
Efficient Symbolic Reasoning for First-Order MDPs
Eldar Karabaev and Georg Rammé and Olga Skvortsova1

Abstract. We propose an algorithm, referred to asALLTHETA ,
for performing efficient domain-independent symbolic reasoning in
a planning system FLUCAP 1.1 that solves first-order MDPs. The
computation is done avoiding vicious state and action grounding.

1 INTRODUCTION

Markov Decision Processes (MDPs) are de facto standard representa-
tional and computational model for decision-theoretic planning prob-
lems. Recently, several compact representations for propositionally-
factored MDPs have been proposed, including dynamic Bayesian
networks [1] and algebraic decision diagrams [6]. For instance, the
SPUDD algorithm [6] has been used to solve MDPs with hundreds of
millions of states optimally, producing logical descriptions of value
functions that involve only hundreds of distinct values. This tech-
nique, referred to as state abstraction, demonstrates that large MDPs,
described in a logical fashion, can often be solved optimally by ex-
ploiting the logical structure of the problem.

Meanwhile, many realistic planning domains are best specified in
first-order terms. However, most existing implemented solutions for
first-order MDPs (FOMDPs) rely on grounding, i.e., eliminate all
variables at the outset of a solution attempt by instantiating terms
with all possible combinations of domain objects, e.g., [4]. This
technique is very impractical because the number of propositions
grows considerably with the number of domain objects and rela-
tions. This has a dramatic impact on the complexity of the algorithms
that depends directly on the number of propositions. Moreover, as
soon as the universe of objects is infinite, these algorithms cannot
be made work. Finally, systems for solving FOMDPs that rely on
state grounding also perform action grounding which is problematic
in first-order domains, because the number of ground actions also
grows drastically with domain size.

To address these difficulties, we have recently proposed a first-
order generalization of LAO∗ algorithm [9], referred to as FOLAO∗,
in which our contribution was to show how to perform heuristic
search for FOMDPs, circumventing their grounding. In order to en-
sure first-order reasoning without descending to the propositional
level, a planning system should be equipped with highly-optimized
domain-independent inference algorithms that compute sets of suc-
cessor and predecessor states of a given state wrt. a given action.
Such inference algorithms rely on non-trivial symbolic computations
as, e.g., unification or subsumption problem under some equational
theory between two states specified as first-order terms.

In this paper, we develop an algorithm, referred to asALLTHETA ,
that solves the subsumption problem under AC12 equational the-

1 International Center for Computational Logic, Technische Uni-
versiẗat Dresden, email: {eldar,skvortsova}@iccl.tu-dresden.de,
georg.ramme@gmail.com.

2 A - associative, C - commutative, 1 - unit element.

ory and delivers all possible substitutions. The computation is done
avoiding aggressive grounding.ALLTHETA has been recently inte-
grated into the FLUCAP 1.1 planning system that is a successor of
FLUCAP 1.0 [7].

2 FIRST-ORDER REPRESENTATION OF MDPs

As a first step in the quest of designing a planning system for solving
FOMDPs avoiding their grounding, we propose a concise representa-
tion of FOMDPs within the Probabilistic Fluent Calculus (PFC) lan-
guage.PFC is a logical approach to modelling dynamically chang-
ing and uncertain environments based on first-order logic [7, 8].

2.1 MDPs

An MDP is a tuple(Z,A,P,R, C), whereZ andA are finite sets
of states and actions, respectively.P : Z ×Z ×A → [0, 1], written
P(z′|z, a), specifies transition probabilities. In particular,P(z′|z, a)
denotes the probability of ending up at a statez′ given that the agent
was in a statez and an actiona was executed.R : Z → < is a real-
valued reward function associating with each statez its immediate
utility R(z). C : A → < is a real-valued cost function associating a
costC(a) to each actiona.

A sequential decision problem consists of an MDP and is the prob-
lem of finding a policyπ : Z → A that maximizes the total expected
discounted reward received when executing the policyπ over an in-
finite (or indefinite) horizon. The value of a statez with respect to a
policy π is defined recursively as:

Vπ(z) = R(z) + C(π(z)) + γ
X
z′∈Z

P(z′|z, π(z))Vπ(z′),

where0 ≤ γ ≤ 1 is a discount factor. We takeγ equal to 1 for
indefinite-horizon problems only, i.e., when a goal is reached, the
system enters an absorbing state, in which no further rewards or costs
are accrued. The optimal value functionV ∗ satisfies:

V ∗(z) = R(z) + max
a∈A

{C(a) + γ
X
z′∈Z

P(z′|z, a)V ∗(z′)} ,

for eachz ∈ Z.

2.2 Probabilistic Fluent Calculus

Formally, let Σ denote a set of function symbols. We distinguish
two function symbols inΣ, namely◦/2 which is associative (A),
commutative (C), and admits the unit element, and a constant 1. Let
Σ− = Σ \ {◦, 1}. Non-variableΣ−-terms are called fluents. LetF
denote the set of fluents. Fluent terms are defined inductively as fol-
lows: 1 is a fluent term; each fluent is a fluent term;F ◦G is a fluent
term, if F andG are fluent terms.

A stateis a fluent term. We assume that each fluent may occur at
most once in a state, i.e., states of the formeuro ◦ euro are disal-
lowed. For example, a stateZ = on(X ′, Y ′)◦on(Y ′, t)◦cl(X ′)◦e
denotes that some clear blockX ′ is on the blockY ′, which is on the
table, the gripper is empty and something else might be also true. We
note that the negation can be effortlessly included in the language [7].

The interpretation overF , denoted asI, is the pair(∆, ·I), where
the domain∆ is a set of all finite sets of ground fluents fromF ; and
an interpretation function·I which assigns to each stateZ a set

ZI = {d ∈ ∆|∃θ.(Z ◦ U)θ =AC1 d} ,

whereθ is a substitution andU is a new AC1-variable. Thus, states
in PFC represent clusters of individual states. In this way, they em-
body a form of state space abstraction, referred to as first-order state
abstraction, and, hence, can be treated as abstract states. E.g, the state
z1 = on(b, c) ◦ on(c, t) ◦ cl(b) ◦ e ◦ cl(f), wheret stands for ta-
ble andb, c andf are blocks, is represented by the abstract stateZ
above; whereasz2 = on(b, c) is not, since other three ‘mandatory’
fluents ofZ are missing inz2. In essence, abstract states are defined
under incomplete semantics, viz., other fluents that are not explicitly
present in the state description might also hold, as e.g.,cl(f) appears
in the statez1 ∈ ZI .

Actionsare first-order terms leading with an action function sym-
bol. For example, the action of picking up some blockX from an-
other blockY might be denoted aspickup(X, Y). Stochastic ac-
tions are described via decomposition into deterministic primitives
under nature’s control, referred to as nature’s choices. E.g., action
pickup(X, Y) can be defined by means of successfulpickupS(X, Y)
and failurepickupF(X, Y) nature’s choices. Preconditions and ef-
fects of an actiona, denoted asPre(a) and Eff(a), respectively,
are abstract states. E.g., for preconditions and effects of the action
pickupS(X, Y), we have:

Pre(pickupS(X, Y)) := on(X, Y) ◦ cl(X) ◦ e
Eff(pickupS(X, Y)) := h(X) ,

whereh(X) stands for the fact of holding a blockX. Probabilities
of each nature’s choice, rewards and action costs can be defined in
an obvious way.

3 SYMBOLIC REASONING FOR FOMDPs

Systems for solving FOMDPs that rely on state grounding also per-
form action grounding which is problematic in first-order domains,
because the number of ground actions grows drastically with do-
main size. Herein, we show how to perform inferences, i.e., com-
pute successors and predecessors of a given abstract state, with action
schemata directly, avoiding unnecessary grounding.

For this, an inference problem of finding alla-successors (all
a-predecessors) of an abstract stateZ is represented in terms of
the AC1-unification problem3, referred to asAC1-UNIFY(Z1, Z2),
whereZ1 represents the preconditions (effects) ofa andZ2 = Z.
AC1-UNIFY(Z1, Z2) is defined by:

∃θ. (Z1 ◦ U)θ =AC1 (Z2 ◦W)θ ,

whereU andW are new AC1-variables.
Intuitively, an actiona is applicable to an abstract stateZ iff it is

applicable toall individual states that constituteZI . In order to de-
termine all fragments ofZ, an actiona is applicable to, we compute

3 AC1-unification problem is a unification problem under the equational the-
ory AC1.

all solutions for the following AC1-unification problem:

(Pre(a) ◦ U)θ =AC1 (Z ◦W)θ . (1)

In this way, the bindings forW define the fragmentsZi = (Z ◦
W)θ of Z, an actiona is applicable to. Moreover, the bindings forU
allow us to construct the successors ofZi, i.e.,Zi

succ := (Eff(a) ◦
U)θ. In essence, in order to compute the set of alla-successors of all
fragments ofZ, a is applicable to, it is enough to find all solutionsθ
for the AC1-unification problem given by Equation 1.

In this work, we present a restricted case of AC1-unification,
where (Z2 ◦ W)θ = Z2. Thus, the AC1-unification problem
AC1-UNIFY(Z1, Z2) can be simplified into the AC1-subsumption
problemAC1-SUBSUME(Z1, Z2), i.e., a subsumption problem under
the equational theory AC1:

∃θ. (Z1 ◦ U)θ =AC1 Z2 .

We write Z1 `AC1
θ Z2 for ‘Z1 subsumesZ2 under AC1’.

There are at least two applications ofAC1-SUBSUME(Z1, Z2) in the
FOLAO∗ algorithm. First, for detecting a more specific abstract state
betweenZ1 andZ2, that can be removed from the state space there-
after. Second, for computing a set ofall states that are reachable from
the initial stateZ2 wrt. all actions, whereZ2 is a ground fluent term
specified under Closed World Assumption. In both cases, the com-
putation is performed on action schemata directly preventing their
grounding.

In the following, we exploit the fact that the AC1-subsumption
problem is a specialization of theθ-subsumption problem on general
clauses, since abstract states are Horn clauses with empty head [13].
The θ-subsumption problem for clausesC andD is a problem of
whether there exists a substitutionθ such thatCθ ⊆ D (or, in our
terms,(C ◦ U)θ =AC1 D).

In general,θ-subsumption isNP-complete [13]. It is known that
deterministic subsumption, i.e., when there exists an ordering of flu-
ents, such that in each step there is a fluent which has exactly one
match that is consistent with the previously matched fluents, can be
solved in polynomial time [11]. Unfortunately, in general, there are
only few, or, in some cases, none at all, fluents in a state that can be
matched deterministically. The complexity grows exponentially with
the number of remaining non-determinate fluents.

In [13], there have been developed two approaches to reduce the
complexity of non-deterministicθ-subsumption. Both approaches
have been reconciled in an algorithm, referred to asTHETA, that
solvesθ-subsumption and hence, AC1-subsumption, and delivers a
single substitution, in a positive case.

3.1 Approach one: context-based subsumption

One approach is context-based matching candidate elimination. In
general, a fluentf in an abstract stateZ1 can be matched with several
fluents in an abstract stateZ2, that are referred to as matching candi-
dates off . The approach is based on the idea that fluents inZ1 can be
only matched to those fluents inZ2, the context of which include the
context of the fluents inZ1. The context is given by occurrences of
identical variables or chains of such occurrences and is defined up to
some fixed depth. In effect, matching candidates that do not meet the
above context condition can be effortlessly pruned. In most cases,
such pruning results in deterministic subsumption, thereby consid-
erably extending the tractable class of abstract states. Deterministic
subsumption that exploits the context information is referred to as
context-based deterministic subsumption.

For example, two abstract statesZ1 = on(X, Y) ◦ on(Y, t) (one
tower of two blocks) andZ2 = on(a, b)◦on(b, c)◦on(c, t)◦on(d, t)
(two towers of two and one blocks, respectively) cannot be subsumed
deterministically because each fluent inZ1 has more than one match-
ing candidate inZ2. However, exploiting the context information al-
ready at depth 1 enables us to conclude thatZ1 subsumesZ2.

At depth 1, the context of the first fluenton(X, Y) contains the
path on · 2 → 1 · on, i.e., a variableY appears at position2 in
on(X, Y) and at position1 in on(Y, t). The context of the sec-
ond fluenton(Y, t) contains the pathon · 1 → 2 · on, i.e., the
variableY appears at position2 in on(X, Y) and at position1 in
on(Y, t). The contexts of the fluents inZ2 are{on · 2 → 1 · on},
{on ·1 → 2 ·on, on ·2 → 1 ·on}, {on ·1 → 2 ·on, on ·2 → 2 ·on}
and{on · 2 → 2 · on}, respectively. The fluenton(Y, t) has two
matching candidates, viz.,on(c, t) andon(d, t). Since the context
of on(Y, t) can only be embedded in the context ofon(c, t), writ-
tencon(on(Y, t), Z1, 1) ⊆ con(on(c, t), Z2, 1), the matching can-
didateon(d, t) is excluded andon(Y, t) can be matched determinis-
tically. Then, the matching substitutionµ1 = {Y 7→ c} is applied to
Z1. As a result, the fluenton(X, Y)µ1 = on(X, c) can be matched
deterministically toon(b, c) with µ2 = {X 7→ b}. Hence, both flu-
ents can be matched deterministically and the substitutionθ = µ1µ2

was found without backtracking.
The context depth is a very crucial parameter. If its value is over-

estimated, then considerable effort is devoted for computing the con-
text itself and the efficiency of pruning is potentially increased. Al-
ternatively, if depth is underestimated, we save time and space for
constructing the context but end up with a larger search space. For
example, inCBW andRANDOM datasets from Section 4, the optimal
depth has the value of 2.

3.2 Approach two: ALL -CLIQUES

In some cases, however, after performing the context-based deter-
ministic subsumption, there still remain some fluents that cannot
be matched deterministically. Thus, a remaining space of match-
ing candidates has to be searched for a substitution. For this, a sec-
ond approach that reduces the complexity of non-deterministic AC1-
subsumption, has been presented in [13].

It exploits a well-known correspondance result between the AC1-
subsumption problem and the clique problem, i.e., a problem of find-
ing a clique4 of the fixed size in a graph. More precisely, an abstract
stateZ1 subsumes an abstract stateZ2 iff there is a clique of size
|Z1| in the space of matching candidates for fluents inZ1. The size
|Z| of an abstract stateZ is equal to the number of fluents compris-
ing it. Exploiting the above relationship, an algorithm, referred to
asCLIQUE, that finds a clique in the space of matching candidates,
has been developed. The candidates that do not form a clique can be
effortlessly excluded from the search space. Moreover, the authors
describe some methods that allow to reduce the certain amount of
search space already a priori.

However, further pruning techniques can be applied in order to
alleviate the search for a clique. Based onCLIQUE, we present an
algorithm, referred to asALL -CLIQUES, that computesall paths of
size |Z1| that form cliques in the space of matching candidates for
Z1. ALL -CLIQUES is given in Algorithm 1.

Following ideas of [13], we construct a substitution graph(V, E)
for abstract statesZ1 andZ2 with nodesv = (µ, i) ∈ V , whereµ
is a matching candidate forZ1 andZ2, i.e., matches some fluent at

4 A clique in a graph is a set of pairwise adjacent nodes.

Function findPath(V , E, Paths,v, currPath,i)
if valid(v) then1

currPath:=currPath∪{v}2
if i = |Z1| then3

Paths:= Paths∪ {currPath}4
else5

foreachu = (µ′, i + 1) ∈ V with (v, u) ∈ E do6
if clique(u, currPath) then7

findPath(V , E, Paths,u, currPath,i + 1)8

elseV := V \ {v}9
return Paths10

Algorithm 1 : ALL -CLIQUES.

Input : A substitution graph(V, E) for abstract statesZ1, Z2.
Output : All paths in(V, E) that form cliques of size|Z1|.
Paths:= currPath := ∅
foreachv = (µ, 1) ∈ V do

Paths:=findPath(V , E, Paths,v, currPath,1)
end
return Paths

positioni in Z1 to some fluent inZ2 andi ≥ 1 is referred to as a
layer of v. Two nodes(µ1, i1) and (µ2, i2) are connected with an
edge iffµ1µ2 = µ2µ1 andi1 6= i2. The former condition is referred
to as strong compatibility of substitutions, i.e., no variable is assigned
different terms inµ1 andµ2.

ALL -CLIQUESreturns all pathsPaths in the graph(V, E) that
start at the first layer and form a clique of size|Z1|. In essence,
ALL -CLIQUESperforms depth-first search in the substitution graph.
The validity checkvalid(v) in line 1 of functionfindPath is
successful iffv has at least one edge to each layer. In this case,v is
added to the current pathcurrPath. If v is located at the last layer,
i.e., i = |Z1|, then the current path can be already added toPaths.
Otherwise, if a next-layer neighbouru of v forms a clique with the
nodes incurrPath, i.e., clique(u, currPath) holds in line 7, then
findPath is called recursively foru. In line 9, invalid nodes are
excluded fromV .

In the following, we discuss major pruning techniques that are cur-
rently integrated inALL -CLIQUES.

First, in contrast to [13], we organize the substitution graph in lay-
ers, i.e., each nodev = (µ, i) ∈ V belongs to a layeri. The layers
should be visited in the order of their appearance. For example, the
third layer cannot be visited before the second layer. The layered ar-
chitecture of the substitution graph is a natural way to avoid duplicate
occurrences of the same clique in the set of all cliques. For example,
for the graph on Figure 1(a), the clique{(µ1, 1), (µ4, 3), (µ2, 2)} is
not counted because the node(µ4, 3), that lies on the third layer, is
visited immediately after the node(µ1, 1), that lies on the first layer.
Whereas, the set{(µ1, 1), (µ2, 2), (µ4, 3)} is a valid clique, because
the order is preserved. In the non-layered case, both cliques will be
considered.

However, in some negative cases, it might take more time to de-
tect that there exists no clique of desired size in a layered graph.
For example, the graph on Figure 1(b) contains no clique of size 4.
Following the prescribed order, theALL -CLIQUES algorithm detects
this case only after traversing through all four layers. Since there is
no edge between the second and the fourth layer, the node(µ4, 4)
becomes invalid by the condition in line 1 of theALL -CLIQUES al-
gorithm. Whereas, in the non-layered counterpart of the graph, we
could obey the order in which the nodes are visited, jump immedi-
ately to the node(µ4, 4) and detect that the graph does not have any

(µ1, 1)

(µ2, 2) (µ3, 2)

(µ4, 3)

(a)

(µ1, 1)

(µ2, 2)

(µ3, 3)

(µ4, 4) (µ5, 4)

(b)

(µ1, 1) (µ2, 1)

(µ3, 2) (µ4, 2)

(µ5, 3) (µ6, 3)

(c)

Figure 1. Several pruning techniques inALL -CLIQUES.

cliques of size 4.
Second, once it is detected that a node has no edge to some layer,

it is completely removed together with the respective edges from the
substitution graph. In this way,ALL -CLIQUES assures that invalid
nodes will be visited only once. WhereasCLIQUE will perform mul-
tiple visits. For example, in the graph on Figure 1(c), the node(µ4, 2)
will be visited twice byCLIQUE, because this node is a successor of
both nodes on the first layer. Whereas theALL -CLIQUES algorithm
will hit the node(µ4, 2) only once. After detecting that it has no edge
to the third layer and, thus, is invalid by condition in line 1, this node
will be deleted from the graph in line 9.

Third, in cases, when a layer contains a single nodev only, the
substitution graph can be pruned further. Sincev is included in all
cliques, those nodes, that are not strongly compatible5 with v, should
be removed.

Fourth, we have developed an idea of dynamic graph construc-
tion, i.e., the next layer is built only in the case, when the current
layer contains some valid nodes. Because otherwise, we could im-
mediately conclude that there exists no clique.

Fifth, graph context is applied in order to shrink the substitution
graph further. Namely, all nodes(µ, i) ∈ V , such that, for some
f ∈ Z1 andg ∈ Z2, fµ = g, and the context off at some depthd is
not included in the context ofg at the samed, are removed from the
substitution graph.

The context-based determinacy andALL -CLIQUES are combined
into an algorithm, referred to asALLTHETA . In contrast toTHETA,
ALLTHETA delivers all substitutions for theAC1-SUBSUME(Z1, Z2)
problem by employingALL -CLIQUES instead of theCLIQUE al-
gorithm. In more detail,ALL -CLIQUES is a modified version of
CLIQUE, where additional pruning techniques have been developed
in order to alleviate the search for substitutions.ALLTHETA is sum-
marized in Algorithm 2.ALLTHETA inherits termination, correctness
and completeness properties ofALL -CLIQUES. Its computational be-
haviour is evaluated in Section 4.

4 EXPERIMENTAL EVALUATION

We demonstrate the advantages of using the context information for
efficient domain-independent symbolic reasoning in FOMDPs on a
system, referred to asALLTHETA . ALLTHETA has been recently inte-
grated as a module into the FLUCAP 1.1 planning system, that is a
successor of FLUCAP 1.0 [7] that has entered the probabilistic track
of the International Planning Competition IPC’2004.

The experimental results were all obtained using a Linux RedHat
machine running at 2.4 GHz Intel Celeron with 1 Gb of RAM.

In the comparison, we have used two datasets. One, referred to
asCBW, stems from the colored Blocksworld planning scenario that

5 Nodes are strongly compatible if the associated substitutions are.

Algorithm 2 : ALLTHETA .
Input : Two abstract statesZ1, Z2.
Output : All substitutitonsθ such thatZ1 `AC1

θ Z2.

1. Deterministically match as many fluents ofZ1 as possible to fluents of
Z2. SubstituteZ1 with the substitution found. If any fluent ofZ1 does
not match any fluent ofZ2, decideZ1 0AC1

θ Z2.

2. Context-based deterministically match as many fluents ofZ1 as possible
to fluents ofZ2. SubstituteZ1 with the substitution found. If any fluent
of Z1 does not match any fluent ofZ2, decideZ1 0AC1

θ Z2.

3. Build the substitution graph(V, E) for Z1 andZ2. Delete all nodes
(µ, i) with fµ = g, for somef ∈ Z1 andg ∈ Z2, and
con(f, Z1, d) 6⊆ con(g, Z2, d) for somed. Apply ALL -CLIQUES to
search for all cliques of size|Z1| in (V, E).

was first introduced during the IPC’2004.CBW is, currently, one of
a few probabilistic scenarios that are represented in first-order terms
and, hence, enable to make use of grounding-free symbolic reason-
ing. TheCBW problems differ from the classical ones in that, along
with the unique identifier, each block is assigned a specific color. A
goal formula, specified in first-order terms, provides an arrangement
of colors instead of an arrangement of blocks.

The second dataset, referred to asRANDOM, consists of tests gen-
erated with a random states generator that has the following parame-
ters: The number of states, the maximal number of fluents in a clause,
the number of different predicates with varying arity, the number of
constants and variables and some other.

Figure 2 presents the performance comparison results of
ALLTHETA with the systemFASTTHETA [5] on CBW andRANDOM

datasets, respectively.FASTTHETA, that is motivated by Inductive
Logic Programming (ILP), can be applied to compute all solutions
of the AC1-subsumption problem. Therefore,FASTTHETA is an ap-
propriate candidate for performing comparison.

However, there are some discrepancies in the input formats.
Namely,FASTTHETA admits only those clausesC andD, whereC is
constant-free andD is variable-free. In order to cope with more gen-
eral clausesC andD the authors recommend to accomplish several
auxiliary operations (from private communication). First, to skolem-
ize each variableX in D by replacing it with a new constantcX .
Second, for each constantc appearing inC, replacec with a new
variableXc and add a new literalc(Xc) to C. Since the presence
of constants inC bringsFASTTHETA an additional overhead, in the
RANDOM dataset we have generated clauses with a few number of
constants. All problems in theCBW dataset contain a single constant
t that stands for table.

In the following, we show how the usage of the context informa-
tion in an abstract state affects the computation of all solutions of the
AC1-subsumption problem. More precisely, we motivate the impor-
tance of the context depth parameter that a user may vary for a given
problem.

There is a well-known tradeoff. The deeper inside the abstract
state we look, thus devoting the considerable effort for computing
the context itself, the higher the pruning rate is. Alternatively, if the
depth value is underestimated, we save time and space for construct-
ing the context but end up with a larger search space. We observe that
for both CBW andRANDOM datasets, the optimal depth value varies
from 2 to 3. It was also noticed in [13], thatTHETA has shown the
best results at depth 2 on the mesh design dataset, that is a classical
ILP benchmark framework.

Altogether, there are 100 abstract states that lead to 10000 sub-
sumption tests. InRANDOM case, each problem is described by a
numberN of fluents in an abstract state. Whereas, inCBW case, two

Total time, sec.
B C AllTheta

F
T

he
ta

d=
0

d=
1

d=
2

d=
3

d=
4

d=
5

5 3 0.5 2.9 0.4 0.3 0.3 0.4 1.0
4 0.4 2.0 0.3 0.2 0.2 0.3 0.6
5 0.4 1.7 1.3 0.2 0.2 0.2 0.5

10 3 1.5 44.7 1.1 0.5 0.5 1.0 4.3
4 1.1 22.4 1.1 0.4 0.4 0.5 1.4
5 0.9 13.5 1.0 0.5 0.5 0.8 3.1

15 3 3.9 n/a 2.3 0.9 0.9 1.7 7.7
4 3.5 243.3 2.4 0.8 0.9 2.0 10.6
5 2.8 84.7 2.0 0.7 0.7 1.2 4.9

20 3 8.7 n/a 10.1 4.6 3.1 4.2 15.7
4 9.2 n/a 3.3 1.1 1.0 1.8 8.5
5 7.3 n/a 3.0 1.0 1.1 2.1 11.6

25 3 16.5 n/a 7.2 2.0 1.8 4.1 28.3
4 17.1 n/a 7.8 1.8 1.7 4.2 30.7
5 15.7 n/a 7.3 1.7 1.8 4.2 34.0

50 3 164.9 n/a n/a 38.8 29.5 28.6 52.2
4 201.1 n/a 186.8 33.0 26.0 27.9 42.7
5 175.1 n/a 140.4 30.8 26.3 29.1 57.7

75 5 702.5 n/a 240.8 58.0 47.2 52.3 121.8
100 5 n/a n/a 452.6 96.7 78.1 74.0 155.0

(a)

Total time, sec.
N AllTheta

F
T

he
ta

d=
0

d=
1

d=
2

d=
3

d=
4

d=
5

20 0.9 5.2 1.2 1.0 1.6 5.6 52.5
30 4.5 3.9 1.1 0.9 1.2 4.2 35.5
40 356.5 23.6 1.4 1.3 1.8 6.6 58.3
50 n/a 7.9 1.7 1.7 2.1 6.4 52.4
100 n/a 1456.3 31.1 27.0 27.8 39.1 126.6
200 n/a n/a 116.9 111.4 112.3 131.7 311.6
300 n/a n/a 448.2 404.6 381.9 429.5 694.5
400 n/a n/a 1139.5 1071.4 1083.0 1175.1 1519.1
500 n/a n/a n/a n/a n/a n/a n/a

(b)

Figure 2. Performance comparison ofALLTHETA (denoted asAllTheta) with FASTTHETA (denoted asFTheta) on (a)CBW and (b)RANDOM datasets.

parameters, i.e., a number of blocksB and a number of colorsC,
represent each problem. Since there are only two fluents in theCBW

domain, i.e.,on(X, Y) that can be read as ‘a blockX is on a block
Y ’, and a color fluent, say,red(X), that states thatX is red, there
are twice as much asB fluents in an abstract state.

In both tables, the column labelledTotal time presents the time in
seconds needed to solve all of 10000 subsumption tests. A 30-mins
block is allocated for each problem. Such time limit is fair enough.
For example, during the IPC’2004, every contestant has been given
a 15-mins block for 30 runs of each problem. The problems, runtime
of which have exceeded the limit, are marked as n/a in a table.

In CBW case, on small problems of size up to 25 blocks, the
depth parameterd posesses the optimal value of 2. Whereas, on
larger problems, this value grows. This reflects the necessity to store
an additional context information about the fluents in an abstract
state.ALLTHETA employs the context information twice: Once, dur-
ing the context-based deterministic subsumption test and secondly,
while constructing the substitution graph forALL -CLIQUES. For both
cases, we defined a depth parameterd1 andd2. For the purpose of
evaluation, we have chosend1=d2=d, whered=0 means that no con-
text information is taken into consideration.

In comparison toALLTHETA , the runtime ofFASTTHETA grows
considerably faster in the size of a problem. For example, at depth
of 2, for the five-colored 15, 25 and 75 problems,FASTTHETA is by
factor of 4, 8 and 15 slower. As a result, it could scale to problems
up to the size of 75 blocks only. Whereas, the limit ofALLTHETA

comprises 360 blocks.
Neither FASTTHETA nor ALLTHETA are sensitive to the number

of colors in a problem. In contrast, grounding-based reasoners are
severely affected by this parameter. The timing results for a special
case ofd=0 demonstrate the dramatic loss in runtime in comparison
even with the case ofd=1, where the context information about the
direct neighbours of a fluent is counted.

Additional tests for the depth of 2, that are not included in this pa-

per due to the lack of space, have been carried out, in order to analyze
the importance of the context information during the context-based
deterministic subsumption andALL -CLIQUES phases ofALLTHETA .
The results show that the context knowledge is more vital for the
former than for the latter. Namely, disregarding the context of flu-
ents in the context-based deterministic subsumption phase yields an
increase of the runtime by factor of 10.

Most importantly, present results indicate that the domain-
independent inference algorithmALLTHETA performs symbolic rea-
soning for first-order MDPs in about the same time as the domain-
specific subsumption solver that was integrated in the FLUCAP
1.0 planning system [7]. We note that the latter reduces the AC1-
subsumption problem to a quadratic variant of the subset problem.
Whereas, the former solves the general case, which isNP-complete.
For example, for a single subsumption test at depth of 2 in the prob-
lem of 15 blocks and 3 colors,ALLTHETA requires of about 92 mi-
croseconds. Whereas, for its domain-specific counterpart, the run-
time comprises 85 microseconds.

In RANDOM case, the similar computational behaviour of
ALLTHETA can be observed. However, random abstract states are
more tricky in the sense, that for a fluent there is no guarantee at
all of whether or not the context of a non-zero depth is non-empty.
Whereas,CBW always provides such a guarantee.

During theALL -CLIQUESphase ofALLTHETA , it is important that
the construction of the substitution graph takes less time. This is as-
sured by using the modern structure sharing techniques in building
the context itself.

We have not performed the comparison with the originalTHETA

algorithm becauseTHETA delivers only a single solution for the AC1-
subsumption problem. WhereasALLTHETA computes all answers.

Finally, it is worth to pinpoint thatFASTTHETA has outperformed
ALLTHETA by a factor of four, on the Mutagenesis dataset that is a
classical ILP benchmark that stems from the field of organic chem-
istry [5].

5 RELATED WORK

In [7], a domain-specific subsumption checker has been developed.
Whereas, in this work, its domain-independent version is presented.
In using symbolic reasoning for solving FOMDPs, our approach is
related to that by Boutilier et al. [2] who employ the situation cal-
culus language. To the best of our knowledge, due to the complexity
of the language, neither complete implementation nor automated ex-
periments have been reported. In contrast, our method is simpler and,
thus, fully automated.

Some related approaches for AC1-subsumption are known. For
example, Django [12] is, nowadays, the fastestθ-subsumption, and
thus, AC1-subsumption, checker that is based on the constraints sat-
isfaction. Yet, it returns a binary answer ‘yes/no’ only and provides
no solutions, even in the positive case.

To the best of our knowledge, apart fromALLTHETA and
FASTTHETA, there exists only one more approach, referred to as
ReBel, that delivers a set of all solutions for the AC1-subsumption
problem [10]. For this, the authors employ a generalized AC1-
subsumption framework [3]. Moreover, our methods rely on differ-
ent state semantics. ReBel considers abstract states as sets of fluents.
Whereas,ALLTHETA can cope with abstract states that are provided
with the multiset semantics, if the assumption, that each fluent may
occur at most once in a state, is relaxed.

6 CONCLUSION AND FUTURE WORK

We have presented an algorithm, referred to asALLTHETA , for
performing automated domain-independent symbolic reasoning in
FOMDPs.ALLTHETA is currently integrated in an algorithm for solv-
ing FOMDPs, referred to as FOLAO∗[9], and has been recently in-
cluded in a planning system FLUCAP 1.1 based on FOLAO∗.

The usage ofALLTHETA for the purpose of symbolic reasoning
and for FOLAO∗, in particular, should be seen as two-fold. First,
during the normalization phase,ALLTHETA is employed for detecting
a more specific abstract state that can be pruned from the state space.
Second, during the heuristic search, it is used to compute a set of
all states that are reachable from an initial state wrt. all actions. In
both cases, the computation is performed on action schemata directly
avoiding their grounding.

In comparison to existing methods for symbolic reasoning that find
all solutions for the AC1-subsumption problem, e.g.,FASTTHETA,
our approach scales better on larger FOMDPs. As results indicate, the
domain-independent inference algorithmALLTHETA performs sym-
bolic reasoning for FOMDPs in about the same time as the domain-
specific subsumption solver that was integrated in the FLUCAP 1.0
planning system [7]. This result is particularly valuable since the
former solves the general AC1-subsumption problem, which isNP-
complete.

However, there is plenty remaining to be done. One of our primary
interests is extending the idea of using the context information for
solving the AC1-unification problem that is thoroughly applied in
FOLAO∗ for computing predecessor abstract states of a goal abstract
state.

Planning domains with resources become more and more popular
these days. To cover such domains, we should allow for multiple oc-
currences of fluents in an abstract stateZ. In this case, each fluent
f would be assigned with the so-calleddegree(f) = k ≥ 1, which
would mean thatf occursk times inZ. Then, each solutionθ of
ALLTHETA (Z1, Z2) should satisfy an additional condition: The de-
gree of each fluentf in Z2 is not exceeded by the total degree of all

fluentsg in Z1 such thatgθ = f .
State constraints are most naturally specified by disequalities. To

support these, bothZ1, Z2 become equipped with setsE1, E2 of
disequalities of the formX 6= r, whereX is a variable andr is either
a variable or a constant. Then a potential solutionθ should satisfy the
condition of thatE1θ does not contain a disequalityr 6= r for some
r. Due to the graph nature of the approach, the substitutions are built
incrementally. This, in turn, allows to detect incorrectθ’s well before
they are completely constructed. Moreover, we note that neither new
data structures nor non-trivial add-on’s are required for integrating
multisets or disequalities.

ACKNOWLEDGEMENTS

We thank anonymous reviewers for useful comments. Many thanks
to Stefano Ferilli and Nicola Di Mauro for the code ofFASTTHETA

and for their help in getting it work. Our joint discussions have
greatly influenced the earlier versions of this paper. Olga Skvortsova
was supported by the grant from the Graduate School GRK 334 un-
der auspices of the German Research Foundation.

References
[1] C. Boutilier, T. Dean, and S. Hanks, ‘Decision-theoretic planning:

Structural Assumptions and Computational Leverage’,Journal of Ar-
tificial Intelligence Research, 11, 1–94, (1999).

[2] C. Boutilier, R. Reiter, and B. Price, ‘Symbolic Dynamic Programming
for First-Order MDPs’, inProceedings of the Seventeenth International
Conference on Artificial Intelligence (IJCAI-01), ed., Bernhard Nebel,
pp. 690–700. Morgan Kaufmann, (2001).

[3] W. Buntine, ‘Generalized subsumption and its applications to induction
and redundancy’,Artificial Intelligence, 36, 149–176, (1988).

[4] Z. Feng and E. Hansen, ‘Symbolic heuristic search for factored markov
decision processes’, inEighteenth National Conference on Artificial In-
telligence (AAAI-02, pp. 455–460, Edmonton, Alberta, Canada, (2002).

[5] S. Ferilli, N. Di Mauro, T.M.A. Basile, and F. Esposito, ‘A complete
subsumption algorithm’, inAI*IA 2003: Advances in Artificial Intelli-
gence, eds., A. Cappelli and F. Turini, volume 2829 ofLNCS, pp. 1–13.
Springer Verlag, (2003).

[6] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, ‘SPUDD: Stochastic
Planning using Decision Diagrams’, inProceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 279–288, Stock-
holm, (1999).

[7] S. Hölldobler, E. Karabaev, and O. Skvortsova, ‘FLUCAP: A heuristic
search planner for first-order MDPs’,JAIR, (2006). To appear.

[8] S. Hölldobler and J. Schneeberger, ‘A new deductive approach to plan-
ning’, New Generation Computing, 8, 225–244, (1990).

[9] E. Karabaev and O. Skvortsova, ‘A Heuristic Search Algorithm for
Solving First-Order MDPs’, inProceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI’2005), eds., F. Bacchus and
T. Jaakkola, pp. 292–299, Edinburgh, Scotland, (July 2005). AUAI
Press. ISBN-0-9749039-1-4.

[10] K. Kersting, M. van Otterlo, and L. de Raedt, ‘Bellman goes rela-
tional’, in International Conference on Machine Learning, pp. 465 –
472, Banff, (July 2004).

[11] J.-U. Kietz and M. L̈ubbe, ‘An efficient subsumption algorithm for in-
ductive logic programming’, inProceedings of the Eleventh Interna-
tional Conference on MAchine Learning, pp. 130–138, (1994).

[12] J. Maloberti and M. Sebag, ‘Fast theta-subsumption with constraint sat-
isfaction algorithms’,Machine Learning, 55(2), 137–174, (2004).

[13] T. Scheffer, R. Herbrich, and F. Wysotzki, ‘Efficientθ-subsumption
based on graph algorithms’, inProceedings of the 6th International
Workshop on Inductive Logic Programming, pp. 212–228, Berlin, (Au-
gust 1996). volume 1314 of LNAI.

	INTRODUCTION
	FIRST-ORDER REPRESENTATION OF MDPs
	MDPs
	Probabilistic Fluent Calculus

	SYMBOLIC REASONING FOR FOMDPs
	Approach one: context-based subsumption
	Approach two: all-cliques

	EXPERIMENTAL EVALUATION
	RELATED WORK
	CONCLUSION AND FUTURE WORK

