IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

Efficient Skew Handling for Outer Joins in a
Cloud Computing Environment

Long Cheng and Spyros Kotoulas

Abstract—Outer joins are ubiquitous in many workloads and Big Data systems. The question of how to best execute outer joins in
large parallel systems is particularly challenging, as real world datasets are characterized by data skew leading to performance issues.
Although skew handling techniques have been extensively studied for inner joins, there is little published work solving the
corresponding problem for parallel outer joins, especially in the extremely popular Cloud computing environment. Conventional
approaches to the problem such as ones based on hash redistribution often lead to load balancing problems while duplication-based
approaches incur significant overhead in terms of network communication. In this paper, we propose a new approach for efficient skew
handling in outer joins over a Cloud computing environment. We present an efficient implementation of our approach over the Spark
framework. We evaluate the performance of our approach on a 192-core system with large test datasets in excess of 100GB and with
varying skew. Experimental results show that our approach is scalable and, at least in cases of high skew, significantly faster than the

state-of-the-art.

Index Terms—Distributed join; outer join; data skew; cloud computing; Spark; HDFS

1 INTRODUCTION

Ata warehouses and the Web comprise enormous
Dnumbers of data elements and the performance of
data-intensive operations on such datasets, for example for
query execution, is crucial for overall system performance.
Joins, which facilitate the combination of records based on a
common key, are particularly costly and efficient implemen-
tation of such operations can have a significant impact in
improving the performance on a wide range of workloads,
ranging from databases to decision support and Big Data
analytics.

With data applications growing in scale, Cloud environ-
ments play a key role in application scale-out, exploiting
parallelisation to speed up operation and extending the
amount of memory available. In this light, efficient paral-
lelisation of joins on shared-nothing systems is becoming
increasingly desirable. Various distributed join algorithms
have been studied [1] [2] [3] [4] [5] [6], however, there has
been relatively little done on the topic of outer joins. In
fact, outer joins are common in complex queries and widely
used such as in data analytics applications. For example,
in the Semantic Web domain, queries containing outer joins
account for as much as 50% of the total number of queries,
based on the analysis of DBPedia query logs [7]. Moreover,
in online e-commerce, customer ids are often left outer
joined with a large transaction table for analyzing purchase
patterns [8].

In contrast to inner joins, outer joins do not lose any
tuples from one (or both) table(s) that do not match with
any tuple in the other table [9]. As a result, the final join con-

o L. Cheng is with the Faculty of Computer Science, TU Dresden, Germany.
E-mail: long.cheng@tu-dresden.de

e S. Kotoulas is with IBM Research, Dublin, Ireland.
E-mail: spyros.kotoulas@ie.ibm.com

tains not only the matched part but also the non-matched
part. Similarly to inner joins, there are two conventional
approaches for distributed outer join implementations [8]:
hash-based and duplication-based implementations. As we
will explain later, these two methods suffer from perfor-
mance issues when data skew is encountered: the former
method suffers from poor load balancing and the latter
induces redundant and costly network communication. As
data skew occurs naturally in various applications [10], it is
important for practical data systems to perform well in such
contexts.

Though many algorithms have been designed for han-
dling skew for inner joins [11] [12] [13] [14] [15], little re-
search has been done on outer joins. The reason for this may
be the assumption that inner join techniques can be simply
applied to outer joins [8]. However, as shown in our eval-
uations later in this manuscript, applying such techniques
for outer joins directly may lead to poor performance.
Moreover, although many systems can convert outer joins
to inner joins [16], providing an opportunity then to use
inner join techniques, this approach necessitates rewriting
mechanisms, which also prove complex and costly. Finally,
methods which have been designed specifically for outer
joins achieve significant performance improvements [8] over
the aforementioned approaches. We will later see though
that these state-of-the-art methods are design variations of
the two conventional approaches (i.e. redistribution and
duplication), making them only applicable in small-large
table outer joins.

In this paper, we propose an efficient query-based ap-
proach, aiming at efficiently against data skew in massively
parallel outer joins over shared-nothing systems. We im-
plement our method over the Spark [17] framework and
conduct a performance evaluation over a data stored in
HDFS [18] on an experimental configuration consisting of
16 nodes (192 cores) and datasets of up to 106GB with a

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

range of values for skew. We summarize the contributions
of this work as below:

o We present a new algorithm called query-based outer
joins for directly and efficiently handling skew in
parallel outer joins.

o We analyze the performance of two state-of-art tech-
niques in currently DBMSs: (1) PRPD [12], for skew
handling in inner joins; and (2) DER [8], for optimiz-
ing inner join implementation of small-large table
outer joins. We find that the composition of these
methods (referred to as PRPD+DER) can potentially
handle skew in large-large table outer joins. Our
experimental results confirm this expectation.

o We present the detailed implementation of our de-
sign over the Spark platform and our experimental
evaluation shows that our algorithm outperforms
PRPD+DER at least in the case of high skew. More-
over, the results also demonstrate that our method is
scalable, results in less network communication and
presents good load balancing under varying skew.

This manuscript is an extension of our previous
work [19]. Specifically, we extend our method applied in
a DBMS/ cluster to a Cloud computing environment. Com-
pared to that approach (i.e. query with counters), we present
two main changes on the design and implementation:

o We remove the counter from our previous implemen-
tation, since we are lacking the fine-grain, thread-
level control over data ordering that is available in
a cluster environment.

e We introduce an efficient method to identify data
locality and consequently realize the query process, so
as to enable our method to execute in environments
where we do not have fine-grain control over data
(re-) location, such as in a data processing framework
like Spark. We expect that removing these restrictions
allows the deployment of our method on a Cloud
environment.

We believe that our approach is very important for
join implementations over scale-out data platforms best
suited to Cloud environments (such as MapReduce [20] or
Spark [17]). Such platforms are sometimes preferable for
certain non-transactional workloads, since they allow for
easy deployment and straightforward scale-out capability,
compared to the conventional parallel DBMSs [21]. For
example, Facebook gathers almost 6TB of new log data
every day, just formatting and loading such volumes of
data into a data processing framework in a timely manner
is a challenge [22]. Current cloud-based implementations
integrate parallelization, fault tolerance and load balancing
in a simple programming framework, and can be easily de-
ployed in a large computing center or Cloud, making them
extremely popular for large-scale data processing'. In fact,
most vendors (such as IBM) provide solutions, either on-
premise or on the cloud, to compute on massive volumes of

1. Note that, frameworks like MapReduce and Spark lack many fea-
tures (e.g. schemas and indexes), which could make them not suitable
for some cases, regardless, the detailed discussion in this aspect will be
beyond the scope of this paper.

2

structured, semi-structured and unstructured data for their
business applications.

The rest of this paper is organized as follows: In Sec-
tion 2, we present background on outer join algorithms and
current techniques. We present our query-based algorithms in
Section 3 and its implementation in Section 4. We provide
a quantitative evaluation of our algorithms in Section 5. We
report on related work in Section 6 while we conclude the
paper and suggest future work in Section 7.

2 BACKGROUND

In this section, we describe the two conventional outer
join approaches, hash-based and duplication-based outer
joins, and discuss their possible performance issues. Then,
we present some current techniques that can be used for
efficiently handling skew and improving performance over
outer joins. As left outer joins are the most commonly used
outer joins, we focus on this type of join in the following.
The query below shows a typical left outer join between
a relation R with attribute a and another relation S with
attribute b, which is evaluated by the pattern R 2 S.
select R.a R.x S.y

from R left outer join S
on R.a = S.b

(Query 1)

2.1 Conventional Approaches

Distributed outer joins are, in general, composed of a distri-
bution stage followed by a local join process. To capture
the core performance of queries, we focus on exploiting
the parallelism within a single join operation between two
input relations R and S over a n-node system?. We assume
that both relations are in the form of <key, value> pairs,
where key is the join attribution. Additionally, we assume R
is uniformly distributed and S is skewed.

Hash-based. For hash-based approaches, as shown in Fig-
ure 1, the parallel outer joins contain two main phases,
which is similar to the case for inner joins:

e Phase 1. The initially partitioned relation RR; and .S;
at each node ¢ are partitioned into distinct sets R,
and S;; respectively, according to the hash values
of their join key attributes. Then, each of these sets
is then distributed to a corresponding remote node.
For example, tuples in R;; and S;i at node ¢ will be
transferred to the k-th node.

e Phase 2. A local outer join between received Ry
(ie. Ui—; Rix) and Sy (i.e. U;; Sik) at each node
k is implemented in parallel to formulate the final
outputs.

Duplication-based. The duplication-based outer join ap-
proach is shown in Figure 2. Its implementation includes
two main phases, which has significantly differences com-
pared to inner joins.

e Phase 1. R; at each node is duplicated (broadcast) to
all other nodes. Then, an inner join between R; (i.e.

2. Note that, here, we focus on explaining the join pattern in a
distributed environment. In terms of terminology, a node here means a
computing unit (e.g. an execution core in Spark).

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

Ui~; Ri = R) and S; is implemented in parallel at
each node i. This formulates an intermediate result
T, at each node.

e Phase 2. The outer join between I and the interme-
diate join results T}, to construct the final outputs.
This process is the same as the hash-based method
described above.

2.2 Performance Issues

Every step for the two approaches above is implemented
in parallel across the computing nodes, and the number of
execution units can be increased by deploying additional
machines. Both distributed schemes show the potential for
scalability in terms of processing massively parallel outer
joins (i.e. these approaches can be applied in scale-out
architectures). However there are significant performance
issues with both approaches.

While researchers have shown that implementations of
the hash-based scheme can achieve near linear speed-up
on parallel systems under ideal balancing conditions [2],
when the data to be processed has significant skew, the
performance of such parallel algorithms dramatically de-
creases [11]. This performance hit arises from the redistri-
bution of tuples in relation R and S through the hashing
function, and all the tuples having the same value for the
join attribute being transferred to the same remote node.
When the input is skewed, the popular keys will flood
into a small number of nodes and cause hot spots. Such
issues impact system scalability, which will be reduced as
employing new nodes cannot yield improvements - the
skew tuples will still be distributed to the same nodes. In
addition to performance issues, load imbalance can also lead
to memory exhaustion.

Duplication-based methods can reduce hot spots by
avoiding hash redistribution of tuples with problematic (i.e.
popular) keys. Nevertheless, when R is large, the broadcast
of every R; to all the nodes is costly. In addition, the inner
join operation over large numbers of tuples (i.e. ! ; R;) at
each node in the first stage impacts performance due to the
associated memory- and lookup-cost. Furthermore, even if
R is small, the cardinality of the intermediate join results
will be large when S is highly skewed, which makes the
second stage costly and consequently decreases the overall
performance.

2.3 Dealing with Skew

As there are no specific methods for handling skew in
large table outer joins, we discuss two typical techniques
used for inner joins - one implements load assignment by
histograms [13] and the other is the state-of-art PRPD [12]
method. As the later approach is considered as a very
important join strategy for current large-scale distributed
computation [23], we will apply it in outer joins and evalu-
ate its performance later.

Histograms. Hassan et al. [13] employ a method based on
distributed histograms, which can be divided into two parts:

e Phase 1. Various histograms for R, S and R x S are
built at each node, in either local or global view or
both.

3
I I
: S11 Stk : Sn1 Snk
R1,}: /.7//: //,/
\\ \N/ —-
................ \/ /\///
TN T E T
R

— — —» Distribution

Fig. 1. Hash-based method. The initially partitioned relation R; and
S; at each node are firstly partitioned and redistributed to all nodes
based on the hash values of join attributes, and then the outer joins
are implemented in parallel at each node. The dashed square refers to
the remote computation nodes and objects.

L e L I T

N A == | 1

|! Rk I s = | T | —e » Duplication

- = - . . | N

| L.— . — Lo |

: :

L L TRw] -~ T

............ LN e D Rt
|| Rk |:MI Tk Il — — - Distribution

Fig. 2. Duplication-based method. R; at each node is simply duplicated
to all the nodes and then inner joins commence in parallel at each node
(above). After that, the intermediate results 7' implements outer joins
with R through the hash-based way (below).

e Phase 2. Based on the complete knowledge of the
distribution and join information of the relations, a
redistribution plan to balance the workload for each
node is formulated.

As the primary innovation in that work is the improve-
ment of the redistribution plan to process data skew, this
method has the potential to be used for outer joins. While
their experimental results demonstrate that this method is
efficient and scalable in the presence of data skew, there are
still two weak points: (1) histograms are built based on the
redistribution of all the keys of R and S, which leads to high
network communication, and (2) though only the tuples
participating in the join are extracted for redistribution,
which reduces part of the network communication, this
operation is based on the pre-join of the distributed keys,
which incurs a significant time cost.

PRPD. Xu et al. [12] propose an algorithm named PRPD
(partial redistribution and partial duplication) for inner joins,
which is a state-of-the-art method used for data skew han-
dling for inner joins over a distributed system. For a single
skew relation S, their implementation can be divided into
the following two phases:

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

e Phase 1. S is partitioned into two parts: (1) Sioc,
which comprises high skew items, and will be kept
locally during the whole join processing; and (2)
Sredis, which comprises the tuples with low fre-
quency of occurrence and is redistributed using a
common hash-based implementation. In the mean-
time, the relation R is also divided into two parts:
(1) Rgup, the tuples in which contain the key in
Sioc, which will be duplicated (broadcast) to all other
nodes; and (2) R, cqis - the rest part of R that is to be
redistributed as normal.

o Phase 2. After the duplication and the redistribution
operations described above, the final join will be
composed by the received tuple at each node, namely
Rredis X Sredis and Rdup X Sloc~

This method illustrates an efficient way to process the
high skew tuples (keys are highly repetitive): all these
tuples of S are not redistributed at all, instead, just a small
number of tuples containing the same keys from R are
broadcast. The experimental results presented in [12] have
shown that PRPD can achieve significant speedup in the
presence of data skew, compared to the conventional hash-
based method.

In fact, PRPD is a hybrid method combining both the
hash-based and duplication-based join scheme. Therefore,
we can simply use the Rycqis X Sredqis and Rgup ™ Sioc
to replace the corresponding inner joins in the scenarios of
outer joins. Nevertheless, we notice that: (1) this algorithm
is based on the assumption that they have knowledge of
the data skew, which requires global statistical operations
for R and S are required initially, and (2) the cardinality
of the intermediate results in Rg,, X S, will be large
because the Sj,. here is high skewed, and this will bring
in significant time-costs, as we analyzed for the duplication-
based approach above. We will exam this in our evaluations
in Section 5.

2.4 Outer Join Optimization

DER. Xu et al. [8] propose another algorithm called DER
(duplication and efficient redistribution), which is the state-of-
the-art method for optimization of outer joins. The method
comprises two phases.

o Phase 1. Tuples of R; at each node 7 are duplicated to
all other computing nodes. Then, a local left outer
join between the received tuples of R and S is
implemented in parallel at each node. In contrast to
a conventional approach, the ids of all non-matched
rows of I? are recorded at this phase.

e Phase 2. The recorded ids are redistributed according
to their hash values and the non-match join results
at each node are organized on this basis®. The final
output is the union of the inner join results in the first
phase and the non-matched results in this phase.

In fact, this method presents a very efficient way to
extract non-matched results. Note that the join in the first

3. The details are that the received ids at each node are counted, if
the number of time an id appears is equal to the number of computing
nodes, then the record in R with this row-id will be extracted to
formulate the non-matched results.

4

phase of the conventional duplication-based method is an
inner join rather than an outer join, the reason is that an
outer join would bring either redundant or erroneous non-
matched output. For example, in a two-node system, if the
output of the duplicated tuple (1, a) is (1, a, null) on both
nodes, which means there is no match for this tuple in S, we
will get duplicate output. In the meantime, if the (1, a, null)
appears only on one node and there is a match on the other
node (e.g. (1, a, b)), then outputting (1, a, null) will bring in
an error.

The conventional approach described above (i.e.
duplication-based) to alleviate this problem is by redis-
tributing the intermediate (inner join) results. We can also
use another, naive, way to solve this problem by outputting
the non-matched results and then redistribute them. Re-
gardless, DER uses a better way, in that each tuple can
be indicated by a row-id from the table R, which is re-
distributed. Consequently, the network communication and
the workload can be greatly reduced, and the experimental
results presented in [8] demonstrate that the DER algorithm
can achieve significant speedups over competing methods.

2.5 A Hybrid Approach - PRPD+DER

Though the work in [8] does not focus on the skew handling
problem, it can be predicated that the DER algorithm will be
very efficient in this aspect as well. The reason is that DER
does not redistribute any intermediate results but only the
non-matched ids of R, the size of which is not affected by
the skewness of records in S (only by the join selectivity).
Moreover, on the condition that R is small, the redistributed
data in DER will be also very small even when S is skewed
(as the number of non-matched ids is always less than |R)|
at each node), and redistribution of a small data set will not
bring in notable load-imblancing even when such part of
data is skewed. However, as DER must broadcast R;, it is
designed to work best for small-large table outer joins.

In contrast with the PRPD algorithm, the broadcast part
Rqup is typically small, and we expect that integrating DER
into PRPD can fix the performance problem as described for
Raup ™ Sjoc previously. Accordingly, this hybrid method
can be applied to handle skew in common large-large outer
joins. We refer to this approach as PRPD+DER and we will
examine its performance in Section 5 as well. For outer joins
implemented directly by PRPD (namely the part Rg,, I
Sloc is implemented by the conventional duplication-based
outer join method), we refer to this approach as PRPD+Dup.

Note that the operations of redistribution and duplica-
tion are the most commonly used methods in data plat-
forms that are popular in the Cloud such as MapReduce
and Spark, and the implementations of PRPD+Dup and
PRPD+DER only rely on these two schemes, thus these two
methods can be easily implemented in a cloud computing
environment. Some examples of applications using PRPD
over MapReduce and Pig demonstrating their efficiency
on Big Data analytics have already appeared in the litera-
ture [24] [25].

3 OUR APPROACH

In this section, we first introduce our query-based approach.
Then, we analyze how this scheme can directly and effi-
ciently handle data skew in outer joins. We also present

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

an account of the advantages and disadvantages of the
approach compared to current techniques in this domain.

3.1 Query-based Outer Joins

As shown in Figure 3, our approach has two different com-
munication patterns - distribution and query, which occur
between local and remote nodes. This distinguishes the
method from the conventional hash-based and duplication-
based outer joins. For a left outer join between R and .S on
their join attributes a and b, processing can be divided into
four phases:

e DPhase 1. R distribution, which is shown as @ in
the figure. This process is very similar as the first
phase of the hash-based implementation. Namely,
each R; is partitioned into n chunks, and each tuple
is assigned according to the hash value of its key by
a hash function h(k) = k mod n. After that, all the
chunks R;; will be transferred to the j-th node.

o Phase 2. Push query keys, which is shown as @ in
the figure, includes the following two steps:

- The unique keys* m,(5;) of S; at each node
are extracted and then grouped based on their
hash values. The tuple assignment is according
to the hash function h(k) = k mod n as well,
such that the tuples having the hash value j
are put into the jth chunk S;; on each node .

— The grouped chunks are transferred to the
remote nodes according to the hash values.
Namely, a key with hash value j in the chunk
mp(S;5) is pushed to the j-th node, where these
keys are called the query keys of the node j in
our approach.

e Phase 3. Local outer join and push values back, which
is shown as () in the figure. The detailed process can
be divided into the following two steps:

- The received tuples R, = |J!; R;; from the
first step are left outer joined with each re-
ceived key fragment 7, (.S;1) at each node k.

— The outer join results consist of two parts,
the non-matched part and matched part. The
matched tuples are sent back to each node ¢
(namely the requester). These tuples are called
returned values, because we push these values
back to the nodes where the query keys origi-
nally come from.

o Phase 4. After receiving sets of returned values from
remote nodes, we inner join them with locally kept
S; at each node i. Their output will be the matched
part of the final output. The reason is that each query
key is extracted from S, and a returned value means
that this key exists in R as well. Then, the final outer
join results are composed by the non-matched results
from the third phase and the output ones in current
phase.

4. Here, we use the operator m, for presenting the duplicate-
removing projection on the join attribute b of the relation S.

5
I I
: S11 Stk : Sn1 Snk
\ —
4444444444444 v \///////
T
| ;_ Rk | I — — —> Distribution
| ———— s Il <« > Query
o s — m— — — — . — I

Fig. 3. The query-based approach for outer joins. The dashed square
refers to the remote computation nodes and objects.

Compared to our original method as presented in [19],
there are two main differences in order to cater for Cloud-
based data processing platforms:

e The format of returned values: the values in [19] are
in the form of <value> while here we are using
<key, value>. The reason is that, through thread-
level controls, in [19] we can easily (1) identify the
requester of each query key; and (2) keep the order-
ing of the query keys and returned values and thus
we are able to combine them in the form of <key,
value> in the fourth phase (e.g. by array indexes).
In comparison, in a cloud computing environment,
these operations would become much more complex
(e.g. by adding location information to keys or values
and then join them) and would result in additional
cost. In this case, retrieving <key, value> from re-
mote nodes will be a simple and efficient approach
(detailed issues and challenges of this pattern see
Section 4.2.2).

e Identification of non-matched results: [19] uses a
counter to distinguish the matched and non-matched
results while here we use a simple local left outer
join. The reason is that counters in [19] are also used
to support the sequential access of received query
keys and thus we are able to keep the retrieved
values in order. In comparison, such a function is
not required here (because we do not need to re-
construct the <key, value> pairs in the phase 4 any
more). Furthermore, we want to rely to the extend
possible to existing join implementations in current
data platforms (for details see Section 4.2.1).

Even with the aforementioned changes, the outer join
approach presented here still follows the “query” pattern.
The reason is that the process of transferring keys to remote
nodes and retrieving the corresponding values still looks
like a query as previous. Therefore, it will inherit the advan-
tages of our previous method [19], such as skew handling
etc., as we will present in the following Subsection.

It should be noticed that our method is different from
the distributed semijoins (e.g. the implementation proposed
in [22]), because we do not broadcast the matched part
of R. Instead, we use a fine-grained guery mechanism to
retrieve the data. Namely, we only send back data to speci-
fied requesters in the retrieval process. Actually, this brings

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

about an additional challenge on how to efficiently identify
a requester, as we will present in Section 4.2. On the other
side, semijoins are studied primarily in two domains: (1)
joins in P2P systems, for reducing network communication
based on the high selectivity of a join [5]; (2) pre-joins in
distributed systems which seek to avoid sending tuples
which will not participate in a join (see [13] for a common
implementation and [22] for application to the MapReduce
framework). In contrast, we apply a refined pattern, the
query-based scheme, with full parallelism to outer joins
on a distributed architecture and use it for handling skew
directly.

3.2 Handling Data Skew

Though S is skewed, we do not transfer any tuples of this
relation in our approach. Instead, we just transfer the keys
of S. More precisely, we only transfer the unique keys of S
to a remote node just once per current node (i.e. based on
the projection operation), irrespective of its popularity.

Assume that there exist such skew tuples (i.e. tuples
with join keys that appear frequently), which have the same
key k,, and appear n, (large number) times in the relation
S. Using the conventional hash-based method, all these
ns tuples will be transferred to the h(k;)-th node, which
results a hot spot both in communication and the following
local join operations. By comparison, our method efficiently
addresses this problem in two aspects: (1) each node will
receive only one key (or maximum 7 keys if these tuples
are distributed on the n nodes), and (2) each query key is
treated as the same in the retrieval process.

3.3 Comparison with other Approaches

Compared with the conventional approaches, in addition to
efficient handling of data skew, our scheme has two other
advantages: (1) network communication can be greatly re-
duced, because we only transfer the unique keys of S and
their corresponding returned values, and (2) computation
can be decreased when the join selectivity is high, because
retrieved results at each node will be very small, leading to
the final local joins to be very light.

Taking a higher level comparison with the histograms [13]
and the two PRPD-based [12] methods as described in
Section 2, there are two other advantages to our approach
with respect to handling skew: (1) we do not need any
global knowledge of the relations in the presence of skew
while [13] and [12] require a global statistic to quantify
the data skew, and (2) our approach does not involve
redundancy of join (e.g. lookup) operations while the other
two do, because each node in our method is just querying
what it is relevant for it, while [13] and [12] broadcast, such
that some nodes may receive some tuples what they do
not really need. Furthermore, we can directly identify the
non-matched results by using a local outer join, while [13]
and [12] needs more complex pre-distribution or redistri-
bution operations. In the meantime, although the DER [8]
algorithm has done specified optimization for the inner
implementation of outer joins, it still needs to redistribute
the row-ids. All of these highlight that our approach is more
straightforward on processing outer joins and will be easier
to implement on current data platforms.

6

In our method, we have to extract unique keys for
S; at each node, which could be time-costly. Additionally,
when the skew is low, the number of query keys will be
large, and the two-sided communication could decrease the
performance. We assess the balance of these advantages and
disadvantages through evaluation with real-world datasets
and an appropriate parallel implementation in Section 5.

4 IMPLEMENTATION

We present a detailed implementation of the query-based
algorithm using Scala on Spark [17] over a HDFS file system.
We have picked Spark as the underlying framework, rather
than MapReduce [20], because Spark is becoming more pop-
ular’. Moreover, various data-parallel applications based on
MapReduce can be expressed and executed efficiently using
Spark. We compare our method with the conventional hash-
based algorithm as well as the two PRPD-based algorithms.
The latter two do not provide any code-level information.
In the interest of a fair comparison, we have implemented
the PRPD+Dup and PRPD+DER algorithms in Scala.

4.1 An overview of Spark

Spark [17] is a parallel computing platform developed by
Berkeley AMP Lab. Compared to MapReduce [20], which
always requires disk I/O for reloading the data at each
iteration, Spark supports the distributed in-memory com-
puting which can improve performance. Moreover, Spark
provides high-level APIs allowing users to develop parallel
applications very easily and consequently increase program-
mer productivity. For example, using the functions map and
reduce, we can easily write a MapReduce application by only
several lines of codes.

Unlike parallel databases, Spark is very well suited to
a Cloud computing environment, since it is elastic: whereas
parallel databases have to be carefully tuned to the specifica-
tion of each node, and adding or removing nodes is a very
expensive operation, both from a computational and and
administration point of view, Spark is elastic both in terms
of storage (through the use of HDFS) and computation. In
addition, unlike parallel DBMSs, computation is not tightly
coupled to storage. In this light, we implement our methods
using Spark, a data processing environment better suited
to Cloud computing. In what follows, we briefly introduce
two prerequisites - the Hadoop Distributed File System
(HDFS) [18] and Resilient Distributed Datasets (RDD).

HDEFS is a distributed file system designed to provide high
throughput access to large-scale data. Internally, a data file
is split into one or more blocks and these blocks are stored
across different computing nodes. Compared to other file
systems, HDEFS is highly fault-tolerant. There are main two
reasons for this [26]: (1) data replication across machines in
a large cluster ensures very large files can be reliably stored.
When part of the data on a node is lost, replicas stored
on other nodes will still be accessible; and (2) HDFS has
a master/slave architecture and applies heartbeats between

5. As reported by Cloud Computing Technology Trends in 2015: “Spark
will largely replace MapReduce as the go-to model for big data ana-
lytics. MapReduce will still be widely used, but developers will choose
Spark over MapReduce whenever possible”.

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

the master node and slaves to check the availability of
each node. Currently, HDFS also provides a robust and
convenient file system for Spark.

RDD is a central abstraction for Spark. It is a fault-tolerant
and parallel data structure that can let user store data in
memory or disk and control its partitioning. Spark provides
two types of parallel operations on RDDs [17]: transforma-
tions and actions. Transformations, including operations like
map and filter, create a new RDD from the existing one.
Actions, such as reduce and collect, conduct computations on
an RDD and return the result to the driver program. Com-
putation in Spark is expressed using functional transforma-
tions over RDDs. An RDD cannot be modified, however, a
new RDD can be created from HDFS files or constructed by
transforming an existing RDD.

Elements in an RDD can be partitioned across machines
based on a key in each record. Each partition has an index
and operations such as mapPartitionsWithIndex will return
a new RDD by applying a function to each partition of
this RDD, while tracking the index of the original parti-
tion. Spark’s partitioning is available on all RDDs of <key,
value> pairs. For example, we can use the partitionBy on an
RDD to hash-partition it by passing a HashPartitioner object
to the transformation. As data location is important for
network communication in distributed join operations. To
better understand the implementation given in the follow-
ing section, we explain a common join operation between
two <key, value> RDDs by considering their partitioning:

o If both their partitioners are none, then a hash-based
join between the two RDDs will be performed.
Namely, elements in both RDDs are hash-partitioned
so that keys that have the same hash value appear on
the same node.

o If only one of the RDDs has a partitioner, then the
elements in this RDD will be not shuffled during
the join implementation and the elements in the
other RDD will be partitioned based on the known
partitioner to perform the join.

o If both RDDs have a partitioner, then the join will be
based on the first one.

4.2

In this subsection, we first introduce the detailed local
join operations we used in our implementation. Then, we
present the challenges we meet for distributed outer joins
over Spark. Finally, we give our detailed implementation
over Spark.

Implementation with Spark

4.2.1

Spark provides several join functions (e.g. leftOuterjoin), in
which the local join process is based on the commonly used
hash-join approach. However, unlike a conventional (hash
table) build & probe approach [27], Spark uses a single map
data structure to collect all the tuples in both R and S in
the form of (K, (iterable[V,], iterable[Vy])). Namely, all the
tuples with the same key will be combined and located on a
same bucket of the map. Then, based on different join types,
Spark uses additional map or filter operations to formulate
the output. For example, Spark will scan each bucket to

Local Joins

7

check whether the iterable[V;] is null or not for a left outer
join. If the object is null, then non-matched results will be
output based on iteration over iterable[V,]. In contrast, a
non-null value means there exist matches between R and S,
and the matched results will be the cross product between
all the values in iterable[V,.] and iterable[V;] on that bucket.

As this local join implementation is complex and has
to put all the input data in a Map, we believe it should
be slower than the conventional one, and also slower than
our previous approach [19], where a light-weighted counter
is used to identified the non-matched results. Regardless,
for the join process, Spark provides advanced strategies to
avoid out of memory issues (e.g. spill data to disk above
threshold). In this scenario, for a fair comparison, we adopt
the provided local join approach in all our implementations.
That is an additional difference with our previous work [19],
where we use another data structure (i.e. map with counters)
for joins.

4.2.2 Challenges

Unlike implementations using thread-level parallelism (e.g.
X10 in our previous implementation [19]), Spark focuses
on partitioning and does not allow fine-grain control over
the location of data. This means that the underlying data is
invisible to the programmer, which brings about a challenge
for our outer join implementation: In our algorithm, we
have to keep all input tuples of S locally, and then retrieve
the matched results from remote nodes. This is easily done
in X10 [28] (or other frameworks such as MPI or a custom
C++ implementation), because we know the location of each
subset of S (e.g. by place id in X10) and these locations are
fixed. This is not straightforward for Spark, since, in the
abstraction followed, the programmer has no control over
where the subsets are and consequently does not know the
destinations (i.e. requesters) for the retrieved results in the
third phase of our algorithm as presented in Section 3.1.

A solution is that we mark the tuples in each partition
with its partition index. For example, a tuple (10, 10) of
S in the partition 0 will be marked as (0, (10, 10)). Then,
we know that this tuple is in partition 0. However, in the
join between retrieved values and locally kept .S, the shuffle
operation still exists. The reason is that the RDD of § is
constructed from read files and does not have a partitioner.
In this case, we can not guarantee that tuples in partition 0 of
S will be always on a same physical node during the joins.
Namely, if a retrieved tuple is (0, (10, 20)), then we know
this tuple should be sent to partition 0 to join with the tuple
(0, (10, 10)), but the node corresponding to partition 0 may
change. For our algorithm, (10, 10) should be not moved for
performance reasons, i.e. dynamic partitioning can have a
detrimental effect on performance, due to data movement.

Moreover, even though we can keep all the tuples in S
locally during the joins, the final joins will be very time cost.
The reason is that: in order to transfer (i.e. in the shuffle
process) the retrieved values to their responsible requesters,
in the above case, we have to use the partition index as
the join key. This would bring heavy computation for each
node, as a cross product over S; and retrieved values will
need to be implemented. For example, we can transfer the
matched value (0, (10, 20)) to partition 0 based on its join
with the tuples at partition 0 over the join key 0. As all the

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

Algorithm 1 HashedRDD

Algorithm 2 Query-based Implementation

1: class HashedRDDIT: ClassTag](
var prev: RDD[T], n: Int)
extends RDD[T](prev) {
override val partitioner =
if (n > 0) then
Some(new HashPartitioner(n))
else
None
end if
override def getPartitions: Array[Partition] =
prev.partitions

10: }

tuples of S is marked with key 0, the cross product between
them will commerce, even the actual key of a tuple is not 10.
This will be extremely costly when the two inputs are huge.
In this meantime, additional local operations like mapping
and joins will be required to identify the final results. For
example, in the above case, after the join between (0, (10,
10)) of S and retrieved (0, (10, 20)), we have to flatmap the
output and conduct the join between (10, 10) and (10, 20).
All of these will make the join process very slow.

Based on above analysis, we summarize the two chal-
lenges, we meet on the implementation of the proposed
query-based joins over Spark, as following:

1. how can we efficiently keep S; at each partition i locally
and do not move them at all during the whole join process?

2. how can we efficiently retrieve matched values and join
them with local kept S; at each partition i on their join
keys directly?

We address these two issues in our real implementation as
follows.

4.2.3 Parallel Implementations

For each action in Spark, the framework can guarantee
partitions in two different RDDs can be co-located, but can
not guarantee that they are located on a specific node. We
address the above problems by writing a subclass of RDD
named HashedRDD as shown in Algorithm 1. Namely, we
keep the partitions of an RDD and assign a HashPartitioner
to it according to the parameter n (lines 2-7). In our imple-
mentation, we can set the n to the number of partitions for
the read-in relation S, then we can easily keep all its tuples
locally during the final join. The reason is that, if a RDD
has a partitioner already then no shuffle will happen on the
included tuples, following the three conditions we described
previous. In this case, the first challenge we described above
will be addressed. Note that, due to the immutability and
dynamic partitioning built into Spark, this comes at no
detriment to the fault tolerance properties of the framework.

Followed by the above design, the detailed implementa-
tion of our join approach is given in Algorithm 2. Firstly, we
read the relation R and S from HDEFS to create two RDDs
r_pairs and s_paris. According to the number of partitions
of s_pairs, we create a new RDD s_hash with a hash-
partitioner (lines 1-2). Then, we operate on each partition
of s_hash independently and extract their unique keys. All

The input relations R and S are read from underlying
HDEFS system, results in two RDDs in the form of <
key,value >: r_pairs and s_paris

1: val n = s_pairs.partitions.size

2: val s_hash = new HashedRDD(s_pairs, n)

3: Use mapPartitionsWithIndex(idx, iter) to extract the
unique keys uni_keys at each partition of s_hash in the
form of (key, idx)

4: val joinl = r_pairs.leftOuterJoin(uni_keys)
5: val non_match = join1 filter(._2._2 == None)
6: Save non_match on HDFS

7: val match_r = joinl.filter(._2._2 != None).map(
x = (x._2._2.get, (x._1,y._2._1)))

8: val part = s_hash.partitioner
: val part_r = match_r.partitionBy(part.get).
mapPartitions(iter =
for (tuple < iter)
yield (tuple._2._1, tuple._2._2) , true)

Ne)

10: val matched = s_hash.join(part_r)
11: Save matched on HDFS

these keys will be tagged with the partition index where
the key is located (line 3), so as to identify the requester
afterward. After that, we implement the left outer joins
between r_pairs and the unique keys. This process entails
the redistribution of r_pairs and pushing of the unique keys
as we stated in the first two phases of our approach in
Section 3.1. We do not need to manually implement these
two steps as the join API in Spark contains the redistribution
process of the two join parts already.

As data elements in joinl are in the form of
(K,,(V,,Some(idr))), we can easily distinguish the
matched and non-matched results using a filter function
as shown in lines 5-7. For the non-matched results, we can
simply output them as a part of the final results. Note that
there will be no redundant or error output here because the
left outer join is based on the hash-based implementation
as default. For the matched part, we can easily track the
requester by the value of the idx. As we can not move each
element to the requester directly, we treat each idz as the
key i.e. in the form of (idz, (K., V;)). To avoid their joins
with s_hash based on idz in the final step (i.e. the sec-
ond challenge as we described), we manually partition the
matched part of R (i.e. match_r) using the same paritioner
as s_hash and map the tuples in the form of (K,,V,), as
shown in line 9. Then, all the tuples in s_hash and match_r
will be co-located on their actual keys®, thus we can use the
provided join directly now and save the remaining part of
results (line 10-11). The entire outer join process terminates
when all results are output.

It can be seen that setting an initially defined partitioner

6. Recall again that s_hash has a partitioner defined by HashedRDD,
thus the data will be locally kept during the joins.

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

to the relation S is essential for realizing our algorithm in
Spark since it allows avoiding the shuffle operation in the
final joins. In the meantime, the used tag to indicate where
a tuple comes from is also important as it allows us to
identified which is the requester. Moreover, to avoid time-
cost joins over the tag, assigning a manual partitioner (i.e.
the used partitionBy) to the matched results is critical for
our approach as well. Additionally, from above implemen-
tation, we can see a key advantage of Spark in terms of code
succinctness and conciseness.

4.3 The PRPD-based Methods over Spark

For our purposes, the implementation of the two algorithms
PRPD+Dup and PRPD+DER over Spark are as described in
the previous section. Additionally, to identify the skewed
tuples and correspondingly partition the tuples, for the
PRPD implementation, we add a key sampling process on
S, wherein we use a hashmap counter with two parameters:
(1) sample rate, namely the ratio of the tuples to be sampled,
and (2) threshold, namely the number of occurrences of a
key in the sample after which the corresponding tuples are
considered as skew tuples.

5 EVALUATION

In this section, we present an experimental evaluation of our
algorithm and compare its performance with the approaches
as we described in Section 2.

5.1 Platform

Our evaluation platform is the HRSK-II system of ZIH at TU
Dresden. Each node we used has two 6-core Intel Xeon CPU
X5660 processors running at 2.80 GHz, resulting in a total
of 12 cores per physical node. Each node has 48GB of RAM
and a single 128GB SSD local disk and nodes are connected
by Infiniband. The operating system is Linux kernel version
2.6.32-279 and the software stack consists of Spark version
1.2.1, Hadoop version 1.2.1, Scala version 2.10.4 and Java
version 1.7.0_25.

5.2 Datasets

Our evaluation is based on a join between tables i and S.
We fix the cardinality of R to 64M tuples” and S to 1B tuples.
Because data in warehouses is commonly stored following
a column-oriented model, we set the data format to <key,
value> pairs, whereas the key is 8-byte integers and each tu-
ple in R has exactly 100 bytes while each in .S has 100 bytes
on average (i.e. the input relations are about 106GB in total).
We assume that R and S meet the foreign key relationship
and when S is uniform, the tuples are created in such a
way that each of them matches the tuples in the relation R
with the same probability. Joins with such characteristics are
common in data warehouses, column-oriented architectures
and non-relational stores [14] [27] [29].

As we aim to evaluate the skew handling ability of
different algorithms, we add skew on S, the key distribution
of which follows a Zipf distribution (details are presented in

7. Throughout this paper, when referring to tuples, M=220 and
B=230.

TABLE 1
Details of the Skewed Datasets

type dataset skew # unique keys topl topl0
no 1 0 1,073,741,824 0% 0%
low 2 1 50,241,454 5% 14%
moderate 3 1.1 21,281,889 11% 29%
4 12 8,089,031 18% 45%

high 5 13 3,090,359 25% 58%

Table 1, there the skew means the the Zipf’s factor). There,
according to skewness, we classify the skew as no skew, low
skew, moderate and high skew®. For example, for moderate
skewed data, the Zipf factor is 1.1 and the top ten popular
keys appear 29% of the time. Moreover, we vary the inner
join cardinality (referred to as selectivity factor) of R and S
by controlling the values in R.a while keeping the sizes of
R and S constant. We set selectivity factor to 0%, 50% and
100%, where the 50% means of the 50% tuples of R are kept
as the original ones and the rest have their keys changed to
their negative values, so that they do not match any key in
S. In our tests, we set 50% as the default value. Here, we are
using a similar configuration as the one presented in most
literature on joins [13] [15] [22] [30].

5.3 Setup

For Spark, we set the following system parameters:
spark_worker_memory and spark_executor_memory are set to
40GB and spark_worker_cores is to 12. The parameter sample
rate is set to 10%, and the threshold is set to a reasonable
number 100, based on preliminary results. Note that, in
all our experiments, the operations of input file reading
and final result output are both on the HDFS system. We
configure HDFS to use the SSD on each node and use a
64MB block size. We measure runtime as the elapsed time
from job submission to the job being reported as finished
and we record the mean value based on five measurements.
Additionally, to focus on the runtime performance of each
outer join implementation, we only record the number of
the final outputs, rather than materialising the output.

5.4 Runtime

We examined the runtime of four algorithms: the ba-
sic hash-based algorithm (referred as Hash), PRPD+Dup,
PRPD+DER and our query-based approach (referred to as
Query). We implement these tests using 17 nodes in the
cluster, one master and 16 slavers (i.e. workers, 192 cores),
on the default datasets with varying skew. As the runtime
of the first two algorithms becomes very long (more than 2
hours) for the highly skewed datasets, thus we only report
their runtime over the datasets with less skew.

General Performance. The detailed results in Figure 4 show
that: (1) when S is uniform, Hash performs the best and

8. Note that, this classification comes from our experimental results
in the following and is just used for simplifying our presentation. For
example, in our experiments, Hash algorithm has very long runtime
when skew=1.2 and 1.3, then we can simply say that its runtime is long
for the high skew condition.

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

10
94 —&— Hash
. a1 —&— PRPD+Dup
] —&— PRPD+DER
—w— Query

Runtime (min)

0 T T T

1 2 3 4 5
Dataset

Fig. 4. Runtime of the four algorithms under varying skew (with selectiv-
ity factor 50%, 192 cores).

the other three algorithms perform roughly the same; (2)
with data skew, PRPD+DER and our Query method become
faster and perform better than the other two methods. More-
over importantly, our approach outperforms the other three.
In this process, the method PRPD+DER performs very well
under varying skew, which confirms our expectation in Sec-
tion 2.5. At the same time, the PRPD+Dup implementation
shows poor performance under skew”, which is even worse
than Hash. This illustrates that skew handling techniques
designed for inner joins can not always be applied for outer
joins directly.

We also observe that, with increasing data skew, the time
cost of Hash increases sharply while our scheme decreases
notably, which indicates that our approach has symmetrical
behavior regarding skew compared with the commonly
used hash-based outer join algorithm. The reason that our
method performs better with higher skew is that tuples with
popular keys (which also constitute a significant volume
of data), do not need to be moved. The higher the skew,
the larger proportion of tuples falls under this category, the
less the network traffic and the lower the runtime. At the
other side of the coin, under no skew, Query results in more
network traffic that the hash redistribution-based approach,
as we have analyzed in Section 3.3.

In the meantime, although both the PRPD+Dup and
PRPD+DER algorithms can be considered as hybrid meth-
ods on the basis of the conventional hash-based and
duplication-based methods, the runtime of PRPD+Dup in-
creases even more sharply than Hash, while PRPD+DER
decreases with skew and shows its robustness against skew.
This confirms that state-of-the-art optimization for outer
joins can bring in significant performance improvements.
Query performs the best under skew conditions, where con-
ventional methods fail. As such, our method can be considered
as a supplement for existing schemes.

To give an impression of the overall performance of
each method, we consider the average runtimes across all

9. Not shown in the Figure is that the runtime is around 23 mins
when skew = 1.2.

10
10
9 —&— Hash
8_' —&— PRPD+Dup
] 77 —A— PRPD+DER
74 —v— Query
S 6
é i
o 97
E]
g 49
=1 4
a4 3
4 2.5
2_
T 14
14
0 T T T T T
1 2 3 4 5
Dataset

Fig. 5. Runtime of the four algorithms under varying skew (with selectiv-
ity factor 100%, 192 cores).

datasets. Hash and PRPD+Dup time out for any skew value
over 1.1. In practice, this means that any application exploiting
this implementation is would suffer from performance failures
when the input presents significant skew. This is particularly
important in a Cloud environment and in a analytical data
processing framework like Spark, where it is common that
the programmer is not very familiar with the input. The
average runtime for PRPD+DER is 2.7 minutes while for
Query it is 1.8 minutes, illustrating a significant perfor-
mance advantage of our method.

Selectivity Experiments. We also examine how join selec-
tivity affects the performance for each algorithm by varying
a selectivity factor parameter. For all skew distributions, we
choose additional selectivity values of 100% and 0%.

The results for these two conditions are presented in
Figure 5 and Figure 6 respectively. Again, they demonstrate
that PRPD+DER and Query can efficiently handle data skew
under conditions with different join selectivity. Moreover, in
conjunction with the results presented in in Figure 4, we
notice that the runtime of Hash and PRPD+DER slightly
decreases with decreasing the selectivity. The reason for
this could be the local computation workload decreases
for Hash. In the meantime, though the number of the
non-matched results increases with decreasing selectivity,
PRPD+DER only needs to redistribute the non-matching
row-ids for Rgyp X Sioc, which remains small because R g,
is always small.

In comparison, the runtime of PRPD+Dup and Query
shows significant variation. For PRPD+Dup, when the selec-
tivity goes to 0%, it performs robustly by varying skew and
can even outperform PRPD+DER. The reason could be that
PRPD+Dup has to process the intermediate matched join re-
sults, the number of which is equal to 0 when the selectivity
gets to 0%. In fact, it is these intermediate results that would
cause the load balancing problems with higher selectivity.
In contrast, PRPD+DER has to redistribute all 64M non-
matched ids in this case. For Query, the runtime decreases
sharply with decreasing the selectivity in the condition of
low skew. The reason is that the retrieved values become

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

8+
74 —&— Hash
] 65 —e— PRPD+Dup
6 —A— PRPD+DER
_ —v— Query

Runtime (min)

0 T T T

1 2 3 4 5
Dataset

Fig. 6. Runtime of the four algorithms under varying skew (with selectiv-
ity factor 0%, 192 cores).

fewer with decreasing selectivity, reducing both the network
communication and local computing. In fact, Query presents
the worst performance with 100% selectivity, since it will
result in significant communication costs. For high skew, as
the queried keys (namely the unique keys) are much fewer
anyway, the role of selectivity becomes less important.

Discussion. Combining the results presented above above,
we can see that, in the condition of moderate and high skew,
our query-based approach is robust and also always outper-
forms the other three methods. In production environment,
the optimizer could pick the best implementation based on
the skew of the input (e.g. low skew) so as to minimize
runtime.

5.5 Network Communication

Performance regarding communication costs is evaluated by
recording the metric Shuffle Read, as provided by Spark. It
records the data in bytes read from remote executors (phys-
ical machines) but not the data read locally. This means that
this metric indicates the data transfer around the network
during join implementations. The results by varying skew
over 16 workers (192 cores) are shown in Figure 7.

We can see that Hash, PRPD+Dup and PRPD+DER
transfer the same amount of data when the dataset is
uniform. This is reasonable, since all tuples in Hash,
PRPD+Dup and PRPD+DER are processed only by redis-
tribution as there is no skew. Moreover, the size of data
transfer is around 32.9GB, much less than the input rela-
tions, which indicates that there are heavy local reads in
the implementation. Query results in much less network
communication. The reason could be that that query does
not move any tuples in S, but just transfers the unique keys
and retrieves matched tuples in R, the size of which is much
smaller than the redistribution of all tuples.

With increased skew, the size of transferred data in Hash
and PRPD+Dup slightly decreases. The reason could be that
reading data locally increases with increasing the data skew.
In contrast, PRPD+DER and our method show a significant

35+
—&— Hash

30 30.4
—8— PRPD+Dup
—aA— PRPD+DER
—¥— Query

Shuffle Read (GB)

01—
1 2 3 4 5

Dataset

Fig. 7. Inter-machine communication of all four algorithms under varying
skew (with selectivity factor 50%, 192 cores).

5000 —
4500 - —— Hash
1 —&— PRPD+Dup
40007 —a— PRPD+DER
35004 | _¥_Query
m E
< 3000
3]
T 2500
g]
@ 2000~
3::) 4
< 1500+
n]
1000
500
0 T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Executor ID

Fig. 8. The retrieved data of each executor for all the four algorithms
(with skew=1.1, selectivity factor 50%, 192 cores). In a perfectly load-
balanced system, the lines would be flat.

decrease, demonstrating they can handle skew effectively.
Moreover, our method transfers less data than PRPD+DER.
This shows that our implementation can reduce network
communication more than others under skew.

5.6 Load Balancing

We analyze the load balancing properties of each algorithm
based on the Shuffle Read at each executor metric provided by
Spark. This number indicates both the communication and
computation time cost. The more data an executor receives,
the more time will be spent on data transfer and join
operations at this place (because the initial input relations
are similar- size partitioned).

Figure 8 presents the results when skew is 1.1. We can
obviously see that the data read from remote executors
has great variation for the Hash and PRPD+Dup algorithm,
which means that they have bad load balancing under skew.

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

12

124 —=— 4 worker nodes
—&— 8 worker nodes

104 —4A— 16 worker nodes
—w— 32 worker nodes

Runtime (min)

Dataset

Fig. 9. The runtime the proposed query-based algorithm under different
data skew by varying the number of worker nodes (with selectivity factor
50%).

In comparison, though PRPD+DER shows much improve-
ment for that condition, our query-based approach is still
much better than PRPD+DER.

5.7 Scalability

We test the scalability (scale-out) of our implementation by
varying number of slaves (workers) under varying skew,
from 48 cores (4 nodes) to 384 cores (32 nodes). The re-
sults are shown in Figure 9. We can see that the runtime
of decreases with increasing the number of workers un-
der varying skew, which means that our implementation
generally scales well with the number of workers. This is
also supported by recording the network communication as
shown in Figure 10. There, the size of the retrieved data
across the entire system increases at a reducing ratio to the
number of workers. Namely, for larger numbers of workers,
the retrieved data at each executor will be halved when
doubling the number of workers.

In general, we can see that the benefit of adding more
workers (i.e. the scaled speedup) decreases as the runtime
becomes lower. We attribute this to platform overhead and
coordination costs. In detail, we can observe the achieved
runtime speedups under low skew is higher than that under
high skew. The reason is that the transferred data is small
for the high skew datasets (as shown in Figure 10) and
is comparably small for the underlying platform. In the
meantime, for different worker configurations, we can see
that we can get linear speedup when doubling the number
of workers from 8 to 16 and almost linear speedup when
doubling the number of workers from 4 to 8. In comparison,
for other conditions, the speedups are initially sub-linear
but significant and then become very small. Possible reasons
could be that (1) the size of retrieved data is increasing
with increasing the number of workers, (2) load balancing
becomes an issue, or (3) when the number of workers is
large (e.g. 32 nodes), the processed data is relative small
for the underlying platform, so platform overhead becomes
significant. Reasons (1) and (2) are excluded by the results

12
25
—&— 4 worker nodes
—@— 8 worker nodes
20 —A— 16 worker nodes
—y— 32 worker nodes
o
O 154
e]
©
]
14
@ 10+
=
>
<
n
5 -
0 T T T T T
1 2 3 4 5
Dataset

Fig. 10. The inter-machine communication (across all nodes) for the
query-based algorithm under varying data skew by varying the number
of worker nodes (with selectivity factor 50%).

presented in Figure 8 and Figure 10 respectively, so we
conjecture that the reason for the decreasing speedup is
platform overhead.

6 RELATED WORK

Data skew is a significant problem for multiple commu-
nities, such as databases [30], data management [27], data
engineering [29] and Web data processing [10]. For example,
joins with extreme skew can be found in the Semantic Web
field. In [10], the most frequent item in a real-world dataset
appeared in 55% of the entries.

The study of parallel joins on shared-memory systems
has already achieved significant performance speedups
through improvements in architecture at the hardware-level
of modern processors [30] [29]. Nevertheless, as applications
grow in scale, the associated scalability is bounded by the
limit on the number of threads per processor and the avail-
ability of specialized hardware predicates. Though GPU
computing has become a well-accepted high performance
parallel programming paradigm and there are many reports
on implementations of parallel joins [31], as in shared-
memory architectures, when the data reaches a very large
scale, the memory and I/O eventually become the bottle-
neck.

As we presented previously, various techniques have
been proposed for distributed inner joins to handle skew [5]
[12] [13]. Often, the assumption is that inner join techniques
can be simply applied to outer joins, as identified in [8].
Regardless, as we have shown in our experiments, applying
such techniques for outer joins directly may lead to bad
performance (i.e. the PRPD algorithm [12]).

Current research on outer joins focuses on join reorder-
ing, elimination and view matching [32] [9] [33] [34]. To
the best of our knowledge, there are only few approaches
designed for skew handling in outer joins. The work [35]
proposes an efficient method called OJSO to handle redistri-
bution skew for outer joins. Regardless, they only consider
the skew of redistributing non-matched results in a pipeline

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

execution of outer joins, but do not address the challenge of
attribute skew. Moreover, as we presented, though DER [8]
can efficiently handle skew, it is designed for small-large
table outer joins and not suitable for large datasets. A recent
work, [36] introduces an approach called REQC for large
table outer joins. However, the implementation is still based
on a fine-grain control of data process at a thread level
and does not address the challenges in a Cloud comput-
ing environment. Though we have shown that the hybrid
method PRPD+DER [12] [8] can efficient handle data skew
on large outer joins, the proposed query-based method does
not rely on the conventional redistribution and duplication
operations and performs significantly better under high
skew.

With regards to joins in a Cloud computing environment,
many new approaches have been proposed to improve per-
formance over the MapReduce platform [37] [38]. However,
they have modified the basic MapReduce framework and
cannot be readily used by existing platforms like Hadoop.
Though the work [22] presents an extensive implementation
on joins in MapReduce, they focus on execution profiling
and performance evaluation, but not for robust join algo-
rithms. Some work like [20] handles skew using speculative
execution but they do not address skew in joins, since the
large tasks are not broken up. Several efforts in designing
high level query languages on MapReduce, such as Pig [39]
and Hive [40] etc., have employed methods (i.e. using
statistics and scheduling) to address data skew in outer
join processing, however, as discussed in [25], they can not
efficient handle skew during join execution. In comparison,
as we have showed in our implementation and evaluation
that our new method can be applied to such environments
to efficiently process data skew.

7 CONCLUSIONS

In this paper, we have introduced a new outer join al-
gorithm, query-based outer join, which specifically targets
processing outer joins with high skew in a Cloud computing
environment. We have presented an implementation of our
approach using the Spark framework. Our experimental
results over the HDFS file systems show that our approach
is scalable and can efficiently handle skew. Compared to the
state-of-art PRPD+DER techniques [12] [8], our algorithm
is faster and results in less network communication, at
least under high skew. In the future, we will combine this
method with approaches that partition data according to
key skew (e.g. [12]) to further reduce communication and
coordination overheads.

ACKNOWLEDGMENTS

Long Cheng is supported by the DFG in projects DIAMOND
(Emmy Noether grant KR 4381/1-1) and HAEC (CRC 912).
The computations were performed on the Bull HPC Cluster
at the Center for Information Services and High Perfor-
mance Computing (ZIH) at TU Dresden.

REFERENCES

[1] C. B. Walton, A. G. Dale, and R. M. Jenevein, “A taxonomy and
performance model of data skew effects in parallel joins,” in Proc.
17th Int. Conf. Very Large Data Bases, 1991, pp. 537-548.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

13

D. DeWitt and]. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM, vol. 35,
no. 6, pp. 85-98, Jun. 1992.

K. Imasaki and S. Dandamudi, “An adaptive hash join algorithm
on a network of workstations,” in Proc. Int. Parallel and Distributed
Processing Symp., 2002, p. 8.

X. Zhang, T. Kurc, T. Pan, U. Catalyurek, S. Narayanan, P. Wyckoff,
and J. Saltz, “Strategies for using additional resources in parallel
hash-based join algorithms,” in Proc. 13th Int. Symp. High Perfor-
mance Distributed Computing, 2004, pp. 4-13.

D. Kossmann, “The state of the art in distributed query process-
ing,” ACM Comput. Surv., vol. 32, no. 4, pp. 422—469, Dec. 2000.
K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Paral-
lel data processing with MapReduce: A survey,” SIGMOD Rec.,
vol. 40, no. 4, pp. 11-20, Jan. 2012.

M. Atre, “Left bit right: For SPARQL join queries with OPTIONAL
patterns (left-outer-joins),” in Proc. 2015 ACM SIGMOD Int. Conf.
Management of Data, 2015, pp. 1793-1808.

Y. Xu and P. Kostamaa, “A new algorithm for small-large table
outer joins in parallel DBMS,” in Proc. IEEE 26th Int. Conf. Data
Engineering, 2010, pp. 1018-1024.

G. Bhargava, P. Goel, and B. Iyer, “Hypergraph based reorderings
of outer join queries with complex predicates,” in ACM SIGMOD
Record, vol. 24, no. 2, 1995, pp. 304-315.

S. Kotoulas, E. Oren, and F. van Harmelen, “Mind the data skew:
distributed inferencing by speeddating in elastic regions,” in Proc.
19th Int. Conf. World Wide Web, 2010, pp. 531-540.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri,
“Practical skew handling in parallel joins,” in Proc. 18th Int. Conf.
Very Large Data Bases, 1992, pp. 27-40.

Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data skew
in parallel joins in shared-nothing systems,” in Proc. 2008 ACM
SIGMOD Int. Conf. Management of Data, 2008, pp. 1043-1052.

M. Al Hajj Hassan and M. Bamha, “An efficient parallel algorithm
for evaluating join queries on heterogeneous distributed systems,”
in Proc. 2009 Int. Conf. High Performance Computing, 2009, pp. 350
358.

L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos, “Ro-
bust and skew-resistant parallel joins in shared-nothing systems,”
in Proc. 23rd ACM Int. Conf. Information and Knowledge Management,
2014, pp. 1399-1408.

M. A. H. Hassan, M. Bamha, and F. Loulergue, “Handling data-
skew effects in join operations using MapReduce,” Procedia Com-
puter Science, vol. 29, pp. 145-158, 2014.

B. Glavic and G. Alonso, “Perm: Processing provenance and data
on the same data model through query rewriting,” in Proc. IEEE
25th Int. Conf. Data Engineering, 2009, pp. 174-185.

M. Zaharia, M. Chowdhury, T. Das, A. Dave,]. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and 1. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proc. 9th USENIX Conf. Networked Systems Design and
Implementation, 2012, pp. 15-28.

D. Borthakur, “HDEFS architecture guide,” Hadoop Apache Project,
p- 53, 2008.

L. Cheng, S. Kotoulas, T. Ward, and G. Theodoropoulos, “Efficient
handling skew in outer joins on distributed systems,” in Proc. 14th
IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing, 2014, pp.
295-304.

J. Dean and S. Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
2008.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D.]J. DeWitt, S. Mad-
den, and M. Stonebraker, “A comparison of approaches to large-
scale data analysis,” in Proc. 2009 ACM SIGMOD Int. Conf. Man-
agement of Data, 2009, pp. 165-178.

S. Blanas, J]. M. Patel, V. Ercegovac,]J. Rao, E.]J. Shekita, and
Y. Tian, “A comparison of join algorithms for log processing in
MapReduce,” in Proc. 2010 ACM SIGMOD Int. Conf. Management
of Data, 2010, pp. 975-986.

N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strategies
for large-scale distributed computation,” Proc. VLDB Endowment,
vol. 7, no. 13, pp. 1484-1495, 2014.

W. Liao, T. Wang, H. Li, D. Yang, Z. Qiu, and K. Lei, “An adaptive
skew insensitive join algorithm for large scale data analytics,” in
Proc. 16th Asia-Pacific Web Conf., 2014, pp. 494-502.

S. Kotoulas, J. Urbani, P. Boncz, and P. Mika, “Robust runtime
optimization and skew-resistant execution of analytical SPARQL

IEEE TRANASCTIONS ON CLOUD COMPUTING, VOL. X, NO. X, 201X

[26]

[27]

[28]

(29]

(30]

(31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

queries on Pig,” in Proc. 11th Int. Semantic Web Conf., 2012, pp.
247-262.

C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale logistic
regression and linear support vector machines using Spark,” in
Proc. IEEE 3rd Int. Conf. Big Data, 2014, pp. 519-528.

S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main
memory hash join algorithms for multi-core CPUs,” in Proc. 2011
ACM SIGMOD Int. Conf. Management of Data, 2011, pp. 37-48.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” ACM SIGPLAN
Notices, vol. 40, no. 10, pp. 519-538, 2005.

G. A. Cagri Balkesen, Jens Teubner and M. T. Oszu, “Main-
memory hash joins on multi-core CPUs: Tuning to the underlying
hardware,” in Proc. IEEE 29th Int. Conf. Data Engineering, 2013, pp.
362-373.

C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. Hash revisited:
fast join implementation on modern multi-core CPUs,” Proc. VLDB
Endowment, vol. 2, no. 2, pp. 1378-1389, Aug. 2009.

B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, “Relational joins on graphics processors,” in Proc. 2008
ACM SIGMOD Int. Conf. Management of Data, 2008, pp. 511-524.
G. Hill and A. Ross, “Reducing outer joins,” The VLDB Journal,
vol. 18, no. 3, pp. 599-610, Jun. 2009.

P-A. Larson and J. Zhou, “View matching for outer-join views,”
The VLDB Journal, vol. 16, no. 1, pp. 29-53, 2007.

C. Galindo-Legaria and A. Rosenthal, “Outerjoin simplification
and reordering for query optimization,” ACM Trans. Database
Systems, vol. 22, no. 1, pp. 43-74, 1997.

Y. Xu and P. Kostamaa, “Efficient outer join data skew handling
in parallel DBMS,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1390-
1396, Aug. 2009.

L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust and efficient large-large table outer joins on distributed
infrastructures,” in Proc. 20th Int. European Conf. Parallel Processing,
2014, pp. 258-369.

H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-
merge: simplified relational data processing on large clusters,” in
Proc. 2007 ACM SIGMOD Int. Conf. Management of Data, 2007, pp.
1029-1040.

D. Jiang, A. Tung, and G. Chen, “Map-Join-Reduce: Toward scal-
able and efficient data analysis on large clusters,” IEEE Trans. Data
Engineering, vol. 23, no. 9, pp. 1299-1311, 2011.

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava,
“Building a high-level dataflow system on top of Map-Reduce:
the Pig experience,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1414-
1425, 2009.

A. Thusoo,]. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution
over a Map-Reduce framework,” Proc. VLDB Endowment, vol. 2,
no. 2, pp. 1626-1629, 2009.

14

Long Cheng is currently a Post-Doctoral Re-
searcher at TU Dresden, Germany. His research
interests mainly include Distributed computing,
Large-scale data processing, Data management
and Semantic web. He has worked at orga-
nizations such as Huawei Technologies Ger-
many and IBM Research Ireland. He holds a
B.E. from Harbin Institute of Technology, China
(2007), M.Sc from Universitat Duisburg-Essen,
Germany (2010) and Ph.D from National Univer-
sity of Ireland Maynooth, Ireland (2014).

Spyros Kotoulas is a Research Scientist at
IBM Research Ireland. His research interests lie
in data management for semi-structured data,
parallel methods for data intensive processing,
Semantic Web, Linked Data, reasoning with Web
data, flexible data integration methods, stream
processing, peer-to-peer and other distributed
systems. He holds a BSc (2004) from the Univer-
sity of Crete as well as an MSc (2006) and a PhD
(2009), both from the VU University Amsterdam.

