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Abstract. EL is a rather expressive description logic (DL) that still dgm
polynomial time inferencing for many reasoning tasks. @oofive queries are
an important means for expressive querying of DL knowledageb. In this pa-
per, we address the problem of computing conjunctive quetgilenent for&.L**
knowledge bases. As it turns out, querying unrestri€t€d* is actually undecid-
able, but we identify restrictions under which query ansmgebecomes decidable
and even tractable. To the best of our knowledge, the predeatgorithm is the
first to answer conjunctive queries in a description logat #dmits general role
inclusion axioms.

1 Introduction

Conjunctive queries originated from research in relaticiagabases [2], and, more re-
cently, have been considered for expressive descriptiginddDLSs) as well [3-7]. Al-
gorithms for answering (extensions of) conjunctive queinehe expressive DEHIQ
have been discussed in [4, 5], but the first algorithm thapsttp queries for transitive
roles was presented only very recently [7].

Modern DLs, however, allow for complex role inclusion axi®iihat encompass
role composition and further generalise transitivity. fie best of our knowledge, no
algorithms for answering conjunctive queries in those sds/e been proposed yet.
A relevant logic of this kind iSSROZQ [8], the basic DL considered for OWL 1.
Another interesting DL that admits complex role inclusi@&.L*" [9], which has been
proposed as a rather expressive logic for which many interéasks can be computed in
polynomial time. In this paper, we present a novel algoritbnanswering conjunctive
queries inEL**, which is based on an automata-theoretic formulation ofglerrole
inclusion axioms that was also found useful in reasoning W0OZQ [10, 8].

Our algorithm in particular allows us to derive a number ofhgdexity results re-
lated to conjunctive query answeringdC**. We first show that conjunctive queries
in &L are undecidable in general, and identify th&**-fragment of SROIQ as
an appropriate decidable sub-DL. Under some related e¢téstis of role inclusion ax-
ioms, we show that conjunctive query answering in gene@Bsce-complete. Query
answering for fixed knowledge bases (query complexity) ashto be NP-complete,
whereas for fixed queries (schema complexity) it is meretpPyplete.

* Basic results of this work have first been published in [1].
Lhttp://webont.org/owl/1.1/



2 Preliminaries

We assume the reader to be familiar with the basic notiongséription logics (DLS).
The DLs that we will encounter in this paper a&£** [9] and, marginallySROIQ
[8]. A signatureof DL consists of a finite set able namesR, a finite set oindividual
named, and a finite set ofoncept name€, and we will use this notation throughout
the paper&L** supportsnominals which we conveniently represent as follows: for
anya € |, there is a conceft} € C such thata)’ = {a} (for any interpretatior?).
As shown in [9], any8.L** knowledge base is equivalent to oneniormal form only
containing the following axioms:

TBox: AC C AnBEC AcC 3RC JRACC

RBox: RE T RoSCT
whereA, Be CU{T},C e CuU{L}, andR, S, T € R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model théoret
semantics oEL"" can be found in [9]. Unless otherwise specified, the letie®, E
in the remainder of this work always denote (arbitrary) @pimames, and the letters
R, S denote (arbitrary) role names. We do not consider conciateaths in this paper,
but are confident that our results can be extended accoyding|

For conjunctive querieswe largely adopt the notation of [7] but directly allow for
individuals in queries. LeV be a countable set afariable namesGiven elements,
y € V U I, aconcept atonfrole aton) is an expressiof(x) with C € C (R(x,y) with
R € R). A conjunctive query s a set of concept and role atoms, read as a conjunction
of its elements. Byar(q) we denote the set of variables occurringginConsider an
interpretations with domain4?, and a functiomr : Var(q)ul — 4% such thatr(a) = a’
foralla e |. We define

I,mreCXifr(x)eCf, and 7,7k RXY)if(x(x),n(y)eR.

If there is somer such thatZ, = = A for all atomsA € g, we write7 E g and say that
I entails g We say thatj is entailed by a knowledge bak®, denotedB [ q, if all
models ofKB entailq.

3 Conjunctive Queries inEL**

We first investigate the complexity of conjunctive queriegeneralL** as defined
in [9]. The following result might be mildly surprising, big in fact closely related to
similar results for logics with complex role expressioreg(se.g., [11]).

Theorem 1. For an EL** knowledge base KB and a conjunctive query g, the entail-
ment problem KB= q is undecidable.

Proof. The undecidabléost correspondence probleis described as follows: given
two lists of wordauy, . .., uy andvy, .. ., v, over some alphabet, is there a sequence of
numberdy, ..., ik (1 <ij < n) such thaw;, ...u, = v, ...Vv;? To reduce this problem
to query entailment, we define a knowledge bK& Consider the set of rolé’ =
{Ujll<j<nufVjll< j<nfu{Mjll < j < njU{R, | o € Z}U{U, V}. For each word



Uj = oj1...0jmand corresponding rold;, add an RBox statemeRy, o.. .oR;, C Uj,
and likewise for words;. For eachj = 1,.. ., n, define RBox statement§oVoM; C V
andU; o U o M; C U. Moreover, for some conceft, add TBox statements of the form
C c 3S.C for all rolesS of the formR, andM;. Finally, add an ABox stateme@Xa)
for some individuah.

Now KB entails the queryU(a, X), V(a, X)} iff there is a solution to the given Post
correspondence problem. Indeed, it is easy to see that adglrobKB implies{a} C
3R;....3dR for any possible wordR; . .. R over the alphabet d®; andM;. The query
is entailed ff some such word implies botd andV, which is the case exactly if a
corresponding sequence was found, where the maMemnsure that botk) andV
have been generated from the same sequence. O

Corollary 1. Checking class subsumptionsSL** extended with inverse roles or role
conjunctions is undecidable, even if those operators ooaly in the concepts whose
subsumption is checked.

Proof. The proof of Theorem 1 is easily modified to check for concejpssmptions
{a} C 3U.3V~{a} or {a} C A(U r V).{a} instead of query entailment. O

Clearly, arbitrary role compositions are overly expressithen aiming for a de-
cidable (or even tractable) logic that admits conjunctiveries. We thus restrict our
attention to the fragment &L+ that is in the (decidable) description logBROIQ
[8], and investigate its complexity with respect to conjivequery answering.

Definition 1. AnEL** RBox in normal form isegularif there is a strict partial order
< onR such that, for all role inclusion axioms;R S and Roc R, C S, we find R< S
orR =S (i=1,2). AnEL* knowledge base is regular if it has a regular RBox.

The existence ok ensures that the role hierarchy does not contain cyclicroibge
cies other than through direct recursion of a single role.

4 Reasoning Automata for& L**

In this section, we describe the construction of an automtitat encodes certain con-
cept subsumptions entailed by@#** knowledge base. The automaton itself is closely
related to the reasoning algorithm given in [9], but the espntation of entailments via
nondeterministic finite automata (NFA) will be essentialtfte query answering algo-
rithm in the following section. We describe an NEAas a tuple Qa, X4, 54, 1.4, F4),
whereQy is a finite set of states 4 is a finite alphabet§4 : Q4 X Qs — 2*7is a
transition function that maps pairs of states to sets ofaiphsymbols,i 4 is the initial
state, andF 4 is a set of final states.

Consider ar€L** knowledge bas&B. Given a concept nam& € C, we construct
an NFAAks(A) = (Q, 2, 6,1, F) that computes superconceptsfofwhere we omit the
subscript ifKB is clear from the context. S = F = CU {T}, 2 = CURU({T, 1},

2 A possibly more common definition is to map pairs of statessymabols to sets of states, but
the above is more convenient for our purposes.



Table 1. Completion rules for constructing an NFA from &£** knowledge bas&B.

(CR1) IfC’ € 6(C,C),C’' C D € KB, andD ¢ §(C,C) thens(C,C) := 6(C,C) U {D}.
(CR2) IfC;,C; € 6(C,C),C, N C, C D € KB, andD ¢ §(C,C) thens(C,C) := §(C,C) U {D}.
(CR3) IfC’ € §(C,C),C’ C AR D € KB, andR ¢ 6(C, D) thens(C, D) := §(C, D) U {R}.
(CR4) IfR € 6(C,D), D’ € §(D,D), ARD’ C E € KB, andE ¢ 6(C,C) thens(C,C) =
5(C,C) U {E}.
(CR5) IfRe §(C,D), L € §(D, D), and_L ¢ §(C,C) thens(C,C) := 6(C,C) U {L}.
(CR6) If{a} € 6(C,C) n (D, D), and there are stat€y, ..., C, such that
—Cie{C,T,Alu{{b}|bel},
- 0(Cj,Cj) = 0forall j=1,...,n-1,
- C,=D,
andé(D, D) ¢ 6(C,C) thens(C,C) := §(C,C) U §(D, D).
(CR7) IfRe §(C,D), RC S, andS ¢ 6(C, D) thens(C, D) := 6(C, D) U {S}.
(CR8) IfR; € 6(C,D),R; € 6(D,E), Rio R, C S, andS ¢ 6(C, E) thens(C, E) = §(C,E) U {S}.

andi = A. The transition functiord is initially defined ass(C,C) := {C, T} (for all
C € Q), and extended iteratively by applying the rules in Tabl&He rules correspond
to completion rules in [9, Table 2], though the conditions(foR6) are slightly relaxed,
fixing a minor glitch in the original algorithm.

Itis easy to see that the rules of Table 1 can be applied atarpsynomial number
of times. The words accepted F(A) are strings of concept and role names. For each
such wordw we inductively define a concept expresst@pas follows:

— if wis empty, therC,, = T,
— if w= Rvfor someR € R and wordv, thenC,, = AR.(C,),
— if w= Cvfor someC € C and wordv, thenC,, = C 1 C,.

For instance, the wor@ RDE Stranslates int@€cgrpes = CMAR (DM EMAS.T). Based
on the close correspondence of the above rules to the derivatles in [9], we can
now establish the main correctness result for the autona(a).

Theorem 2. Consider a knowledge base KB, concept A, and 4A) as above, and
let w be some word over the associated alphabet. Ther=KB C C,, iff one of the
following holds:

— A(A) accepts the word w, or
— there is a transitionL € 6(C,C) where C= T, C = A, or C = {a} for some
individual a.

In particular, A(A) can be used to check all subsumptions between A and someatomi
concept B.

The second item of the theorem addresses the cases Wieirderred to be empty
(i.e. inconsistent) or where the whole knowledge base isriaistent, from which the
subsumption trivially follows. While the above yields ateahative formulation of the
EL'" reasoning algorithm presented in [9], it has the advantageit also encodes
all pathswithin the inferred models. This will be essential for ousulis in the next
section. The following definition will be most convenient this purpose.



Definition 2. Consider a knowledge base KB, concepts &, ®, and the NFAA(A) =
(Q,2,6,i,F). The automatotAkg(A, B) (or just A(A, B)) is defined agQ, R, 4,i, F’)
where F = 0 wheneverL € 6(A, A), and F = {B} otherwise.

The automatorA(A, B) normally accepts all words of roldg, ..., R, such that
A C JRy(...dR,.B...) is a consequence &B, with the border case where= 0 and
KB = A C B. Moreover, the language accepted by the NFA is empty wherfeze L
has been inferred.

5 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithat trecides the entailment of
a queryq with respect to some regular consistent knowledge B&sdHere and in the
following, we assume w.l.0.g. thaB does not entaia ~ b (i.e. {a} = {b}) for any
a, b € I. Indeed, one can just replace all occurrenceb @fith a in this case, both
within KB and within any query we wish to consider later on (and thieazn be
detected in polynomial time). Moreover, we assume thattieeat least one individual
in the language, i.d. # 0. The algorithm constructs a so-callpebof graphwhich
establishes, for all interpretatiodsof KB, the existence of a suitable functiarthat
shows query entailment.

Formally, a proof graph is a tupl&l(L, E) consisting of a set of nodé§ a labelling
functionL : N - C U {T}, and apartial transition functiorE : N x N — A, whereA
is the set of all NFA over the alphab&tu {T, L} U R. The nodes of the proof graph
are abstract representations of elements in the domaimud seodel oKB. The labels
assign a concept to each node, and our algorithm ensurethéhapresented element
is necessarily contained in the interpretation of this embcintuitively, the label of a
node encodes all concept information relevant for the @rfees used to show query en-
tailment. A single concept namefiges for this purpose since (KB is in normal form
and thus supplies concept names for all composite conc@pésgsions such as con-
junctions, and (2EL"* does not allow inverse roles or number restrictions thatccou
be used to infer additional information based on the refstiip of an element to ele-
ments in the model. Finally, the transition function encoplaths in each model, which
provide the basis for inferencing about role relationstipsveen elements. It would
be possible to adopt a more concrete representation fopatles (e.g. by guessing a
single path), but our formulation reduces nondeterminischeventually simplifies our
investigation of algorithmic complexity.

The automaton of Definition 2 encodes concept subsumptiassdon TBox and
RBox. For deciding query entailment we also require autarttzdt represent the con-
tent of the RBox.

Proposition 1. Given a regular6L** RBox, and some role R R, there is an NFA
A(R) over the alphabeR which accepts aword R.. R, if Rio...cR, C Risa
consequence of eve8/** knowledge base with the given RBox.

Proof. One possible construction for the required automaton isudised in [8]. Intu-
itively, the RBox can be understood as a grammar for a redatguage, for which an
automaton can be constructed in a canonical way. O



The required construction ofi(R) might be exponential for some RBoxes. In [10],
restrictions have been discussed that prevent this blgueaging to NFA of only poly-
nomial size w.r.t. the RBox. Accordingly, an RBoxdenplewhenever, for all axioms
oftheformR, oS C S, So R, C S, the RBox does not contain a common subrole
R of R; andR, for which there is an axiom of the forlRoc S’ C R orS’c RC R.

We will usually consider only such simple RBoxes wheneversilze of the constructed
automata matters.

We are now ready to present the algorithm. It proceeds imuargonsecutive steps:

Query factorisation.The algorithm nondeterministically selects a variable Var(q)
and some elememte Var(q) Ul, and replaces all occurrencesah g with e. This step
can be executed an arbitrary number of times (including)zero

Proof graph initialisation. The proof graph I, L, E) is initialised by settingN :=

I U Var(g). L is initialised byL(a) := {a} for eacha € |. For eachx € Var(q), the
algorithm nondeterministically selects a lah€k) € C U {T}. Finally, E is initialised
by settingé(n, a) := A(L(n), L(a)) for eachn € N, a € I. Anodem € N is reachable
if there is some noda € N such thatE(n, m) is defined, andinreachableotherwise
(recall thatE is a partial function). Thus exactly the nominal nodes aeehable by
the initialisation ofE. Now as long as there is some unreachable node/ar(q), the
algorithm nondeterministically selects one sucénd some noda € N that is reach-
able, and set&(n, x) := A(L(n), L(X)). After this procedure, the graph(L, E) is such
that all nodes are reachable. Finally, the algorithm chadiether any of the automata
E(n, m) with n € N andm € Var(q) accepts the empty language, and aborts with failure
if this is the case.

Checking concept entailmenEor all concept atom€(n) € g (n € N), the algorithm
checks whethelr(n) = C with respect tdKB.

For the remaining steps of the algorithm, some preliminafinitions and observa-
tions are needed. The autom&i, m) of the proof graph represent chains of existential
role restrictions that exist within any modelnife Var(q), then the automaton encodes
many possible ways of constructing an element that belomdble interpretation of
L(m) in each model. The role automafR) in turn encode possible chains of roles
that sufice to establish rol® along some such path. To show that an atm m) is
entailed, one thus has to check whether the autofaétam) and A(R) have a non-
empty intersection language. Two issues must be taken ettouat. First, not every
pair of nodes is linked by an ed@#n, m), so one might have to look for a longer path
of edges and check non-emptiness of its intersection#A{fR). Second, there might be
several role atoms thaffact the path betweemandm. Since all of them must be taken
into account, one either needs to check intersections of/d@guages concurrently,
or to retain the restrictions imposed by one role atom befeing further atoms.

Proposition 2. For every pair of nodes n, ra N, there is a uniqgushortestonnecting
pathmy = n,ny,...,nx, = mwith n € N and En;, nj;;) defined. This path can be
computed by a deterministic algorithm in polynomial time.



Proof. By construction of {, L, E), there is a (necessarily shortest) path of lerdgth

1 whenevem € 1. Likewise, if m € Var(q), there is a shortest (“generating”) path
My, ..., M = mfrom some elementy € |. The shortest path from to mis found
immediately ifn = my for somei < I. Otherwise, the shortest path has an additional
initial segmenE&(n, mp). Clearly, all of this can be determined in polynomial time

Now any role atom in the query should span over some existtig, and we need
to check whether this path fiices to establish the required role. To do this, we nonde-
terministically split the role automaton into parts tha distributed along the path.

Definition 3. Consider an NFAA = (Q, 2, 6,1, {f}). A split of A into k parts is given
by NFAA;, . .., Ak with A; of the form(Q, 2, 6, gj_1, {Q;}) such thatg =i, gk = f, and
gjeQforallj=1,...,k-1.

It is easy to see that, if each split automat@naccepts some wond;, we find that
Wi ... W is accepted byA. Likewise, any word accepted 3t is also accepted in this
sense by some split ofl. Since the combination of any split in general accepts less
words than#A, splitting an NFA usually involves some don’t-know nondetaism.
We can now proceed with the final steps of the algorithm.

Splitting of role automatalor each role atorR(n, m) within the query, the algorithm
computes the shortest path= no, ..., nk = mfromnto m. Next, it splits the NFAA(R)
into k automataA(R(n, m), ng, ny), ..., A(R(n, M), nk_1, N), and aborts with failure if
the language accepted by any of the split automata is empty.

Check role entailmentFinally, for eachn, m € N with E(n, m) defined, the algorithm
executes the following checks:

() Ifme I, it checks for each split automaton of the forfifF, n, m) whether there is
a word accepted hyi(F, n, m) and by the edge automatétn, m).

(b) If me Var(q), it checks whether there is a (single) word that is accepyeall split
automata of the forn#(F, n, m) and by the edge automat&gn, m).

If all those checks succeed (i.e. if the required words gxisé algorithm confirms the
entailment of the query (we say thaaitceptghe query). Else it terminates with failure.

Intuitively, the above checks show the existence of suitadlle paths in any model,
represented by accepted words. In case (a), only pairwiepansons are needed, since
different role paths may still lead to the same element reprddnt the individual
m € |. But in case (b), the identity of the domain element repriesthym € Var(q)
depends on the chosen role path, and it must be ensuredltbanditions refer to the
same path (and thus to the same element).

The above conditions could also be stated as emptinessepnsiibr the automata’s
intersection languages, but this tends to make the verlsatig¢ion more ambiguous.

6 Correctness of the Algorithm

We now prove soundness and completeness of the algorithrsamtesl in Section 5.



Proposition 3. Consider a regular consiste&itL™* knowledge base KB and a conjunc-
tive query q. If the algorithm of Section 5 accepts q, thee@tKBE g.

Proof. We use the notation from Section 5 to denote structures ctedpay the algo-
rithm. When terminating successfully, the algorithm haspated the following:

— A proofgraph (, L, E),
— For each role atorR(m, n) € g, ak-split A(R(n, M), ng, N1), . .., A(R(N, M), Nk_1, Nk)
of the NFAA(R), wherek is the length of the shortest path franto min (N, L, E).

In the following, letZ be some model okB. To showKB k g, we need to provide
a mappingr as in Section 2 fo. Since is arbitrary, this shows the entailment of
g. We can deriver from the proof graph, and then show its correctness basebeon t
conditions checked by the algorithm.

When factorising the query, the algorithm replaces vaeisly individual names
or by other variables. This is no problem: whenever a qugiig obtained frormg by
uniformly replacing a variablg € Var(q) by an individuak € | (or variabley € Var(q)),
we have thakB E ¢ impliesKB [ g. Indeed, any mapping for g’ can be extended
to a suitable mapping for q by settingr(x) := a’ (7(X) := y*). Thus we can assume
w.l.0.g. that all variableg € Var(qg) also occur as nodes in the proof graph,xe.N.

When checking role entailment, the algorithm checks nopterass of the inter-
section languages of the autom&n, m), and ongall split automataA(F, n, m), for
eachn, me N with E(n, m) defined. Thus for any pair€ N, m € Var(q), there is some
word w accepted bwll of the given automata. Choose one such waefd m). By the
definition of A(R) and the split automatay(n, m) is a word ovelR, and we can assume
this to be the case even when no split automata (but justigéestdge automaton) are
considered for the given edge framto m. E(n, m) in turn is of the form#A(L(n), L(m))
(Definition 2) for the selected class nanigg) andL(m) of the proof graph.

Now by Theorem 2, the construction of Definition 2, and the faatKB is consis-
tent, it is easy to see th&i(n, m) accepts the wordi(n,m) = R;...R iff KB E L(n) C
AR;....dR.L(m). We employ this fact to inductively construct a mapping

When constructing the transition function of the proof drathe algorithm has
defined labeld (x) for all x € Var(qg), and we will retrace this process to construct
7. We claim that the following construction ensures that, méveer a node € N is
reachablezr(n) has been assigned a unique value suchs#tte L(n)?. For starting
the induction, set(a) := a’ for eacha € | (which is necessarily reachable and clearly
satisfiesr(a) € L(a)! = {a}’). Now assume that in one step the algorithm selected
somex € Var(q) that was not reachable yet, and nade N which is reachable. As
noted abovekKB E L(n) C AR;....dR.L(X) wherew(n, X) = R; ... R, and hence there
is an elemene € L(x)” such that£(n),€) € Rl o... o R/ (whereo denotes forward
composition of binary relations). Pick one suehnd setr(X) = e. It is easy to see that
the claim of the induction is satisfied.

The algorithm has verified that(n) C C holds for eachC(n) € q (using stan-
dard polynomial time reasoning fé&£**), so we findr(n) € C. It remains to show
that a similar claim holds for all binary query atoms. Thusgider some role atom
R(n,m) € g, and letn = ny, ..., nx = mdenote the shortest path in the proof graph used
to split the role automaton. So far, we have defingd;, n,1) only for cases where



ni;1 € Var(qg). By a slight overloading of notation, we now ltn;, nj.1) for nj;; € |
denote some word accepted by the intersectioB(of, n;;;) and the specific split au-
tomatonA(R(n, m), n;, 1), which must exist as the algorithms must have verified non-
emptiness of the intersection language. Assumingulat ni;1) = S;...S, we note
that this still entailsKB £ L(n;) C 3S;....3S,.L(ni;1) . Sinceni;1 € 1, this actually
shows that£(n;), 7(ni.1)) € ST o...S/.

The wordw = w(ng, ny) ... wW(nk_1, Nk) is accepted byA(R), which is clear from the
construction in Definition 3 as the pasgn;, n,1) are accepted by the respective split
automata. Assume that = R; ... Rc. We conclude(n), 7(m)) € Rl o ... o R from
the construction ofr and the above observations for the case of edges conneating t
individual elements. Thus by Proposition 1 we hawg), 7(m)) € R as required. O

It remains to show that the algorithm is also complete. Thiddne by demonstrat-
ing that there are suitable nondeterministic choices thable the algorithm to accept
a query whenever it is entailed. To guide those choices, wedimstruct a canonical
model for some knowledge base.

Consider a regular consista®i** knowledge basi&B as before. We now provide
an iterative construction of a modglof KB. Our goal is to obtain a concise definition
of a suitablecanonical modelso it is no matter of concern that the given construction
does not terminate after finitely many steps.

Table 2. Closure rules for an interpretatiaf w.r.t. some knowledge bas€B. In general, we
assume that,D e CU({T, L} andR;,R;,S € R.

seCt KBECCD

@ DY := DY U {6}

seCt KBECC3IRD KB} D C {a} for anyae |

@ =i Uld R =R UG DI =Dlujg "heree=ecero
3) 6eC’ KBE CLC dRD KB D C {a} for somea € |
R = RZ U ((6,a)]
@) (6,€) e RY RC SeKB 5) (6,e) eRl () eRy RiocR,CSeKB
ST = ST U((0,e) ST = S7 U ((6,7))

To simplify our arguments, we adopt a naming scheme for piaiexiements of the
domain of7. Let4 be the smallest set such tHat 4 and, for anys € 4,C, D € C,
andR € R, we find thate; ccarp € 4. We will define such thatd; C 4.

For any two interpretationgi and 9, of KB, we say thaty; is smallerthan 7 if,
foranyF e CUR U {T}, F7* ¢ F72, The interpretatiod is defined to be the smallest
interpretation that satisfies the following:

(i) 4r c 4,
(i) {a)f :=aforallael,and
(iii) 7 is closed under the rules of Table 2.



It is easy to see that this smallest interpretation exigtst: gonsider all interpretations
satisfying conditions (i) and (ii), ordered by the “smallean” relation defined above,
which clearly yields acomplete latticewith least upper bounds given by taking the
(pointwise) unions of interpretation domains and extemsid@iven an elemeny of
this set, an interpretatiof(7) is defined as the result of exhaustively applying all rules
of Table 2 whose premisses are satisfieddayThe construction is easily seen to be
monotonic, and hence indeed has a least fixed po[a®, Theorem 8.22].

The rules of Table 2 have the special property that each iohai is “initialised”
with at most one concept name. Formally, we define for eachess € 4 a concept
namex(s) as follows:

—if 6 €l, o) := {6},
— if § = €s.ccarp for somes’ € 47,C, D € C, Re R, then() := D.

Note that the above cases are indeed exhaustive and munelisive.
Lemma 1. The interpretatiory” as constructed above is a model of KB.

Proof. First note that the domain df is non-empty since we assume the existence of
at least one individual. We have to check that all axiomkBfre indeed satisfied. For
axioms of the fornC C JR.D this is obvious by rules (2) and (3) of Table 2. Similarly,
all role inclusion axioms are directly accounted for by sulé) and (5).

So it remains to show that axiondsof the formsC C D, ARCC D, andC; nC, C
D are satisfied. Obviously, wheneviee C? (5 € IR.C?) for someC € C (andR € R),
we findKB [ «(6) C C (KB E «(6) T IR.C). We conclude that, whenever the premise of
some axiomp as above is satisfied férthen it is entailed by(s), and so its conclusion
D is a direct consequence @6) underkKB. Thus@ is satisfied by rule (1). O

Proposition 4. Consider a regular consiste@£** knowledge base KB and a con-
junctive query g. If KB= q, then there is a sequence of nondeterministic choiceféor t
algorithm of Section 5 such that it accepts q.

Proof. Consider the canonical modélas constructed above. Sink® = qand’
KB, there is some mappingsuch thatZ, = i g. We will usern to guide the algorithm.

In the query factorisation step, a variabde Var(q) is replaced by € Var(q) U |
wheneverr(x) = n(n). For the proof graph initialisation, we choose the labgllL
of the proof graph by setting(e) := «((€)). As we have argued abové,e C’ iff
KB k () C C, and hence we conclude thee) € C! implies thatkB = L(e) C C for
all e | U Var(q). Thus all unary atoms af are accepted by the algorithm.

Continuing with the construction of edges in the proof grapé first observe some
important basic properties of the canonical model.

Property 1. For any elemend € 47 that is not an individuad ¢ |, there is a unique
chain of elementsy...d¢ = 6 and role nameRy, ..., R«1 € R, such thatg € | and,
foralli = 1,...,k, 6 € 47 is of the formd.ccrp With € = 6i-1 andR = R_;. This

is easily verified by observing that aayf the given form must have been entailed by
rule (2), and by applying a simple induction on the depth &f émtailment. In this case,
we say thab; generateg viatheroleRR .. .R« (i =0,...,K).



Property 2. Consider element§ e € 47 such that generateg via the rolesRy . .. Rk.
Theny(6) C IRy.(. .. ARk.t(€) .. .). This is obvious by another simple inductive argument
that utilises the preconditions of the applications of (3

Property 3. For any 6, €) € R’, there is a chain of elemendis= 6y...5x = € and role
nameR (i =0,..., k- 1), such that

— (61, 0i+1) € RI is directly entailed by one of rules (2) and (3), and

— Ryo...0R1 C Ris aconsequence &B.
We show this by an inductive argument as follows: for the besge, assume that
(6, €) € R! follows from rule (2) or (3). Then the above condition clgawblds. For the
induction step, assume that €) € R’ follows by applying rule (5) td}; o R, C R, and
that the claim holds for the statemengs|) € R{ and §j,¢€) € Ré' We easily can con-
struct from these assumptions a suitable chain of elememsthe chains postulated
for Ry andR,. Similarly, the second condition of the claim follows frohetassumption
thatR; o R; C Rand the induction hypothesis. Rule (4) is treated analdgous

Now in each step of the generation of the edgex the proof graph, the algorithm
needs to pick some (unreachabte) Var(g) and some reachable nodeBy Property 1
above, there is a unique generating chain for egghwherex is not reachable within
the proof graph yet. Moreover, since the chain of Propergyunique and shortest, it is
also acyclic. Hence there is some unreachatsech thatr(x) is not generated by any
element of the formr(y) with y unreachable. Pick one such elemerfinally select one
elementh € | U Var(q) such thatr(n) generatea(x), and such that there is no element
m for which #(m) generate(x) andn(n) generateg(m). Construct an edgg(m, x).

Now for any elements andm of the query, withm € Var(q) andE(n, m) defined,
the automatort(n, m) accepts a non-empty language. This is seen by combining Pro
erty 2 with Theorem 2, where the second case of the theorertigded sincekKB is
consistent. The algorithm’s checks for non-emptinessedeHanguages thus succeed.

The algorithm now has completed the proof graph constragéind the selection of
split automata is required next. For all query atdr(s, m), we find that £(n), 7(m)) €
R’, and thus we can apply Property 3 to obtain a respective dfa@lements and role
names, which we denote 86. ..6x andRy . .. Rc_; in the remainder of this proof.

Let j > O denote the largest index 6§ . .. 5k, such thav; is of the formsn(e;) for
someeg; € |, if any such element exists. Otherwise, jet 0 denote the smallest index
such thab; is of the formr(e;) for anye; € Var(qg). We claim that there is a connection
betweenn ande; in the proof graph. Clearly, this is true & € | since these edges
were constructed explicitly. Otherwise, Property 1 and chaice ofe; imply that an
edge fromn to e; was constructed by the algorithm. Startingdys, find all elements
¢6; of the formr(€), e € Var(q), and label them consecutivelyes. . ., g. Note that this
sequence can be empty, in which case we défigel. Obviously,e = m. We claim
thatn = ... = mis the shortest path fromto mwithin the proof graph. We already
showed the connection betweer: ey ande;. The connections betweenande,; are
also obvious, since ea&h generatesg .1 by definition. Since the latter path is also the
only path frome; to g, the overall path is clearly the shortest connection.

The algorithm now splitsA(R) along the patim = & ... = m. For eacle, there is
an indexj(i) such that ;) = n(e). Hence, for each paie( e.1), there is a correspond-
ing sequence of roleRjg.1 . . . Rji+1) which we denote by; (i = 0,...,1 — 1), and the



concatenation of those sequences yields the origipal. Rc_;. By Proposition 1 and
Property 3, the automatafi(R) accepts the worBy . . . Rc_1. To split the automaton, we
consider one accepting run and defié¢o be the state of the automaton after reading
the partial sequenag, for eachi = 0,...,| — 1. The states; are now used to construct
the split automatad;, and it is easy to see that those automata accept the sequence

Now assume that all required split automata have been cmtstt in this way. Con-
sider any pair of query elemergs’ € | UVar(q) for which a split automatoii(F, e, €)
was constructed using a partial sequence of ml&¥e claim that the edge automaton
E(e €) accepty. Indeed, this follows from Property 2 and Theorem 2. Thiswaho
non-emptiness of intersections between any single splinaaton and the correspond-
ing edge automaton in the proof graph, and thuEees for the case wheet e I.

Finally, consider the case that € Var(g), and assume that two split automata
A(F, e &) andA(F’, e, €) have been constructed for the given pair, based on twagparti
role sequencesandr’. We claim that = r’. Indeed, this is obvious from the fact that
r andr’ both correspond to the unique generating sequence of mi¢kd elements
ande, which is part of the sequence constructed for Property is Stows that is
accepted both byA(F, e, &) and by A(F’, e, €). We conclude that the intersection of all
split automata and the edge automalip, €) is again non-empty.

The algorithm thus has completed all checks successfullaaoepts the query.O

7 Complexity of Query Answering for EL**

Finally, we harvest a number of complexity results from tigoethm of Section 5.

Lemma 2. Given a regulai€L*™" knowledge base KB and a conjunctive query g, the
entailment problem KB= g is hard forNP w.r.t. the size of g, hard fdP w.r.t. the size

of the ABox of KB, and hard fd?Sace w.r.t. to the combined problem size, even when
restricting to simple RBoxes.

Proof. It is well-known that the evaluation of a single functiomdrHorn-clause is NP-
complete, even for a fixed set of ground facts [13]. This casilyele reduced to con-
junctive query answering over some ABox.

Likewise, mere instance retrieval is known to be P-compédteady, even with
respect to an empty RBox and a fixed TBox that uses only a sobsle¢ description
logic £L [14].

Hardness of the combined problem is shown by reducing thiel@moof deciding
non-emptiness of the intersection of languages acceptedseyAs, . .., A, of deter-
ministic finite automata (DFA) to query entailment. Thissirgection problem is indeed
known to be hard for R&ce w.r.t. the size and number of intersected automata [15]. Ob-
viously, asking for the existence of@n-emptyord accepted by all those automata is
of the same complexity since checking for acceptance of tgtyeword can be done
in P.

Assume w.l.0.g. that the intersected automata use a comiploaeet> represented
by role name®,, for eacho € X, and consider some cla€sand individuak. As in the
proof of Theorem 1, we force models to represent all possiblels over2’ by adding
an axiom{a} C C, and axiom< C 1R,.C for everyo € X.



Now we employ a construction very similar to the one usedémpttoof of Kleene’s
Theorem (equivalence of regular expressions and finitenaaii[16]) displayed e.g. in

[17]: considering a specific DF&; = ({01, . . ., 0m}, 2, 6, i, F), introduce roleﬁgh, S';h,

andR>® for 0 < k < mandk, g,h € 1,..., mand define the following role inclusion
axioms:

-R-E Rgh whenevew causes a transition froy to g,

_ Rt;l C loop

iop loop F{)op
— o C

-1 K
h ERh

g g
- Ri'oRG ERy,
k1l ploop — ak-1
ng;k ° '% C Sgi
- SgloRGTE Ry,
- RN C R***P\wheneveh e F

W.l.o.g., we assume the sets of role names introduced foditferent automata
to be disjoint. Syntactically, the RBox defined this way ighboegular (according to
Definition 1)and polynomial (namely irO(n%)) in the cumulated size of the automata.

Semantically, the RBox ensures the following: Assume a@mpty wordos . . . oj-1
causes a transition froay to g, in the automatoA;. Then, in any model” with ele-
mentsey, ..., € such that €, €y.1) € R{,D we also haved|, gj_1) € mhf. This can be
shown in analogy to the proof of Kleene by inductionkon

Likewise, every two elements connected by a role cigjn. . R, for a non-empty
word o7 ... 0; accepted byA, are forced to additionally be directly connected by the
role RA°*P

Moreover, for all words that are not accepted fy, there clearly is a model that
violates this property for the corresponding start and dachents (as can be easily
shown by the construction of a tree-shaped minimal free tode

As mentioned above, the choice of the TBox enforces for exeagel of the KB
and any word ot that there is a corresponding role sequence starting &om

Hence the intersection problem (while excluding the empoydyfor Aj, ..., A,
can be reduced to the conjunctive queR§™a, x), ..., R, x)}. O

We remark that the above results are quite generic, and castalelished for many
other DLs. Especially, NP-hardness w.r.t. knowledge b&sean be shown for any
logic that admits an ABox, whereas RR& hardness of the combined problem follows
whenever the DL additionally admits role composition anidtextial role restrictions.

Lemma 3. Given a regular€L** knowledge base KB and a conjunctive query g, the
entailment problem KB= g can be decided iR w.r.t. the size of the knowledge base,
in NP w.r.t. the size of the query, and Reace w.r.t. the combined problem size, given
that RBoxes are simple whenever KB is not fixed.

Proof. First consider the step of query factorisation of the akponiin Section 5. It
clearly can be performed nondeterministically in polynaktime. If the query is fixed,



the number of choices is polynomially bounded, and so thdewtep is executable in
polynomial time.

Similar observations hold for the proof graph initialisati Concept names and au-
tomata for edges clearly can be assigned in polynomial tign@ mondeterministic
algorithm (and thus in polynomial space). If the query is xédi size, the nondetermin-
istic choices are again polynomial in the sizekd: the assignment of labelsadmits
at most/C|V>(@! different choices, and for each such choice, there are atnhosany
possible proof graphs, whends the number of nodes in the graph. Simand|Var(q)|
are considered fixed, this yields a polynomial bound.

Further nondeterminism occurs in the splitting of role auéta. However, if the
query is fixed, each of the polynomially many proof graphswdiedictates a number
of splits that is bounded by the size of the quarySince splitting an automaton inko
parts corresponds to selectik@not necessarily distinct) states from the respective role
automaton, there at@4/¥ different ways of splittingA. Sincek is again bounded by the
size of the queryn, we obtain an upper boun@|™" that is still polynomial in the size
of KB (which, by our assumptions on simplicity of the RBox, detires the maximum
number of statef)| of some role automaton). If the query is not fixed, splittingia
can be done nondeterministically in polynomial time.

Now for the final check of role entailment, the algorithm edisdly has to check
the emptiness of intersection languages of various autan@ven NFAA;, ..., A,
this check can be done in two ways, each being worst-casmalpfor different side
conditions of the algorithm:

(1) Initialise state variableg,...,q as being the initial states of the involved NFA.
Then nondeterministically select one input symbol and cauesition for this sym-
bol in each of the considered NFA, and update the stgtascordingly. The algo-
rithm is successful if at some stage eagls a final state of the automatoft;. The
algorithm runs in NP&ck w.r.t. the accumulated size of the input automata.

(2) lteratively compute the intersection NFA fagt; = (Qj, 2, 6,1}, Fj) andAj.1 =
(Qj+1,2, 641, 1j+1, Fj+1). Thisintersection is the NFAJ;x Qj.1, 2,6, (i, ij+1), Fjx
Fi+1), with 6((as, b1), (a2, b)) = d6(aq, a2) N (b, by). The algorithm is successful if
the intersection is non-empty. This construction is pomiad if the number of the
input NFA is known to be bounded.

Method (1) establishes a general (nondeterministic) pmtyial space procedure,
which by Savitch’s Theorem is also in R8e. Method (2) can be used to establish
tighter bounds in special cases: each intersection mighgeca quadratic increase of
the size of the automaton, but the number of required intécses is bounded iKB
or g are fixed. Indeed, if the query is fixed, the number of requirgdrsections is
bounded by the overall number of role statements in the qiféhe knowledge base is
fixed, the possible number of interesting intersectionsigioled by the number of split
automata that can be produced from role automata condrércten the RBox, which
is clearly bounded by a fixed value. In both cases, checkitggdactions can be done
deterministically in polynomial time. O

We summarise the contents of Lemmas 2 and 3 in Table 3.



Table 3. Complexities of conjunctive query answering in regulgi** knowledge bases. When-
ever the RBox is variable, we assume that it is simple.

Variable parts:
Quen|RBox|TBox|ABox| Complexity

Combined complexity x X X X |PSeace-complete
Query complexity | x NP-complete
Schema complexity X X X P-complete
Data complexity X P-complete

8 Conclusion

We have proposed a novel algorithm for answering conjuacfiveries if6 L knowl-
edge bases, which is worst-case optimal under various ggns. To the best of our
knowledge, this also constitutes the first inference prooetbr conjunctive queries in
a DL that supports complex role inclusions (including cosipon of roles) in the sense
of OWL 1.1. Showing undecidability of conjunctive queries tinrestricted L™, we
illustrated that the combination of role atoms in queried aomplex role inclusion
axioms can indeed make reasoning significantly moffecdit.

A compact automata-based representation of role claidgparts of) models al-
lowed us to establish polynomial bounds for inferencingarnious cases, thus identify-
ing querying scenarios that are still tractable&f**. Conjunctive queries inherently
introduce some nondeterministism, but automata can cagwiyrepresent sets of pos-
sible solutions instead of considering each of them seglgrat/e therefore believe that
the presented algorithm can be a basis for actual implemensahat introduce addi-
tional heuristics to ameliorate nondeterminism.
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