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Abstract
We present various new concepts and results related
to abstract dialectical frameworks (ADFs), a power-
ful generalization of Dung’s argumentation frame-
works (AFs). In particular, we show how the ex-
isting definitions of stable and preferred semantics
which are restricted to the subcase of so-called bi-
polar ADFs can be improved and generalized to
arbitrary frameworks. Furthermore, we introduce
preference handling methods for ADFs, allowing
for both reasoning with and about preferences. Fi-
nally, we present an implementation based on an
encoding in answer set programming.

1 Introduction
Dung’s abstract argumentation frameworks (AFs) [Dung,
1995] are widely used in argumentation for handling conflicts
among (abstract) arguments. One criticism often advanced
against abstract argumentation frameworks is that only one
form of interaction between atomic arguments is permitted:
specifically that an argument attacks another. Brewka and
Woltran [2010] have proposed a new model – Abstract Dia-
lectical Frameworks (ADFs) – in which more general forms of
argument interaction are captured. For instance, ADFs allow
to express that an argument supports another one, that two
arguments – none of which is strong enough individually –
may jointly attack a third one, what the effects of combining
attacking and supporting arguments are, and the like.

To achieve this, each argument, x, is associated with an
acceptance condition, Cx, which is some propositional func-
tion whose truth status is determined by the corresponding
status of those arguments y with (y, x) being a link in the
ADF. Dung’s AFs are recovered by setting as acceptance con-
dition for each argument the function

∧
y:(y,x) ¬y, i.e. x is

accepted if none of its parents is. It is this concept of asso-
ciating individual acceptance conditions with arguments that
provides ADFs with a rich expressive capability.

The question arises what the role of ADFs in argumentation
is, specifically whether they should be viewed as a knowledge
representation (KR) formalism or as an abstraction tool. The
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abstraction view is best exemplified by the use of AFs within
ASPIC [Prakken, 2010]. ASPIC’s translational approach al-
lows to use expressive KR languages. Knowledge bases in
these languages generate arguments and attack relations; in
other words, they are translated into an AF which, via any
of the standard Dung semantics, provides the original know-
ledge base with an argumentation theoretic semantics.

It is natural to ask where ADFs stand in this game. First we
want to emphasize that the distinction between KR language
and abstraction tool is not crisp: each KR language is ab-
stract to a certain extent and disregards aspects irrelevant for
its purpose. ADFs are certainly less abstract than AFs, as the
latter abstract from everything but attacks among arguments
whereas the former abstract from everything but acceptance
conditions, a more general notion. Still, we do not consider
ADFs primarily as a KR tool. We rather see them as conveni-
ent alternatives to AFs as target languages in the translational
approach. Since AFs are a special case of ADFs, translations
to ADFs are obviously not more difficult than those to AFs.
However, since the additional expressiveness of ADFs brings
them closer to rich KR languages, many translations will in
fact become easier. Borrowing terminology from software
engineering, the term argumentation middleware appropri-
ately characterizes what we see in ADFs.

Here are just two examples witnessing the usefulness of
ADFs. For one, Brewka and Gordon [2010] have shown how
the Carneades formalism [Gordon et al., 2007] can be re-
constructed and generalized using ADFs.1 For another, ADFs
also allow to express attacks from sets of arguments as pro-
posed by Nielsen and Parsons [2006]: an attack from a set B
to a is expressed by setting the acceptance function of a to
¬(

∧
b∈B b). An alternative approach to deal with such situ-

ations is meta-argumentation, see e.g. [Boella et al., 2009].
Here additional (artificial) arguments are added together with
certain gadgets to capture the functioning of e.g. set-attacks
within AFs. While this methodology allows to stay within
the simple framework of AFs, it comes with the price that the
additional arguments require special treatment, in particular
when the AF is further processed. ADFs circumvent the addi-
tion of artificial arguments, yet staying in the abstract domain.

1Van Gijzel and Prakken [2011] have shown that Carneades can
also be captured within Dung’s formalism. AFs obtained from their
translation are cycle-free, thus always induce a unique extension.



In [Brewka and Woltran, 2010], the standard Dung se-
mantics of grounded, preferred and stable extensions are gen-
eralized to ADFs, the latter two to a restricted type of ADFs
called bipolar. As has been recently recognized [Ellmau-
thaler, 2012; Strass, 2013], some examples are not handled
as intended in these ADF semantics (see also Example 1 in
Section 3). In fact, the work by Strass [2013] proposes new
variants of these semantics using operator-based definitions
on lattices in the spirit of [Denecker et al., 2004].

In this work, we present new concepts and results which
substantially increase the range of applicability of ADFs.
1. We introduce new definitions of preferred and stable se-

mantics which avoid the mentioned unintended results and
moreover cover arbitrary ADFs, not only bipolar ones. Tech-
nically, the new definitions rest on a shift from two-valued
to three-valued interpretations. They are based on an oper-
ator already defined in [Brewka and Woltran, 2010] and are
conceptually simpler than the proposal in [Strass, 2013].
2. As a second contribution, we provide a complexity ana-

lysis for the proposed semantics. This not only gives a clear
picture of the effects our generalizations have on computa-
tional issues, and how they extend expressibility as compared
to Dung semantics. It also provides the basis for an im-
plementation of ADFs in terms of answer set programming
(ASP), an issue we will address as well.
3. Finally, to underline the modelling capacities of ADFs we

also address the problem of preferential reasoning in abstract
argumentation [Amgoud and Cayrol, 1998; Bench-Capon,
2003]. We introduce the concept of a prioritized ADF where
certain nodes are used to represent (dynamic) preferences (an
approach also followed in [Modgil, 2009]) and show that pri-
oritized ADFs can easily be compiled to standard ADFs.

The paper proceeds as follows. After providing the neces-
sary background regarding ADFs and three-valued interpreta-
tions in Section 2, Section 3 introduces the new definitions of
preferred and stable semantics for ADFs. The complexity of
the new semantics (together with some strengthening of pre-
vious results) is then given in Section 4. The new preference
handling methods which allow us to capture both static and
dynamic preferences are discussed in Section 5. Finally, an
implementation of ADFs based on ASP is briefly presented in
Section 6. A discussion of related work concludes the paper.

2 Background
An abstract dialectical framework (ADF) is a directed graph
whose nodes represent statements or positions which can be
accepted or not. The links represent dependencies: the status
of a node s only depends on the status of its parents (denoted
par(s)), that is, the nodes with a direct link to s. In addition,
each node s has an associated acceptance condition Cs spe-
cifying the exact conditions under which s is accepted. Cs is
a function assigning to each subset of par(s) one of the truth
values t, f .2 Intuitively, if for some R ⊆ par(s) we have
Cs(R) = t, then s will be accepted provided the nodes in R
are accepted and those in par(s) \R are not accepted.

2In the original paper in and out were used. We prefer truth
values here as they allow us to apply standard logical terminology.

Definition 1. An abstract dialectical framework is a tuple
D = (S,L,C) where
• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) →
{t, f}, one for each statement s. Cs is called acceptance
condition of s.

In many cases it is convenient to represent acceptance con-
ditions as propositional formulas. For this reason we will fre-
quently use a logical representation of ADFs (S,L,C) where
C is a collection {ϕs}s∈S of propositional formulas.

Moreover, unless specified differently we will tacitly as-
sume that the acceptance formulas specify the parents a node
depends on implicitly. It is then not necessary to give the links
in the graph explicitly. We thus can represent an ADF D as a
tuple (S,C) where S and C are as above and L is implicitly
given as (a, b) ∈ L iff a appears in ϕb.3

The different semantics of ADFs over statements S are
based on the notion of a model. A two-valued interpreta-
tion v – a mapping from statements to the truth values true
and false – is a two-valued model (model, if clear from the
context) of an ADF (S,C) whenever for all statements s ∈ S
we have v(s) = v(ϕs), that is, v maps exactly those state-
ments to true whose acceptance conditions are satisfied under
v. Our analysis in this paper will be based on a straightfor-
ward generalization of two-valued interpretations for ADFs to
Kleene’s strong three-valued logic [Kleene, 1952].4 A three-
valued interpretation is a mapping v : S → {t, f ,u} that as-
signs one of the truth values true (t), false (f ) or unknown (u)
to each statement. Interpretations can easily be extended to
assign truth values to propositional formulas over the state-
ments: negation switches t and f , and leaves u unchanged; a
conjunction is t if both conjuncts are t, it is f if some con-
junct is f and it is u otherwise; disjunction is dual. It is also
straightforward to generalize the notion of a model: a three-
valued interpretation is a model whenever for all statements
s ∈ S we have v(s) 6= u implies v(s) = v(ϕs).

The three truth values are partially ordered by≤i according
to their information content: we have u <i t and u <i f and
no other pair in <i, which intuitively means that the classical
truth values contain more information than the truth value
unknown. The pair ({t, f ,u} ,≤i) forms a complete meet-
semilattice5 with the meet operation u. This meet can be read
as consensus and assigns t u t = t, f u f = f , and returns u
otherwise.

The information ordering ≤i extends in a straightfor-
ward way to valuations v1, v2 over S in that v1 ≤i v2 iff

3When presenting examples we will use a notation where ac-
ceptance conditions are written in square brackets behind nodes, e.g.
c [¬(a ∧ b)] denotes a node c which is jointly attacked by nodes a
and b, that is, each attacker alone is insufficient to defeat c.

4A comparable treatment for AFs was given by the labellings of
[Caminada, 2006]. We use standard notation and terminology from
mathematical logic.

5A complete meet-semilattice is such that every non-empty finite
subset has a greatest lower bound, the meet; and every nonempty
directed subset has a least upper bound. A subset is directed if any
two of its elements have an upper bound in the set.



v1(s) ≤i v2(s) for all s ∈ S. The set of all three-valued
interpretations over S forms a complete meet-semilattice
with respect to the information ordering ≤i. The con-
sensus meet operation u of this semilattice is given by
(v1 u v2)(s) = v1(s) u v2(s) for all s ∈ S. The least element
of this semilattice is the valuation mapping all statements to
unknown – the least informative interpretation.

Obviously, a three-valued interpretation v is two-valued if
all statements are mapped to either true or false. The two-
valued interpretations are the ≤i-maximal elements of the
meet-semilattice. For a three-valued interpretation v, we say
that a two-valued interpretation w extends v iff v ≤i w. This
means that all statements mapped to u by v are mapped to
t or f by w. We denote by [v]2 the set of all two-valued
interpretations that extend v. The elements of [v]2 form an
≤i-antichain with greatest lower bound v =

d
[v]2.

Before introducing the new semantics we recall the groun-
ded semantics as defined in [Brewka and Woltran, 2010].6
This semantics – which we are not going to change – is ac-
tually based on an operator ΓD over three-valued interpret-
ations. Brewka and Woltran’s definition is equivalent to the
following one: For an ADF D and a three-valued interpreta-
tion v, the interpretation ΓD(v) is given by

s 7→
l
{w(ϕs) | w ∈ [v]2}

That is, for each statement s, the operator returns the con-
sensus truth value for its acceptance formula ϕs, where the
consensus takes into account all possible two-valued inter-
pretations w that extend the input valuation v. If this v is
two-valued, we get [v]2 = {v}, thus ΓD(v)(s) = v(ϕs) and
v is a two-valued model for D iff ΓD(v) = v.

The grounded model of an ADF D is now defined as the
least fixpoint of ΓD. This fixpoint is in general three-valued;
it always exists since the operator ΓD is ≤i-monotone, as
shown in [Brewka and Woltran, 2010]. Thus the groun-
ded semantics can be seen as the greatest possible consensus
between all acceptable ways of interpreting the ADF at hand.

3 Semantics
As we will see the operator ΓD already provides the right
basis for defining admissible, complete and preferred se-
mantics for arbitrary ADFs.

Recall that for an admissible AF interpretation v we have
the following for all s ∈ S: (1) if v maps s to true, then all
its attackers must be mapped to false; (2) if v maps s to false,
then some attacker of s must be mapped to true. This can
be generalised to ADFs in the following way: a three-valued
interpretation is admissible iff it does not make an unjustified
commitment that the operator ΓD will subsequently revoke.

Definition 2. A three-valued interpretation v for an ADF D
is admissible iff v ≤i ΓD(v).

That is, admissible interpretations may contain “at most
as much” as is imperative by the consensus over all accept-
ance functions. Note that admissible interpretations (as well

6The semantics was called well-founded there. The term groun-
ded is more in line with standard terminology in argumentation.

as the special cases complete and preferred interpretations
to be defined now) are actually three-valued models. For
this reason we will also call them admissible (complete, pre-
ferred) models frequently.

For complete models we stipulate that a model assigns to a
statement exactly those truth values that equal their consensus
over all two-valued interpretations that are at least as inform-
ative.
Definition 3. A three-valued interpretation v for an ADF D
is complete iff ΓD(v) = v.

It immediately follows from this definition that the groun-
ded semantics is always a complete model, and each complete
model is admissible. With our generalization of the admiss-
ible semantics at hand, we next define preferred models.
Definition 4. A three-valued interpretation v for D is pre-
ferred iff it is ≤i-maximal admissible.

As it is the case for AFs, for ADFs we have that all preferred
models are complete. Moreover, the set of all complete mod-
els forms a complete meet-semilattice with the information
ordering ≤i and we can prove the following result, which is
a generalization of Theorem 25 in [Dung, 1995].
Theorem 1. Let D be an ADF.

1. Each preferred model is a complete model, but not vice
versa.

2. The grounded model is the ≤i-least complete model.
3. The complete models of an ADF form a complete meet-

semilattice with respect to ≤i.

Proof. 1. If v is preferred, then v ≤i ΓD(v). We have
to show that ΓD(v) = v. Assume to the contrary
that ΓD(v) 6≤i v, then v <i ΓD(v). Since ΓD is ≤i-
monotone, we get ΓD(v) ≤i ΓD(ΓD(v)), and ΓD(v) is
admissible in contradiction to v being ≤i-maximal ad-
missible. Thus ΓD(v) ≤i v and v is complete.
As a counterexample in the opposite direction, consider
the ADF in Example 2. It has two complete models – its
grounded model and the single two-valued model. Only
the latter is ≤i-maximal.

2. The grounded model is the ≤i-least fixpoint of ΓD and
thus the ≤i-least complete model.

3. Let S be the set of statements in D and define F
as the set of all fixpoints of ΓD. It is clear that
the grounded model of D is the least element of F .
Now let E ⊆ F be finite and non-empty. We have to
show that E has a greatest lower bound in F . Let
e be the greatest lower bound of E in S. The set
{v : S → {t, f ,u} | v ≤i e} forms a complete lattice in
which ΓD possesses a greatest fixpoint which is the
greatest lower bound of E in F . Now let E addition-
ally be directed. We have to show that it has a least
upper bound in F . Let e′ be the least upper bound of
E in S. The set {v : S → {t, f ,u} | e′ ≤i v} forms a
complete meet-semilattice where ΓD possesses a least
fixpoint which is the least upper bound of E in F .

We can also show that our definitions are indeed proper
generalizations of Dung’s notions for AFs.



Definition 5. For an AF F = (A,R), define the ADF as-
sociated to F as DF = (A,R,C) with C = {ϕa}a∈A and
ϕa =

∧
b:(b,a)∈R ¬b for a ∈ A. For an interpretation v, the

set Ev = {s ∈ S | v(s) = t} defines the unique extension as-
sociated with v.
Theorem 2. Let F be an AF and DF its associated ADF. An
extension is admissible, complete, preferred, grounded for F
iff it is admissible, complete, preferred, grounded for DF .

Next, we show that the well-known relationships between
Dung semantics carry over to our generalizations. We also in-
clude the concept two-valued models. As we will see below
in Example 2, two-valued models are not suitable to capture
stable models in general, but they coincide for ADFs associ-
ated to an AF (see the forthcoming Theorem 4).
Theorem 3. LetD be an ADF. The following inclusions hold:

val2(D) ⊆ pref (D) ⊆ com(D) ⊆ adm(D),

where val2(D), pref (D), com(D) and adm(D) denote the
sets of two-valued models, preferred models, complete models
and admissible interpretations of D, respectively.

Now we generalize (and also correct) the definition of
stable models to arbitrary ADFs.
Definition 6. Let D = (S,L,C) be an ADF with
C = {ϕs}s∈S . A two-valued model v of D is a stable
model of D iff Ev equals the grounded extension of the re-
duced ADF Dv = (Ev, L

v, Cv), where Lv = L ∩ (Ev × Ev)
and for s ∈ Ev we set ϕvs = ϕs[b/f : v(b) = f ].

In the reduct, in each acceptance formula we replace state-
ments b ∈ S that v maps to false by their truth value. The
rest of the definition straightforwardly expresses the intuition
underlying stable models: if all statements the model v takes
to be false are indeed false, we must find a constructive proof
for all statements the model takes to be true.
Example 1. Consider the ADF D given by

a [t], b [¬a ∨ c], c [b].

In words, a is always accepted, a attacks b, and the links
between b and c are support links. According to the ori-
ginal definition in [Brewka and Woltran, 2010], {a, b, c} is
the single stable model, violating the basic intuition that all
elements of a stable model should have a non-cyclic justific-
ation: here b is accepted because c is and vice versa.

It is easy to see that according to our new definition,
M1 = {a, b, c} is not stable. The reduced ADF is identical
to the original one, and its grounded semantics leaves b and c
undefined. On the other hand, M2 = {a} is stable, as inten-
ded: the reduced ADF consists of a [t] only, and its grounded
semantics evaluates a to true.
Example 2. Consider the ADF D given by

a [c], b [c], c [a↔ b].

The only two-valued model is v : S → {t}. Since c is true
because a and b are and vice versa, the model contains unin-
tended cyclic support and thus should not be stable. Indeed,
for the reduct we get Dv = D. Let us compute the grounded
semantics of D. We start with interpretation w : S → {u}.

Since none of the acceptance formulas is a tautology, w is
already a fixpoint and thus the grounded model of D. Hence
v is not a stable model and D has no stable models, just as
intended. Since v is a minimal model of D the example il-
lustrates that in Definition 6 we actually need the grounded
semantics; requiring Ev to agree with some minimal exten-
sion of the reduct is insufficient.

We can also show that our stable models are a proper gen-
eralization of Dung’s stable extensions.

Theorem 4. Let F = (A,R) be an AF and DF its associ-
ated ADF. For any interpretation v for A, the following are
equivalent:

(A) Ev is a stable extension of F ,

(B) v is a stable model of DF ,

(C) v is a two-valued model of DF .

Note that for AF-based ADFs, there is no distinction
between models and stable models. The intuitive explanation
for this is that stable semantics breaks cyclic supports, which
cannot arise in AFs because they cannot express support.

4 Complexity
For this section, let D = (S,L,C) be an ADF where C is
represented by a collection {ϕs}s∈S of propositional formu-
las. As our first important complexity result, we show that al-
though expressiveness increases in the step from AFs to ADFs,
the complexity of deciding existence of a two-valued model
(stable extension in AF terminology) stays the same.

Proposition 5. Deciding whether D = (S,L,C) has a two-
valued model is NP-complete.

Proof. For membership, we can guess an interpretation
v : S → {t, f} and in polynomial time check whether
v(s) = v(ϕs) for each s ∈ S.

For hardness, let ψ be a propositional formula over a
vocabulary P . We construct an ADF Dψ that has a model
iff ψ is satisfiable. Set S = P ∪ {s}, L = S × S and for
the acceptance formulas set ϕp = p for each p ∈ P and
ϕs = ¬s ∧ ¬ψ. We have to show that Dψ has a model iff
ψ is satisfiable. If ψ is satisfiable, there exists a satisfying
valuation v for P . Then v(¬ψ) = f and v(s) = f and v
is a model for Dψ . Now let ψ be unsatisfiable and assume
that Dψ has a model v. Obviously v(¬ψ) = t and thus
v(s) = v(ϕs) = v(¬s ∧ ¬ψ) = v(¬s), contradiction.

Note that deciding whether D has a three-valued model is
trivial, since the grounded model always exists. However,
verifying that a given interpretation is the grounded model is
not trivial. The proof of the next result is quite laborious,
but both membership and hardness parts work by reducing
to and from the DP-complete problem of checking whether a
propositional formula φ is satisfiable and a formula ψ is valid.

Theorem 6. Verifying that a three-valued interpretation v is
the grounded model of an ADF D is DP-complete.

Based on this result and its proof we can show the same
complexity bounds for arbitrary fixpoints of ΓD, that is, for
the complete models of an abstract dialectical framework.



Corollary 7. Verifying that a three-valued interpretation v is
complete in an ADF D is DP-complete.

Checking that a two-valued interpretation is a stable model
for D now essentially boils down to computing the grounded
semantics of the reduct.

Proposition 8. Verifying that a two-valued interpretation v
is a stable model for D is in DP.

Proof sketch. Verifying that v is a model of D and construct-
ing the reduct Dv can be done in polynomial time; checking
thatEv is the grounded extension is in DP by Theorem 6.

This immediately leads to the containment part of the next
result. For its hardness part, we can adapt the proof of The-
orem 6.12 in [Denecker et al., 2004].

Theorem 9. Deciding whether D has a stable model is ΣP
2 -

complete.

We can also show that the additional expressiveness of
ADFs in comparison to AFs is computationally significant in
the case of admissible semantics.

Proposition 10. Verifying that a three-valued interpretation
v is admissible in an ADF D is coNP-complete.

Proof. For membership consider the co-problem, i.e. verify
that v is not admissible in D. Guess a statement s ∈ S such
that v(s) ∈ {t, f} and a two-valued interpretation v′ that ex-
tends v. Check that v is not admissible, i.e. v′(ϕs) 6= v(s).

For hardness we provide a reduction from the problem if
a given propositional formula φ over vocabulary P is valid.
Construct an ADF D with statements P ∪ {a}, where a /∈ P
and ϕs = s if s ∈ P and ϕa = φ. Further construct a three-
valued interpretation v with v(s) = u for s ∈ P and v(a) =
t. We show that v is admissible iff φ is valid. The set of two-
valued extensions v′ of v, if restricted to P , equals the set of
possible two-valued interpretations of φ. Hence if φ is valid,
v will be admissible, since then all two-valued interpretations
are models of φ and likewise for all extensions v′ of v we have
v′(ϕa) = t. Similarly if φ is not valid then the consensus of
the extensions of v will evaluate a to u or f , since there is an
interpretation that falsifies φ and hence an extension v′ of v
with v′(ϕa) = f , and v is not admissible.

5 Preferences in ADFs
Since ADFs completely specify – via their acceptance con-
ditions – in what situations a node is to be accepted, there
is strictly speaking no room for adding preferences. How-
ever, preferences provide a convenient alternative to defining
acceptance conditions for each node individually, in partic-
ular in the restricted case where each link is either attack-
ing or supporting.7 [Brewka and Woltran, 2010] already
contained a short discussion of preferences defined over the
links in an ADF. Here we are interested in preferences over
the nodes. This is more in line with existing approaches to

7Similarly [Brewka and Woltran, 2010] showed how ADFs can be
specified by assigning weights to links and by using these weights
together with proof standards for generating the actual acceptance
conditions.

handle preferences and values [Amgoud and Cayrol, 1998;
Bench-Capon, 2003] in Dung frameworks. In fact, what we
are aiming for is an approach that generalizes the one from
Amgoud and Cayrol.
Definition 7. A prioritized ADF (PADF) is a tuple A =
(S,L+, L−, >) where S is the set of nodes, L+ and L− are
subsets of S×S, the supporting and attacking links, and > is
a strict partial order (irreflexive, transitive, antisymmetric) on
S representing preferences among the nodes.
Here (a, b) ∈ > (alternatively: a > b) states that a is
preferred to b. We define the semantics of prioritized
ADFs via a translation to standard ADFs: A translates to
trans(A) = (S,L+ ∪ L−, C), where for each node n ∈ S
the acceptance condition Cn is defined as: Cn(M) = t iff
for each a ∈ M such that (a, n) ∈ L− and not n > a we
have: for some b ∈ M , (b, n) ∈ L+ and b > a. Intuitively,
an attacker does not succeed if the attacked node is more pre-
ferred or if there is a more preferred supporting node.
Example 3. Assume the parents of statement g are a, b, c, d,
(a, g) is a supporting link, (b, g), (c, g) and (d, g) are attack-
ing. Moreover, let g > d and a > c. The acceptance condi-
tion for g is obtained as a conjunction of implications, one for
each attacker which is not strictly less preferred than g. The
left side of the implication consists of the attacker, the right
side is the disjunction of those supporting nodes which are
more preferred than the attacker. In the example we obtain
ϕg = (b→ f) ∧ (c→ a) or, equivalently ¬b ∧ (c→ a).

This handles the special case of prioritized AFs exactly like
in [Amgoud and Cayrol, 1998].
Proposition 11. Let F = (S,Att,>) be a PAF in the sense of
[Amgoud and Cayrol, 1998]. E is a stable (preferred, groun-
ded) extension of F iff E is a stable (preferred, grounded)
extension of the PADF A = (S, ∅, Att,>).

Often preferences, rather than being given in advance, are a
matter of debate themselves, and whether node a is preferred
over node b may dynamically depend on what else is accep-
ted. We now show how this can be modeled in ADFs. To do so
we have to deviate somewhat from the abstract view underly-
ing ADFs (and also Dung AFs) that the nodes themselves are
atomic entities whose meaning is not further analyzed. Here
we will assume that some of the nodes represent preference
information.8

In a nutshell, we handle dynamic preferences as follows.
We first guess a (stable, preferred, grounded) extension M .
Some nodes in M will carry preference information. We ex-
tract this information and check whether M can be recon-
structed under the preference information, thus verifying that
the preferences represented in the model itself were taken into
account adequately.
Definition 8. An abstract dialectical framework with dy-
namic preferences (DADF) is a tuple A = (S,L+, L−, P )
where S is the set of nodes, L+ and L− are subsets of S×S,
the supporting and attacking links, and P : S → S × S is a
partial function.

8This is similar in spirit to the dynamic treatment of preferences
via arguments attacking links in [Modgil, 2009].



The function P assigns preference information to some of
the nodes in S. If P (a) = (b, c) then node a carries the in-
formation that b is preferred over c. For a set of nodesM ⊆ S
we use >M to denote the smallest strict partial order on S
containing the set {(b, c) | P (a) = (b, c) for some a ∈M}.
Note that>M may be undefined, e.g. ifM contains two nodes
with conflicting preference information. The semantics of
DADFs is now defined as follows:
Definition 9. Let D = (S,L+, L−, P ) be a DADF. E is a
(stable, preferred, grounded) extension ofD iff>E is defined
andE is a (stable, preferred, grounded) extension of the PADF
DE = (S,L+, L−, >E).

This has some similarity with the treatment of dynamic
preferences in default logic [Brewka, 1994], where it is
checked whether a default logic extension E can be con-
structed in a way compatible with the preference information
contained in E. For ADFs corresponding to Dung AFs this
provides an alternative to Modgil’s more demanding exten-
ded AFs [Modgil, 2009].
Example 4. (after [Brewka, 1994]). Assume we have
two conflicting arguments s1, s2 about whether a contract
is perfected. Argument s3 says s1 is to be preferred as
it is based on federal law. Argument s4 to the contrary
states s2 should be preferred as it is more recent. The
judge decides (s5) to support s3. It is known (s6) that
the judge’s support has preference over s4. We obtain the
DADF D with S = {s1, . . . , s6}, L+ = {(s5, s3)}, L− =
{(s1, s2), (s2, s1), (s3, s4), (s4, s3)}, P (s3) = s1 > s2,
P (s4) = s2 > s1, and P (s6) = s5 > s4.

ForM = {s1, s3, s5, s6}, we get s1 >M s2 and s5 >M s4.
We must check whether M is obtained as an extension of the
PADF DM = (S,L+, L−, >M ). To do so we translate DM

to the ADF:
s1 [t], s2 [¬s1], s3 [s4 → s5],

s4 [¬s3], s5 [t], s6 [t]

M is the grounded, preferred and stable extension of DM

and thus a corresponding extension of D. D does not have
any other extensions.

Static and dynamic preferences can be combined easily.
One needs both a preference ordering > and a function P .
The ordering >E used to verify that E can be reconstruc-
ted accordingly now is simply the smallest strict partial order
containing both the preferences in E and those in >.

6 ASP-based implementation
We have implemented a system called DIAMOND (DIAlect-
ical MOdels eNcoDing)9 to compute different ADF models
as introduced in this paper. The implementation is based on
the answer set programming (ASP) paradigm and utilizes the
Potassco collection [Gebser et al., 2007]. In [Ellmauthaler
and Wallner, 2012] an ASP-based software system for the se-
mantical notions in [Brewka and Woltran, 2010] was presen-
ted. This system is restricted to bipolar ADFs and suffers from
the deficiencies of the original ADF semantics.

9The system is available for download and experimentation at
http://www.informatik.uni-leipzig.de/˜ellmau/
diamond.

More detailed comparisons of our system and the other
one will be presented elsewhere. However, preliminary tests
showed that DIAMOND is significantly faster when the se-
mantics agree, albeit the systems are hard to compare as our
system is purely written for clasp, while the other one utilizes
claspD together with optimization techniques.

DIAMOND computes two-valued, stable, grounded, com-
plete, admissible and preferred models. To represent the
problem in an adequate way, we guess possible models and
check whether their properties are satisfied. For the stable,
grounded, and complete models the operator ΓD has been
implemented and an iteration technique is used to find the
fixpoints. Similar techniques were used in an ASP tool for
Dung’s AFs [Egly et al., 2010].

7 Related work and conclusions
Denecker et al. [2004] describe a general method for deriv-
ing approximations of operators associated with knowledge
representation formalisms. As it turns out, the operator ΓD
defined by [Brewka and Woltran, 2010] is the most precise
(ultimate) approximation of the notion of a two-valued model
for an ADF.10 Denecker et al. [2004] proceed to study sev-
eral ultimate semantics for logic programming; for example,
our grounded semantics would be called the ultimate Kripke-
Kleene semantics in their approach. They also define ulti-
mate stable models for logic programs – these are similar to
our stable models but in effect require the construction of two
reducts with different fixpoint computations. It may well be
that ADFs constitute a formalism where ultimate approxima-
tion arises naturally. A further study is left for future work.

Strass [2013] has the objective of locating abstract dialect-
ical frameworks within the realm of nonmonotonic formal-
isms, such as propositional logic programs and Dung AFs. In
the course of that work, he also discusses several operator-
based semantics for ADFs. However, the operator Strass uses
is manually defined and less precise than the original operator
from [Brewka and Woltran, 2010] which we use in this work.
Recall further that we view ADFs as abstraction tools rather
than KR languages and our objective is to increase their range
of applicability in this regard. That said, it remains an import-
ant objective of future work to study the relationship between
the operators of Brewka and Woltran [2010] and Strass [2013]
and the respective semantics defined through them.

The shift from a two-valued to a three-valued perspective
in argumentation can be attributed to Caminada [2006] who
introduced three-valued labellings (assignments of in , out or
undec to each argument) as an alternative to Dung’s extension
based definitions. Our ADF generalizations of AF extension
based semantics also extend to labellings: it is clear that la-
bellings and three-valued interpretations are interchangeable.

In his equational approach Gabbay [2012] goes even fur-
ther, admitting arbitrary values between 0 and 1 in the context
of Dung-style argumentation frameworks. It is a topic of fur-
ther research whether a similar generalization to continuous
values is beneficial in the context of ADFs as well.

10According to personal communication this was conjectured by
Mirosław Truszczyński. It was later proven in [Strass, 2013].
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