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Abstract. We propose an algorithm, referred to asLTHETA, ory and delivers all possible substitutions. The computation is done
for performing efficient domain-independent symbolic reasoning inavoiding aggressive groundingLLTHETA has been recently inte-

a planning system IFUCAP 1.1 that solves first-order MDPs. The grated into the EUCAP 1.1 planning system that is a successor of
computation is done avoiding vicious state and action grounding. FLUCAP 1.0 [7].

1 INTRODUCTION 2 FIRST-ORDER REPRESENTATION OF MDPs

Markov Decision Processes (MDPs) are de facto standard represen s afirst step in the quest of designing a planning sysiem for solving
OMDPs avoiding their grounding, we propose a concise representa-

tional and computational model for decision-theoretic planning prob-. - A
lems. Recently, several compact representations for propositionall;ﬂon of FOMDPs within the Probabilistic Fluent Calculd£C) lan-

factored MDPs have been proposed, including dynamic Bayesiaﬂuagep]:c isa_logicgl approach to modell_ing dynamically chang-
networks [[1] and algebraic decision diagrams [6]. For instance, thd"9 and uncertain environments based on first-order log(d 7. 8].
SPUDD algorithm[[6] has been used to solve MDPs with hundreds of

millions of states optimally, producing logical descriptions of value2.1  MDPs

functions that involve only hundreds of distinct values. This tech-

nique, referred to as state abstraction, demonstrates that large MDlﬁn MDP is a tuple(2, A, P, R, C), whereZ and A are finite sets

described in a logical fashion, can often be solved optimally by ex-0§ states and actions, respectivaly: Z x 2 x A — [0, 1], written

, o " S ' p
ploiting the logical structure of the problem. P(Z'|z, a), specifies transition probabilities. In particul®(z’|z, a)

. o ) . .. . denotes the probability of ending up at a stdtgiven that the agent
Meanwhile, many realistic planning domains are best specified in = . . .
) T . was in a state and an actiom was executedR : Z — R is a real-
first-order terms. However, most existing implemented solutions forvalued reward function associating with each staies immediate
first-order MDPs (FOMDPSs) rely on grounding, i.e., eliminate all g

variables at the outset of a solution attempt by instantiating termsLItIIIty R(2).C: A — Ris areal-valued cost function associating a

with all possible combinations of domain objects, e.gl, [4]. ThisCOStC(a) to gach agnlora. . .
A ) ] . i, A sequential decision problem consists of an MDP and is the prob-
technique is very impractical because the number of proposmonfe

grows considerably with the number of domain objects and rela- m of finding a policyr : 2 — A that maximizes the total expected

! . . . . discounted reward received when executing the patioyer an in-
tions. This has a dramatic impact on the complexity of the algorlthmsf. . . - ) .
. L inite (or indefinite) horizon. The value of a statevith respect to a
that depends directly on the number of propositions. Moreover, as . . . . )
. ) o . (ﬁollcyw is defined recursively as:
soon as the universe of objects is infinite, these algorithms cann
be made work. Finally, systems for solving FOMDPs that rely on / /

. . ; o : Ve(z) =R C P , Vx (%),
state grounding also perform action grounding which is problematic (2) (2) +Cm(2)) + Z (]2, m(2))Va (=)
in first-order domains, because the number of ground actions also
grows drastically with domain size. where0 < 4 < 1 is a discount factor. We take equal to 1 for

To address these difficulties, we have recently proposed a firsindefinite-horizon problems only, i.e., when a goal is reached, the
order generalization of LAOalgorithm [9], referred to as FOLAQ system enters an absorbing state, in which no further rewards or costs
in which our contribution was to show how to perform heuristic are accrued. The optimal value functidii satisfies:
search for FOMDPs, circumventing their grounding. In order to en- . , o
sure first-order reasoning without descending to the propositional V" (2) = R(2) + max{C(a) + v > Pz a)V(Z)},
level, a planning system should be equipped with highly-optimized ez
domain-independent inference algorithlms that compute s.ets of SUfsr each: ¢ Z.
cessor and predecessor states of a given state wrt. a given action.

Such inference algorithms rely on non-trivial symbolic computations L
as, e.g., unification or subsumption problem under some equationd-2 Probabilistic Fluent Calculus

theory between two states specified as first-order terms. Formally, let> denote a set of function symbols. We distinguish
In this paper, we develop an algorithm, referred t’BSTHETA, o function symbols irs, namelyo/2 which is associative (A),

that solves the subsumption problem under A@uational the-  commutative (C), and admits the unit element, and a constant 1. Let
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versiit  Dresden, email: {eldar,skvortsovh@iccl.tu-dresden.de, ~denote .the set of fluents. Fluent terms are defined |nd‘uct|vely as fol-
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2 A - associative, C - commutative, 1 - unit element. term, if F andG are fluent terms.
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A stateis a fluent term. We assume that each fluent may occur atll solutions for the following AC1-unification problem:
most once in a state, i.e., states of the feramo o euro are disal-
lowed. For example, a stafe = on(X',Y")oon(Y’,t)ocl(X')oe (Pre(a) o U)0 =ac1 (ZoW)6. 1)
denotes that some clear blo&K is on the blockY”’, which is on the ) o ) i
table, the gripper is empty and something else might be also true. W& this way, the bindings fofV” define the fragment&® = (Z o
note that the negation can be effortlessly included in the langliage [7]" )¢ ©f Z. an actioru is applicable to. 'V.'Oreovegv the bindings far
The interpretation oveF, denoted ag, is the pair(A, _z), where allow us to constr_uct the successorsdf i.e., Z;,.. := (Eff(a) o
the domainA is a set of all finite sets of ground fluents frgf) and U)6. In essence, in order to compute the set ofiadliccessors of all

an interpretation functiorf which assigns to each stafea set fragments oZ, a is applicable to, itis enough to find all solutiofis
for the AC1-unification problem given by Equatioh 1.

ZF ={d e A|30.(Z o U)0 =ac1 d} In this work, we present a restricted case of AC1-unification,

] o ) ] where (Z2 o W)0 = Z,. Thus, the AC1l-unification problem
whered is a substitution and’ is a new AC1-variable. Thus, states AC1-UNIFY(Z1, Z5) can be simplified into the AC1-subsumption

in PFC represent clusters of individ_ual states. In this way, they em-, roblemAC1-SUBSUME(Z1, Z2), i.e., a subsumption problem under

body a fprm of state space abstraction, referred to as first-order stajg equational theory AC1:

abstraction, and, hence, can be treated as abstract states. E.g, the state

z1 = on(b, c) o on(c,t) o cl(b) o e o cl(f), wheret stands for ta- 39. (Z1oU)0 =ac1 Zo .

ble andb, ¢ and f are blocks, is represented by the abstract state

above; whereas, = on(b, ¢) is not, since other three ‘mandatory’ ~ We write Z1 4! Z, for 'Z; subsumesZ under ACL'.

fluents ofZ are missing ine». In essence, abstract states are definedThere are at least two applicationsafl1-SUBSUME(Z1, Z3) in the

under incomplete semantics, viz., other fluents that are not explicithfF OLAO* algorithm. First, for detecting a more specific abstract state

present in the state description might also hold, as€.(qf) appears  betweenZ; andZ., that can be removed from the state space there-

in the statez; € Z7%. after. Second, for computing a setalff states that are reachable from
Actionsare first-order terms leading with an action function sym- the initial stateZ- wrt. all actions, whereZ; is a ground fluent term

bol. For example, the action of picking up some blo¢kfrom an-  specified under Closed World Assumption. In both cases, the com-

other blockY might be denoted apickup(X,Y). Stochastic ac- putation is performed on action schemata directly preventing their

tions are described via decomposition into deterministic primitivesgrounding.

under nature’s control, referred to as nature’s choices. E.g., action In the following, we exploit the fact that the AC1-subsumption

pickup(X, Y") can be defined by means of succespfokupS X, Y) problem is a specialization of tifesubsumption problem on general

and failurepickupF(X, Y') nature’s choices. Preconditions and ef- clauses, since abstract states are Horn clauses with empty héad [13].

fects of an actior, denoted are(a) and Eff (a), respectively,  The #-subsumption problem for clausés and D is a problem of

are abstract states. E.qg., for preconditions and effects of the actionhether there exists a substituti@rsuch thatCé C D (or, in our

pickupS X,Y), we have: terms,(C o U)8 =ac1 D).
) In general #-subsumption isvP-complete [[13]. It is known that
Pre(plckupS(X, Y)):=on(X,Y)ocl(X)oe deterministic subsumption, i.e., when there exists an ordering of flu-
Eff (pickupSX,Y)) := h(X) , ents, such that in each step there is a fluent which has exactly one

match that is consistent with the previously matched fluents, can be
ﬁ(l)lved in polynomial time [11]. Unfortunately, in general, there are
only few, or, in some cases, none at all, fluents in a state that can be
matched deterministically. The complexity grows exponentially with

the number of remaining non-determinate fluents.
3 SYMBOLIC REASONING FOR FOMDPs In [13], there have been developed two approaches to reduce the

Systems for solving FOMDPs that rely on state grounding also percOmPplexity of non-deterministi@-subsumption. Both approaches
form action grounding which is problematic in first-order domains, Nave been reconciled in an algorithm, referred tora&TA, that
because the number of ground actions grows drastically with doS!ves6-subsumption and hence, AC1-subsumption, and delivers a
main size. Herein, we show how to perform inferences, i.e., comSingle substitution, in a positive case.
pute successors and predecessors of a given abstract state, with action
schemata directly, avoiding unnecessary grounding. 3.1 Approach one: context-based subsumption

For this, an inference problem of finding altsuccessors (all ] ) ) o
a-predecessors) of an abstract statés represented in terms of One approach is context-based matching candidate elllmlnatlon. In
the AC1-unification probleﬁ; referred to asC1-UNIFY (Z1, Zs), general_, a fluenf in an abstract staté; can be matched Wlth several_
where Z; represents the preconditions (effects)aoind Zo = Z. fluents in an abstract staf#, that are referred to as matching candi-

whereh(X) stands for the fact of holding a block. Probabilities
of each nature’s choice, rewards and action costs can be defined
an obvious way.

AC1-UNIFY(Z1, Z5) is defined by: dates off. The approach is based on the idea that flgen@inan be
only matched to those fluents #y, the context of which include the
36. (Z10U)0 =ac1 (Z20W)E, context of the fluents ir¥;. The context is given by occurrences of

identical variables or chains of such occurrences and is defined up to

some fixed depth. In effect, matching candidates that do not meet the

above context condition can be effortlessly pruned. In most cases,

such pruning results in deterministic subsumption, thereby consid-

erably extending the tractable class of abstract states. Deterministic

3 AC1-unification problem is a unification problem under the equational the-Subsumption that exploits the context information is referred to as
ory ACL. context-based deterministic subsumption.

whereU andW are new AC1-variables.

Intuitively, an actiona is applicable to an abstract stateiff it is
applicable teall individual states that constituté”. In order to de-
termine all fragments of, an actioru is applicable to, we compute




For example, two abstract stat8s = on(X,Y) o on(Y,t) (one
tower of two blocks) andl> = on(a, b)oon(b, ¢)oon(c, t)oon(d,t)

(two towers of two and one blocks, respectively) cannot be subsume

deterministically because each fluentdnhas more than one match-
ing candidate irZ,. However, exploiting the context information al-
ready at depth 1 enables us to conclude thasubsumes/,.

At depth 1, the context of the first fluent(X, Y") contains the
pathon - 2 — 1 - on, i.e., a variableY” appears at positio in
on(X,Y) and at positionl in on(Y,t). The context of the sec-
ond fluenton(Y,t) contains the patlhn - 1 — 2 - on, i.e., the
variableY appears at positio in on(X,Y’) and at positiorl in
on(Y,t). The contexts of the fluents i, are{on -2 — 1 - on},
{on-1—2-on,on-2—1-on},{on-1— 2-on,0on-2 — 2-on}
and{on - 2 — 2 - on}, respectively. The fluenin(Y,t) has two
matching candidates, vizon(c,t) andon(d,t). Since the context
of on(Y,t) can only be embedded in the contextwf(c, t), writ-
tencon(on(Y,t), Z1,1) C con(on(c,t), Z2,1), the matching can-
didateon(d, t) is excluded an@dn (Y, t) can be matched determinis-
tically. Then, the matching substitutipn = {Y" — ¢} is applied to
Zi. As aresult, the fluenin(X,Y)u1 = on(X, ¢) can be matched
deterministically toon(b, ¢) with u2 = {X — b}. Hence, both flu-
ents can be matched deterministically and the substitétienus u2
was found without backtracking.

Function findPath(  V, E, Paths, currPath,7)

if valid(  v) then
currPath=currPathu{v}
if i = |Z1]| then
Paths:= PathsuU {currPath}
else
foreachu = (¢/,i+ 1) € V with (v,u) € E do
L if clique( wu,currPath) then

O~NOO O~ W

| findPath( V, E, Paths,u, currPath,i + 1)

9 elseV :=V\ {v}

10 return Paths

Algorithm 1: ALL -CLIQUES.

Input : A substitution grapi{V, E) for abstract state&, Z-.
Output: All paths in(V, E) that form cliques of sizéZ,|.

Paths:= currPath:= 0
foreachv = (p,1) € V do
Paths:=findPath( V/, E, Pathsv, currPath,1)
end
return Paths

positioni in Z; to some fluent inZ; andi > 1 is referred to as a
layer of v. Two nodes(u1,41) and (uz,42) are connected with an

The context depth is a very crucial parameter. If its value is OVeredge iff i jio = pop andiy # is. The former condition is referred
estimated, then considerable effort is devoted for computing the cony, as strong compatibility of substitutions, i.e., no variable is assigned
text itself and the efficiency of pruning is potentially increased. Al- ifferent terms inu; ands.
ternatively, if depth is underestimated, we save time and space for 5| -criQuesreturns all pathsPaths in the graph(V, E) that
constructing the context but end up with a larger search space. FQart at the first layer and form a clique of sigé |. In essence,
example, incBW andRANDOM datasets from Sectign 4, the optimal A -cLiquesperforms depth-first search in the substitution graph.

depth has the value of 2.

3.2 Approach two: ALL -CLIQUES

The validity checkvalid( ) in line 1 of functionfindPath is
successful iff has at least one edge to each layer. In this case,
added to the current patturrPath If v is located at the last layer,
i.e.,i = |Z1], then the current path can be already addeBaihs

In some cases, however, after performing the context-based detéRtherwise, if a next-layer neighbourof v forms a clique with the

ministic subsumption, there still remain some fluents that cannofiodes incurrPath i.e., clique(
be matched deterministically. Thus, a remaining space of matchiindPath

u, currPath) holds in line 7, then
is called recursively fow. In line 9, invalid nodes are

ing candidates has to be searched for a substitution. For this, a se@xcluded fromV". _ _ _ _
ond approach that reduces the complexity of non-deterministic AC1- In the following, we discuss major pruning techniques that are cur-

subsumption, has been presented_in [13].

rently integrated iraLL -CLIQUES.

It exploits a well-known correspondance result between the AC1- First, in contrast td[13], we organize the substitution graph in lay-
subsumption problem and the clique problem, i.e., a problem of find®rs. i-e., €ach node = (u,7) € V' belongs to a layei. The layers
ing a cquuE] of the fixed size in a graph. More precisely, an abstractshould be visited in the order of their appearance. For example, the

stateZ; subsumes an abstract stafe iff there is a clique of size
|Z1| in the space of matching candidates for fluent&in The size

third layer cannot be visited before the second layer. The layered ar-
chitecture of the substitution graph is a natural way to avoid duplicate

|Z| of an abstract stat# is equal to the number of fluents compris- occurrences of the same clique in the set of all cliques. For example,
ing it. Exploiting the above relationship, an algorithm, referred tofor the graph on Figure| 1(a), the cliqféus, 1), (114, 3), (u2,2)} is
asCLIQUE, that finds a clique in the space of matching candidatesnot counted because the nogey, 3), that lies on the third layer, is
has been developed. The candidates that do not form a clique can Misited immediately after the nodg::, 1), that lies on the first layer.
effortlessly excluded from the search space. Moreover, the authord/hereas, the s(u1, 1), (u2,2), (14, 3)} is a valid clique, because
describe some methods that allow to reduce the certain amount &€ order is preserved. In the non-layered case, both cliques will be

search space already a priori.

considered.

However, further pruning techniques can be applied in order to However, in some negative cases, it might take more time to de-

alleviate the search for a clique. Based @nQuE, we present an
algorithm, referred to asLL -CLIQUES, that computesl! paths of

tect that there exists no clique of desired size in a layered graph.
For example, the graph on Figdrg 1(b) contains no clique of size 4.

size|Z,| that form cliques in the space of matching candidates forFollowing the prescribed order, the.L -CLIQUES algorithm detects

Zi1. ALL-CLIQUESIs given in Algorithn{].

Following ideas of[[1B], we construct a substitution grdph E)
for abstract stateg; and Z; with nodesv = (p,i) € V, whereu
is a matching candidate fdf; and Z,, i.e., matches some fluent at

4 A clique in a graph is a set of pairwise adjacent nodes.

this case only after traversing through all four layers. Since there is
no edge between the second and the fourth layer, the fodd)
becomes invalid by the condition in line 1 of theL -CLIQUES al-
gorithm. Whereas, in the non-layered counterpart of the graph, we
could obey the order in which the nodes are visited, jump immedi-
ately to the nodéu.4, 4) and detect that the graph does not have any



Algorithm 2: ALLTHETA.

(k1,1) Input : Two abstract stateg;, Z».
‘ Output: All substitutitonsf such thatZ; )—‘5‘01 Zs.
)1 )2 1 )1 I .
ﬁm i (M‘ ) (m‘ )>< (M‘ ) 1. Deterministically match as many fluents@f as possible to fluents of
5 9 5,3) (u3,2) (14, 2) Z>. SubstituteZ; with the substitution found. If any fluent ¢f; does
(p2, \)\ ;“3’ ) ('u‘T H3 ~ Has not match any fluent o2, decideZ; ¥4\¢* Zs.
(114, 3) (14, 4) (us,4) (15, 3) (116, 3) 2. Context-based deterministically match as many fluents;oés possible

to fluents ofZ,. SubstituteZ; with the substitution found. If any fluent
of Z1 does not match any fluent éf, decideZ; ¥4'C1 Zs.
@ (b) © 3. Build the substitution grapflV, E) for Z; andZ,. Delete all nodes

i ) ing technigues AL -CLIOUES. (p,9) with fu = g, for somef € Z; andg € Z2, and
Figure 1. Several pruning technique Q con(f, Z1,d) € con(g, Z2,d) for somed. Apply ALL -CLIQUEStO

. . search for all cliques of siZgZ; | in (V, E).
cligues of size 4.

Second, once it is detected that a node has no edge to some layer,
it is completely removed together with the respective edges from thevas first introduced during the IPC’200d8w is, currently, one of
substitution graph. In this wayLL -CLIQUES assures that invalid  a few probabilistic scenarios that are represented in first-order terms
nodes will be visited only once. WhereasiQUE will perform mul-  and, hence, enable to make use of grounding-free symbolic reason-
tiple visits. For example, in the graph on Figlife 1(c), the N@de2)  ing. Thecaw problems differ from the classical ones in that, along
will be visited twice bycLIQUE, because this node is a successor ofwith the unique identifier, each block is assigned a specific color. A
both nodes on the first layer. Whereas the -CLIQUES algorithm  goal formula, specified in first-order terms, provides an arrangement
will hit the node(4, 2) only once. After detecting that it has no edge of colors instead of an arrangement of blocks.
to the third layer and, thus, is invalid by condition in line 1, thisnode  The second dataset, referred toras\DOM, consists of tests gen-
will be deleted from the graph in line 9. erated with a random states generator that has the following parame-
Third, in cases, when a layer contains a single nodmly, the  ters: The number of states, the maximal number of fluents in a clause,
substitution graph can be pruned further. Sinde included in all  the number of different predicates with varying arity, the number of
cligues, those nodes, that are not strongly comp@ihim v, should  constants and variables and some other.
be removed. Figure [2 presents the performance comparison results of
Fourth, we have developed an idea of dynamic graph construcaLLTHETA with the systenFASTTHETA [5] on cBw andRANDOM
tion, i.e., the next layer is built only in the case, when the currentdatasets, respectivelpaSTTHETA, that is motivated by Inductive
layer contains some valid nodes. Because otherwise, we could im-ogic Programming (ILP), can be applied to compute all solutions

mediately conclude that there exists no clique. of the AC1-subsumption problem. Therefora,STTHETA is an ap-
Fifth, graph context is applied in order to shrink the substitutionpropriate candidate for performing comparison.
graph further. Namely, all nodeg:,i) € V, such that, for some However, there are some discrepancies in the input formats.

f € Zyandg € Z», fiu = g, and the context of at some deptilis ~ Namely,FASTTHETA admits only those clausé€$andD, whereC is
not included in the context af at the samel, are removed from the  constant-free and is variable-free. In order to cope with more gen-

substitution graph. eral clause€’ and D the authors recommend to accomplish several
The context-based determinacy amd. -CLIQUES are combined  auxiliary operations (from private communication). First, to skolem-
into an algorithm, referred to as_.LTHETA. In contrast toTHETA, ize each variableX in D by replacing it with a new constanty .
ALLTHETA delivers all substitutions for thec1-SUBSUME(Z1, Z2) Second, for each constaatappearing inC, replacec with a new
problem by employingaLL -CLIQUES instead of theCLIQUE al-  variable X, and add a new literat(X.) to C. Since the presence

gorithm. In more detail ALL-CLIQUES is a modified version of  of constants inC’ bringsFASTTHETA an additional overhead, in the
CLIQUE, where additional pruning techniques have been developeganpoM dataset we have generated clauses with a few number of
in order to alleviate the search for substitutioRSLTHETA is sum-  constants. All problems in theBw dataset contain a single constant
marized in Algorithnf RALLTHETA inherits termination, correctness ¢ that stands for table.

and completeness propertiessafl -CLIQUES. Its computational be- In the following, we show how the usage of the context informa-
haviour is evaluated in Sectigh 4. tion in an abstract state affects the computation of all solutions of the
AC1-subsumption problem. More precisely, we motivate the impor-
t of the context depth parameter that a user may vary for a given
4 EXPERIMENTAL EVALUATION ;rg%?em ptp yvarylorag

We demonstrate the advantages of using the context information for There is a well-known tradeoff. The deeper inside the abstract
efficient domain-independent symbolic reasoning in FOMDPs on $tate we look, thus devoting the considerable effort for computing
system, referred to ag LTHETA. ALLTHETA has been recently inte- the context itself, the higher the pruning rate is. Alternatively, if the
grated as a module into the CAP 1.1 planning system, that is a depth value is underestimated, we save time and space for construct-
successor of EuCAP 1.0 [7] that has entered the probabilistic track ing the context but end up with a larger search space. We observe that

of the International Planning Competition IPC’2004. for bothcBw andrRANDOM datasets, the optimal depth value varies
The experimental results were all obtained using a Linux RedHafrom 2 to 3. It was also noticed in_[13], thatiETA has shown the
machine running at 2.4 GHz Intel Celeron with 1 Gb of RAM. best results at depth 2 on the mesh design dataset, that is a classical

In the comparison, we have used two datasets. One, referred 6P benchmark framework.

ascBw, stems from the colored Blocksworld planning scenario that Altogether, there are 100 abstract states that lead to 10000 sub-
sumption tests. IIRANDOM case, each problem is described by a

5 Nodes are strongly compatible if the associated substitutions are. numberN of fluents in an abstract state. Whereas;Bw case, two
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Figure 2. Performance comparison afLTHETA (denoted a&\lITheta) with FASTTHETA (denoted a§Theta) on (a)cBw and (b)RANDOM datasets.
parameters, i.e., a number of blodBsand a number of color€, per due to the lack of space, have been carried out, in order to analyze
represent each problem. Since there are only two fluents ioghe  the importance of the context information during the context-based
domain, i.e.on(X,Y) that can be read as ‘a block is on a block  deterministic subsumption amd.L -CLIQUES phases ORLLTHETA.
Y”, and a color fluent, say;ed(X), that states thaX is red, there  The results show that the context knowledge is more vital for the
are twice as much & fluents in an abstract state. former than for the latter. Namely, disregarding the context of flu-
In both tables, the column labell&dtal time presents the time in ~ ents in the context-based deterministic subsumption phase yields an
seconds needed to solve all of 10000 subsumption tests. A 30-minscrease of the runtime by factor of 10.
block is allocated for each problem. Such time limit is fair enough. Most importantly, present results indicate that the domain-
For example, during the IPC’2004, every contestant has been giveindependent inference algorithmaLTHETA performs symbolic rea-
a 15-mins block for 30 runs of each problem. The problems, runtimesoning for first-order MDPs in about the same time as the domain-
of which have exceeded the limit, are marked as n/a in a table. specific subsumption solver that was integrated in the GAP
In cBw case, on small problems of size up to 25 blocks, thel.0 planning system [7]. We note that the latter reduces the AC1-
depth parameted posesses the optimal value of 2. Whereas, onsubsumption problem to a quadratic variant of the subset problem.
larger problems, this value grows. This reflects the necessity to storé/hereas, the former solves the general case, whisifisomplete.
an additional context information about the fluents in an abstracEor example, for a single subsumption test at depth of 2 in the prob-
state ALLTHETA employs the context information twice: Once, dur- lem of 15 blocks and 3 colorgLLTHETA requires of about 92 mi-
ing the context-based deterministic subsumption test and secondlgroseconds. Whereas, for its domain-specific counterpart, the run-
while constructing the substitution graph farL -CLIQUES. For both  time comprises 85 microseconds.
cases, we defined a depth parameteandd,. For the purpose of In RANDOM case, the similar computational behaviour of
evaluation, we have chosen=d,=d, whered=0 means that no con- ALLTHETA can be observed. However, random abstract states are
text information is taken into consideration. more tricky in the sense, that for a fluent there is no guarantee at
In comparison tALLTHETA, the runtime ofFASTTHETA grows  all of whether or not the context of a non-zero depth is non-empty.
considerably faster in the size of a problem. For example, at deptiVhereascBw always provides such a guarantee.
of 2, for the five-colored 15, 25 and 75 problerR&STTHETA is by During theALL -CLIQUES phase ORLLTHETA, it is important that
factor of 4, 8 and 15 slower. As a result, it could scale to problemghe construction of the substitution graph takes less time. This is as-
up to the size of 75 blocks only. Whereas, the limitrafi THETA sured by using the modern structure sharing techniques in building
comprises 360 blocks. the context itself.
Neither FASTTHETA nor ALLTHETA are sensitive to the number ~ We have not performed the comparison with the originakTA
of colors in a problem. In contrast, grounding-based reasoners amdgorithm becauseHETA delivers only a single solution for the AC1-
severely affected by this parameter. The timing results for a speciagdubsumption problem. WhereasLTHETA computes all answers.
case ofd=0 demonstrate the dramatic loss in runtime in comparison Finally, it is worth to pinpoint thaFASTTHETA has outperformed
even with the case af=1, where the context information about the ALLTHETA by a factor of four, on the Mutagenesis dataset that is a
direct neighbours of a fluent is counted. classical ILP benchmark that stems from the field of organic chem-

Additional tests for the depth of 2, that are not included in this pa-istry [5].



5 RELATED WORK

fluentsg in Z; such thayd = f.

State constraints are most naturally specified by disequalities. To
In [[7], a domain-specific subsumption checker has been developedupport these, botl;, Z> become equipped with sefs;, F, of
Whereas, in this work, its domain-independent version is presentediisequalities of the fornX = r, whereX is a variable and is either
In using symbolic reasoning for solving FOMDPs, our approach isa variable or a constant. Then a potential soluéi@hould satisfy the
related to that by Boutilier et al_[2] who employ the situation cal- condition of thatE; 6 does not contain a disequality=  for some
culus language. To the best of our knowledge, due to the complexity. Due to the graph nature of the approach, the substitutions are built
of the language, neither complete implementation nor automated eXncrementally. This, in turn, allows to detect incorréstwell before
periments have been reported. In contrast, our method is simpler anghey are completely constructed. Moreover, we note that neither new

thus, fully automated.

data structures nor non-trivial add-on’s are required for integrating

Some related approaches for AC1-subsumption are known. Fafltisets or disequalities.

example, Djanga [12] is, nowadays, the faststuubsumption, and
thus, AC1-subsumption, checker that is based on the constraints s
isfaction. Yet, it returns a binary answer ‘yes/no’ only and provides
no solutions, even in the positive case.

To the best of our knowledge, apart fromLLTHETA and
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ent state semantics. ReBel considers abstract states as sets of fluents.

WhereasALLTHETA can cope with abstract states that are provided
with the multiset semantics, if the assumption, that each fluent ma
occur at most once in a state, is relaxed. [1]

6 CONCLUSION AND FUTURE WORK (2]
We have presented an algorithm, referred toAasSTHETA, for
performing automated domain-independent symbolic reasoning in[3]
FOMDPs.ALLTHETA is currently integrated in an algorithm for solv-

ing FOMDPs, referred to as FOLA(QH], and has been recently in-  [4]
cluded in a planning systemLBCAP 1.1 based on FOLAO
The usage oRLLTHETA for the purpose of symbolic reasoning [5]

and for FOLAQ', in particular, should be seen as two-fold. First,
during the normalization phase, LTHETA is employed for detecting

a more specific abstract state that can be pruned from the state space.
Second, during the heuristic search, it is used to compute a set o
all states that are reachable from an initial state wrt. all actions. In
both cases, the computation is performed on action schemata directly
avoiding their grounding. [7]

In comparison to existing methods for symbolic reasoning that find 8]
all solutions for the AC1-subsumption problem, e pSTTHETA,
our approach scales better on larger FOMDPs. As results indicate, they)
domain-independent inference algoritimL.THETA performs sym-
bolic reasoning for FOMDPs in about the same time as the domain-
specific subsumption solver that was integrated in the@AP 1.0
planning system[[7]. This result is particularly valuable since the[lo]
former solves the general AC1-subsumption problem, whiatpis
complete.

However, there is plenty remaining to be done. One of our primaryt1]
interests is extending the idea of using the context information for
solving the AC1-unification problem that is thoroughly applied in[12]
FOLAO* for computing predecessor abstract states of a goal abstract
state. [13]

Planning domains with resources become more and more popular
these days. To cover such domains, we should allow for multiple oc-
currences of fluents in an abstract stateln this case, each fluent
f would be assigned with the so-callddgree(f) = k > 1, which
would mean thatf occursk times inZ. Then, each solutiofl of
ALLTHETA (Z1, Z2) should satisfy an additional condition: The de-
gree of each fluenf in Z; is not exceeded by the total degree of all
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