
Conjunctive Queries forEL with Role Composition⋆

Markus Krötzsch and Sebastian Rudolph

Institute AIFB, Universität Karlsruhe, Germany
{mak|sru}@aifb.uni-karlsruhe.de

Abstract. EL++ is a rather expressive description logic (DL) that still admits
polynomial time inferencing for many reasoning tasks. Conjunctive queries are
an important means for expressive querying of DL knowledge bases. In this pa-
per, we address the problem of computing conjunctive query entailment forEL++

knowledge bases. As it turns out, querying unrestrictedEL++ is actually undecid-
able, but we identify restrictions under which query answering becomes decidable
and even tractable. To the best of our knowledge, the presented algorithm is the
first to answer conjunctive queries in a description logic that admits general role
inclusion axioms.

1 Introduction

Conjunctive queries originated from research in relational databases [2], and, more re-
cently, have been considered for expressive description logics (DLs) as well [3–7]. Al-
gorithms for answering (extensions of) conjunctive queries in the expressive DLSHIQ
have been discussed in [4, 5], but the first algorithm that supports queries for transitive
roles was presented only very recently [7].

Modern DLs, however, allow for complex role inclusion axioms that encompass
role composition and further generalise transitivity. To the best of our knowledge, no
algorithms for answering conjunctive queries in those cases have been proposed yet.
A relevant logic of this kind isSROIQ [8], the basic DL considered for OWL 1.1.1

Another interesting DL that admits complex role inclusionsisEL++ [9], which has been
proposed as a rather expressive logic for which many inference tasks can be computed in
polynomial time. In this paper, we present a novel algorithmfor answering conjunctive
queries inEL++, which is based on an automata-theoretic formulation of complex role
inclusion axioms that was also found useful in reasoning withSROIQ [10, 8].

Our algorithm in particular allows us to derive a number of complexity results re-
lated to conjunctive query answering inEL++. We first show that conjunctive queries
in EL++ are undecidable in general, and identify theEL++-fragment ofSROIQ as
an appropriate decidable sub-DL. Under some related restrictions of role inclusion ax-
ioms, we show that conjunctive query answering in general isPS-complete. Query
answering for fixed knowledge bases (query complexity) is shown to be NP-complete,
whereas for fixed queries (schema complexity) it is merely P-complete.

⋆ Basic results of this work have first been published in [1].
1 http://webont.org/owl/1.1/

2 Preliminaries

We assume the reader to be familiar with the basic notions of description logics (DLs).
The DLs that we will encounter in this paper areEL++ [9] and, marginally,SROIQ
[8]. A signatureof DL consists of a finite set ofrole namesR, a finite set ofindividual
namesI , and a finite set ofconcept namesC, and we will use this notation throughout
the paper.EL++ supportsnominals, which we conveniently represent as follows: for
anya ∈ I , there is a concept{a} ∈ C such that{a}I = {aI} (for any interpretationI).
As shown in [9], anyEL++ knowledge base is equivalent to one innormal form, only
containing the following axioms:

TBox: A ⊑ C A⊓ B ⊑ C A ⊑ ∃R.C ∃R.A ⊑ C
RBox: R ⊑ T R◦ S ⊑ T

whereA, B ∈ C ∪ {⊤}, C ∈ C ∪ {⊥}, andR, S, T ∈ R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model theoretic
semantics ofEL++ can be found in [9]. Unless otherwise specified, the lettersC, D, E
in the remainder of this work always denote (arbitrary) concept names, and the letters
R, S denote (arbitrary) role names. We do not consider concrete domains in this paper,
but are confident that our results can be extended accordingly.

For conjunctive queries, we largely adopt the notation of [7] but directly allow for
individuals in queries. LetV be a countable set ofvariable names. Given elementsx,
y ∈ V ∪ I , a concept atom(role atom) is an expressionC(x) with C ∈ C (R(x, y) with
R ∈ R). A conjunctive query qis a set of concept and role atoms, read as a conjunction
of its elements. ByVar(q) we denote the set of variables occurring inq. Consider an
interpretationI with domain∆I, and a functionπ : Var(q)∪I → ∆I such thatπ(a) = aI

for all a ∈ I . We define

I, π |= C(x) if π(x) ∈ CI, and I, π |= R(x, y) if (π(x), π(y)) ∈ RI.

If there is someπ such thatI, π |= A for all atomsA ∈ q, we writeI |= q and say that
I entails q. We say thatq is entailed by a knowledge baseKB, denotedKB |= q, if all
models ofKB entailq.

3 Conjunctive Queries inEL++

We first investigate the complexity of conjunctive queries in generalEL++ as defined
in [9]. The following result might be mildly surprising, butis in fact closely related to
similar results for logics with complex role expressions (see, e.g., [11]).

Theorem 1. For an EL++ knowledge base KB and a conjunctive query q, the entail-
ment problem KB|= q is undecidable.

Proof. The undecidablePost correspondence problemis described as follows: given
two lists of wordsu1, . . . , un andv1, . . . , vn over some alphabetΣ, is there a sequence of
numbersi1, . . . , ik (1 ≤ i j ≤ n) such thatui1 . . .uik = vi1 . . . vik? To reduce this problem
to query entailment, we define a knowledge baseKB. Consider the set of rolesR =
{U j |1 ≤ j ≤ n}∪ {V j |1 ≤ j ≤ n}∪ {M j |1 ≤ j ≤ n}∪ {Rσ | σ ∈ Σ}∪ {U,V}. For each word

u j = σ j1 . . . σ jm and corresponding roleU j , add an RBox statementRσ j1◦. . .◦Rσ j1 ⊑ U j ,
and likewise for wordsv j . For eachj = 1, . . . , n, define RBox statementsV j◦V◦M j ⊑ V
andU j ◦U ◦M j ⊑ U. Moreover, for some conceptC, add TBox statements of the form
C ⊑ ∃S.C for all rolesS of the formRσ andM j . Finally, add an ABox statementC(a)
for some individuala.

Now KB entails the query{U(a, x),V(a, x)} iff there is a solution to the given Post
correspondence problem. Indeed, it is easy to see that any model of KB implies {a} ⊑
∃R1. . . .∃Rl for any possible wordR1 . . .Rl over the alphabet ofRj andM j . The query
is entailed iff some such word implies bothU andV, which is the case exactly if a
corresponding sequence was found, where the markersM j ensure that bothU andV
have been generated from the same sequence. ⊓⊔

Corollary 1. Checking class subsumptions inEL++ extended with inverse roles or role
conjunctions is undecidable, even if those operators occuronly in the concepts whose
subsumption is checked.

Proof. The proof of Theorem 1 is easily modified to check for concept subsumptions
{a} ⊑ ∃U.∃V−.{a} or {a} ⊑ ∃(U ⊓ V).{a} instead of query entailment. ⊓⊔

Clearly, arbitrary role compositions are overly expressive when aiming for a de-
cidable (or even tractable) logic that admits conjunctive queries. We thus restrict our
attention to the fragment ofEL++ that is in the (decidable) description logicSROIQ
[8], and investigate its complexity with respect to conjunctive query answering.

Definition 1. AnEL++ RBox in normal form isregularif there is a strict partial order
≺ onR such that, for all role inclusion axioms R1 ⊑ S and R1 ◦R2 ⊑ S , we find Ri ≺ S
or Ri = S (i= 1, 2). AnEL++ knowledge base is regular if it has a regular RBox.

The existence of≺ ensures that the role hierarchy does not contain cyclic dependen-
cies other than through direct recursion of a single role.

4 Reasoning Automata forEL++

In this section, we describe the construction of an automaton that encodes certain con-
cept subsumptions entailed by anEL++ knowledge base. The automaton itself is closely
related to the reasoning algorithm given in [9], but the representation of entailments via
nondeterministic finite automata (NFA) will be essential for the query answering algo-
rithm in the following section. We describe an NFAA as a tuple (QA, ΣA, δA, iA, FA),
whereQA is a finite set of states,ΣA is a finite alphabet,δA : QA × QA → 2ΣA is a
transition function that maps pairs of states to sets of alphabet symbols,2 iA is the initial
state, andFA is a set of final states.

Consider anEL++ knowledge baseKB. Given a concept nameA ∈ C, we construct
an NFAAKB(A) = (Q, Σ, δ, i, F) that computes superconcepts ofA, where we omit the
subscript ifKB is clear from the context. SetQ = F = C ∪ {⊤}, Σ = C ∪ R ∪ {⊤,⊥},

2 A possibly more common definition is to map pairs of states andsymbols to sets of states, but
the above is more convenient for our purposes.

Table 1.Completion rules for constructing an NFA from anEL++ knowledge baseKB.

(CR1) If C′ ∈ δ(C,C), C′ ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR2) If C1,C2 ∈ δ(C,C), C1 ⊓C2 ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR3) If C′ ∈ δ(C,C), C′ ⊑ ∃R.D ∈ KB, andR < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {R}.
(CR4) If R ∈ δ(C,D), D′ ∈ δ(D,D), ∃R.D′ ⊑ E ∈ KB, and E < δ(C,C) then δ(C,C) ≔

δ(C,C) ∪ {E}.
(CR5) If R ∈ δ(C,D), ⊥ ∈ δ(D,D), and⊥ < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {⊥}.
(CR6) If {a} ∈ δ(C,C) ∩ δ(D,D), and there are statesC1, . . . ,Cn such that

– C1 ∈ {C,⊤,A} ∪ {{b} | b ∈ I },
– δ(C j ,C j+1) , ∅ for all j = 1, . . . ,n− 1,
– Cn = D,

andδ(D,D) * δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ δ(D,D).
(CR7) If R ∈ δ(C,D), R⊑ S, andS < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {S}.
(CR8) If R1 ∈ δ(C,D), R2 ∈ δ(D,E), R1 ◦R2 ⊑ S, andS < δ(C,E) thenδ(C,E) ≔ δ(C,E) ∪ {S}.

and i = A. The transition functionδ is initially defined asδ(C,C) ≔ {C,⊤} (for all
C ∈ Q), and extended iteratively by applying the rules in Table 1.The rules correspond
to completion rules in [9, Table 2], though the conditions for (CR6) are slightly relaxed,
fixing a minor glitch in the original algorithm.

It is easy to see that the rules of Table 1 can be applied at mosta polynomial number
of times. The words accepted byA(A) are strings of concept and role names. For each
such wordw we inductively define a concept expressionCw as follows:

– if w is empty, thenCw = ⊤,
– if w = Rvfor someR ∈ R and wordv, thenCw = ∃R.(Cv),
– if w = Cv for someC ∈ C and wordv, thenCw = C ⊓Cv.

For instance, the wordCRDEStranslates intoCCRDES = C⊓∃R.(D⊓E⊓∃S.⊤). Based
on the close correspondence of the above rules to the derivation rules in [9], we can
now establish the main correctness result for the automatonA(A).

Theorem 2. Consider a knowledge base KB, concept A, and NFAA(A) as above, and
let w be some word over the associated alphabet. Then KB|= A ⊑ Cw iff one of the
following holds:

– A(A) accepts the word w, or
– there is a transition⊥ ∈ δ(C,C) where C = ⊤, C = A, or C = {a} for some

individual a.

In particular,A(A) can be used to check all subsumptions between A and some atomic
concept B.

The second item of the theorem addresses the cases whereA is inferred to be empty
(i.e. inconsistent) or where the whole knowledge base is inconsistent, from which the
subsumption trivially follows. While the above yields an alternative formulation of the
EL++ reasoning algorithm presented in [9], it has the advantage that it also encodes
all pathswithin the inferred models. This will be essential for our results in the next
section. The following definition will be most convenient for this purpose.

Definition 2. Consider a knowledge base KB, concepts A, B∈ C, and the NFAA(A) =
(Q, Σ, δ, i, F). The automatonAKB(A, B) (or justA(A, B)) is defined as(Q,R, δ, i, F′)
where F′ = ∅ whenever⊥ ∈ δ(A,A), and F′ = {B} otherwise.

The automatonA(A, B) normally accepts all words of rolesR1, . . . ,Rn such that
A ⊑ ∃R1(. . .∃Rn.B . . .) is a consequence ofKB, with the border case wheren = 0 and
KB |= A ⊑ B. Moreover, the language accepted by the NFA is empty whenever A ⊑ ⊥
has been inferred.

5 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithm that decides the entailment of
a queryq with respect to some regular consistent knowledge baseKB. Here and in the
following, we assume w.l.o.g. thatKB does not entaila ≈ b (i.e. {a} ≡ {b}) for any
a, b ∈ I . Indeed, one can just replace all occurrences ofb with a in this case, both
within KB and within any query we wish to consider later on (and this case can be
detected in polynomial time). Moreover, we assume that there is at least one individual
in the language, i.e.I , ∅. The algorithm constructs a so-calledproof graphwhich
establishes, for all interpretationsI of KB, the existence of a suitable functionπ that
shows query entailment.

Formally, a proof graph is a tuple (N, L,E) consisting of a set of nodesN, a labelling
functionL : N → C ∪ {⊤}, and apartial transition functionE : N × N → A, whereA
is the set of all NFA over the alphabetC ∪ {⊤,⊥} ∪ R. The nodes of the proof graph
are abstract representations of elements in the domain of some model ofKB. The labels
assign a concept to each node, and our algorithm ensures thatthe represented element
is necessarily contained in the interpretation of this concept. Intuitively, the label of a
node encodes all concept information relevant for the inferences used to show query en-
tailment. A single concept name suffices for this purpose since (1)KB is in normal form
and thus supplies concept names for all composite concept expressions such as con-
junctions, and (2)EL++ does not allow inverse roles or number restrictions that could
be used to infer additional information based on the relationship of an element to ele-
ments in the model. Finally, the transition function encodes paths in each model, which
provide the basis for inferencing about role relationshipsbetween elements. It would
be possible to adopt a more concrete representation for rolepaths (e.g. by guessing a
single path), but our formulation reduces nondeterminism and eventually simplifies our
investigation of algorithmic complexity.

The automaton of Definition 2 encodes concept subsumptions based on TBox and
RBox. For deciding query entailment we also require automata that represent the con-
tent of the RBox.

Proposition 1. Given a regularEL++ RBox, and some role R∈ R, there is an NFA
A(R) over the alphabetR which accepts a word R1 . . .Rn iff R1 ◦ . . . ◦ Rn ⊑ R is a
consequence of everyEL++ knowledge base with the given RBox.

Proof. One possible construction for the required automaton is discussed in [8]. Intu-
itively, the RBox can be understood as a grammar for a regularlanguage, for which an
automaton can be constructed in a canonical way. ⊓⊔

The required construction ofA(R) might be exponential for some RBoxes. In [10],
restrictions have been discussed that prevent this blow-up, leading to NFA of only poly-
nomial size w.r.t. the RBox. Accordingly, an RBox issimplewhenever, for all axioms
of the formR1 ◦ S ⊑ S, S ◦ R2 ⊑ S, the RBox does not contain a common subrole
R of R1 andR2 for which there is an axiom of the formR ◦ S′ ⊑ R′ or S′ ◦ R ⊑ R′.
We will usually consider only such simple RBoxes whenever the size of the constructed
automata matters.

We are now ready to present the algorithm. It proceeds in various consecutive steps:

Query factorisation.The algorithm nondeterministically selects a variablex ∈ Var(q)
and some elemente ∈ Var(q)∪ I , and replaces all occurrences ofx in q with e. This step
can be executed an arbitrary number of times (including zero).

Proof graph initialisation. The proof graph (N, L,E) is initialised by settingN ≔
I ∪ Var(q). L is initialised byL(a) ≔ {a} for eacha ∈ I . For eachx ∈ Var(q), the
algorithm nondeterministically selects a labelL(x) ∈ C ∪ {⊤}. Finally, E is initialised
by settingE(n, a) ≔ A(L(n), L(a)) for eachn ∈ N, a ∈ I . A nodem ∈ N is reachable
if there is some noden ∈ N such thatE(n,m) is defined, andunreachableotherwise
(recall thatE is a partial function). Thus exactly the nominal nodes are reachable by
the initialisation ofE. Now as long as there is some unreachable nodex ∈ Var(q), the
algorithm nondeterministically selects one suchx and some noden ∈ N that is reach-
able, and setsE(n, x) ≔ A(L(n), L(x)). After this procedure, the graph (N, L,E) is such
that all nodes are reachable. Finally, the algorithm checkswhether any of the automata
E(n,m) with n ∈ N andm ∈ Var(q) accepts the empty language, and aborts with failure
if this is the case.

Checking concept entailment.For all concept atomsC(n) ∈ q (n ∈ N), the algorithm
checks whetherL(n) |= C with respect toKB.

For the remaining steps of the algorithm, some preliminary definitions and observa-
tions are needed. The automataE(n,m) of the proof graph represent chains of existential
role restrictions that exist within any model. Ifm ∈ Var(q), then the automaton encodes
many possible ways of constructing an element that belongs to the interpretation of
L(m) in each model. The role automataA(R) in turn encode possible chains of roles
that suffice to establish roleR along some such path. To show that an atomR(n,m) is
entailed, one thus has to check whether the automataE(n,m) andA(R) have a non-
empty intersection language. Two issues must be taken into account. First, not every
pair of nodes is linked by an edgeE(n,m), so one might have to look for a longer path
of edges and check non-emptiness of its intersection withA(R). Second, there might be
several role atoms that affect the path betweenn andm. Since all of them must be taken
into account, one either needs to check intersections of many languages concurrently,
or to retain the restrictions imposed by one role atom beforetreating further atoms.

Proposition 2. For every pair of nodes n, m∈ N, there is a uniqueshortestconnecting
path n0 = n, n1, . . . , nk = m with ni ∈ N and E(ni, ni+1) defined. This path can be
computed by a deterministic algorithm in polynomial time.

Proof. By construction of (N, L,E), there is a (necessarily shortest) path of lengthk =
1 wheneverm ∈ I . Likewise, if m ∈ Var(q), there is a shortest (“generating”) path
m0, . . . ,ml = m from some elementm0 ∈ I . The shortest path fromn to m is found
immediately ifn = mi for somei < l. Otherwise, the shortest path has an additional
initial segmentE(n,m0). Clearly, all of this can be determined in polynomial time.⊓⊔

Now any role atom in the query should span over some existing path, and we need
to check whether this path suffices to establish the required role. To do this, we nonde-
terministically split the role automaton into parts that are distributed along the path.

Definition 3. Consider an NFAA = (Q, Σ, δ, i, { f }). A split ofA into k parts is given
by NFAA1, . . . ,Ak withA j of the form(Q, Σ, δ, q j−1, {q j}) such that q0 = i, qk = f , and
q j ∈ Q for all j = 1, . . . , k− 1.

It is easy to see that, if each split automatonA j accepts some wordw j , we find that
w1 . . .wk is accepted byA. Likewise, any word accepted byA is also accepted in this
sense by some split ofA. Since the combination of any split in general accepts less
words thanA, splitting an NFA usually involves some don’t-know nondeterminism.
We can now proceed with the final steps of the algorithm.

Splitting of role automata.For each role atomR(n,m) within the query, the algorithm
computes the shortest pathn = n0, . . . , nk = m from n to m. Next, it splits the NFAA(R)
into k automataA(R(n,m), n0, n1), . . . ,A(R(n,m), nk−1, nk), and aborts with failure if
the language accepted by any of the split automata is empty.

Check role entailment.Finally, for eachn, m ∈ N with E(n,m) defined, the algorithm
executes the following checks:

(a) If m ∈ I , it checks for each split automaton of the formA(F, n,m) whether there is
a word accepted byA(F, n,m) and by the edge automatonE(n,m).

(b) If m ∈ Var(q), it checks whether there is a (single) word that is acceptedby all split
automata of the formA(F, n,m) and by the edge automatonE(n,m).

If all those checks succeed (i.e. if the required words exist), the algorithm confirms the
entailment of the query (we say that itacceptsthe query). Else it terminates with failure.

Intuitively, the above checks show the existence of suitable role paths in any model,
represented by accepted words. In case (a), only pairwise comparisons are needed, since
different role paths may still lead to the same element represented by the individual
m ∈ I . But in case (b), the identity of the domain element represented bym ∈ Var(q)
depends on the chosen role path, and it must be ensured that all conditions refer to the
same path (and thus to the same element).

The above conditions could also be stated as emptiness problems for the automata’s
intersection languages, but this tends to make the verbal description more ambiguous.

6 Correctness of the Algorithm

We now prove soundness and completeness of the algorithm presented in Section 5.

Proposition 3. Consider a regular consistentEL++ knowledge base KB and a conjunc-
tive query q. If the algorithm of Section 5 accepts q, then indeed KB|= q.

Proof. We use the notation from Section 5 to denote structures computed by the algo-
rithm. When terminating successfully, the algorithm has computed the following:

– A proof graph (N, L,E),
– For each role atomR(m, n) ∈ q, ak-splitA(R(n,m), n0, n1), . . . ,A(R(n,m), nk−1, nk)

of the NFAA(R), wherek is the length of the shortest path fromn to m in (N, L,E).

In the following, letI be some model ofKB. To showKB |= q, we need to provide
a mappingπ as in Section 2 forI. SinceI is arbitrary, this shows the entailment of
q. We can deriveπ from the proof graph, and then show its correctness based on the
conditions checked by the algorithm.

When factorising the query, the algorithm replaces variables by individual names
or by other variables. This is no problem: whenever a queryq′ is obtained fromq by
uniformly replacing a variablex ∈ Var(q) by an individuala ∈ I (or variabley ∈ Var(q)),
we have thatKB |= q′ impliesKB |= q. Indeed, any mappingπ′ for q′ can be extended
to a suitable mappingπ for q by settingπ(x) ≔ aI (π(x) ≔ yI). Thus we can assume
w.l.o.g. that all variablesx ∈ Var(q) also occur as nodes in the proof graph, i.e.x ∈ N.

When checking role entailment, the algorithm checks non-emptiness of the inter-
section languages of the automataE(n,m), and one/all split automataA(F, n,m), for
eachn, m ∈ N with E(n,m) defined. Thus for any pairn ∈ N, m ∈ Var(q), there is some
word w accepted byall of the given automata. Choose one such wordw(n,m). By the
definition ofA(R) and the split automata,w(n,m) is a word overR, and we can assume
this to be the case even when no split automata (but just the single edge automaton) are
considered for the given edge fromn to m. E(n,m) in turn is of the formA(L(n), L(m))
(Definition 2) for the selected class namesL(n) andL(m) of the proof graph.

Now by Theorem 2, the construction of Definition 2, and the fact thatKB is consis-
tent, it is easy to see thatE(n,m) accepts the wordw(n,m) = R1 . . .Rl iff KB |= L(n) ⊑
∃R1. . . .∃Rl .L(m). We employ this fact to inductively construct a mappingπ.

When constructing the transition function of the proof graph, the algorithm has
defined labelsL(x) for all x ∈ Var(q), and we will retrace this process to construct
π. We claim that the following construction ensures that, whenever a noden ∈ N is
reachable,π(n) has been assigned a unique value such thatπ(n) ∈ L(n)I. For starting
the induction, setπ(a) ≔ aI for eacha ∈ I (which is necessarily reachable and clearly
satisfiesπ(a) ∈ L(a)I = {a}I). Now assume that in one step the algorithm selected
somex ∈ Var(q) that was not reachable yet, and noden ∈ N which is reachable. As
noted above,KB |= L(n) ⊑ ∃R1. . . .∃Rl .L(x) wherew(n, x) = R1 . . .Rl , and hence there
is an elemente ∈ L(x)I such that (π(n), e) ∈ RI1 ◦ . . . ◦ RIl (where◦ denotes forward
composition of binary relations). Pick one sucheand setπ(x) ≔ e. It is easy to see that
the claim of the induction is satisfied.

The algorithm has verified thatL(n) ⊑ C holds for eachC(n) ∈ q (using stan-
dard polynomial time reasoning forEL++), so we findπ(n) ∈ CI. It remains to show
that a similar claim holds for all binary query atoms. Thus consider some role atom
R(n,m) ∈ q, and letn = n0, . . . , nk = m denote the shortest path in the proof graph used
to split the role automaton. So far, we have definedw(ni, ni+1) only for cases where

ni+1 ∈ Var(q). By a slight overloading of notation, we now letw(ni , ni+1) for ni+1 ∈ I
denote some word accepted by the intersection ofE(ni, ni+1) and the specific split au-
tomatonA(R(n,m), ni, ni+1), which must exist as the algorithms must have verified non-
emptiness of the intersection language. Assuming thatw(ni, ni+1) = S1 . . .Sl , we note
that this still entailsKB |= L(n1) ⊑ ∃S1. . . .∃Sl .L(ni+1) . Sinceni+1 ∈ I , this actually
shows that (π(ni), π(ni+1)) ∈ SI1 ◦ . . .S

I
l .

The wordw = w(n0, n1) . . .w(nk−1, nk) is accepted byA(R), which is clear from the
construction in Definition 3 as the partsw(ni , ni+1) are accepted by the respective split
automata. Assume thatw = R1 . . .Rk. We conclude (π(n), π(m)) ∈ RI1 ◦ . . . ◦ RIk from
the construction ofπ and the above observations for the case of edges connecting to
individual elements. Thus by Proposition 1 we have (π(n), π(m)) ∈ RI as required. ⊓⊔

It remains to show that the algorithm is also complete. This is done by demonstrat-
ing that there are suitable nondeterministic choices that enable the algorithm to accept
a query whenever it is entailed. To guide those choices, we first construct a canonical
model for some knowledge base.

Consider a regular consistentEL++ knowledge baseKB as before. We now provide
an iterative construction of a modelI of KB. Our goal is to obtain a concise definition
of a suitablecanonical model, so it is no matter of concern that the given construction
does not terminate after finitely many steps.

Table 2. Closure rules for an interpretationI w.r.t. some knowledge baseKB. In general, we
assume thatC,D ∈ C ∪ {⊤,⊥} andR1,R2,S ∈ R.

(1)
δ ∈ CI KB |= C ⊑ D

DI ≔ DI ∪ {δ}

(2)
δ ∈ CI KB |= C ⊑ ∃R.D KB 6|= D ⊑ {a} for anya ∈ I
∆I ≔ ∆I ∪ {ǫ} RI ≔ RI ∪ {(δ, ǫ)} DI ≔ DI ∪ {ǫ}

whereǫ = ǫδ,C⊑∃R.D

(3)
δ ∈ CI KB |= C ⊑ ∃R.D KB |= D ⊑ {a} for somea ∈ I

RI ≔ RI ∪ {(δ,a)}

(4)
(δ, ǫ) ∈ RI R⊑ S ∈ KB

SI ≔ SI ∪ {(δ, ǫ)}
(5)

(δ, ǫ) ∈ RI1 (ǫ, γ) ∈ RI2 R1 ◦R2 ⊑ S ∈ KB

SI ≔ SI ∪ {(δ, γ)}

To simplify our arguments, we adopt a naming scheme for potential elements of the
domain ofI. Let ∆ be the smallest set such thatI ⊆ ∆ and, for anyδ ∈ ∆, C, D ∈ C,
andR∈ R, we find thatǫδ,C⊑∃R.D ∈ ∆. We will defineI such that∆I ⊆ ∆.

For any two interpretationsJ1 andJ2 of KB, we say thatJ1 is smallerthanJ2 if,
for anyF ∈ C ∪ R ∪ {⊤}, FJ1 ⊆ FJ2. The interpretationI is defined to be the smallest
interpretation that satisfies the following:

(i) ∆I ⊆ ∆,
(ii) {a}I ≔ a for all a ∈ I , and

(iii) I is closed under the rules of Table 2.

It is easy to see that this smallest interpretation exists: just consider all interpretations
satisfying conditions (i) and (ii), ordered by the “smallerthan” relation defined above,
which clearly yields acomplete latticewith least upper bounds given by taking the
(pointwise) unions of interpretation domains and extensions. Given an elementJ of
this set, an interpretationf (J) is defined as the result of exhaustively applying all rules
of Table 2 whose premisses are satisfied byJ. The construction is easily seen to be
monotonic, and hence indeed has a least fixed pointI [12, Theorem 8.22].

The rules of Table 2 have the special property that each individual is “initialised”
with at most one concept name. Formally, we define for each elementδ ∈ ∆I a concept
nameι(δ) as follows:

– if δ ∈ I , ι(δ) ≔ {δ},
– if δ = ǫδ′ ,C⊑∃R.D for someδ′ ∈ ∆I, C, D ∈ C, R ∈ R, thenι(δ) ≔ D.

Note that the above cases are indeed exhaustive and mutuallyexclusive.

Lemma 1. The interpretationI as constructed above is a model of KB.

Proof. First note that the domain ofI is non-empty since we assume the existence of
at least one individual. We have to check that all axioms ofKB are indeed satisfied. For
axioms of the formC ⊑ ∃R.D this is obvious by rules (2) and (3) of Table 2. Similarly,
all role inclusion axioms are directly accounted for by rules (4) and (5).

So it remains to show that axiomsΦ of the formsC ⊑ D, ∃R.C ⊑ D, andC1⊓C2 ⊑

D are satisfied. Obviously, wheneverδ ∈ CI (δ ∈ ∃R.CI) for someC ∈ C (andR ∈ R),
we findKB |= ι(δ) ⊑ C (KB |= ι(δ) ⊑ ∃R.C). We conclude that, whenever the premise of
some axiomΦ as above is satisfied forδ, then it is entailed byι(δ), and so its conclusion
D is a direct consequence ofι(δ) underKB. ThusΦ is satisfied by rule (1). ⊓⊔

Proposition 4. Consider a regular consistentEL++ knowledge base KB and a con-
junctive query q. If KB|= q, then there is a sequence of nondeterministic choices for the
algorithm of Section 5 such that it accepts q.

Proof. Consider the canonical modelI as constructed above. SinceKB |= q andI |=
KB, there is some mappingπ such thatI, π |= q. We will useπ to guide the algorithm.

In the query factorisation step, a variablex ∈ Var(q) is replaced byn ∈ Var(q) ∪ I
wheneverπ(x) = π(n). For the proof graph initialisation, we choose the labelling L
of the proof graph by settingL(e) ≔ ι(π(e)). As we have argued above,δ ∈ CI iff
KB |= ι(δ) ⊑ C, and hence we conclude thatπ(e) ∈ CI implies thatKB |= L(e) ⊑ C for
all e ∈ I ∪ Var(q). Thus all unary atoms ofq are accepted by the algorithm.

Continuing with the construction of edges in the proof graph, we first observe some
important basic properties of the canonical model.

Property 1. For any elementδ ∈ ∆I that is not an individualδ < I , there is a unique
chain of elementsδ0 . . . δk = δ and role namesR0, . . . , Rk−1 ∈ R, such thatδ0 ∈ I and,
for all i = 1, . . . , k, δi ∈ ∆I is of the formδǫ,C⊑R.D with ǫ = δi−1 andR = Ri−1. This
is easily verified by observing that anyδ of the given form must have been entailed by
rule (2), and by applying a simple induction on the depth of this entailment. In this case,
we say thatδi generatesδ via the rolesRi . . .Rk (i = 0, . . . , k).

Property 2. Consider elementsδ, ǫ ∈ ∆I such thatδ generatesǫ via the rolesR0 . . .Rk.
Thenι(δ) ⊑ ∃R0.(. . .∃Rk.ι(ǫ) . . .). This is obvious by another simple inductive argument
that utilises the preconditions of the applications of rule(3).

Property 3. For any (δ, ǫ) ∈ RI, there is a chain of elementsδ = δ0 . . . δk = ǫ and role
namesRi (i = 0, . . . , k− 1), such that

– (δi , δi+1) ∈ RIi is directly entailed by one of rules (2) and (3), and
– R0 ◦ . . . ◦Rk−1 ⊑ R is a consequence ofKB.

We show this by an inductive argument as follows: for the basecase, assume that
(δ, ǫ) ∈ RI follows from rule (2) or (3). Then the above condition clearly holds. For the
induction step, assume that (δ, ǫ) ∈ RI follows by applying rule (5) toR1 ◦ R2 ⊑ R, and
that the claim holds for the statements (δ, δ j) ∈ RI1 and (δ j, ǫ) ∈ RI2 . We easily can con-
struct from these assumptions a suitable chain of elements from the chains postulated
for R1 andR2. Similarly, the second condition of the claim follows from the assumption
thatR1 ◦R2 ⊑ R and the induction hypothesis. Rule (4) is treated analogously.

Now in each step of the generation of the edgesE of the proof graph, the algorithm
needs to pick some (unreachable)x ∈ Var(q) and some reachable noden. By Property 1
above, there is a unique generating chain for eachπ(x) wherex is not reachable within
the proof graph yet. Moreover, since the chain of Property 1 is unique and shortest, it is
also acyclic. Hence there is some unreachablex such thatπ(x) is not generated by any
element of the formπ(y) with y unreachable. Pick one such elementx. Finally select one
elementn ∈ I ∪ Var(q) such thatπ(n) generatesπ(x), and such that there is no element
m for whichπ(m) generatesπ(x) andπ(n) generatesπ(m). Construct an edgeE(m, x).

Now for any elementsn andm of the query, withm ∈ Var(q) andE(n,m) defined,
the automatonE(n,m) accepts a non-empty language. This is seen by combining Prop-
erty 2 with Theorem 2, where the second case of the theorem is excluded sinceKB is
consistent. The algorithm’s checks for non-emptiness of these languages thus succeed.

The algorithm now has completed the proof graph construction, and the selection of
split automata is required next. For all query atomsR(n,m), we find that (π(n), π(m)) ∈
RI, and thus we can apply Property 3 to obtain a respective chainof elements and role
names, which we denote asδ0 . . . δk andR0 . . .Rk−1 in the remainder of this proof.

Let j > 0 denote the largest index ofδ0 . . . δk, such thatδ j is of the formπ(e1) for
somee1 ∈ I , if any such element exists. Otherwise, letj > 0 denote the smallest index
such thatδi is of the formπ(e1) for anye1 ∈ Var(q). We claim that there is a connection
betweenn ande1 in the proof graph. Clearly, this is true ife1 ∈ I since these edges
were constructed explicitly. Otherwise, Property 1 and ourchoice ofe1 imply that an
edge fromn to e1 was constructed by the algorithm. Starting byδ j+1, find all elements
δi of the formπ(e), e ∈ Var(q), and label them consecutively ase2, . . . , el . Note that this
sequence can be empty, in which case we definel ≔ 1. Obviously,el = m. We claim
thatn = e0 . . .el = m is the shortest path fromn to mwithin the proof graph. We already
showed the connection betweenn = e0 ande1. The connections betweenei andei+1 are
also obvious, since eache1 generatesei+1 by definition. Since the latter path is also the
only path frome1 to el , the overall path is clearly the shortest connection.

The algorithm now splitsA(R) along the pathn = e0 . . .el = m. For eachei , there is
an indexj(i) such thatδ j(i) = π(ei). Hence, for each pair (ei, ei+1), there is a correspond-
ing sequence of rolesRj(i)+1 . . .Rj(i+1) which we denote byr i (i = 0, . . . , l − 1), and the

concatenation of those sequences yields the originalR0 . . .Rk−1. By Proposition 1 and
Property 3, the automatonA(R) accepts the wordR0 . . .Rk−1. To split the automaton, we
consider one accepting run and defineqi to be the state of the automaton after reading
the partial sequencer i , for eachi = 0, . . . , l − 1. The statesqi are now used to construct
the split automataAi , and it is easy to see that those automata accept the sequences r i .

Now assume that all required split automata have been constructed in this way. Con-
sider any pair of query elementse, e′ ∈ I∪Var(q) for which a split automatonA(F, e, e′)
was constructed using a partial sequence of rolesr. We claim that the edge automaton
E(e, e′) acceptsr. Indeed, this follows from Property 2 and Theorem 2. This shows
non-emptiness of intersections between any single split automaton and the correspond-
ing edge automaton in the proof graph, and thus suffices for the case wheree′ ∈ I .

Finally, consider the case thate′ ∈ Var(q), and assume that two split automata
A(F, e, e′) andA(F′, e, e′) have been constructed for the given pair, based on two partial
role sequencesr andr ′. We claim thatr = r ′. Indeed, this is obvious from the fact that
r andr ′ both correspond to the unique generating sequence of roles for the elementse
ande′, which is part of the sequence constructed for Property 1. This shows thatr is
accepted both byA(F, e, e′) and byA(F′, e, e′). We conclude that the intersection of all
split automata and the edge automatonE(e, e′) is again non-empty.

The algorithm thus has completed all checks successfully and accepts the query.⊓⊔

7 Complexity of Query Answering for EL++

Finally, we harvest a number of complexity results from the algorithm of Section 5.

Lemma 2. Given a regularEL++ knowledge base KB and a conjunctive query q, the
entailment problem KB|= q is hard forNP w.r.t. the size of q, hard forP w.r.t. the size
of the ABox of KB, and hard forPS w.r.t. to the combined problem size, even when
restricting to simple RBoxes.

Proof. It is well-known that the evaluation of a single function-free Horn-clause is NP-
complete, even for a fixed set of ground facts [13]. This can easily be reduced to con-
junctive query answering over some ABox.

Likewise, mere instance retrieval is known to be P-completealready, even with
respect to an empty RBox and a fixed TBox that uses only a subsetof the description
logicEL [14].

Hardness of the combined problem is shown by reducing the problem of deciding
non-emptiness of the intersection of languages accepted bya setA1, . . . ,An of deter-
ministic finite automata (DFA) to query entailment. This intersection problem is indeed
known to be hard for PSw.r.t. the size and number of intersected automata [15]. Ob-
viously, asking for the existence of anon-emptyword accepted by all those automata is
of the same complexity since checking for acceptance of the empty word can be done
in P.

Assume w.l.o.g. that the intersected automata use a common alphabetΣ represented
by role namesRσ for eachσ ∈ Σ, and consider some classC and individuala. As in the
proof of Theorem 1, we force models to represent all possiblewords overΣ by adding
an axiom{a} ⊑ C, and axiomsC ⊑ ∃Rσ.C for everyσ ∈ Σ.

Now we employ a construction very similar to the one used in the proof of Kleene’s
Theorem (equivalence of regular expressions and finite automata [16]) displayed e.g. in
[17]: considering a specific DFAAl = ({q1, . . . , qm}, Σ, δ, i, F), introduce rolesRk

gh, Sk
gh,

andRloop
k for 0 ≤ k ≤ m andk, g, h ∈ 1, . . . ,m and define the following role inclusion

axioms:

– Rσ ⊑ R0
gh wheneverσ causes a transition fromqg to qh

– Rk−1
kk ⊑ Rloop

k

– Rloop
k ◦ Rloop

k ⊑ Rloop
k

– Rk−1
gh ⊑ Rk

gh

– Rk−1
gk ◦ Rk−1

kh ⊑ Rk
gh

– Rk−1
gk ◦ Rloop

k ⊑ Sk−1
gk

– Sk−1
gk ◦ Rk−1

kh ⊑ Rk
gh

– Rm
ih ⊑ Raccept

l wheneverh ∈ F

W.l.o.g., we assume the sets of role names introduced for thedifferent automata
to be disjoint. Syntactically, the RBox defined this way is both regular (according to
Definition 1)andpolynomial (namely inO(n3)) in the cumulated size of the automata.

Semantically, the RBox ensures the following: Assume a non-empty wordσ1 . . . σj−1

causes a transition fromqg to qh in the automatonAl . Then, in any modelI with ele-
mentse1, . . . , ej such that (eo, eo+1) ∈ RIσo

we also have (e1, ej−1) ∈ Rm
gh
I. This can be

shown in analogy to the proof of Kleene by induction onk.
Likewise, every two elements connected by a role chainRσ1 . . .Rσj for a non-empty

word σ1 . . . σj accepted byAl are forced to additionally be directly connected by the
roleRaccept

l .
Moreover, for all words that are not accepted byAl , there clearly is a model that

violates this property for the corresponding start and end elements (as can be easily
shown by the construction of a tree-shaped minimal free model).

As mentioned above, the choice of the TBox enforces for everymodel of the KB
and any word onΣ that there is a corresponding role sequence starting froma.

Hence the intersection problem (while excluding the empty word) forA1, . . . ,An

can be reduced to the conjunctive query{Raccept
1 (a, x), . . . ,Raccept

n (a, x)}. ⊓⊔

We remark that the above results are quite generic, and can beestablished for many
other DLs. Especially, NP-hardness w.r.t. knowledge base size can be shown for any
logic that admits an ABox, whereas PS hardness of the combined problem follows
whenever the DL additionally admits role composition and existential role restrictions.

Lemma 3. Given a regularEL++ knowledge base KB and a conjunctive query q, the
entailment problem KB|= q can be decided inP w.r.t. the size of the knowledge base,
in NP w.r.t. the size of the query, and inPS w.r.t. the combined problem size, given
that RBoxes are simple whenever KB is not fixed.

Proof. First consider the step of query factorisation of the algorithm in Section 5. It
clearly can be performed nondeterministically in polynomial time. If the query is fixed,

the number of choices is polynomially bounded, and so the whole step is executable in
polynomial time.

Similar observations hold for the proof graph initialisation. Concept names and au-
tomata for edges clearly can be assigned in polynomial time by a nondeterministic
algorithm (and thus in polynomial space). If the query is of fixed size, the nondetermin-
istic choices are again polynomial in the size ofKB: the assignment of labelsL admits
at most|C||Var(q)| different choices, and for each such choice, there are at mostn2 many
possible proof graphs, wheren is the number of nodes in the graph. Sincen and|Var(q)|
are considered fixed, this yields a polynomial bound.

Further nondeterminism occurs in the splitting of role automata. However, if the
query is fixed, each of the polynomially many proof graphs clearly dictates a number
of splits that is bounded by the size of the querym. Since splitting an automaton intok
parts corresponds to selectingk (not necessarily distinct) states from the respective role
automaton, there are|QA|k different ways of splittingA. Sincek is again bounded by the
size of the querym, we obtain an upper bound|Q|m

m
that is still polynomial in the size

of KB (which, by our assumptions on simplicity of the RBox, determines the maximum
number of states|Q| of some role automaton). If the query is not fixed, splitting again
can be done nondeterministically in polynomial time.

Now for the final check of role entailment, the algorithm essentially has to check
the emptiness of intersection languages of various automata. Given NFAA1, . . . ,Al ,
this check can be done in two ways, each being worst-case optimal for different side
conditions of the algorithm:

(1) Initialise state variablesq1, . . . , ql as being the initial states of the involved NFA.
Then nondeterministically select one input symbol and one transition for this sym-
bol in each of the considered NFA, and update the statesq j accordingly. The algo-
rithm is successful if at some stage eachq j is a final state of the automatonA j . The
algorithm runs in NPS w.r.t. the accumulated size of the input automata.

(2) Iteratively compute the intersection NFA forA j = (Q j, Σ, δ j , i j, F j) andA j+1 =

(Q j+1, Σ, δ j+1, i j+1, F j+1). This intersection is the NFA (Q j×Q j+1, Σ, δ, (i j, i j+1), F j×

F j+1), with δ((a1, b1), (a2, b2)) = δ(a1, a2)∩ δ(b1, b2). The algorithm is successful if
the intersection is non-empty. This construction is polynomial if the number of the
input NFA is known to be bounded.

Method (1) establishes a general (nondeterministic) polynomial space procedure,
which by Savitch’s Theorem is also in PS. Method (2) can be used to establish
tighter bounds in special cases: each intersection might cause a quadratic increase of
the size of the automaton, but the number of required intersections is bounded ifKB
or q are fixed. Indeed, if the query is fixed, the number of requiredintersections is
bounded by the overall number of role statements in the query. If the knowledge base is
fixed, the possible number of interesting intersections is bounded by the number of split
automata that can be produced from role automata constructed from the RBox, which
is clearly bounded by a fixed value. In both cases, checking intersections can be done
deterministically in polynomial time. ⊓⊔

We summarise the contents of Lemmas 2 and 3 in Table 3.

Table 3.Complexities of conjunctive query answering in regularEL++ knowledge bases. When-
ever the RBox is variable, we assume that it is simple.

Variable parts:
QueryRBox TBox ABox Complexity

Combined complexity × × × × PS-complete
Query complexity × NP-complete

Schema complexity × × × P-complete
Data complexity × P-complete

8 Conclusion

We have proposed a novel algorithm for answering conjunctive queries inEL++ knowl-
edge bases, which is worst-case optimal under various assumptions. To the best of our
knowledge, this also constitutes the first inference procedure for conjunctive queries in
a DL that supports complex role inclusions (including composition of roles) in the sense
of OWL 1.1. Showing undecidability of conjunctive queries for unrestrictedEL++, we
illustrated that the combination of role atoms in queries and complex role inclusion
axioms can indeed make reasoning significantly more difficult.

A compact automata-based representation of role chainsand (parts of) models al-
lowed us to establish polynomial bounds for inferencing in various cases, thus identify-
ing querying scenarios that are still tractable forEL++. Conjunctive queries inherently
introduce some nondeterministism, but automata can conveniently represent sets of pos-
sible solutions instead of considering each of them separately. We therefore believe that
the presented algorithm can be a basis for actual implementations that introduce addi-
tional heuristics to ameliorate nondeterminism.

Acknowledgements.This work was substantially improved through the comments of
Pascal Hitzler and various anonymous reviewers. This research has been supported by
the EU in the IST project NeOn (IST-2006-027595).

References

1. Krötzsch, M., Rudolph, S.: Conjunctive queries forEL with role composition. In: Proc.
2007 Description Logic Workshop (DL 2007), CEUR ElectronicWorkshop Proceedings,
http://ceur-ws.org/ (2007)

2. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
data bases. In Hopcroft, J.E., Friedman, E.P., Harrison, M.A., eds.: Proc. 9th annual ACM
Symposium on Theory of Computing (STOC’77), ACM Press (1977) 77–90

3. Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to decide query containment under
constraints using a description logic. In Parigot, M., Voronkov, A., eds.: Proc. 7th Int. Conf.
on Logic for Programming and Automated Reasoning (LPAR 2000). Volume 1955 of LNAI.,
Springer (2000) 326–343

4. Hustadt, U., Motik, B., Sattler, U.: A decomposition rulefor decision procedures by
resolution-based calculi. In: Proc. 11th Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2004). (2005) 21–35

5. Ortiz, M.M., Calvanese, D., Eiter, T.: Data complexity ofanswering unions of conjunctive
queries inSHIQ. In: Proc. 2006 Description Logic Workshop (DL 2006), CEUR Electronic
Workshop Proceedings,http://ceur-ws.org/ (2006)

6. Ortiz, M.M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive query
answering in expressive description logics. In: Proc. 21stNat. Conf. on Artificial Intelligence
(AAAI’06). (2006)

7. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the descrip-
tion logicSHIQ. In: Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI-07), Hy-
derabad, India (2007) Available athttp://www.ijcai.org/papers07/contents.php.

8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR2006), AAAI Press
(2006) 57–67

9. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope.In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI-05), Edinburgh, UK, Morgan-Kaufmann Publishers (2005)

10. Horrocks, I., Sattler, U.: Decidability ofSHIQ with complex role inclusion axioms. In
Gottlob, G., Walsh, T., eds.: Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03),
Acapulco, Mexico, Morgan-Kaufmann Publishers (2003) 343–348

11. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics:
Some undecidability results. In: Proc. 2001 Description Logic Workshop (DL 2001). (2001)

12. Davey, B.A., Priestley, H.A.: Introduction to Latticesand Order. second edn. Cambridge
University Press (2002)

13. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys33 (2001) 374–425

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,Rosati, R.: Data complexity of
query answering in description logics. In: Proc. 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2006). (2006) 260–270

15. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the Foundations
of Computer Science. (1977) 254–266

16. Kleene, S. In: Representation of Events in Nerve Nets andFinite Automata. Princeton Uni-
versity Press, Princeton, N.J. (1956) 3–42

17. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts (1979)

