned out, that the

three-valued logic proposed by Fitting is inadequate for

the suppression task. Somewhat surprisingly, the suppres-

sion task can be adequately modeled, if the three-valued

Łukasiewicz (1920) logic is used. The paper gives an account

of this finding and discusses a variety of open questions.



Adequacy

Computational approaches must be classified regarding cog-

nitive adequacy. In particular, we can distinguish between

conceptual and inferential measures In our context, a sys-

tem is conceptually adequate if it appropriately represents

human knowledge. Inferential adequacy measures whether

the computations behave similarly to human reasoning. In

cognitive science theories are evaluated by performing rea-

soning experiments on subjects. For instance, Knauff (1999)

investigate which kind of information humans use when rep-

resenting and remembering spatial arrangements in Allen’s

interval calculus. In computer science, one commonly used

hypothesis is, that if computational models are biologically

plausible then they should also behave similar to the biologi-

cal brain (Herrmann & Ohl, 2009). However, until now there

are no implemented models which easily process computa-

tions given a large amounts of data or efficiently deal with

incomplete information. These aspects are fundamental for

elementary reasoning processes. Shastri and Ajjanagadde

(1993) present a connectionist approach for reflexive reason-

ing called SHRUTI and state that their system is psychologi-

cally plausible. Furthermore, Beringer and Hölldobler (1993)

conclude from a logical reconstruction of SHRUTI that “ad-

equacy implies massive parallelism.” In this paper, we eval-

uate the adequacy of our computational logic approach by

examining that our approach qualitatively gives the same an-

swers as subjects in the suppression task experiments.

A Computational Logic Approach

Stenning and Lambalgen (2008) have proposed to use logic

programs under completion semantics and based on a three-

valued logic to model the suppression task. In particular, they

suggest that human reasoning is modeled by, firstly, reasoning

towards an appropriate representation or logical form (con-

ceptual adequacy) and, secondly, reasoning with respect to

this representation (inferential adequacy).

In the following we introduce three-valued logics and, in

particular, the Łukasiewicz logic. As the chosen representa-

tion are logic programs, such programs are introduced next

together with their (weak) completion. We adopt the reason-

ing step towards an appropriate logical form from Stenning

and Lambalgen (2008). Thereafter, we discuss three-valued

models for logic programs under the Łukasiewicz semantics

and, in particular, the model intersection property which en-

tails the existence of least models. We show that the conclu-

sions drawn with respect to these least models correspond to

the findings in (Byrne, 1989) and conclude that the derived

logics programs under Łukasiewicz semantics are conceptu-

ally adequate for the suppression task.

In order to investigate inferential adequacy we consider the

semantic operator associated with logic programs as defined

by Stenning and Lambalgen (2008). For each program P , this

operator admits a least fixed point, which is equal to the least

Łukasiewicz model of P . At this point we are able discuss the

technical problems in (Stenning & Lambalgen, 2008), while

showing that they do not occur if we use Łukasiewicz seman-

tics. The least fixed point of such a semantic operator can be

computed within a connectionist setting, where the applica-

tion of the operator to some interpretation requires only two

steps in time and the time to compute the least model is linear

in the number of reasoning steps an agent has to perform.

Finally, we add abduction to the approach in order and

show that sceptical reasoning is needed in order to model the

suppression task adequately.

Three-Valued Logics

Three-valued logics were introduced by Łukasiewicz (1920).

In Table 3 the truth tables of his logic are depicted, where ⊤,

⊥, and U denote true, false, and unknown, respectively.

Table 3: The three-valued Łukasiewicz logic.

¬

⊤ ⊥
⊥ ⊤
U U

∧ ∨ ← ↔

⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊤ ⊤ ⊥
⊤ U U ⊤ ⊤ U

⊥ ⊤ ⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊤ ⊤
⊥ U ⊥ U U U

U ⊤ U ⊤ U U

U ⊥ ⊥ U ⊤ U

U U U U ⊤ ⊤

With the introduction of the third truth value, there are

plenty of options to define the truth tables for the connec-

tives. For example, Kleene (1952) introduced an implica-

tion, whose truth table is identical to the Łukasiewicz impli-

cation except that the case where precondition and conclu-

sion are both mapped to ⊥: in this case, the implication itself

is mapped to U. Kleene also introduced a so-called strong

equivalence, where the truth value ⊤ is assigned to F ↔ G if

F and G are assigned to identical truth values, and ⊥ is as-

signed otherwise. Fitting (1985) combined the truth tables for

¬, ∨, ∧ from Łukasiewicz with the Kleene implication and

strong equivalence for investigations within logic program-

ming. We will call this combination the Fitting semantics.1

Stenning and Lambalgen (2008) use Fitting semantics with-

out giving a reason for this particular choice.

Logic Programs

A (logic) program is a finite set of expressions of the from

A← B1∧ . . .∧Bn, (1)

where n ≥ 1, A is an atom, and each Bi, 1 ≤ i ≤ n, is either

a literal, ⊤, or ⊥. A is called head and B1∧ . . .∧Bn is called

body of the clause (1). A clause of the form A←⊤ is called

1We believe that Fitting had termination analysis of logic pro-
grams in his mind when he selected this particular logic.



positive fact, whereas a clause of the form A← ⊥ is called

negative fact. In the sequel, let P be a program.

Consider the following transformation for a given P :

1. All clauses with the same head A←Body1, A←Body2, . . .

are replaced by A← Body1∨Body2∨ . . ..

2. If an atom A is not the head of any clause in P (and, thus,

is undefined in P ) then add A←⊥.

3. All occurrences of← are replaced by↔.

The resulting set is called completion of P (cP ). If step 2 is

omitted, then the resulting set is called weak completion of

P (wcP ). It is well-known that reasoning with respect to the

completion of a logic program is non-monotonic.

Reasoning Towards an Appropriate Logical Form

Stenning and Lambalgen (2008) have argued that the first step

in modeling human reasoning is reasoning towards an appro-

priate logical form. In particular, they argue that conditionals

shall not be encoded by implications straight away but rather

by licenses for implications. For example, the conditional A

should be encoded by the clause l← e∧ab1, where ab1 is an

abnormality predicate which expresses that something abnor-

mal is known. In other words, l holds if e holds and nothing

abnormal is known.

In this paper, we simply adopt this reasoning step from

Stenning and Lambalgen (2008). In the first two columns

of Table 4 the programs obtained for the first six examples of

the suppression task are depicted. The third column shows

the weak completions of the programs.

Three-Valued Models for Logic Programs

A (three-valued) interpretation is a mapping from a proposi-

tional language to the set {⊤,⊥,U} of truth values. It is quite

common to represent interpretations by tuples of the from

〈I⊤, I⊥〉, where I⊤ contains all atoms which are mapped to

⊤, I⊥ contains all atoms which are mapped to⊥, I⊤∩ I⊥ = /0,

and all atoms which occur neither in I⊤ nor in I⊥ are mapped

to U.

Let P be a program and I an interpretation. I is a (three-

valued) model under Łukasiewicz semantics for P (I |=3L P )

iff each clause occurring in P is mapped to ⊤ using the truth

table depicted in Table 3. Likewise, |=3F can be defined with

respect to the Fitting semantics.

In Hölldobler and Kencana Ramli (2009b) it was shown

that the model intersection property holds for (weakly com-

pleted) programs under Łukasiewicz semantics, i.e.,

∩{I | I |=3L P} |=3L P ,

∩{I | I |=3L wcP} |=3L wcP .

The model intersection property for programs does not hold

under Fitting semantics: Let P = {p ← q}, then both,

〈{p,q}, /0〉 and 〈 /0,{p,q}〉, are models for P , whereas 〈 /0, /0〉
is not a model for P .

Table 4: A summary of the computational logic approach to

the suppression task (Part 1).

P clauses wcP lmwcP

PAE l← e∧ab1 l↔ e∧ab1 〈{e, l},{ab1}〉
ab1←⊥ ab1↔⊥
e←⊤ e↔⊤

PABE l← e∧ab1 l↔ (e∧ab1) 〈{e, l},{ab1,ab2}〉
l← t ∧ab2 ∨ (t ∧ab2)
ab1←⊥ ab1↔⊥
ab2←⊥ ab2↔⊥
e←⊤ e↔⊤

PACE l← e∧ab1 l↔ (e∧ab1) 〈{e},{ab3}〉
l← o∧ab3 ∨ (o∧ab3)
ab1← o ab1↔ o

ab3← e ab3↔ e

e←⊤ e↔⊤

PAE l← e∧ab1 l↔ e∧ab1 〈 /0,{e, l,ab1}〉
ab1←⊥ ab1↔⊥
e←⊥ e↔⊥

PABE l← e∧ab1 l↔ (e∧ab1) 〈 /0,{e,ab1,ab2}〉
l← t ∧ab2 ∨ (t ∧ab2)
ab1←⊥ ab1↔⊥
ab2←⊥ ab2↔⊥
e←⊥ e↔⊥

PACE l← e∧ab1 l↔ (e∧ab1) 〈{ab3},{e, l}〉
l← o∧ab3 ∨(o∧ab3)
ab1← o ab1↔ o

ab3← e ab3↔ e

e←⊥ e↔⊥

The model intersection property guarantees the existence

of least models for logic programs as well as for their weak

completions. Column 4 in Table 4 depicts the least models

for the weak completions of the programs encoding the first

six examples of the selection task, where lm denotes the least

model of its argument (under Łukasiewicz semantics).

Reasoning with Respect to Least Models

Because programs as well as their weak completions admit

the model intersection property we can reason wrt the least

models. Returning to the first six examples of the suppression

task we find

lm 3LwcPAE = 〈{e, l},{ab1}〉 |=3L l

lm 3LwcPABE = 〈{e, l},{ab1,ab2}〉 |=3L l

lm 3LwcPACE = 〈{e},{ab3}〉 6|=3L l∨ l

lm 3LwcPAE = 〈 /0,{e, l,ab1}〉 |=3L l

lm 3LwcPABE = 〈 /0,{e,ab1,ab2}〉 6|=3L l∨ l

lm 3LwcPACE = 〈{ab3},{e, l}〉 |=3L l

Compared to the experimental findings presented in Table 2,

the presented approach appears to be adequate from a quali-

tative point of view.



Computing Least Models

In Computational Logic, least models are usually computed

as least fixed points of appropriate semantic operators (see,

e.g., Apt & Emden, 1982). Stenning and Lambalgen (2008)

devised such an operator for the class of programs discussed

herein: Let I be an interpretation in ΦP (I) = 〈J
⊤,J⊥〉, where

J⊤ = {A | there exists A← body ∈ P with I(body) = true},
J⊥ = {A | there exists A← body ∈ P and

for all A← body ∈ P we find I(body) = f alse}.

As shown in Hölldobler and Kencana Ramli (2009b) for any

P , the least fixed point of ΦP is identical to lm 3LwcP and

can be computed by iterating ΦP starting with the empty in-

terpretation. Moreover, as shown in Hölldobler and Kencana

Ramli (2009c) the least fixed point of ΦP can be computed

by a recurrent neural network with a feed-forward core.

One should observe that in this paper ΦP uses Łukasiewicz

semantics whereas in Stenning and Lambalgen (2008) it uses

Fitting semantics. The difference is striking if we consider

the least fixed point of ΦPACE
, which is 〈{e},{ab3}〉 under

both semantics. Whereas under Łukasiewicz semantics this

fixed point is a model for PACE , under Fitting semantics the

clause l← o∧ab3 ∈ PACE is mapped to U. This is a counter

example for Lemma 4(1.) in Stenning and Lambalgen (2008).

Now consider the case that we use Fitting semantics and

the completion of PABE . The least fixed point of ΦPABE
is

〈 /0,{e,ab1,ab2}〉. Note that 〈 /0,{e,ab1,ab2}〉 6|=3F cPABE be-

cause under completion t must be mapped to ⊥ and, hence, l

will be mapped to ⊥ as well. This is a counter example for

Lemma 4(3.) in Stenning and Lambalgen (2008). The exam-

ple also shows that reasoning under the Fitting semantics and

wrt the completion of a program is not adequate as only 4%

of humans conclude l in this case.

Contractions

As mentioned in the previous subsection, the least fixed point

of the operator ΦP can be computed by iterating ΦP start-

ing with the empty interpretation. However, if the operator

is a contraction, then by the Banach Contraction Theorem

(Banach, 1922) the operator has a unique fixed point which

can be computed by iterating the operator starting with an ar-

bitrary interpretation. As shown in Hölldobler and Kencana

Ramli (2009a), ΦP is a contraction if P is acyclic, i.e., if there

is a mapping l from the set of atoms to N such that for each

clause A← Body ∈ P and each B ∈ Body we find l(A)> l(B).
One should observe that all programs shown in Table 4 are

acyclic using, for example, the following mapping:

atom ⊥ ⊤ t o e ab3 ab2 ab1 l

l(atom) 1 1 2 3 4 5 6 7 8

Abduction

The second part of the suppression task deals with the affir-

mation of the consequent and modus tollens. These reasoning

processes can best be described as abductive, that is, a plau-

sible explanation is computed given some observation. Fol-

lowing Kakas, Kowalski, and Toni (1993) we consider an ab-

ductive framework consisting of a program P as knowledge

base, a set A of abducibles consisting of the (positive and neg-

ative) facts for each undefined predicate symbol in P ,2 and

the logical consequence relation |=lmwc
3L , where P |=lmwc

3L F iff

lm 3LwcP (F) =⊤. As observations we consider literals.

Let 〈P ,A , |=lmwc
3L 〉 be an abductive framework and O an ob-

servation. O is explained by E iff E ⊆A , P ∪E is satisfiable,

and P ∪E |=lmwc
3L O. Usually, minimal explanations are pre-

ferred. In case there exist several minimal explanations, then

two forms of reasoning can be distinguished. F follows scep-

tically from program P and observation O (P ,O |=s F) iff O

can be explained and for all minimal explanation E we find

P ∪E |=lmwc
3L O, whereas F follows credulously from P and

O (P ,O |=c F) iff there exists a minimal explanation E such

that P ∪E |=lmwc
3L O.3

Table 5 depicts the programs, the observations and the min-

imal explanations for the second part of the suppression task

in the second, third, and fourth row, respectively. The final

row shows the least model of the weak completion of the

union of the program and the minimal explanation under the

Łukasiewicz semantics. If we reason sceptically wrt to these

least models, then we obtain

PA, l |=s e, PA, l |=s e,

PAB, l 6|=s e, PAB, l |=s e,

PAC, l |=s e, PAC, l 6|=s e,

which are qualitatively adequate answers if compared to Ta-

ble 2. One should observe that a credulous agent concludes

e from P = PAB and O = l, which according to Byrne (1989)

only 16% of the tested subjects did.

Open Questions

Łukasiewicz Logic

This logic was selected because the technical bugs in

Stenning and Lambalgen (2008) can be solved by switch-

ing from Fitting to Łukasiewicz semantics. In particular, the

model intersection property holds under Łukasiewicz seman-

tics. Hence, for each program P a least model does exist

which can be computed as least fixed point of the associated

semantic operator ΦP . Moreover, a rigorous study has re-

vealed that the suppression task can be adequately modeled

under Łukasiewicz semantics, whereas this does not hold for

Fitting semantics. Nevertheless, the main question of whether

Łukasiewicz logic is adequate for human reasoning is still

open. For example, in the Łukasiewicz logic the semantic

deduction theorem does not hold. Hence, it would be in-

teresting to see how humans deal with the deduction theo-

rem. Can other typical human reasoning problems like the

Wason (1968) selection task be adequately modeled under

Łukasiewicz semantics?

2Recall that A is undefined in P iff P does not contain a clause
of the form A← Body.

3See (Hölldobler, Philipp, & Wernhard, 2011) for more details.



Table 5: A summary of the computational logic approach to

the suppression task (Part 2). The cases P = PAB,O = l and

P = PAC,O = l have two minimal extensions.

P clauses O E lm 3Lwc(P ∪E)

PA l← e∧ab1 l e←⊤ 〈{e, l},{ab1}〉
ab1←⊥

PAB l← e∧ab1 l e←⊤ 〈{e, l},{ab1,ab2}〉
l← t ∧ab2

ab1←⊥
ab2←⊥

t←⊤ 〈{l, t},{ab1,ab2}〉

PAC l← e∧ab1 l e←⊤ 〈{e, l,o},{ab1,ab3}〉
l← o∧ab3 o←⊤
ab1← o

ab3← e

PA l← e∧ab1 l e←⊥ 〈 /0,{e, l,ab1}〉
ab1←⊥

PAB l← e∧ab1 l e←⊥ 〈 /0,{e, l, t,ab1,ab2}〉
l← t ∧ab2 t←⊥
ab1←⊥
ab2←⊥

PAC l← e∧ab1 l e←⊥ 〈{ab3},{e, l}〉
l← o∧ab3

ab1← o

ab3← e

o←⊥ 〈{ab1},{o, l}〉

Contractions

For each program P shown in Table 4 the operator ΦP is a

contraction. Thus, there is a unique fixed point, which can be

computed by iterating ΦP on some initial interpretation. Con-

sequently, if in the suppression task subjects are influenced

towards some initial non-empty interpretation, their perfor-

mance should not differ provided that they have enough time

to compute the least fixed point; it should differ, however, if

they are interrupted before the least fixed point is computed

and asked to reason wrt the interpretation computed so far.

Another aspect is about level mapping. It might have the ad-

ditional function to represent some ordering about the sub-

jects knowledge. For instance, it is easy to see that l(t), l(o),
and l(e) have to be smaller than l(ab1), l(ab2), and l(ab3) to

enforce acyclicity. As l does not occur in the body for any

clause, l(l) is mapped to the highest level. For human reason-

ing that means l does not imply any further knowledge. On

the other hand, we have l(⊤) and l(⊥) which are never the

head of any clause and therefore are mapped to the smallest

level. They both have the function to express facts.

Completion versus Weak Completion

The program PABE served as an example to illustrate that

completion is inadequate for the suppression task whereas

weak completion is adequate. Likewise, Hölldobler et al.

(2011) have shown in a detailed study that the programs men-

tioned in Table 5 together with their minimal explanations

must be weakly completed in order to adequately model the

suppression task, whereas completion does not. Are there

other human reasoning episodes which support the claim that

weak completion is adequate? Even if so, the problem re-

mains to explicitly add negative facts (in the reasoning step

towards an appropriate logical form) for those predicates,

which should be mapped to ⊥ like ab1 in the program PAE .

Sceptical versus Credulous Reasoning

The case of program P = PAB and observation O = l in Ta-

ble 5 shows that agents must reason sceptically in order to

adequately model this case. Whereas this is a striking case

for sceptical reasoning, the case P = PAC and O = l is less

convincing. A sceptical agent will not conclude e, whereas

a credulous agent will conclude e. Compared to the corre-

sponding case (A,C,L) shown in Table 2, 44% of the subjects

conclude E. Unfortunately, Byrne (1989) (and related pub-

lications that we are aware of) give no account of the distri-

bution of the answers given by those subjects who did not

conclude E. Hence, at the moment we can argue in favor of a

sceptical agent (the majority of the subjects did not conclude

E), but – given the complete distribution – it may be the case

that one can argue in favor of a credulous agent (there are

more subjects concluding E than subjects concluding E and

subjects answering “I don’t know”).

In this context, it might be useful to explicitly differenti-

ate between inferential knowledge and facts. For a credulous

agent the amount of inferential knowledge does not influence

its conclusion. On the other hand, for a sceptical agent, as

more inferential knowledge is given, as more supporting facts

are necessary to draw some conclusion.

Explanations

The approach presented in this paper is based on minimal ex-

planations. Although, there are findings corroborating the hu-

man preference of minimal explanations (over non-minimal

ones) (Ormerod, Manktelow, & Jones, 1993) – this holds only

partially (Johnson-Laird, Girotto, & Legrenzi, 2004). Com-

putational models of abduction typically generate explana-

tions iteratively such that minimal explanations are generated

first. How are minimal explanations computed by humans?

What happens, if there are more than one minimal explana-

tion?

Negation

In the presented approach positive information is preferred

over negative one. Consider, for example, the program P =
{q← ⊤,q← ⊥}. The least model of wcP is 〈{q}, /0〉 and,

hence, an agent reasoning wrt to this model will conclude q.

Is this consistent with human reasoning? The presented ap-

proach could be extended to include integrity constraints like

⊥← q. Any model for a program containing such an integrity

constraint must map q to ⊥. Is this adequate for human rea-

soning? If so, under which conditions shall such integrity



constraints be added within the reasoning step towards an ap-

propriate logical form?

Connectionist Realization

As shown in (Hölldobler & Kencana Ramli, 2009c), the com-

putation of the least fixed point of the semantic operator ΦP

associated with a program P can be realized within the core-

method (Bader, Hitzler, Hölldobler, & Witzel, 2007). In this

connectionist realization, ΦP is computed by a feed-forward

network, whose output units are recurrently connected to the

input units. Whereas this network is trainable by backpropa-

gation and, thus, ΦP can be learned by experience, there is no

evidence whatsoever that backpropagation is biological plau-

sible. The approach can be extended to handle abduction fol-

lowing (Garcez, Gabbay, Ray, & Woods, 2007). However, in

this setting, explanations are generated in a fixed, hard-wired

sequence, which does not seem to be plausible either.

Summary

We have presented an adequate computational logic approach

for the suppression task. It is based on weakly completed

logic programs under Łukasiewicz semantics. Such programs

admit least models which can be computed by iterating an

appropriate semantic operator. Reasoning is performed wrt

the least models. The approach is extended by sceptical rea-

soning within an abductive framework. Moreover, it can be

realized in a connectionist setting. The approach has been

carefully tested against alternatives like completed logic pro-

grams, Fitting semantics, and credulous reasoning, but none

of these variations was found to be adequate.
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Kencana Ramli, Tobias Philipp, and Christoph Wernhard.

References

Apt, K., & Emden, M. van. (1982). Contributions to the

theory of logic programming. J. of the ACM, 29, 841-862.

Bader, S., Hitzler, P., Hölldobler, S., & Witzel, A. (2007).

The core method: Connectionist model generation for

first-order logic programs. In B. Hammer & P. Hit-

zler (Eds.), Perspectives of neural-symbolic integration

(Vol. 77, p. 205-232). Berlin, Heidelberg: Springer.

Banach, S. (1922). Sur les opérations dans les ensembles

abstraits et leur application aux équations intégrales. Fund.
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