
The Fuzzy Linguistic Description Logic ALCFL
Dzung Dinh-Khac, Steffen Hölldobler

Technische Universität Dresden

Dinh-Khang Tran
Hanoi University of Technology

Technical Report WV-06-02

Abstract

We present the fuzzy linguistic description logic ALCFL, an in-
stance of the description logic framework L−ALC with the certainty
lattice characterized by a hedge algebra. Beside constructors of L−ALC,
ALCFL allows the modification by hedges.

Keywords: Description logics, hedge algebras, uncertainty.

1 Introduction

Description Logics (DLs) have been studied and applied successfully in quite
a lot of fields (see e.g. [1]). To deal with vague and imprecise information
in real-world applications, fuzzy ALC [7] introduces fuzzy concepts. As a
more general case of fuzzy ALC, a DL framework L−ALC based on certainty
lattices is presented in [8].

Humans typically use linguistic modifiers (hedges) like “very”, “more
or less” etc. to distinguish, e.g. between an old man and a very old one.
In [9] Zadeh uses exponent functions to represent hedges modifying fuzzy
sets, e.g. µveryA(u) = µA(u)2. In many human languages, there is almost
a continuum of phrases like “more or less”, “much less”, “possibly rather”
and so forth expressing different levels of emphasis. Hedge Algebras (HAs),
introduced in [5], give an algebraic characterization of such linguistic hedges.
ALCFH [3] and ALCFLH [2] extend fuzzy ALC by allowing the modification
by hedges of HAs.

In general, the domain of a HA can be represented as a lattice. Thus, an
instance of L−ALC, where the certainty lattice is a truth domain represented
by a HA, is a DL in which the truth degree of an assertion is a linguistic
value, e.g., John is an element of a concept Y oung with degree V eryTrue.
The idea is meaningful because in daily life, when being asked to assess
the degree of a person being Y oung, it is usually easier to give a verbal

1

answer like, for example, V ery High or Quite True, rather than to give a
numerical answer like, for example, 0.5 or 0.7.

In this paper, we present the fuzzy linguistic DL ALCFL, which is such
an instance of L−ALC. Beside constructors of L−ALC, ALCFL allows the
modification by hedges. Because the certainty lattice is characterized by a
HA, the modification by hedges becomes more natural than that in ALCFH
and ALCFLH. Moreover, we show that ALCFL overcomes the following
drawback in ALCFH and ALCFLH.

In ALCFH and ALCFLH, the hedge application is ambiguous. For exam-
ple, the concept V eryMolY oung1 can be interpreted as (V eryMol)Y oung in
which V eryMol is a modifier, or V ery(MolY oung) in which V ery and Mol
are two different modifiers. Unfortunately, in both ALCFH and ALCFLH
(V eryMol)Y oung 6= V ery(MolY oung). Therefore, we may have

〈a : V ery(MolY oung) < 0.7〉
2 〈a : (V eryMol)Y oung < 0.7〉,

which is surprising.
The paper is structured as follows. In Section 2, we discuss linear sym-

metric HAs and restrict ourselves to monotonic HAs. Then, ALCFL is in-
troduced in Section 3 and the satisfiability problem is discussed in Section
4. A brief conclusion in Section 5 concludes the paper.

2 Logical Basis

2.1 Linear Symmetric Hedge Algebras

In order to define inverse mappings of hedges later on with ease, we consider
linear symmetric HAs only. The readers are referred to [4, 5, 6] for general
HAs.

Consider a truth domain consisting of linguistic values, e.g., V eryV eryTrue,
PossiblyMoreFalse, etc. In such a truth domain the value V eryV eryTrue
is obtained by applying the modifier V ery twice to the generator True.
Thus, given a set of generators G = {True, False} and a nonempty finite
set H of hedges, the set X of linguistic values is {δc | c ∈ G, δ ∈ H∗}. Fur-
thermore, if we consider True > False, then this order relation also holds
for other pairs, e.g., V eryTrue > MoreTrue. It means that there exists a
partial order > on X.

In general, given nonempty finite sets G and H of generators and hedges
resp., the set of values generated from G and H is defined as X = {δc | c ∈
G, δ ∈ H∗}. Given a strictly partial order > on X, we define u ≥ v iff u >
v or u = v. Thus, X is described by an abstract algebra AX = (X, G, H,>).

1Mol is an abbreviation for more-or-less

2

Each hedge h ∈ H can be regarded as a unary function h : X → X, x 7→
hx. Moreover, suppose that each hedge is an ordering operation, i.e., ∀h ∈
H. ∀x ∈ X. hx > x xor hx < x. Let I /∈ H be the identity hedge, i.e.,
Ix = x for all x ∈ X. Let us define some properties of hedges in the
following definition.

Definition 1. A hedge chain σ is a word over H, σ ∈ H∗. In the hedge
chain hp . . . h1, h1 is called the first hedge whereas hp is called the last one.

Given two hedges h, k, we say that

• h and k are converse if ∀x ∈ X.hx > x iff kx < x;

• h and k are compatible if ∀x ∈ X.hx > x iff kx > x;

• h modifies terms stronger or equal than k, denoted by h ≥ k, if ∀x ∈
X.(hx ≤ kx ≤ x) or (hx ≥ kx ≥ x)2. h > k if h ≥ k and h 6= k;

• h is positive w.r.t. k if ∀x ∈ X.(hkx < kx < x) or (hkx > kx > x);

• h is negative w.r.t. k if ∀x ∈ X.(kx < hkx < x) or (kx > hkx > x).

The most commonly used HAs are symmetric ones, in which there are
exactly two generators, like e.g., G = {True, False}. In this paper, we
only consider symmetric HAs. Let G = {c+, c−} where c+ > c−. c+ and
c− are called positive and negative generators respectively. The set H is
decomposed into the subsets H+ = {h ∈ H | hc+ > c+} and H− = {h ∈
H | hc+ < c+}. For each value x ∈ X, let H(x) = {σx | σ ∈ H∗}.
Definition 2. An abstract algebra AX = (X,G, H, >), where H 6= ∅, G =
{c+, c−} and X = {σc | c ∈ G, σ ∈ H∗}, is called a linear symmetric HA if
it satisfies the following conditions:

(A1) For all h ∈ H+ and k ∈ H−, h and k are converse.

(A2) The sets H+ ∪ {I} and H− ∪ {I} are linearly ordered with the least
element I.

(A3) For each pair h, k ∈ H, either h is positive or negative wrt k.

(A4) If h 6= k and hx < kx then h′hx < k′kx, for all h, k, h′, k′ ∈ H and
x ∈ X.

(A5) If u /∈ H(v) and u < v (u > v) then u < hv (u > hv, resp.), for any
h ∈ H.

2The orders used here are not strict since we want to compare any h ∈ H with I, e.g.
V ery ≥ I.

3

Example 3. Consider a HA AX = (X, {True, False},H, >), where H =
{V ery, More, Probably, Mol}, and (i) V ery and More are positive wrt
V ery and More, negative wrt Probably and Mol; (ii) Probably and Mol
are negative wrt V ery and More, positive wrt Probably and Mol.

H is decomposed into H+ = {V ery, More} and H− = {Probably, Mol}.
In H+ ∪ {I} we have V ery > More > I, whereas in H− ∪ {I} we have
Mol > Probably > I.

The following proposition shows how to compare elements in X.

Proposition 4 ([5]). Consider a linear symmetric HA AX = (X, G,H, >),
an element u ∈ X, and two values generated from u x = hn . . . h1u, y =
km . . . k1u. There exists j ≤ min(m,n) + 1 such that for every i < j, we
have hi = ki, and:

(i) x < y iff hjxj < kjxj, where xj = hj−1 . . . h1u;

(ii) x = y iff n = m = j and hjxj = kjxj;

Because each of H+∪{I} and H−∪{I} is linearly ordered, together with
the fact that G is linearly ordered, it is quite straight to prove the following.

Proposition 5 ([5]). For a linear symmetric HA AX = (X, G, H, >), X is
linearly ordered.

Definition 6. Given x = σc, where σ ∈ H∗, c ∈ {c+, c−}, we call y = σc′

the contradictory element of x, denoted by y = −x, if {c, c′} = {c+, c−}.
Let x, y ∈ X, we define ∨, ∧, and → as: x ∨ y = max(x, y);x ∧ y =

min(x, y); x → y = −x ∨ y.

In [6], HAs are extended by adding two artificial hedges inf and sup
defined as inf(x) = infimum(H(x)), sup(x) = supremum(H(x)). If H 6= ∅,
H(c+) and H(c−) are infinite, according to [6] inf(c+) = sup(c−). Let
W = inf(c+) = sup(c−), sup(True) = 1, inf(False) = 0, i.e., 1 and 0 resp.
are the greatest and the least elements of X. The following properties show
that X can be used as the truth domain for a non-classical logic.

Proposition 7 ([6]). For every symmetric extended HA, the following prop-
erties hold:

1. −hx = h(−x), for any h ∈ H;
2. −− x = x; −1 = 0, −0 = 1, −W = W ;
3. −(x ∨ y) = (−x ∧ −y),
−(x ∧ y) = (−x ∨ −y);

4. x ∧ −x < W < y ∨ −y;
5. x > y iff − x < −y;
6. x → y = −y → −x;

4

7. x → (y → z) = y → (x → z);
8. x → y ≥ x′ → y′

if x ≤ x′ and/or y ≥ y′;
9. 1 → x = x, x → 1 = 1,

0 → x = 1, x → 0 = −x;
10. x → y > W iff x < W or y > W ;
11. x → y < W iff y < W and x > W ;
12. x → y = 1 iff x = 0 or y = 1.

To define the semantics of the hedge modification in our logic, we define
the so-called inverse mapping of a hedge. In order to define it with ease,
let us consider some restrictions for the HAs representing the truth domain.
In the rest of the paper, without stating otherwise, ”hedge algebra” means
”linear symmetric hedge algebra”.

2.2 Hedge Algebras as Truth Domains

Definition 8. A HA AX = (X,G, H,>) is called monotonic if each h ∈ H+

(H−) is positive wrt all k ∈ H+ (H−), and negative wrt all k ∈ H− (H+).

As defined, both sets H+∪{I} and H−∪{I} are linearly ordered. How-
ever, H ∪ {I} is not, e.g., in Example 3 V ery ∈ H+ and Mol ∈ H− are not
comparable. Let us extend the order relation on H+ ∪{I} and H− ∪{I} to
one on H ∪ {I} as follows.

Definition 9. Given h, k ∈ H ∪ {I}, h ≥h k iff

• h ∈ H+, k ∈ H−; or

• h, k ∈ H+ ∪ {I} and h ≥ k; or

• h, k ∈ H− ∪ {I} and h ≤ k.

h >h k iff h ≥h k and h 6= k.

Example 10. The HA in Example 3 is monotonic. The order relation >h

in H ∪ {I} is V ery >h More >h I >h Probably >h Mol.

Then, in monotonic HAs, hedges are ”context-free”, i.e., a hedge modifies
the meaning of a linguistic value independently of preceding hedges in the
hedge chain.

Proposition 11. Consider a monotonic HA AX = (X, {c+, c−},H, >).
Then,

h >h k ⇔ hσc+ > kσc+ (1)

5

Proof. By induction on the length of σ:
Base step: σ = ε: obvious.
Induction step: Assume that (1) holds for σ = hn . . . h1 and consider

σ′ = hn+1hn . . . h1.
(⇒) Assuming h >h k, we consider 2 cases:
(i) hn+1hn . . . h1c

+ > hn . . . h1c
+: because (1) holds for σ, hn+1hn . . . h1c

+ >
hn . . . h1c

+ = Ihn . . . h1c
+ implies hn+1 >h I and thus hn+1 ∈ H+. There

are 3 cases for h and k:

• h ∈ H+, k ∈ H−: because AX is monotonic, h is positive w.r.t
hn+1 whereas k is negative w.r.t hn+1. Therefore, hhn+1 . . . h1c

+ >
hn+1 . . . h1c

+ > khn+1 . . . h1c
+, i.e., (⇒) holds for σ′.

• h, k ∈ H+ ∪ {I} and h > k, i.e., h, k are positive w.r.t hn+1. Because
h > k, hhn+1 . . . h1c

+ > khn+1 . . . h1c
+ ≥ hn+1 . . . h1c

+, i.e., (⇒)
holds for σ′.

• h, k ∈ H− ∪ {I} and h < k: similar to the previous case.

(ii) hn+1hn . . . h1c
+ < hn . . . h1c

+: similar to the previous case.
(⇐) Assume hσc+ > kσc+. Suppose h ≤h k, then either h <h k or

h = k. If h <h k, the proof of (⇒) implies hσc+ < kσc+. If h = k then
hσc+ = kσc+. Thus, hσc+ ≤ kσc+, which contradicts the assumption.

Hence, (1) holds for σ of length n implies (1) holds for σ′ of length n+1.
Consequently, (1) holds for all σ ∈ H∗.

The following property follows Proposition 11 immediately.

Corollary 12. Given a monotonic HA AX = (X, {c+, c−},H, >), we have

1. ∀h ∈ H+, k ∈ H−.hσc+ > σc+ and kσc+ < σc+.

2. h ≥ k ⇔ hσc+ ≥ kσc+

In Proposition 11, the last hedge is independent of the others. Con-
versely, when being the first hedge, it does not affect the meaning of the
others.

Proposition 13. Given a monotonic HA AX = (X, {c+, c−},H, >). Then,
∀h ∈ H : σ1c

+ > σ2c
+ ⇔ σ1hc+ > σ2hc+.

Proof. Let σ1 = hp . . . h1, σ2 = kq . . . k1. Because σ1c
+ > σ2c

+, we have
σ1 6= σ2. Thus, there exists n ≥ 0 such that hn . . . h1 = kn . . . k1 and
hn+1 6= kn+1. We have

hp . . . h1c
+ > kq . . . k1c

+

⇔ hn+1 . . . h1c
+ > kn+1 . . . k1c

+

⇔ hn+1 >h kn+1

⇔ hn+1hn . . . h1hc+ > kn+1kn . . . k1hc+

⇔ hp . . . h1hc+ > kq . . . k1hc+

6

Hence, σ1c
+ > σ2c

+ ⇔ σ1hc+ > σ2hc+.

In the general case, when the generator is either c+ or c−, a similar
property holds.

Proposition 14. Consider a monotonic HA AX = (X, {c+, c−},H,>). We
have σ1c1 > σ2c2 ⇔ σ1hc1 > σ2hc2, for c1, c2 ∈ {c+, c−}.
Proof.

(⇒) Let us prove by case analysis. There are 3 cases as follows.

+ c1 = c2 = c+: it is proved by Proposition 13.

+ c1 = c2 = c−: we have the following equivalent transformation.

σ1c
− > σ2c

−

⇔ σ1c
+ < σ2c

+

⇔ σ1hc+ < σ2hc+ (Proposition 13)
⇔ σ1hc− > σ2hc−

+ c1 = c+, c2 = c−: we always have σ1hc1 = σ1hc+ > σ2hc− = σ2hc2.

(⇐) It is proved analogously by case analysis.

The following corollary follows immediately.

Corollary 15. Consider a monotonic HA AX = (X, {c+, c−},H, >). Then,
σ1c1 > σ2c2 ⇔ σ1δc1 > σ2δc2.

Therefore, in monotonic HAs, a hedge is not only independent of other
hedges in the hedge chain but also independent of the generators, if it is the
first or the last hedge in the chain. This property will help us to define the
concept of inverse hedges in the next subsection.

2.3 Inverse Mappings of Hedges

In daily life, people often use words in relative assessments, e.g., ”it is quite
true that Robert is very old”. As discussed in [9], assessments like that
can be considered as a composition of an individual, e.g., Robert, a fuzzy
predicate, e.g., VeryOld, and a truth value, e.g., QuiteTrue. In the context
of fuzzy DLs, the above assessment is typically represented by

(V eryOld)I(RobertI) = QuiteTrue.

In a fuzzy linguistic logic [9], the following two assessments are equiva-
lent: ”it is true that Robert is very old” and ”it is very true that Robert

7

is old”. It means that somehow the modifier from the truth value can be
moved to the fuzzy predicate and vice versa. This idea is formalized in [4]
by the two following rules represented in a DL representation:

RT1 : (hC)I(a) = σc → CI(a) = σhc

RT2 : CI(a) = σhc → (hC)I(a) = σc

in which C is a concept, hC a concept C modified by a hedge h, a an
individual, I an interpretation, σ a hedge chain, and c a generator of the
truth domain.

However, the rules are not complete. E.g., if the truth-degree of “John
is Young” is VeryTrue and we want to compute the truth-degree of “John is
MoreYoung”, then no rules are applicable. This problem motivates the defi-
nition of a so-called inverse mapping of a hedge, and based on this definition,
a generalized version of rule (RT2).

Suppose that for each hedge h ∈ H, there exists a mapping h− : X → X
such that h−(σhc) = σc for all σ ∈ H∗, c ∈ G. Then the rule (RT2) is
generalized as follows:

GRT2 : CI(a) = δc → (hC)I(a) = h−(δc).

Note that GRT2 becomes RT2 when σh = δ.
In the following, we define h− formally by axiomization. Given a monotonic

HA AX = (X, {c+, c−},H, >) and a hedge h ∈ H. Suppose h− : X → X is
a mapping such that

h−(σhc) = σc, for c ∈ {c+, c−} (2)

According to Propostion 14, σ1c1 > σ2c2 ⇔ σ1hc1 > σ2hc2. By (2),
h−(σ1hc1) = σ1c1, h−(σ2hc2) = σ2c2. Hence, h−(σ1hc1) > h−(σ2hc2) ⇔
σ1hc1 > σ2hc2. Generalizing this idea, h− should satisfy:

σ1c1 > σ2c2 ⇔ h−(σ1c1) > h−(σ2c2) (3)

Definition 16. Consider a monotonic HA AX = (X, {c+, c−},H, >) and
a hedge h ∈ H. A mapping h− : X → X is called an inverse mapping of h
iff it satisfies (2) and (3).

A question concerning the existence of such mappings can be raised. Let
us consider the following example.

Example 17. Consider the HA given in Example 3. For H(True), the

8

inverse mappings are defined as follows

V −(σT) =

{
δT if σ = δV,

σMolMolT otherwise.

M−(σT) =





σV V T if σ = δV,

δT if σ = δM,

σMolMolT otherwise.

P−(σT) =





σMolMolT if σ = δMol,

δT if σ = δP,

σV V T otherwise.

Mol−(σT) =

{
δT if σ = δMol,

σV V T otherwise.

in which T, V, M, and P stand for True, Very, More, and Probably resp.
For H(False), the mappings are defined as h−(σFalse) = −h−(σTrue)

for each h ∈ H.
It is easily verified that these mappings satisfy (2) and (3).

Given hedges h1, . . . , hp, one may need to construct an inverse mapping
(hp . . . h1)− : X → X of a hedge chain hp . . . h1. On the one hand, we expect
(hp . . . h1)−(σhp . . . h1c) = σc. On the other hand, we have

hp
−(. . . (h2

−(h1
−(σhp . . . h2h1c))) . . .)

= hp
−(. . . (h2

−(σhp . . . h2c)) . . .)
· · ·

= hp
−(σhpc) = σc

Therefore, (hp . . . h1)− can be defined as

(hp . . . h1)−(σc) = hp
−(. . . (h1

−(σc)) . . .) (4)

We have the following property which is the general case of Corollary 15.

Proposition 18. Consider a monotonic HA AX = (X, {c+, c−},H, >), a
hedge chain δ and its inverse mapping δ−. Then, σ1c1 > σ2c2 iff δ−(σ1c1) >
δ−(σ2c2).

Proof. Let δ = hp . . . h1. According to (4), δ−(σc) = hp
−(. . . (h1

−(σc)) . . .).
According to (3), we have σ1c1 > σ2c2 ⇔ h1

−(σ1c1) > h1
−(σ2c2) ⇔ . . . ⇔

hp
−(. . . (h1

−(σ1c1)) . . .) > hp
−(. . . (h1

−(σ2c2)) . . .).

9

3 ALCFL
This section discusses the fuzzy linguistic description logic ALCFL, i.e., a
DL in which the truth domain of interpretations is represented by a hedge
algebra.

The syntax of ALCFL is similar to that of L−ALC except that ALCFL
allows concept modifiers. Hence, ALCFL-concepts are defined by

A |>|⊥|¬C |C uD |C tD |δC |∃R.C |∀R.C,

where A denotes primitive concepts, R roles, C and D concepts, and δ
modifiers.

The semantics is based on the notion of interpretations. Given a monotonic
HA AX = (X, {True, False},H,>), an interpretation I is a pair (∆I , ·I) in
which ∆I is a non-empty set and ·I is a mapping, which maps different in-
dividuals to different elements in ∆I , concept C to a function CI : ∆I → X
and role R to a function RI : ∆I×∆I → X. The extension of I for complex
concepts is

>I(d) = sup(True) for all d ∈ ∆I ,
⊥I(d) = inf(False) for all d ∈ ∆I ,

(¬C)I(d) = −CI(d),
(C uD)I(d) = CI(d) ∧DI(d),
(C tD)I(d) = CI(d) ∨DI(d),

(δC)I(d) = δ−
(
CI(d)

)
,

(∀R.C)I(d) =
∧

d′∈∆I (−RI(d, d′) ∨ CI(d′)),
(∃R.C)I(d) =

∨
d′∈∆I (R

I(d, d′) ∧ CI(d′)),

where ∧,∨ are the meet and join operations resp., −x is the contradictory
element of x, and δ− is the inverse of the hedge chain δ.

Fuzzy assertions are expressions of the forms 〈α ◦ x〉 where ◦ ∈ {>,≥
,≤, <}, α is of type a : C or (a, b) : R, and x ∈ X. Fuzzy terminological
axioms, the semantics of fuzzy assertions and terminological axioms are
defined similarly to those in [2, 3, 7, 8].

Semantically, two concepts C,D are said to be equivalent, denoted by
C ≡ D, iff CI = DI for all I. For example, > ≡ ¬⊥ or C tD ≡ ¬(¬C u
¬D). Some equivalences concerning the hedge modification are showed in
the following proposition.

Proposition 19. We have the following semantical equivalence:

δ(C uD) ≡ δ(C) u δ(D)
δ(C tD) ≡ δ(C) t δ(D)

δ1(δ2C) ≡ (δ1δ2)C

Proof. Consider an interpretation I = (∆I , ·I), and x ∈ ∆I .

10

• Let CI(x) = σ1c1, D
I(x) = σ2c2. Because the hedge algebra AX is

linear, we have either σ1c1 ≥ σ2c2 or σ1c1 ≤ σ2c2. Wlog, suppose
σ1c1 ≥ σ2c2. Therefore, (C uD)I(x) = CI(x) ∧DI(x) = σ2c2. And
thus, (δ(C uD))I(x) = δ−(σ2c2).

We have (δ(C))I(x) = δ−(σ1c1), (δ(D))I(x) = δ−(σ2c2). According
to Proposition 18, because σ1c1 ≥ σ2c2 we have δ−(σ1c1) ≥ δ−(σ2c2).
Therefore, (δ(C)u δ(D))I(x) = (δ(C))I(x)∧ (δ(D))I(x) = δ−(σ1c1)∧
δ−(σ2c2) = δ−(σ2c2).

Hence, (δ(C u D))I(x) = (δ(C) u δ(D))I(x) for all interpretation I
and x ∈ ∆I . Therefore, δ(C uD) ≡ δ(C) u δ(D).

• The proof of δ(C tD) ≡ δ(C) t δ(D) is similar.

• Let CI(x) = σc. We have (δ1(δ2C))I(x) = δ−1 (δ−2 (σc)), ((δ1δ2) C)I(x) =
(δ1δ2)−(σc).

Let δ1 = hp . . . h1, δ2 = kq . . . k1. According to (4) we have:

δ−1 (δ−2 (σc)) = h−p (. . . (h−1 (k−q (. . . (k−1 (σc))))))

(δ1δ2)−(σc) = h−p (. . . (h−1 (k−q (. . . (k−1 (σc))))))

Therefore, δ−1 (δ−2 (σc)) = (δ1δ2)−(σc), and thus (δ1(δ2C))I(x) = ((δ1δ2) C)I(x).
Because it holds for all interpretation I and x ∈ ∆I , we have δ1(δ2C) ≡
(δ1δ2)C.

For instance, V ery(MolC) ≡ (V eryMol)C. Therefore the drawback of
ALCFH and ALCFLH specified in Section 1 is solved in ALCFL.

4 The Satisfiability Problem

Similarly to fuzzy ALC, ALCFH, ALCFLH, and L−ALC, in ALCFL the
entailment problem can be converted to the satisfiability problem, which
can be solved by a tableau algorithm. As usual, starting from a set S of
fuzzy constraints, the propagation rules are applied step by step to add
”simpler” constraints preserving the satisfiability. This process terminates
and gives a completion set to which no rules are applicable. If there is no
clash in the completion set, we can construct a model for S, otherwise, S is
unsatisfiable.

A set S of fuzzy constraints contains a clash iff it contains either one of
the unsatisfiable constraints 〈a : ⊥ ≥ x〉 where x > 0, 〈a : > ≤ x〉 where
x < 1, 〈ψ < 0〉, 〈ψ > 1〉, 〈a : ⊥ > x〉, or 〈a : > < x〉, or S contains a
conjugated pair of fuzzy constraints as in Table 1.

11

Our calculus for solving the unsatisfiability problem in ALCFL consists
of transformation rule RT1 and a set of constraint propagation rules. The set
of propagation rules is given in Table 2. Note that all rules except the ones
that handle concept modifiers are similar to those for fuzzy ALC, but not as
complicated as those for L−ALC. The reason is that in a general lattice, for
incomparable elements u and v we have u∧ v, u∨ v /∈ {u, v}, but in ALCFL
we always have u ∧ v, u ∨ v ∈ {u, v} because the HA in consideration is
linear. Therefore, rules handling ¬,u,t, ∀, and ∃ constructors are obtained
by replacing n by σc, 1 − n by σc̄, where c̄ = −c, in those rules for fuzzy
ALC. To handle concept modifiers, we add four new rules (δ>), (δ≥), (δ≤)
and (δ<). The reading of these rules is the same as that in [2, 3, 7, 8].

Proposition 20. A finite set S of fuzzy constraints is satisfiable iff there
exists a clash-free completion of S.

Proof. Because the HA representing the truth domain is linear, the argu-
ment is similar to the ones for fuzzy ALC in [7] except for the rules handling
hedge modifiers. Hence, we focus on these rules only in order to save space.

(⇒) By case analysis, it is easily verified that the rules are sound, i.e.,
if we apply a rule to a satisfiable set S1 of constrants, the result S2 is also
satisfiable, and thus, clash-free. Let us consider the rule (δ≥), for rules
(δ>), (δ<) and (δ≤), similar arguments can be used.

(δ≥) Assume that (δ≥) is applicable, i.e., S1 contains 〈w : δC ≥ σc〉 for some
w, σc, and modified concept δC. Since S1 is satisfiable, there exist an
interpretation I that satisfies 〈w : δC ≥ σc〉, i.e., (δC)I(wI) ≥ σc. Let
(δC)I(wI) = γc0 ≥ σc, δ = hp . . . h1 where p ≥ 0, hi ∈ H∀i = 1 . . . p.
Applying RT1 p times, we have CI(wI) = γhp . . . h1c0 = γδc0. There
are two cases: γc0 = σc or γc0 > σc. In the first case, γc0 = σc
implies γδc0 = σδc. In the second case, according to Corollary 15,
γc0 > σc ⇔ γδc0 > σδc. Therefore, we always have γδc0 ≥ σδc.
Hence, CI(wI) ≥ σδc, i.e., I satisfies 〈w : C ≥ σδc〉 and S2 as well.

(⇐) Assume S′ is a clash-free completion of S. Let us construct a model
for the fuzzy constraints in S′ that contains only primitive concepts or roles,
and prove that it is a model of S′, and S as well.

Since S′ is clash-free, for each concept A and element w that appear in
S′ in the form 〈w : A ◦x〉, there exists a non-empty set τ(A, w) = {x0 ∈ X |
∀〈w : A◦x〉 ∈ S′.x0◦x} in which ◦ ∈ {<,≤,≥, >}. Similarly, for each role R

〈α ≤ y〉 〈α < y〉
〈α ≥ x〉 x > y x ≥ y

〈α > x〉 x ≥ y x ≥ y

Table 1: Conjugated pairs

12

〈w : ¬C ≥ σc〉 → 〈w :C ≤ σc̄〉 (¬≥)
〈w :¬C ≤ σc〉 → 〈w :C ≥ σc̄〉 (¬≤)

〈w :C uD ≥ σc〉 → 〈w :C ≥ σc〉, 〈w :D ≥ σc〉 (u≥)
〈w :C tD ≤ σc〉 → 〈w :C ≤ σc〉, 〈w :D ≤ σc〉 (t≤)

〈w :C tD ≥ σc〉 → 〈w :C ≥ σc〉 | 〈w :D ≥ σc〉 (t≥)
〈w :C uD ≤ σc〉 → 〈w :C ≤ σc〉 | 〈w :D ≤ σc〉 (u≤)

〈w1 :∀R.C ≥ σc〉, ψ → 〈w2 :C ≥ σc〉 if ψ is conjugated to 〈(w1, w2) :R ≤ σc̄〉
(∀≥)

〈w1 :∃R.C ≤ σc〉, ψ → 〈w2 :C ≤ σc〉 if ψ is conjugated to 〈(w1, w2) :R ≤ σc〉
(∃≤)

〈w :∃R.C ≥ σc〉 → 〈(w, x) :R ≥ σc〉, 〈x :C ≥ σc〉 (∃≥)
if x is a new variable and there is no w′ such that
both 〈(w, w′) :R ≥ σc〉 and〈w′ :C ≥ σc〉
are already in the constraint set

〈w :∀R.C ≤ σc〉 → 〈(w, x) :R ≥ σc̄〉, 〈x :C ≤ σc〉 (∀≤)
if x is a new variable and there is no w′ such that
both 〈(w, w′) :R ≥ σc̄〉 and 〈w′ :C ≤ σc〉
are already in the constraint set

〈w :δC ≥ σc〉 → 〈w :C ≥ σδc〉 (δ≥)
〈w :δC ≤ σc〉 → 〈w :C ≤ σδc〉 (δ≤)

Table 2: The rules of the decision procedure. In addition to the presented
rules there are rules (¬>), (¬<), (u>) . . . (δ<) for the strict relations. These
can easily be obtained from the rules above by replacing ≥ by > and ≤ by
<. Note that c̄ = −c

13

and pair (w1, w2) that appear in S′ in the form 〈(w1, w2) : R◦x〉, there exists
a non-empty set τ(R, w1, w2) = {x0 ∈ X | ∀〈(w1, w2) : R ◦ x〉 ∈ S′.x0 ◦ x} in
which ◦ ∈ {<,≤,≥, >}.

Consider an interpretation I such that the domain ∆I is the set of ob-
jects appearing in S′, ∀w ∈ ∆I .wI = w, and AI(wI) ∈ τ(A,w), RI(w1

I , w2
I) ∈

τ(R, w1, w2).
It is easily verified that this interpretation satifies all constraints for

primitive concepts and roles in S′ if S′ is clash-free. The satisfaction of the
other fuzzy constraints in S′ are shown by induction on the structure of the
ALCFL -formula in the constraints. Once again, let us just represent one
case for space reasons.

Case 〈w : δC > σc〉 Because S′ is complete, 〈w : C > σδc〉 is in S′

and is satisfied by I by induction assumption, i.e., CI(wI) > σδc. Let
CI(wI) = γc0 > σδc. According to Proposition 18, we have γc0 > σδc ⇒
δ−(γc0) > δ−(σδc). Since CI(wI) = γc0, we have(δC)I(wI) = δ−(γc0).
Besides, δ−(σδc) = σc. Hence, (δC)I(wI) = δ−(γc0) > δ−(σδc) = σc.
Therefore, I satisfies 〈w : δC > σc〉.

Let us close the section by an example to demonstrate how the calculus
works.

Example 21. Consider a knowledge base Σ:
”A car is a sport car if it is very likely that it can run very very fast”

holds to a degree at least True. In particular, for Audi TT cars:

〈tt : ¬(∃speed.V V Fast) t Sport ≥ True〉 (5)

”An Audi TT car can run at 250km/h” holds to a degree more than more-
or-less True:

〈(tt, 250) : speed ≥ MolTrue〉 (6)

”250km/h is fast” holds to a degree at least More True:

〈250 : Fast ≥ MTrue〉 (7)

We want to prove that Σ entails that ”Audi TT cars are sport cars” to a
degree more than Probably True. That is, Σ together with (8) is unsatisfiable.

〈tt : Sport < PTrue〉 (8)

The rule (t≥) gives two choices:

〈tt : ¬(∃speed.V V Fast) ≥ True〉 (9)

〈tt : Sport ≥ True〉 (10)

14

The latter immediately yields a clash with (8). The application of the rule
(¬≥) on the former one gives:

〈tt : (∃speed.V V Fast) ≤ False〉 (11)

Since (6) is conjucated to 〈(tt, 250) : speed ≤ False〉, rule (∃≤) yields:

〈250 : V V Fast ≤ False〉 (12)

Rule (δ≤) applying on (12) yields

〈250 : Fast ≤ V V False〉 (13)

which clashes with (7).
Hence, there is no clash-free completion of Σ ∪ {(8)}, i.e., Σ ∪ {(8)} is

unsatisfiable. Therefore, Σ |= 〈tt : Sport ≥ PTrue〉.

5 Conclusions

In the paper, we have presented the fuzzy linguistic DL ALCFL, where the
truth domain is represented by a monotonic HA. The main feature is that
an element a belongs to a concept C with a degree specified by a linguistic
value, which itself is part of a lattice represented by a HA. Besides, ALCFL
allows the modification by hedges. Furthermore, the ambiguity of the hedge
application in ALCFH and ALCFLH is solved in ALCFL. To the best of our
knowledge, no DL that not only allows the modification by hedges but also
computes directly with words has been proposed.

A sound and complete decision procedure for the satisfiability problem
in ALCFL has been also presented. In the future, we plan to consider the
subsumption problem in ALCFL.

Note that in this paper, we restrict ourselves to linear HAs in order to
define inverse mappings of hedges with ease. In the general case of HAs [6, 4],
where there are some incomparable hedges in H+ or H−, e.g., Possibly with
Approximately, the domain becomes a lattice instead of linear. Thus, our
further work is to extend our logic to the case where the truth domain is
not linear.

Acknowledgements

The first author is supported by the German Academic Exchange Service
(DAAD); the second and third authors are supported by the European Union
within the ASIA LINK project “Computational Logic as a Foundation for
Computer Science and Intelligent Systems”.

15

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[2] S. Hölldobler, H.-N. Nguyen, and D.-K. Tran. The fuzzy description logic
ALCFLH . In Proc. 9th IASTED International Conference on Artificial
Intelligence and Soft Computing, pages 99–104, 2005.

[3] S. Hölldobler, H.-P. Störr, D.-K. Tran, and H.-N. Nguyen. The subsump-
tion problem in the fuzzy description logic ALCFH. In Proc. Tenth In-
ternational Conference IPMU 2004: Information Processing and Manag-
ment of Uncertainty in Knowledge-Based Systems, pages 243–250, 2004.

[4] C.-H. Nguyen, D.-K. Tran, V.-N. Huynh, and H.-C. Nguyen. Linguistic-
valued logic and their application to fuzzy reasoning. International Jour-
nal of Uncertainty, Fuzziness and Knowledge-based Systems, 7(4):347–
361, 1999.

[5] C.-H. Nguyen and W. Wechler. Hegde algebras: An algebraic approach
to structure of sets of linguistic truth value. Fuzzy Sets and Systems,
35:281–293, 1990.

[6] C.-H. Nguyen and W. Wechler. Extended hegde algebras and their ap-
plication to fuzzy logic. Fuzzy Sets and Systems, 52:259–281, 1992.

[7] U. Straccia. Reasoning within fuzzy description logics. Journal of Arti-
ficial Intelligence Research, 14:137–166, 2001.

[8] U. Straccia. Description logics over lattices. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 2005. To appear.

[9] L. A. Zadeh. The concept of a linguistic variable and its application in
approximate reasoning. Information Sciences, 1975. Part I - 8:199–249,
Part II - 8:301–357, Part III - 9:43–80.

16

