TECHNISCHE
UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Modeling the Suppression Task under Weak Completion and
Well-Founded Semantics

Emmanuelle-Anna Dietz  Steffen Holldobler Christoph Wernhard.

KRR Report 13-02

Mail to Bulk mail to Office Internet N

Technische Universitdt Dresden Technische Universitdt Dresden Room 2006 http://www.wv.inf.tu-dresden.de ‘
01062 Dresden Helmholtzstr. 10 Nothnitzer Strafie 46
01069 Dresden 01187 Dresden V)

DRESDEN



Modeling the Suppression Task under
Weak Completion and Well-Founded Semantics

Emmanuelle-Anna Dietz,* Steffen Holldobler,** Christoph Wernhard***

International Center for Computational Logic, Technische Universitit Dresden,
D-01062 Dresden, Germany

Abstract: Formal approaches that aim at representing human reasoning should be evalu-
ated based on how humans actually reason. One way in doing so, is to investigate whether
psychological findings of human reasoning patterns are represented in the theoretical model.
The computational logic approach discussed here is the so called weak completion seman-
tics which is based on the three-valued Lukasiewicz logic. We explain how this approach
adequately models Byrne’s suppression task, a psychological study where the experimental
results show that participants’ conclusions systematically deviate from the classical logically
correct answers. As weak completion semantics is a novel technique in the field of Compu-
tational Logic, it is important to examine how it corresponds to other already established
non-monotonic approaches. For this purpose we investigate the relation of weak completion
with respect to completion and three-valued stable model semantics. In particular, we show
that well-founded semantics, a widely accepted approach in the field of non-monotonic rea-
soning, corresponds to weak completion semantics for a specific class of modified programs.

1. Introduction

Byrne’s suppression task (Byrne, 1989) is a psychological study showing that people
with no previous exposure to formal logic suppress previously drawn conclusions when
additional information becomes available. Consider the following example: If she has an
essay to write, then she will study late in the library and She has an essay to write. Most
subjects (96%) conclude: She will study late in the library. If subjects, however, receive
an additional conditional: If the library stays open, she will study late in the library,
then only a minority (38%) concludes: She will study late in the library. This shows that
conclusions which are correct with respect to classical logic can be suppressed in human
reasoning by the presence of an additional conditional, and thus provides an excellent
example for the human capability to draw non-monotonic inferences. In the complete
experiment of Byrne, participants received the following three conditionals:

SIMPLE: If she has an essay to write, then she will study late in the library.
ALTERNATIVE: If she has a textbook to read, then she will study late in the library.
ADDITIONAL: If the library stays open, then she will study late in the library.
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Conclusion Given Fact Group I Group II  Group 111

l e 96% 96% 38%
=l —e 46% 4% 63%

e l 53% 16% 55%
—e -l 69% 69% 44%

Table 1. Empirical results about suppression obtained by Byrne (1989).

The participants were divided into three groups: Group I received the SIMPLE con-
ditional, group II the SIMPLE and the ALTERNATIVE conditional, and group III the
SIMPLE and the ADDITIONAL conditional. In addition, the participants received a posi-
tive or negative fact, and were asked whether they conclude from the given conditionals
and a given fact a further given fact. The positive and negative facts involved in the
experiments are as follows:

e: She has an essay to write.

—e: She does not have an essay to write.
l:  She will study late in the library.

=l: She will not study late in the library.

Table 1 gives an overview on the empirical results by Byrne (1989) about the suppression
task. Percentages indicate the proportion of subjects in each of the groups that have
drawn the respective conclusion from the indicated given fact and the conditionals.
Where suppression took effect, the propositions are highlighted in bold. Similar results
have been obtained by other researchers, see for example Dieussaert et al. (2000).

In investigations into human reasoning over the past decades, classical (propositional)
logic has often played the role of a normative concept. However, empirical research
suggests that humans systematically deviate from the classically correct answers, which
is sometimes used as an argument against the usefulness of logic in the area of human
reasoning. We do not follow this argument, but strive to model human reasoning —
including its systematic deviations from “classical correctness” — with techniques from
the field of Computational Logic, in particular, non-monotonic reasoning and three-
valued semantics.

Just modeling is not satisfying: Strube (1992) argues that knowledge engineering
should also aim at being cognitively adequate. Accordingly, when evaluating computa-
tional approaches which try to explain human reasoning we insist on assessing their
cognitive adequacy. Strube distinguishes between weak and strong cognitive adequacy:
Weak cognitive adequacy requires the system to be ergonomic and user-friendly, whereas
strong cognitive adequacy involves an exact model of human knowledge and reasoning
mechanisms that follows the relevant human cognitive processes. Knauff et al. (1997,
1995) define cognitive adequacy in the setting of qualitative spatial reasoning, where
the authors distinguish between conceptual cognitive adequacy and inferential cognitive
adequacy: Degrees of conceptual cognitive adequacy reflects to which extent a system
corresponds to human conceptual knowledge. Inferential cognitive adequacy focuses on
the procedural part and indicates whether the reasoning process of a system is struc-
tured similarly to the way humans reason. There seems to be a correspondence between
these definitions and the proposition made by Stenning & van Lambalgen (2005, 2008)
to model human reasoning by a two step process: Firstly, human reasoning should be
modeled by setting up an appropriate representation (conceptual cognitive adequacy)
and, secondly, the reasoning process should be modeled with respect to this representa-
tion (inferential cognitive adequacy).

It is straightforward to see that classical logic cannot model the suppression task ade-
quately. At least some kind of non-monotonicity is needed. As appropriate representation



to model the suppression task, Stenning & van Lambalgen (2005, 2008) propose logic
programs under completion semantics based on the three-valued logic used by Fitting
(1985), which itself is based on the three-valued logic by Kleene (1952). Unfortunately,
some technical claims made by Stenning & van Lambalgen are wrong. Holldobler &
Kencana Ramli (2009a,b) have shown that the three-valued logic proposed by Stenning
& van Lambalgen is inadequate for the suppression task, but that the suppression task
can be adequately modeled if the three-valued logic by Lukasiewicz (1920) is used in-
stead. The computational logic approach in (Dietz et al., 2012; Holldobler & Kencana
Ramli, 2009b) models the suppression task by means of logic programs under the so-
called weak completion semantics, a variation of Clark’s completion. They show that
the conclusions drawn with respect to least models correspond to the findings by Byrne
(1989) and conclude that the derived logic programs under Lukasiewicz logic are infer-
entially cognitively adequate for the suppression task. Wernhard (2011, 2012) discusses
the application of different logic programming semantics to model human reasoning
tasks according to the approach by Stenning & van Lambalgen and the roles of three-
valuedness in this context in a different technical framework based on circumscription.

In this paper we focus on how weak completion semantics relates to other well-
established non-monotonic logic approaches. As often described in the literature, most
approaches differ in how logic programs behave with respect to cycles. A program is said
to contain a cycle when at least one atom depends on itself, in the following sense: For
all clauses of the form p <— g1 A... AgmA—r1A...A—ry occurring in a program, the head
atom p depends on all atoms occurring in the body, that is, on q1,...,¢m,71,...,7n. In
addition, the depends is transitive. Consider the following example, adapted from Przy-
musinski (1994):

Ppy = {fly < bird A —abnormal, bird},
Peyele = {abnormal « irregular, irregular <— abnormal}.

The program Py contains two cycles because abnormal and irregular depend on them-
selves. Przymusinski (1994) shows that programs with cycles might not reflect intuitive
interpretations. For instance, under Clark’s completion semantics (Clark, 1978) we can
conclude fly from Pp,. However, if we extend Pp, with P.yce, we cannot conclude fly
anymore. This seems to be counterintuitive. Moreover, under the completion semantics
as well as the stable model semantics (Gelfond & Lifschitz, 1988), cycles established
through an odd number of negated atom occurrences can lead to inconsistency, that is,
to programs which do not have a model: A program containing a clause p < —p does
not have a stable model and the completion of this clause, p <> —p, is inconsistent.

A solution to these problems is to consider three-valued interpretations instead of total
(two-valued) interpretations. Przymusinski (1990) proposed three-valued stable model
semantics, also known as partial stable model semantics, an extension of stable model
semantics. Under three-valued stable model semantics the program {p < —p} has a
unique three-valued model in which p is unknown. If we extend Pp, with

Phreg-cycle = {abnormal < —regular, reqular < —abnormal},

then we do not obtain just a single unique three-valued stable model but three three-
valued stable models: one model where fly, bird and regular are true whereas abnormal
is false, another one where bird and abnormal are true whereas fly and regular are false,
and finally one where bird is true and all other atoms are unknown. The challenge is to
find the model that corresponds most likely to the model a human would generate in a
certain commonsense setting, rather than the perfect model in a purely logical context.



Well-founded semantics introduced by Van Gelder et al. (1991) is a widely accepted
approach in the field of non-monotonic reasoning and is one step towards this direction.
Compared to Clark’s completion or stable model semantics, well-founded semantics is
considered to be more accurate for programs with positive or negative cycles (Przy-
musinski, 1994). For instance, in the well-founded model of Ppeg-cycte abnormal and
regular are unknown and in the well-founded model of P.yc. abnormal and irregular
are false. Under completion semantics there does not even exist a model of Py cycie-
Atoms involved in positive cycles are false whereas atoms involved in negative cycles
stay unknown. The idea behind this distinction is that the negation of abnormal or
irreqular shall not support the truth of any other element in the program. For instance,
it abnormal or regular would be false in the well-founded model of Pey.cycie, they
would be misleading for further positive conclusions and generate inconsistency. The
least three-valued stable model coincides with the well-founded model (Przymusinski,
1990).

As well-founded semantics is a well-established approach in the literature, our main
question of this paper is how does it relate to weak completion semantics? What are
the similarities and where do they differ? Can both approaches adequately represent
the suppression task?

The rest of this paper is structured as follows: In the following Section 2, we provide
the necessary definitions about logic programs, interpretations and models under weak
completion semantics. After that, we briefly review three-valued logics. Section 3 intro-
duces the logic programs representing the suppression task as modeled by Stenning &
van Lambalgen. We explain how the least models of the weak completion are computed
and outline how abduction can be applied to model instances of the suppression task
that involve backward reasoning. In Section 4 we first recapitulate other three-valued
approaches to logic programming from the literature, the three-valued stable model se-
mantics and the well-founded semantics, and discuss specific restrictions of programs
with respect to circular dependency. We proceed by developing technical tools to com-
pare three-valued logic programming semantics by adapting notions that are known for
two-valued logic programming semantics such as supportedness and well-supportedness
to three-valued settings. Section 5 presents the main technical results of this paper and
shows how three-valued stable model semantics and weak completion semantics relate
to each other. Moreover, we show that there is a strong correspondence to well-founded
semantics. Section 6 reviews the suppression task in the light of the different investi-
gated semantics. We conclude in Section 7 with sketching further experiments that seem
suited to compare logic programming semantics with respect to their adequacy to model
human reasoning.

2. Preliminaries

We define the necessary notations we will use throughout this paper and restrict our-
selves to propositional logic as this is sufficient for the purpose of this paper. We assume
a fixed set of atoms, denoted by ATOMS, that is nonempty and finite. Formulas are
constructed from atoms, the truth-value constants T, 1 and U for true, false and un-
known, the unary operator — for negation, the binary connectives A,V for conjunction
and disjunction, as well as the binary connectives <—, <+ for implication and equivalence.
As meta-level notation we use n-ary versions of conjunction and disjunction. If A is an
atom, then A and —A are literals, the positive literal and negative literal, respectively
literals with atom A. We call an implication whose left side is an atom a clause. A



program is a finite set of clauses that have one of the following two particular forms:

A<+ Ly A...N Ly, where n >0, (1)
A+ 1, (2)

where A is an atom and the L; with 1 < ¢ < n are literals. Notice that in case n = 0 the
right side of a clause of form (1) is T. The atom A is called the head of the clause and the
subformula to the right of the implication sign is called the body of the clause. Clauses of
the form A < T are called positive facts, whereas clauses of the form A < L are called
negative facts. To refer to the positive and negative part of a body, we introduce the
following notation: If F' is a conjunction of literals, then pos(F') (neg(F'), resp.) denotes
the conjunction of all positive (negative, resp.) literals in F. To let pos and neg also be
applicable to bodies of negative facts, we define additionally pos(L) := neg(L) :=T.

If P is a program, then atoms(P) denotes the set of all atoms occurring in P. The set
of all clauses with head A in P is called the definition of A in P. If this set is nonempty,
the atom A is called defined in P, otherwise A is called undefined in P. The set of all
atoms that are defined in P is denoted by def(P). The set of all atoms that are undefined
in P, that is, ATOMS \ def(P), is denoted by undef(P).

A normal program — in the standard sense used in the literature on logic programming
—is a program that does not contain negative facts, that is, a program whose clauses are
all of the form (1). If P is a program, then P* denotes the normal program obtained from
P by deleting all negative facts. Obviously, for normal programs P it holds that P = P*.

2.1 Interpretations and Models

An interpretation I is a mapping from the set of formulas to the set of truth values
{T,L,U}, where T means true, L means false and U means unknown. The truth value
of a given formula under a given interpretation is determined according to the corre-
sponding logic, as presented in the following section. We represent an interpretation as
apair I = (I",I') of disjoint sets of atoms where I is the set of all atoms that are
mapped by I to T and I' is the set of all atoms that are mapped by I to L. Atoms
which do not occur in I'" U I+ are mapped to U.

There are two common ways to order three-valued interpretations, which, follow-
ing Ruiz & Minker (1995), we call truth-ordering (=:) and knowledge-ordering (=j):
For interpretations I and J we define I =, J if and only if IT C JT and J+ C IL,
whereas I <j J if and only if ITCJT and I+ C JL.

A model of a formula F' is an interpretation I such that I(F) = T. A model of a
set of formulas is an interpretation that is a model of each formula in the set. Models
that are minimal with respect to the truth- or knowledge-ordering are called truth- or
knowledge-minimal models, respectively. Likewise, models which are least with respect
to the truth- or knowledge-ordering are called truth- or knowledge-least models.

2.2 The Weak Completion of a Program

When mechanisms of non-monotonic reasoning are applied to model human reasoning,
it seems essential that only certain atoms are subjected to the closed world assumption,
while others are considered to follow the open world assumption. Weak completion is

IThis notion of falsechood appears to be counterintuitive at first sight, but programs will be interpreted under
(weak) completion semantics where the implication sign is replaced by an equivalence sign.
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Table 2. Truth tables for three-valued logics. The T’s highlighted in gray indicate that formulas of the form
A < B which are true under < are true under <—g, and vice versa.

a technique that allows both types of predicates to interact within a logic program.
Consider the following transformation for a given program P:

(1) Replace all clauses with the same head A « body;, A < bodys, ..., A < body,,
where n > 1, by A < bodyy V bodys V ...V body,.

(2) For all A € undef(P) add A + L.

(3) Replace all occurrences of < by <.

The resulting set of equivalences is the well-known Clark’s completion (Clark, 1978)
of P, denoted by cP. If step 2 is omitted, then the resulting set is the weak completion
of P, denoted by wcP (Holldobler & Kencana Ramli, 2009b). Consider, for example,
the program P = {p <— ¢, p 7, ¢ < L}. We have def(P) = {p, ¢} and r € undef(P) =
ATOMS \ {p,q}. Then cP = {p <> qVr, ¢ <> L} U{A < L | A € undef(P)}, where
all atoms adhere to the closed world assumption. On the other hand, weP = {p «
gV r, q <+ L}, where only the defined atoms p and ¢ adhere to the closed world
assumption.

2.3 Three-Valued Logics

Since the first modern three-valued logic has been invented by Lukasiewicz (1920),
various different interpretations of the three-valued connectives were proposed. Table 2
gives some quite common truth tables for negation, conjunction and disjunction. For
implication and equivalence it shows different versions: Kleene (1952) introduced the
implication (<), whose truth table is identical to Lukasiewicz implication (<) except
in the case where precondition and conclusion are both mapped to U: In this case, the
value of <k is U, whereas the value of <—; is T. The further common variant <g
of three-valued implication is called seqsz by Gottwald (2001). The displayed versions
of equivalence (4»,, <»g, <>k ) are derived by conjoining the respective implications
with flipped arguments. If we understand operators in a formula with the meaning
specified in Table 2 for {—, A, V, <, 4>}, we say that we consider the formula under
t-semantics. Fitting (1985) combined the truth tables for =, V, A from Lukasiewicz with
the equivalence <> g for investigations within logic programming. The set of connectives
Fitting used is {—, A, V, <>g}.

One should observe that in contrast to two-valued logic, A < B and AV —B are not
always semantically equivalent, neither for <, nor for <—g. Consider, for instance, an
interpretation I such that I(A) = I(B) = U. Then, I(AV —B) = U whereas I(A4 «+,
B) = I(A +g B) = T. However, for the < implication we have that both [(AV—-B) =
Uand I(A+x B)=U.
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Table 3. Overview of the three-valued semantics with corresponding set of connectives.

Stenning & van Lambalgen (2008) suggested to model the suppression task by ex-
tending the logic used by Fitting with <. If we understand operators in this way,
that is, with the meanings of {—, A, V, <k, <>s}, we call this SvL-semantics. Holldobler
& Kencana Ramli (2009b) showed that SvL-semantics leads to technical errors. They
proposed to use t-semantics (cf. 2), which corrects these and allows to adequately model
the suppression task. The erroneous effects of the original suggestion by Stenning & van
Lambalgen (2008) will be demonstrated by two examples in Section 3.2. Under well-
founded semantics, which we will discuss later, the interpretation of the implication can
be modeled by «g (Przymusinski, 1989), which corresponds to the three-valued logic
S3 (Rescher, 1969), that is, {—, A, V, g, <>s}. If we understand operators in a formula
with these meanings, we say that we consider S-semantics.

As indicated by the highlighted T signs in Table 2, whenever a formula is true un-
der <—g then it is true under <, and vice versa. Similarly, the cases where <>, and <>g
have the value T coincide. From this follows that the models of a program or a set of
equivalences obtained by completing a program are under S-semantics exactly the same
as under L-semantics. Table 3 gives an overview of the three-valued semantics with the
corresponding semantics of the set of connectives.

3. Modeling the Suppression Task

To model the suppression task, we follow the two-step approach by Stenning & van
Lambalgen (2005, 2008). In this section, we discuss these steps, together with abduction,
which we apply to model human reasoning in the “backward direction”, as in those
experiments by Byrne where it is investigated whether e (She has an essay to write) or
—e (She does not have an essay to write) is concluded.

3.1 Reasoning Towards an Appropriate Logical Form

In the model of Stenning & van Lambalgen (2005, 2008), the first step of human reason-
ing is reasoning towards an appropriate representation. Conceptual cognitive adequacy
is the goal of the model with respect to this step. In particular, Stenning & van Lambal-
gen argue that conditionals shall not be encoded by inferences straight away, but rather
by licenses for inference. For example, the SIMPLE conditional If she has an essay to
write, then she will study late in the library should be encoded by the clause I < eA—aby,
where ab; is an abnormality predicate expressing that something abnormal is known. In
other words, [ holds if e is true and nothing abnormal is known.

Table 4 shows the representational form of the first part of the suppression task
as modeled by Stenning & van Lambalgen. In the first three cases, in addition to the
conditionals, the participants had to draw conclusions based on the fact that She has an
essay to write (e < T). In the last three cases they had to draw conclusions based on the
fact that She does not have an essay to write (e < L). The predicates aby, abe and abs
represent different kinds of abnormality. For instance, each of the programs Py ay



Conditionals Facts

Pe = {l+ eA—aby, aby + 1, e+ T}
Pevanr = {l+eA-aby, L+ tA-aby, aby + L, aby+ L, e« T}
Perada = {l+ eN—aby, |+ oA —abs, aby < —o, abs + —e, e« T}
P-e = {l + e A —aby, aby «+ L, e+ 1}
Pocranr = {l<eN-aby, l+ tN—aby, aby < L, aby<+ L, e« L}
P-eradd = {l< eN-aby, < oA —abs, aby < —o, abs e, e+« L}

Table 4. Representational form of the “forward reasoning” instances of the suppression task according to Sten-
ning & van Lambalgen (2008).

and Peyaqq contains two clauses with the conclusion I. The programs differ in that in
Peranr the premise of the second clause is an alternative to the first clause, whereas
in Pesaqq the premise of the second clause is an additional to the first clause. That
the second clause in Peyaqq (I < 0 A —abs) takes effect as an additional precondition
for [ is achieved by the clause stating that abj is true when The library does not stay
open (aby <— —o) and the clause that states that abs is true when She does not have an
essay to write (abs < —e).

Adopting the programs obtained by Stenning & van Lambalgen as result of the first
step of reasoning towards an appropriate representation, we will now focus on the second
step, the inferential aspects.

3.2 Reasoning with Respect to Least Models

Under t-semantics, the weak completion of a logic program can have several models.
Consider for example P,y a4q from Table 4. Its weak completion is:

WC Petadd = {l <> (e A =aby) V (o A —abs), aby <> —o, abs <> e, e <> T}.

The interpretations ({e, o}, {aby,abs,l}) and ({e}, {abs}) are both models of wc Pe i a44
under t-semantics. How to know which model is the intended one? In logic programming
and computational logic the intended models are often least models, if they exist. Fol-
lowing Apt & van Emden (1982), least models of logic programs can often be specified
as least fixed points of appropriate semantic operators.

As shown by Hélldobler & Kencana Ramli (2009b), the model intersection property
holds for logic programs under t-semantics, i.e., ({I | I(P) = T}(P) = T, where the
intersection I N J of two interpretations I = (I'T,I+) and J = (J',J*) is defined
as (ITNJT, I+-NJL). Moreover, the model intersection property also holds for the weak
completion of logic programs. This guarantees that each logic program has a least model.
Additionally, the least model of the weak completion of a program P under t-semantics
(Imywc P) is identical to the least fixed point of the following semantic operator, ®g,,
which was introduced by Stenning & van Lambalgen (2008): Let J be the result of the
application of ®g,7, to an interpretation I and a logic program P, denoted by ® g, p(I).
Then we define J as follows:

JT = {A | there exists a clause A < Body € P with I(Body) = T} and
J+ = {A | there exists a clause A < Body € P and
for all clauses A <— Body € P we find I(Body) = L}.



Starting with the empty interpretation I = (@), 0), Im,wc P can be computed by iterating
®g, 1, p. To illustrate this result consider Pt aqq and let Io = (0, 0) in:

I = ®sor.p,y aua (o) = ({€},0)
12 = @SUL,Pe+Add,(Il) = <{€}, {ab3}> = (I)SUL77>5+Add (IQ)

One should observe that ({e},{abs}) is not a model of P.i 444 under SvL-semantics
because the clause I < oA abs € Py 444 is mapped to U under SvL-semantics and not to
T as under t-semantics. This is a counterexample to Lemma 4 (1.) in (Stenning & van
Lambalgen, 2008, p. 194f), which states that the least fixed point of the ®g, 1, p operator
under SvL-semantics is the (knowledge-) minimal model of P. Furthermore, Stenning
& van Lambalgen (2008) claim in Lemma 4 (3.) that all models of ¢ P are fixed points
of ®g,r,p and every fixed point is a model. Consider the completion of P-cy ay, i.e.,

{l <> (e AN=aby) V (t AN —aba), aby <> L, aby <> L, e<> L, t <> L}.

Then t and e are mapped to | and, consequently, [ is mapped to L as well. However,
the least fixed point of @gyr p__, ., is (0, {e,abi, abs}), where ¢ and [ are undefined. This
example also shows that reasoning under SvL-semantics with respect to the completion
of a program is not adequate, since, as shown in Table 1, only 4% of the subjects
conclude —I in this case.

Notice that the operator defined by Stenning & van Lambalgen (2008) differs in a
subtle way from the well-known Fitting operator ®p, introduced in (Fitting, 1985):
The definition of ®5 is like that of ®g,z, except that in the specification of J+ the
first line “there exists a clause A < Body € P and” is dropped. The least fixed point
of ®pp corresponds to the least model of the completion of P under S-semantics, or
equivalently under t-semantics, whereas the least fixed point of ®g,7,p corresponds to
the least model of the weak completion of P under these semantics. If an atom A is
undefined in the program P, then, for arbitrary interpretations I it holds that A € J=+
in ®pp(l) = (JT,J%), whereas, if ®g,7, is applied instead of @, this does not hold for
any interpretation I.

3.3 Backward Reasoning with Abduction

In order to adequately model the “backward reasoning” instances of the suppression
task, corresponding to the last two rows in Table 1, we need to introduce abduction.
The objective of abduction is, given a knowledge base and an observation, to compute an
explanation which, combined with the knowledge base, allows to infer the observation.
Following the approach of Kakas et al. (1993), we consider as an abductive framework
a triple (P, A, E'™) consisting of a program P, called the knowledge base, a set A
of abducibles consisting of the (positive and negative) facts for each undefined atom in
P, and the consequence relation =™ defined for all formulas F' as P ='mv [ if
and only if Im,wcP(F) = T. As observations O we consider sets of literals. A set of
facts £ C A is called an ezplanation for O if PUE is satisfiable and PUE =M [ holds
for each L € O. An explanation £ is said to be minimal if there is no other explanation
E" C & of O. A formula F is said to follow skeptically by abduction from P and O if
there exists an explanation of O and for all minimal explanations £ for O it holds that
PUE E'mwe F. This notion of abductive consequence with respect to least models of the
weak completion has been elaborated in (Holldobler et al., 2011) to model the backward
reasoning cases of the suppression task.

Table 5 shows the representational form of these instances, including the observations
and the respective minimal explanations. In the first three cases, additionally to the



Conditionals O  Minimal &s
P = {l < e A —aby, aby + L} {I} {e<+ T}
Proaw ={l+ eA—aby, |+ tA-abs, aby < L, aby+ L} {I} {e< TH{t« T}
Prraga = {l+ eN-aby,l + oA —abs, aby < —o, abs < —e} {l} {e«+ T, 0+ T}
P = {l + e A —aby, aby + 1} {=l} {e+ L1}
Poiranw ={l < eAN—-aby,l <t N—abg, aby < L, aby <+ L} {1} {e+ L, t+ L}
Piyadd = {l < e N—aby,l < o A —ab3, aby < -0 abs < e} {-l} {e+ L}, {o+ L}

Table 5. Representational form of the “backward reasoning” instances of the suppression task according to
Stenning & van Lambalgen (2008) and Hoélldobler et al. (2011).

conditionals, the participants had to draw conclusions based on the fact that She goes
to the library. In the last three cases they had to draw conclusions based on the fact
that She does not go to the library. For instance, in the case of P;i 4; we know that
She goes to the library, thus O = {l}. There are two independent explanations for this
observation: either e is true (She has an essay to write) or t is true (She has a textbook
to read). For Py aqq, O = {1} is still the case, but now both e and o have to be true to
explain the observation.

4. Well-Founded and Related Semantics

In order to show the correspondence between weak completion and well-founded seman-
tics, we will now review the latter and the related three-valued stable model semantics.
We proceed by giving definitions of certain relevant program classes, which constrain the
allowed possibilities of circular dependency in programs. On this basis, we then develop
three-valued generalizations of the concepts of supported and well-supported models,
which have been originally specified just for two-valued semantics. In this section, un-
less specified otherwise, we quietly consider the S-semantics as the used three-valued
semantics.

4.1 Three-Valued Stable Model and Well-Founded Semantics

Stable models have been originally defined by Gelfond & Lifschitz (1988) in terms of
a program transformation that is often called Gelfond-Lifschitz transformation. Przy-
musinski (1990) extended their approach to three-valued models and used this as basis to
show the relationship to the well-founded semantics. The reduct of a normal program P
with respect to an interpretation I, denoted by P|;, is obtained from P by replacing in
the bodies of all clauses P each negative literal =A by I(—A), that is, with the truth
value constant corresponding to the value of =A under I. Notice that a reduct is still
a set of clauses, although, because truth value constants may now occur in bodies, it is
possibly not a program according to our specification in Sect. 2. An interpretation [ is
a three-valued stable model of P if and only if I is a truth-minimal model of P|;.

In analogy to the well-known T’p operator for two-valued interpretations (Van Emden
& Kowalski, 1976), Przymusinski (1990) introduced an operator ¥p for three-valued
interpretations: Suppose that P is a normal logic program and I is a three-valued
interpretation of P: Define Up(I) = J to be the interpretation given by

(i) J(A) =T if there exists a clause A <— Body € P such that I(Body) = T;
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(ii) J(A) = U if J(A) # T and there exists a clause A < Body € P such that
I(Body) = U;
(131) J(A) = L, otherwise.

This operator can be applied to the sets of implications obtained as reduct P|;. As
shown by Przymusinski (1990), the least fixed point of Wp|, is the truth-least model
of P|;. It has been further shown by Przymusinski (1990) that each normal program
has a knowledge-least three-valued stable model, which coincides with the well-founded
model.

Example: We assume ATOMS = {p, ¢} and consider as a first example P; = {p < ¢}.
As P; does not contain an occurrence of a negative literal in the body of a clause, we
get the reduct P;|; = Py for any interpretation I. The models of P; are:

L=0Ap.d}), L=({paq0), Is=(0.0),
I, = <{p}v {Q}>, Is = <{p}v®>’ Is = <®7 {Q}>

The only three-valued stable model is I because I} < I; for all j € [2,6].
Now let Py = {p - —q, q < —p} and consider the following interpretations:

L={rh{d}), L={d{p}), Iz=(0,0).

The reducts of Py with respect to these interpretations are:
Pol,={p< T, a1}, Poln={p+ L ¢« T} Poly={p VU, ¢« U}

All three interpretations Iy, I and I3 are truth-minimal models of the corresponding
reducts and, hence, they are three-valued stable models of Ps. It is easy to check that
they are the only three-valued stable models of Pa. As I3 <, I; for j € {1,2}, I3 is the
knowledge-least three-valued stable model of P.

Well-founded semantics (Van Gelder et al., 1991) has been defined as follows: A set of
atoms U C atoms(P) is said to be an unfounded set of P with respect to interpretation I
if each atom A € U satisfies the following condition: For each clause A <~ Body € P, at
least one of the following holds:

(1) I(Body) = L.
(2) There is a literal L in pos(Body) with L € U.

Given I and P, the transformations Tp, Up, and Wp are defined as follows:

o Tp(I)={A| there exists a clause A < Body € P with I(Body) = T},
e Up(I) is the greatest unfounded set of P with respect to I,
o Wp(I) =Tp(I)U-Up(I),

where the greatest unfounded set Up(I) of P with respect to I is the union of all
unfounded sets of P with respect to I and ~U = {—=A | A € U}.

Tp, Up and Wp are monotonic transformations. The least fixed point of Wp(I) can
be recursively defined as follows: Let « range over all countable ordinals. The sets I,
and I°° are defined recursively by starting with Iy = (0, 0):

(1) For limit ordinal o, I = |J Ip.

B <a
(2) For successor ordinal a = v+ 1, I,11 = Wp(1,).
(3) Finally, define I =] I,.
6

I, is the least fixed point of Wp where I, = Wp(1,). The least fixed point of Wp([I)

11
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Pr={p<+q} Py ={p <+ —q, p < —q} Ps={p < q, ¢ < p}

Figure 1. Program examples represented as graphs..

is the well-founded model of P (wfmg). A constructive definition of the well-founded
semantics can be found in (Van Gelder, 1989).

4.2 Program Classes with Respect to Cycles

Let P be a program and A, B € atoms(P). A depends negatively on B if and only if P
contains a clause of the form A < Body and —B is in neg(Body). A depends positively
on B if and only if A does not depend negatively on B and P contains a clause of
the form A < Body and B is in pos(Body). A depends on B if and only if A depends
positively or negatively on B. In addition, dependency is transitive, thus, if A depends
on B and B depends on C', then A depends on C, where one negative dependency is
enough to define the whole dependency as negative. As an example consider the three
programs in Figure 1 and their representations as graphs, where the nodes represent the
atoms and the arcs represent the dependencies: An arc labeled “+” represents a positive
dependency and an arc labeled “—” a negative dependency. The program P contains a
cycle if at least one atom occurring in P depends on itself. In Figure 1 the programs Ps
and Ps contain cycles.

Different program classes with respect to the occurrence of cycles are often defined
through level mapping characterizations. A level mapping for a program P is a function
[ : ATOMS — N. We extend the definition to literals by setting [(=A) := I(A4). A
program P is acyclic with respect to a level mapping I if and only if for every clause
A < Body € P and for all literals L in Body we find that {(A) > I(L). A program P is
acyclic if and only if it is acyclic with respect to some level mapping. Consider again P;
in Figure 1. With [(p) = 1 and [(q) = 0 we find that P; is acyclic, whereas Py and Ps3
are not acyclic.

Stratified logic programs have been investigated in (Apt et al., 1988; Przymusinski,
1988). A level mapping characterization of this class of programs can be given as fol-
lows (Hitzler & Wendt, 2005): A program P is stratified with respect to a level mapping
[ if and only if for every clause A <— Body € P we find that I(A) > [(L) for all literals L
in pos(Body), and [(A) > I(L) for all literals L in neg(Body). A program P is stratified
if and only if it is stratified with respect to some level mapping. Programs which only
contain positive cycles are stratified. In our example P53 is stratified, but Ps is not.

Fages (1994) introduced the term positive-order-consistent to define programs that do
not contain positive cycles. Nowadays, the term tight is often used for this property (Er-
dem & Lifschitz, 2003). A level mapping characterization for this class of programs is
defined as follows: A program P is tight with respect to a level mapping [ if and only if
for every clause A <— Body € P we find that {(A) > I(L) for all literals L in pos(Body).
A program P is tight if and only if it is tight with respect to some level mapping.
Programs which only contain negative cycles, are tight programs. In our example Py is
tight, but Ps is not.

Under two-valued semantics, negative odd cycles lead to inconsistency. Consider the
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Three-valued Stable  Models of the Models of the weak

Program P Models of P Completion of P Completion of P
Pr= {p+q} (0, {p,q}) (0, {p,a}) <@,<épé;1}>

({p,q},0)
Py = {p <+ —q, ¢ < —p} ({p}{a}) ({p}{a}) ({r}:{a})

0,0) (0, 0) (0,0)

({a}, {r}) ({a}. {r}) {a}.{r})

Py = {p+q, ¢+ p} 0,{p,q}) 0,{p,q}) 0,{p,q})
(0,0) (0,0)

({p,q},0) ({p,q},0)

Table 6. Program examples and the corresponding three-valued stable models, models of the completion and
models of the weak completion, under the assumption ATOMS = {p, ¢}.

following example:
Pneg-odd = {p = 7¢, g <= T, T4 _'p}-

There is no two-valued stable model of Pey.0q¢ and the completion of Py qq is in-
consistent. Under three-valued stable model semantics atoms stay unknown when they
are involved in negative cycles. Table 6 shows the three-valued stable models, the mod-
els of the completion and the models of the weak completion of our three example
programs P, P, and Ps.

4.3 Three-Valued Notions of Supported and Well-Supported Models

In two-valued logic, the notion of supported model provides an alternate characterization
of the models of Clark’s completion (Apt et al., 1988). We adapt this characterization to
three-valued logics. Our considerations apply to both t-semantics and S-semantics, since
for the relevant classes of formulas both semantics lead to the same model relationship.

Definition 1. An interpretation I is supported with respect to a set of clauses P if and
only if for all atoms A with I(A) # L there exists a clause A <— Body € P such that
I(Body) = I(A).

We say that I is a supported model of P if and only if I is a model of P and is supported
with respect to P. Analogously to the two-valued case, completion and supported models
coincide for three-valued logics:

Lemma 2. For any program P and interpretation I the following two statements are
equivalent:

(1) I is a model of the completion of P.
(2) I is a supported model of P.

Proof. Easy to see from the definition of completion and the truth tables of the three-
valued operators. ]

In order to deal with positive cycles, some approaches propose to eliminate cyclic
support for atoms and leave their truth value either unknown or map them to false. For
two-valued logics, this is captured for example by the notions of grounded models (Elkan,
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1990) and well-supported models (Fages, 1991), that is, models which are supported and
assign T only to atoms that are not involved in positive cycles. Well-supported models
in this sense are exactly the two-valued stable models. We now extend this concept to
three-valued logics:

Definition 3. An interpretation I is well-supported with respect to a level mapping [
and a finite set of clauses P if and only if for all atoms A with I(A) # L there exists a
clause A «— Body € P such that I(Body) = I(A) and for all literals L in pos(Body) it
holds that I(L) < I(A).

We call a clause A < Body that meets the requirement of Definition 3 a supporting
justification of A. We say that I is a well-supported model of P if and only if I is a model
of P and is well-supported with respect to P and some level mapping. The following
lemma follows immediately from the definitions of supported and well-supported models:

Lemma 4. Any well-supported model of a program P is a supported model of P.

For two-valued logics, the correspondence between stable models and well-supported
models has been developed by Elkan (1990) in a stepwise way. We now adapt these steps
to our three-valued setting in the following Lemmas 5-9. As in the case of completion
and supported models, these propositions apply to both t-semantics and S-semantics.

Lemma 5. Any model I of a normal program P is also a model of P|r.

Proof. Immediate from the definition of P|;: We obtain P|; from P by replacing sub-
formulas with truth value constants corresponding to their value under 1. O

Lemma 6. Any well-supported model I of a normal program P is also a well-supported
model of P|;.

Proof. Let A < Body be a supporting justification of A in P with respect to I and a
level mapping [ such that [(A) < I(L) for each L in pos(Body). Let =By A ... A =By,
where n > 0, be neg(Body) and let Body’' be pos(Body) A I(=By) A ... A I(=By). The
clause A < Body' is then a supporting justification in P|;: It is a member of P|;, it holds
that [(A) < (L) for each L in pos(Body') = pos(Body) and the semantic requirements
are met since I(Body') = I(Body). O

Lemma 7. Any well-supported model is truth-minimal.

Proof. By contradiction: Let P be a finite set of clauses and let I be a well-supported
model of P with respect to a level mapping . Assume that [ is not truth-minimal, that is,
there exists a model J of P such that J =<; I and J # I. Let IV := ATOMS\ (IT UT+)
and analogously JY := ATOMS \ (J' U J*). The condition J =<; I and J # I can
then be equivalently expressed as (J' U JY) c (IT U IY). The set of atoms A =
(ITUIY)\ (JTUJY) then must be nonempty. Observe that for all D € A it holds that
J(D)= 1 and I(D) # L. Now let D be one of those members of A whose value of the
level mapping [ is least among the values of [ of the members of A. Let D < Body € P
be a supporting justification of D with respect to I. Then it holds that I(Body) # L
and that {(L) < [(D) for each literal L in pos(Body). Since J is a model of P and we
have J(D) = L, it follows that J(Body) = L. Thus, there must be a literal L in Body
with J(L) = L and I(L) # L. In the case that L is a negative literal =B it must hold
that J(B) = T. Since J' C I it would follow that I(B) = T and thus I(L) = L, in
contradiction to I(L) # L. In the case that L is a positive literal, we have that L € A
and [(L) < (D), in contradiction to the fact that I(D) is a least level mapping value
among the members of A. O
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Lemma 8. For any normal program P and interpretation I, the truth-minimal model
of P|r is well-supported.

Proof. This follows from the fixed point construction of the truth-minimal model of
P|r by the operator ¥ introduced in (Przymusinski, 1990) (see Section 4.1). Well-
supportedness is assured by any level mapping, where an atom is assigned level 7 if
its value is determined in the ith iteration of the application of V. O

Lemma 9. For any normal program P and interpretation I the following two statements
are equivalent:

(1) I is a three-valued stable model of P.
(2) I is a well-supported model of P.

Proof. (1) — (2) Let I be a three-valued stable model of P. It follow that I is a model
of P and it is a truth-minimal model of P|;. By Lemma 8 it holds that I is well-supported
with respect to P|; and some level mapping . Let A <~ Body be a justification of atom A
with respect to P|;. It then holds that I(A) = I(Body) # L and I[(A) > I(L) for all
literals L in Body. In P there must be a clause A < Body from which A < Body
has been obtained in forming the reduct. From the construction of P|; it follows that
pos(Body' ) = pos(Body) and that I is a model of neg(Body’) and thus A < Body is a
justification of A with respect to P.

(2) — (1) By Lemma 6 and 7 any well-supported model I of P is a truth-minimal
model of P|;, and thus a stable model of P. O]

Lemma 10. Any three-valued stable model I of P is a model of the completion of P.
Proof. This follows immediately from Lemma 2, 4 and 9. O

Figure 2 on page 16 summarizes the correspondences between several two- and three-
valued semantics, including results reported in the literature so far. For instance, Fages
showed that for tight logic programs under two-valued semantics, the stable models
coincide with the models of the completion. Pzymusinski showed that the knowledge-
least three-valued stable model coincides with the well-founded model.

5. Weak Completion and Well-Founded Semantics

With Theorem 11 below we now show that the knowledge-least model of the weak com-
pletion is identical to the well-founded model of the program, after a transformation
that essentially effects simulation of the treatment of undefined atoms under weak com-
pletion. This transformation is specified as follows: We assume that ATOMS is the union
of disjoint sets ATOMS' and AUXATOMS := {n_A | A € ATOMS’}. Only members of
ATOMS’ are allowed to occur in input programs. For such programs P we define

Pred = Ptu ) {4« -nA nA« AL
Acundef(P)

We assume that atoms in AUXATOMS only occur in programs P™M°¢ resulting from the
indicated transformation. As before in Sect. 4.3, our considerations in this section apply
to both t-semantics and S-semantics, where for the investigated classes of formulas both
semantics lead to the same model relationship. The coincidence of weak completion and
well-founded semantics can now be stated as follows:
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Figure 2. Overview of several two- and three-valued semantics. We show the correspondences in the gray box.
Pmod is defined as P+ U UAeundef(P){A + —n_A4, n_A + = A} where PT is P without negative facts.

1 Supported and well-supported models are discussed in Section 4.3.

2 Stable models are discussed in Section 4.1.
3 Models of the completion are discussed in Section 2.2.



Theorem 11. For any tight program P and interpretation I the following two state-
ments are equivalent:

(1) I is the knowledge-least model of the weak completion of P.
(2) I is the well-founded model of P™9.

In the rest of this section we develop the proof of Theorem 11, which involves further
auxiliary definitions and some intermediate results, in particular about the correspon-
dence between the three-valued completion semantics and three-valued stable model
semantics 1. We first note some properties of P™°¢, which follow easily from its defini-
tion:

Lemma 12. (i) If a program P is tight, then P™9 is also tight.
(ii) For any program P it holds that P™9 is a normal program.

If we consider not just knowledge-least models, we have to map between interpre-
tations that assign to the members of AUXATOMS values as required by P™9 and
interpretations where the value of members of AUXATOMS is always unknown. To this
end, we define the following two conversions for interpretations I and sets of atoms S

ITod = (ITu{nA|AeSnIt}, Itu{nA|AeSNIT}).
[invmed .— (1T \ AUXATOMS, I+ \ AUXATOMS).

Notice that for all sets of atoms S C ATOMS’, whenever an interpretation I is a model
of {n_A+ -A| Aec S}, then

I = (Iinvmod)g)od )

We can thus conclude from I = P™°d that (I i""m°d)umnc:jif(73) = Pmd and that for all

interpretations I such that I = {n_A <> =A | A € undef(P)} the statements I = pmed
and (I '”"m"d)umn‘fjdef(m = P™od are equivalent. We can now state a correspondence between

the weak completion and the completion:

Lemma 13. For any program P and interpretation I the following two statements are
equivalent:

(1) I is a model of the weak completion of P.
(2) Iﬂ%‘if(m is a model of the completion of P™9.

Proof. Let I be a model of c’P. Based on the second step of the definition of ¢ P, for
every A € undef(P) we find A € I+. By adding the clauses A <~ —-n_A4, n_A < —-A
for every A € undef(P) in the construction of P™°¢  the second step in the definition
of completion doesn’t apply anymore, and thus A can be either true, false or unknown.
This corresponds to the definition of the weak completion of P. With this observation
the Lemma follows immediately from the fact that the definitions of all other atoms in
P and P™9 are identical. O

The relationship between Igmd and indicated above allows to express Lemma 13

equivalently also with respect to interpretations I and I™"vmed:

Iinvmod

I Pereira et al. (1991) showed the correspondence between contradiction free extended stable model semantics and
extended stable model semantics, an extension of well-founded semantics by introducing a similar transformation
as for P™°d where the transformed program is extended with the following clauses: A «+ —A’, A’ + —A and
A’ + —A’. A further early documented use of the pattern A < —A’, A’ < —A was presented in the context of
abduction (Satoh & Iwayama, 1991).
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Lemma 14. For any program P and interpretation I such that I |={n_A <+ —A|A¢€
undef(P)} the following two statements are equivalent:

(1) I'™mod s model of the weak completion of P.
(2) I is a model of the completion of P™.

We now transfer Lemma 13 to knowledge-least models:

Lemma 15. For any program P and interpretation I the following two statements are
equivalent:

(1) I is the knowledge-least model of the weak completion of P.
(2) I is the knowledge-least model of the completion of P™9.

Proof. By (Holldobler & Kencana Ramli, 2009b), there must exist a knowledge-least
model of the weak completion of P. From Lemma 13 we can thus conclude that the
statement (1) is equivalent to

(3) I S;‘é‘if(m is the knowledge-least model of the completion of P™°d,

By results from (Hélldobler & Kencana Ramli, 2009b) it follows also that if I is the
knowledge-least model of the weak completion of P, then for all atoms A € undef(P)

it holds that I(A) = U. Thus, if I satisfies (1), then I = Iﬂ%if(?)‘ Hence statement (1)

implies (2). That also statement (2) implies (1) can be shown as follows: If I is a model

of the completion of P™9, then it must hold that I = (Ii“"m°d)umn%if(73), and thus, by the

equivalence of (3) and (1), I'™™°d is the knowledge-least model of the weak completion
of P. We then have Ji"vmed = (Iinvm°d)’u"n‘zj‘lf(73), which implies 7'"vmed = T, O

Fages (1994) showed that under two-valued semantics the models of the completion
of a normal logic program P coincide with the stable models of P if P is tight. In the
following lemma, we transfer this result, which is sometimes called Fages’ theorem, to
three-valued semantics.

Lemma 16. For any tight normal program P and interpretation I the following two
statements are equivalent:

(1) I is a model of the completion of P.
(2) I is a three-valued stable model of P.

Proof. (1) — (2) This follows immediately from Lemma 10.

(2) — (1) By contradiction: Assume that P is tight and that I is a model of the
completion of P, but not a three-valued stable model. By Lemma 2 and 9, interpreta-
tion I is supported but not well-supported. Then for all level mappings [ there exists
an atom A ¢ I+ such that for all clauses A < Body € P with L in pos(Body) such that
I(L) < I(A) does not hold. Because I is a model of the completion of P such a clause
must indeed exist. But then there is a positive cycle in the program, in contradiction to
the precondition that P is tight. O

In the following two corollaries we instantiate Lemma 16 with P™°¢ and restrict the
considered interpretations to knowledge-least models.

Corollary 17. For any tight program P and interpretation I the following two state-
ments are equivalent:

(1) I is a model of the completion of P™.
(2) I is a three-valued stable model of P™9.
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Proof. By Lemma 12 it holds for all tight programs P that P™°9 is normal and tight.
The corollary then is an immediate consequence of Lemma 16. 0

Corollary 18. For any tight program P and interpretation I the following two state-
ments are equivalent:

(1) I is the knowledge-least model of the completion of P™9.
(2) I is the knowledge-least three-valued stable model of P™9.

Proof. By Lemma 15 the completion of P™°¢ admits a knowledge-least model. From
Corollary 17 follows that the set of three-valued stable models of P™9 and the set
of models of the completion of PM°9 are the same. Therefore, P™°¢ must also have a
knowledge-least three-valued stable model, which must be identical to the knowledge-
least model of the completion of P. O

Przymusinski (1990) has shown that knowledge-least three-valued stable models coincide
with well-founded models:

Lemma 19. For any normal program P and interpretation I the following two state-
ments are equivalent:

(1) I is the knowledge-least three-valued stable model of P.
(2) I is the well-founded model of P.

In the following corollary we instantiate this result by Przymusinski with P™°d.

Corollary 20. For any program P and interpretation I the following two statements
are equivalent:

(1) I is the knowledge-least three-valued stable model of P™9.
(2) I is the well-founded model of P™9.

Proof. Follows as corollary from Lemma 19 and Corollary 12.ii. O
Finally we combine the material developed in this section to prove Theorem 11:

Proof of Theorem 11. Let P be a tight program and let I be an interpretation. Then
the following four statements are equivalent:

(1) I is the knowledge-least model of wc P.

(2) I is the knowledge-least model of cP™¢ (by Lemma 15).

(3) I is the knowledge-least three-valued stable model of P™°¢ (by Corollary 18 and
Lemma 12.i).

(4) I is the well-founded model of P™9 (by Corollary 20).

O]

In the appendix we show the correspondence between the knowledge-least model of the
weak completion and the well-founded model with another proof technique, where level
mapping characterizations of both semantics are directly compared. While this applies
only to knowledge-least models, with the techniques applied in this section, we have
been able to prove results that apply to three-valued models in general, in particular
Lemma 13 and 16.

6. Modeling the Suppression Task with Different Three-Valued Semantics

We now return to the suppression task and show the results obtained with the dif-
ferent discussed semantics for the program representations presented in Table 4 and
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P Im we P /wfmg Pmod wfmg P+ Byrne

77@ ({6, l}, {ab1}> {6, l}, { 0, t, abl, ab2, ab3 } 96% 1
Per At ({e,l},{abi,abs}) {e,1},{lo,t, abi,aby, abg }) 96% 1
Pet Add ({e}, {abs}) {e,laby }, {1l 0,t,aba, abs}) 38% 1

( )
( )
( )
P-e 0,{e,1,ab1}) (0,{e,l,l0,t; aby, abs,abs }) 46% -l
( )
( )

Poct Al (0, {e,aby,aba}) 0,{e, L 0,t, aby,aby, abs } 4% =l
P-ctAdd ({abs},{e,1}) {abs },{e, 1, o, aby,aby }) 63% -l

Table 7. The results of the first part of the suppression task. The highlighted conclusions show the differences
between the conclusions of the least models of the weak completion and the well-founded models.

Im,wc (PUE)/
P o ¢ wimg (P U &)med) wfmg P+ Byrne
P I e« T ({e, 1}, {abi}) e,l},{lo,t, aby,laby,abs }) 53% e

{ )
Prt it I e« T ({el},{ab,ab2}) {{e,l},{l0,t, abi,abs,labs }) 16% e
t< T  ({i,t},{aby,ab2}) gl,t},{ e, 0, aby,abs, abs }>>

Pl-i—Add l € < Ta <{67 l7 0}’ {ably ab3}> €, lv 0}7 { tv abl’ ab27 ab3} 55% €
o+ T

Py -l e+ L (0,{e,1,ab1}) (0,{e, 1, 0,t, aby, aby,abs }) 69% —e

,Pﬂl—i-Alt -l e L, <®7 {67 [,t,aby, ab2}> <®7 {67 L 0, t, aby, abs, abg }> 69% —e
1+ L

Poizagg —l e+ L ({abs},{e,1}) ({laby, abs},{e,l,l0,t,abs }) 44% —e
0+ L ({ab1},{l,0}) ({aby, abs },{le,,0,t absy })

Table 8. The results of the second part of the suppression task. The highlighted conclusions show the differences
between the conclusions of the least models of the weak completion and the well-founded models.

Table 5. We define ATOMS’ = {e, [, 0,t,aby, abs,ab3} and for the well-founded models
P+ we assume the models w.r.t. ATOMS = ATOMS’. For the least models of the weak
completion of P and the well-founded models of P™°? we assume the models w.r.t.
ATOMS = ATOMS' U U scynder(py{4 < —n-A, n_A « —A}. Table 7 shows the least
models of the weak completion and the well-founded models from the first part of the
suppression task. Notice that for the well-founded model only normal logic programs
(PT*) are considered. Obviously there are differences between both semantics with re-
spect to the least models. For instance, for P.4 494 and P-¢4 a1, under weak completion
semantics, [ is neither in IT or in I+, whereas in the well-founded model I € I+ in
both P;Zr gq and P 4+ This is due to the fact, that undefined atoms such as o in

77: " Adg and ¢ in Pfe 4 are mapped to false in the well-founded model. Considering
Byrne’s results, well-founded semantics does not represent the participants’ conclusions
of suppressing information, whereas weak completion semantics does.

Table 8 shows the results from the second part of the suppression task where abduction
is required. In the first three cases, both semantics have the same conclusions about e.
In the case of Py a;; two explanations are possible (e «— T or t « T) with two different
least models. With skeptical reasoning nothing can be concluded about e, which seems
to adequately represent Byrne’s findings. For P-4 444 with skeptical reasoning nothing
can be concluded about e under weak completion, whereas e is true under well-founded
semantics. Considering Byrne’s results, that 44% of the participants concluded —e, it is
not clear which model would adequately represent these results.
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7. Conclusion

Taking the least model of the weak completion of logic programs as representing the
suppression task results in a modeling of human reasoning that corresponds to the
empirical results obtained by Byrne (1989). We have shown here, how the well-founded
semantics can be applied to achieve the same correspondence. In order to do this, we
extended the two-valued characterization for supported and well-supported models to
three-valued logics and examined quite generally the properties of weak completion,
completion and three-valued stable model semantics. When we restrict ourselves to tight
logic programs and apply some technical modifications, weak completion semantics and
three-valued stable model semantics, which underlies the well-founded semantics, yield
the same results.

This gives us insights into the behavior of the considered semantics. Undefined atoms
are always false under the three-valued stable model semantics. The same holds for
atoms that can only be justified through positive cycles. If the only possibility for
justification available is through a cycle that involves negation, atoms are unknown in
the well-founded model.

In this context it is interesting to examine whether these technical properties are
somehow reflected by human behavior. How do people reason with cycles? Do they ignore
tautological conditionals and how do they extract their knowledge from contradictory
information? For this purpose, a psychological experiment has been carried out by Dietz
et al. (2013), where participants were presented with problems consisting of conditionals
that involved circular dependencies in 1, 2, or 3 steps. The participants had to choose
whether the premises or the conclusions of the conditionals were true, false or unknown.
The empirical results obtained so far indicate that in presence of circular dependency
people actually tend to infer undefinedness in contrast to falsehood, in spirit of the weak
completion semantics in contrast to what is suggested by the direct application of the
well-founded or three-valued stable model semantics.
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Appendix A. Level Mapping Characterization for Weak Completion
Semantics and Well-Founded Semantics

We compare weak completion and well-founded semantics by their level mapping char-
acterizations. For this purpose we need to define a three-valued level mapping for P
which is a level mapping that may be undefined for some atoms. An I-three-valued level
mapping Iy for P is a three-valued level mapping for an interpretation where the domain
of Iy is dom(l;) = I U I+ and I is a function {7 : IT U I+ — N. All atoms which are
unknown under I are not mapped to a number by ;.

Hitzler & Wendt (2005) characterize well-founded semantics for normal logic programs
as follows: Let P be a normal program, I = (I, ') be a model of P and I; be an I-
three-valued level mapping of P. P is said to satisfy (WF) w.r.t. I and I if for every
A € dom(ly) one of the following conditions is satisfied:

(WFi) A € IT and there exists a clause A < Body in P such that it holds for all
literals L in Body: L € I and I;(A) > I;(L).

(WFii) A € I+ and for all clauses A < Body in P, one of the following conditions
holds:
(WFiia) there exists a literal L in pos(Body) such that L € I+ and I7(A) > I;(L),
(WFiib) there exists a literal L in neg(Body) such that L € I and I;(A) > I;(L).

If A € dom(ly) satisfies (WF1i), then we say that A satisfies (WF1) with respect to I and
lr, and similarly if A € dom(ly) satisfies (WFii).

Theorem 21. Let P be a normal program with the well-founded model M. Then M
is the greatest model among all models I for which there exists an I-three-valued level
mapping l; for P such that P satisfies (WF) w.r.t. I and ;.

Intuitively, a level mapping that satisfies (WF) w.r.t. to all A € dom(l7) is acyclic
w.r.t. (I, 0) and stratified w.r.t. (), I*).

Kencana Ramli (2009) gives the following level mapping characterization for the least
model of the weak completion semantics:

Let P be a logic program, I = (I, I*) be a model of P and I; be an I-three-valued
level mapping for P. P is said to satisfy (£) w.r.t. I and Iy if for every A € dom(l;) one
of the following conditions is satisfied:

(WCi) A € IT and there exists a clause A « Body in P such that it holds for all
literals L in Body: L € I and I;(A) > I;(L).

(WCii) A € I+ and there exists a clause A < Body in P and for all such clauses, one
of the following conditions holds:
(WCiia) there exists a literal L in pos(Body) such that L € I'- and I;(A) > I;(L),
(WCiib) there exists a literal L in neg(Body) such that L € I'" and I;(A) > I;(L).

If A € dom(l) satisties (WCi), then we say that A satisfies (WCi) w.r.t. I and I7, and
similarly if A € dom(lr) satisfies (WCii).

Theorem 22. Let P be a logic program with M, the least model of the weak completion.
Then M is the greatest model among all models I for which there exists an I-three-valued
level mapping Iy of P such that P satisfies (WC) w.r.t. I and ly.

Intuitively, the level mapping that satisfies (WC) w.r.t. to all A € dom(ly) is acyclic
wrt. (IT,0) and w.r.t. (0, I+).

Both characterizations differ in two conditions: First, consider the conditions (WFii)
and (WCii):

(WFii) A € I+ and for all clauses A < Body in P, one of the following conditions
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holds: [...]
(WCii) A € It and there exists a clause A < Body in P and for all such clauses, one
of the following conditions holds: [...]

By condition (WFii) all undefined atoms are in I+ in the well-founded model whereas
under weak completion semantics, they stay unknown. Furthermore, they differ in con-
ditions (WFiia) and (WCiia):

(WFiia) there exists a literal L in pos(Body) such that L € I+ and I(A) > (L),
(WCiia) there exists a literal L in pos(Body) such that L € I+ and I(A) > (L),

In a well-founded model, all atoms which are part of a positive cycle are in I+, whereas
under weak completion these atoms stay unknown. Considering Theorem 11 again, we
made one restriction and two adaptations:

(1) We restrict the correspondence to tight logic programs because of the difference
between condition (WFiia) and condition (WCiia).

(2) Under well-founded semantics we consider P* instead of P because well-founded
semantics is not defined for programs with negative facts.

(3) For all atoms A € undef(P) we introduce an auxiliary atom n_A and add the
following two clauses A <— —n_A and n_A < —A, so condition (WFii) does not
apply for undefined atoms anymore and A stays undefined.
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