Chapter 2

Unification

Outline

- Understanding the need for unification
- Defining alphabets, terms, and substitutions
- Introducing the Martelli-Montanari Algorithm for unification
- Proving correctness of the algorithm

The Need to Perform Unification (I)

```
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).

| ?- connection(frankfurt, maui).
yes
```

The Need to Perform Unification (II)

```
p(f(X),g(f(c),X)).
?- p(U,g(V,f(W))).
U = f(f(W)),
V = f(c)
?- p(U,g(c,f(W))).
no
\mid ?- p(U,g(V,U)).
```

Ranked Alphabets and Term Universes

- Variables
- Ranked alphabet is a finite set \sum of symbols; to every symbol a natural number ≥ 0 (its arity or rank) is assigned ($\sum^{(n)}$ denotes the subset of \sum with symbols of arity n)
- Parentheses, commas
- V set of variables, F ranked alphabet of function symbols:
 Term universe TU_{FV} (over F and V) is smallest set T of terms with
 - 1. *V* ⊂ *T*
 - 2. $f \in T$, if $f \in F^{(0)}$ (also called a constant)
 - 3. $f(t_1, ..., t_n) \in T$, if $f \in F^{(n)}$ with $n \ge 1$ and $t_1, ..., t_n \in T$

Ground Terms and Sub-Terms

- $Var(t) :\Leftrightarrow set of variables in t$
- $t \text{ ground term } :\Leftrightarrow Var(t) = \emptyset$
- s sub-term of t: \Leftrightarrow term s is sub-string of t

Substitutions (I)

V set of variables, finite set $X \subseteq V$, *F* ranked alphabet:

Substitution : \Leftrightarrow function $\theta: X \to TU_{F,V}$ with $x \neq \theta(x)$ for every $x \in X$

We use notation $\theta = \{x_1/t_1, ..., x_n/t_n\}$, where

- 1. $X = \{x_1, ..., x_n\}$
- 2. $\theta(x_i) = t_i$ for every $x_i \in X$

Substitutions (II)

Consider a substitution $\theta = \{x_1/t_1, ..., x_n/t_n\}$.

- empty substitution $\epsilon :\Leftrightarrow n = 0$
- θ ground substitution : $\Leftrightarrow t_1, ..., t_n$ ground terms
- θ pure variable substitution : $\Leftrightarrow t_1, ..., t_n$ variables
- θ renaming : $\Leftrightarrow \{t_1, ..., t_n\} = \{x_1, ..., x_n\}$
- $Dom(\theta) := \{x_1, ..., x_n\}$
- $Y \subseteq V$: $\theta|_{Y} := \{y/t \mid y/t \in \theta \text{ and } y \in Y\}$

Applying Substitutions

- If x is a variable and $x \in Dom(\theta)$, then $x\theta := \theta(x)$
- If x is a variable and $x \notin Dom(\theta)$, then $x\theta := x$
- $f(t_1, ..., t_n)\theta := f(t_1\theta, ..., t_n\theta)$

- t instance of s : \Leftrightarrow there is substitution θ with $s\theta = t$
- s more general than $t : \Leftrightarrow t$ instance of s
- t variant of $s :\Leftrightarrow$ there is renaming θ with $s\theta = t$

Lemma 2.5

t variant of s iff t instance of s and s instance of t

Composition

Let θ and η be substitutions.

The composition $\theta \eta$ is defined by $(\theta \eta)(x) := (x\theta)\eta$ for each variable x

Lemma 2.3

Let
$$\theta = \{x_1/t_1, ..., x_n/t_n\}, \eta = \{y_1/s_1, ..., y_m/s_m\}.$$

Then $\theta\eta$ can be constructed from the sequence

$$x_1/t_1\eta$$
, ..., $x_n/t_n\eta$, y_1/s_1 , ..., y_m/s_m

- 1. by removing all bindings $x_i/t_i\eta$ where $x_i = t_i\eta$, and all bindings y_j/s_j where $y_j \in \{x_1, ..., x_n\}$
- 2. by forming a substitution from the resulting sequence

Examples:

•
$$\{x/y, z/x\} \cdot \{y/7, x/z\} = \{x/7, y/7\}$$

•
$$\{y/7, x/z\} \cdot \{x/y, z/x\} = \{y/7, z/x\}$$

A Substitution Ordering

Definition 2.6

Let θ and τ be substitutions.

 θ more general than $\tau : \Leftrightarrow \tau = \theta \eta$ for some substitution η

Examples:

- $\theta = \{x/y\}$ is more general than $\tau = \{x/a, y/a\}$ (with $\eta = \{y/a\}$)
- $\theta = \{x/y\}$ is not more general than $\tau = \{x/a\}$ since for every η with $\tau = \theta \eta$: $x/a \in \{x/y\} \eta \Rightarrow y/a \in \eta \Rightarrow y \in Dom(\theta \eta) = Dom(\tau)$

Unifiers

Definition 2.9

- substitution θ is unifier of terms s and $t :\Leftrightarrow s\theta = t\theta$
- s and t unifiable : \Leftrightarrow a unifier of s and t exists
- θ most general unifier (MGU) of s and t: \Leftrightarrow θ unifier of s and t that is more general than all unifiers of s and t

Let $s_1, ..., s_n, t_1, ..., t_n$ be terms.

Let $s_i \doteq t_i$ denote the (ordered) pair (s_i, t_i) and let $E = \{s_1 \doteq t_1, ..., s_n \doteq t_n\}$.

- θ is unifier $E : \Leftrightarrow s_i \theta = t_i \theta$ for every $i \in [1, n]$
- θ most general unifier (MGU) of $E : \Leftrightarrow$ θ unifier of E that is more general than all unifiers of E

Unifying Sets of Pairs of Terms

- Sets E and E' of pairs of terms equivalent
 :⇔ E and E' have the same set of unifiers
- $\{x_1 \doteq t_1, ..., x_n \doteq t_n\}$ solved : $\Leftrightarrow x_i, x_j$ pairwise distinct variables $(1 \leq i \neq j \leq n)$ and no x_i occurs in t_j $(1 \leq i, j \leq n)$

Lemma 2.15

If $E = \{x_1 = t_1, ..., x_n = t_n\}$ is solved, then $\theta = \{x_1/t_1, ..., x_n/t_n\}$ is an MGU of E.

Proof: (i) $x_i\theta = t_i = t_i\theta$ and

(ii) for every unifier η of E: $x_i \eta = t_i \eta = x_i \theta \eta$ for every $i \in [1, n]$ and $x \eta = x \theta \eta$ for every $x \notin \{x_1, ..., x_n\}$; thus $\eta = \theta \eta$.

Martelli-Montanari Algorithm

Let *E* be a set if pairs of terms.

As long as possible choose nondeterministically a pair of a form below and perform the associated action.

(1)
$$f(s_1, ..., s_n) \doteq f(t_1, ..., t_n)$$

replace by
$$s_1 = t_1, ..., s_n = t_n$$

(2)
$$f(s_1, ..., s_n) = g(t_1, ..., t_m)$$
 where $f \neq g$

$$(3) x = x$$

(4) t = x where t is not a variable

replace by *x*≐*t*

(5) x = t where $x \notin Var(t)$ and

perform substitution $\{x/t\}$

x occurs in some other pair

on all other pairs

(6) x = t where $x \in Var(t)$ and $x \neq t$

halt with failure

The algorithm terminates with success when no action can be performed.

Martelli-Montanari (Theorem)

Theorem 2.16

If the original set *E* has a unifier, then the algorithm successfully terminates and produces a solved set *E'* that is equivalent to *E*; otherwise the algorithm terminates with failure.

Lemma 2.15 implies that in case of success E' determines an MGU of E.

Proof Steps

- 1. Prove that the algorithm terminates.
- 2. Prove that each action replaces the set of pairs by an equivalent one.
- 3. Prove that if the algorithm terminates successfully, then the final set of pairs is solved.
- 4. Prove that if the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Relations

- R relation on a set $A : \Leftrightarrow R \subseteq A \times A$
- R reflexive : \Leftrightarrow (a, a) \in R for all $a \in A$
- R irreflexive : \Leftrightarrow (a, a) \notin R for all $a \in A$
- R antisymmetric : \Leftrightarrow (a, b) \in R and (b, a) \in R implies a = b
- R transitive : \Leftrightarrow (a, b) \in R and (b, c) \in R implies (a, c) \in R

Well-founded Orderings

- (A, □) (reflexive) partial ordering
 :⇔ □ reflexive, antisymmetric, and transitive relation on A
- (A, □) (irreflexive) partial ordering
 :⇔ □ irreflexive and transitive relation on A
- irreflexive partial ordering (A, \sqsubset) well-founded : \Leftrightarrow there is no infinite descending chain ... $\sqsubset a_2 \sqsubset a_1 \sqsubset a_0$ of elements $a_0, a_1, a_2, ... \in \mathcal{A}$

Examples:

```
(\mathbb{N}, \leq), (\mathbb{Z}, \leq), (\mathcal{P}(\{1, 2, 3\}), \subseteq) are partial orderings; (\mathbb{N}, <), (\mathbb{Z}, <), (\mathcal{P}(\{1, 2, 3\}), \subseteq) are irreflexive partial orderings; (\mathbb{N}, <), (\mathcal{P}(\{1, 2, 3\}), \subseteq) are well-founded, whereas (\mathbb{Z}, <) is not.
```

Lexicographic Ordering

The lexicographic ordering $\prec_n (n \ge 1)$ is defined inductively on the set \mathbb{N}^n of n-tuples of natural numbers:

•
$$(a_1) \prec_1 (b_1) :\Leftrightarrow a_1 < b_1$$

•
$$(a_1, ..., a_{n+1}) \prec_{n+1} (b_1, ..., b_{n+1})$$
 (for $n \ge 1$)
: \Leftrightarrow $(a_1, ..., a_n) \prec_n (b_1, ..., b_n)$
or $(a_1, ..., a_n) = (b_1, ..., b_n)$ and $a_{n+1} < b_{n+1}$

Examples:

$$(3, 12, 7) \prec_3 (4, 2, 1)$$
 and $(8, 4, 2) \prec_3 (8, 4, 3)$.

Theorem. (\mathbb{N}^n, \prec_n) is well-founded

The MM-algorithm terminates.

Variable *x* solved in *E*

 $:\Leftrightarrow x = t \in E$, and this is the only occurrence of x in E

 $uns(E) :\Leftrightarrow$ number of variables in E that are unsolved

 $Ifun(E) : \Leftrightarrow$ number of occurrences of function symbols in the first components of pairs in E

 $card(E) :\Leftrightarrow$ number of pairs in E

Each successful MM-action reduces (uns(E), Ifun(E), card(E)) wrt. \prec_3 .

Proof

For every u, l, $c \in \mathbb{N}$ the reduction is as follows:

(1)
$$(u, l, c) \succ_3 (u - k, l - 1, c + n - 1)$$
 for some $k \in [0, ..., n]$

(3)
$$(u, l, c) \succ_3 (u - k, l, c - 1)$$
 for some $k \in \{0, 1\}$

(4)
$$(u, l, c) \succ_3 (u - k_1, l - k_2, c)$$
 for some $k_1 \in \{0, 1\}$ and $k_2 \ge 1$

(5)
$$(u, l, c) \succ_3 (u - 1, l + k, c)$$
 for some $k \ge 0$

Termination is now a consequence of (\mathbb{N}^3, \prec_3) being well-founded.

Each action replaces the set of pairs by an equivalent one.

This is obviously true for MM-actions (1), (3), and (4).

Regarding MM-action (5), consider $E \cup \{x = t\}$ and $\{x/t\} \cup \{x = t\}$. Then

 θ is a unifier of $E \cup \{x = t\}$ iff (θ is a unifier of E) and $x\theta = t\theta$ iff (θ is a unifier of $E\{x/t\}$) and $x\theta = t\theta$ iff θ is a unifier of $E\{x/t\} \cup \{x = t\}$

If the algorithm successfully terminates, then the final set of pairs is solved.

If the algorithm successfully terminates, then MM-actions (1), (2), and (4) do not apply, so each pair in E is of the form x = t with x being a variable.

Moreover, MM-actions (3), (5), and (6) do not apply, so the variables in the first components of all pairs in E are pairwise disjoint and do not occur in the second component of a pair in E.

If the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

If the failure results by MM-action (2), then some

$$f(s_1, ..., s_n) \doteq g(t_1, ..., t_m)$$

(where $f \neq g$) occurs in E, and for no substitution θ we have

$$f(s_1, ..., s_n)\theta = g(t_1, ..., t_m)\theta.$$

If the failure results by MM-action (6), then some x = t (where x is a proper subterm of t) occurs in E, and for no substitution θ we have $x\theta = t\theta$.

Unifiers may be Exponential

$$f(x_{1}) \doteq f(g(x_{0}, x_{0}))$$

$$\theta_{1} = \{x_{1}/g(x_{0}, x_{0})\}$$

$$f(x_{1}, x_{2}) \doteq f(g(x_{0}, x_{0}), g(x_{1}, x_{1}))$$

$$\theta_{2} = \theta_{1} \cup \{x_{2}/g(g(x_{0}, x_{0}), g(x_{0}, x_{0}))\}$$

$$f(x_{1}, x_{2}, x_{3}) \doteq f(g(x_{0}, x_{0}), g(x_{1}, x_{1}), g(x_{2}, x_{2}))$$

$$\theta_{3} = \theta_{2} \cup \{x_{3}/g(g(g(x_{0}, x_{0}), g(x_{0}, x_{0})), g(g(x_{0}, x_{0}), g(x_{0}, x_{0})))\}$$

$$\vdots$$

Implementation of the MM-Algorithm

In most PROLOG systems the occur check does not apply, for the sake of efficiency. As for the Martelli-Montanari Algorithm this amounts to drop action (6).

Then the algorithm terminates with success, e.g., for $\{x = f(x)\}$, despite x and f(x) not being unifiable.

Also, for the sake of efficiency, action (5) is normally not implemented in PROLOG systems.

Then the algorithm may terminate with a set that only implicitly represents an MGU, e.g., $\{x = f(y), y = g(a)\}$.

Objectives

- Understanding the need for unification
- Defining alphabets, terms, and substitutions
- Introducing the Martelli-Montanari Algorithm for unification
- Proving correctness of the algorithm