
1Foundations of Logic Programming Negation: Procedural Interpretation

Chapter 6

Negation: Procedural Interpretation

2Foundations of Logic Programming Negation: Procedural Interpretation

Outline

Motivate negation with two examples

Extended programs and queries

The computation mechanism: SLDNF-derivations

Allowed programs and queries

Negation in Prolog

[Apt and Bol, 1994]

Krzysztof Apt and Roland Bol. Logic Programming and Negation: A Survey.

Journal of Logic Programming, 19/20:9-71, 1994.

3Foundations of Logic Programming Negation: Procedural Interpretation

Why Negation? Example (I)

attend(flp, andreas) ←

attend(flp, maja) ←

attend(flp, dirk) ←

attend(flp, natalia) ←

attend(fcp, andreas) ←

attend(fcp, maja) ←

attend(fcp, stefan) ←

attend(fcp, arturo) ←

 Who attends FCP but not FLP?

 attend(fcp, x), ¬attend(flp, x)

4Foundations of Logic Programming Negation: Procedural Interpretation

Why Negation? Example (II)

sets (lists) A = [a1, ..., am] and B = [b1, ..., bn] disjoint

:Û

m = 0, or

m > 0, a1 ∉ B, and [a2, ..., am] and B are disjoint

disjoint([], x) ←

disjoint([x|y], z) ← ¬member(x, z), disjoint(y,z)

5Foundations of Logic Programming Negation: Procedural Interpretation

Extended Logic Programs and Queries

“¬” negation sign

A, ¬A literals :Û A atom

A, ¬A ground literals :Û A ground atom

(extended) query :Û finite sequence of literals

H ← B (extended) clause
:Û H atom, B extended query

(extended) program
:Û finite set of extended clauses

6Foundations of Logic Programming Negation: Procedural Interpretation

How do we Compute?

Negation as Failure (NF) :Û

1. Suppose ¬A is selected in the query Q = L, ¬A, N.

2. If P  {A} succeeds, then the derivation of P  {Q} fails at this point.

3. If all derivations of P  {A} fail, then Q resolves to Q' = L, N.

 ¬A succeeds iff A finitely fails.

 ¬A finitely fails iff A succeeds.

SLDNF = Selection rule driven Linear resolution for Definite clauses

 augmented by Negation as Failure rule

7Foundations of Logic Programming Negation: Procedural Interpretation

SLDNF-Resolvents

1. Q = L, A, N query; A selected, positive literal

H ← M variant of a clause c which is variable-disjoint with Q,  MGU of A and H

Q' = (L, M, N) SLDNF-resolvent of Q (and c w.r.t. A with )

We write this SLDNF-derivation step as

2. Q = L, ¬A, N query; ¬A selected, negative ground literal

Q' = L, N SLDNF-resolvent of Q (w.r.t. ¬A with ²)

We write this SLDNF-derivation step as

Q�


c

Q '

Q�


²

Q'

8Foundations of Logic Programming Negation: Procedural Interpretation

Pseudo Derivations

A maximal sequence of SLDNF-derivation steps

is a pseudo derivation of P  {Q0} :Û

Q0, ..., Qn+1, ... are queries, each empty or with one literal selected in it;

1, ..., n+1, ... are substitutions;

c1, ..., cn+1, ... are clauses of program P (in case a positive literal is selected in the
preceding query);

for every SLDNF-derivation step with input clause “standardization apart” holds.

Q0�
1

c1

Q1 ...Qn�
cn1

n1

Qn1 ...

9Foundations of Logic Programming Negation: Procedural Interpretation

Forests

F = (T, T, subs) forest :Û

T set of trees where
 - nodes are queries;

 - a literal is selected in each non-empty query;

 - leaves may be marked as “success”, “failure”, or “floundered”.

T  T main tree

subs assigns to some nodes of trees in T with selected negative ground
literal ¬A a subsidiary tree of T with root A.

tree T  T successful :Û it contains a leaf marked as “success”

tree T  T finitely failed :Û it is finite and all leaves are marked as “failure”

10Foundations of Logic Programming Negation: Procedural Interpretation

Pre-SLDNF-Trees

The class of pre-SLDNF-trees for a program P is the smallest class C of forests
such that

for every query Q:

the initial pre-SLDNF-tree ({TQ}, TQ, subs) is in C, where TQ contains the single
node Q and subs(Q) is undefined

for every F  C:
the extension of F is in C

11Foundations of Logic Programming Negation: Procedural Interpretation

Extension of Pre-SLDNF-Tree (I)

extension of F = (T, T, subs) :Û

1. Every occurrence of the empty query is marked as “success”.

2. For every non-empty query Q, which is an unmarked leaf in some tree in T
, perform the following action:

 Let L be the selected literal of Q.

L positive.

- Q has no SLDNF-resolvents

  Q is marked as “failure”

- else

  for every program clause c which is applicable to L, exactly one direct

 descendant of Q is added. This descendant is an SLDNF-resolvent of

 Q and c w.r.t. L.

12Foundations of Logic Programming Negation: Procedural Interpretation

Extension of Pre-SLDNF-Tree (II)

L = ¬A negative.

- A non-ground  Q is marked as “floundered”

- A ground

 * subs(Q) undefined

  new tree T' with single node A is added to T and subs(Q) is set to T'
 * subs(Q) defined and successful

  Q is marked as “failure”

 * subs(Q) defined and finitely failed

  SLDNF-resolvent of Q is added as the only direct descendant of Q

 * subs(Q) defined and neither successful nor finitely failed

  no action

13Foundations of Logic Programming Negation: Procedural Interpretation

SLDNF-Trees

SLDNF-tree

:Û limit of a sequence F0, F1, F2, ..., where

F0 initial pre-SLDNF-tree

Fi+1 extension of Fi, for every i  ℕ

SLDNF-tree for P  {Q}

:Û

SLDNF-tree in which Q is the root of the main tree

14Foundations of Logic Programming Negation: Procedural Interpretation

Successful, Failed, and Finite SLDNF-Trees

(pre-)SLDNF-tree successful

:Û its main tree is successful

(pre-)SLDNF-tree finitely failed

:Û its main tree is finitely failed

SLDNF-tree finite

:Û no infinite paths exist in it,

where a path is a sequence of nodes N0, N1, N2, ... such that for every i = 0, 1, 2, ...:

either Ni+1 is a direct descendant of Ni

or Ni+1 is the root of subs(Ni).

15Foundations of Logic Programming Negation: Procedural Interpretation

Example (I)

 p ← p

SLDNF-tree for P  {¬p} is infinite:

 ¬p

 p

 p

 ⋮

16Foundations of Logic Programming Negation: Procedural Interpretation

Example (II)

 p ← ¬q SLDNF-tree for P  {¬p} is successful:

 q ←

 q ← q

¬p
p

¬q
□

success

failure q

□
success

q

□
success

q

⋮ ⋮

17Foundations of Logic Programming Negation: Procedural Interpretation

SLDNF-Derivation

SLDNF-derivation of P  {Q} :Û

branch in the main tree of an SLDNF-tree F for P  {Q} together with the set of
all trees in F whose roots can be reached from the nodes in this branch

SLDNF-derivation successful :Û

it ends with □

Let the main tree of an SLDNF-tree for P  {Q0} contain a branch

computed answer substitution (CAS) of Q0 (w.r.t. ) : (1 ··· n) |Var(Q0)

=Q0�
1

Q1...Qn−1�
n

Qn=□ :

18Foundations of Logic Programming Negation: Procedural Interpretation

A Theorem on Limits

Theorem 3.10 ([Apt and Bol, 1994])

(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.

(ii) If the SLDNF-tree F is the limit of the sequence F
0
, F1, F2, ..., then:

 a) F is successful and yields CAS 

 iff some Fi is successful and yields CAS ,

 b) F finitely failed

 iff some Fi is finitely failed.

19Foundations of Logic Programming Negation: Procedural Interpretation

Why Only Select Negative Literals if they are Ground? (I)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(y)

 {x=y}

 ¬zero(y)

 failure zero(y)

 {y=0}

 □
 success

Hence, ¬y positive(y)?, i.e. y ¬positive(y)?

20Foundations of Logic Programming Negation: Procedural Interpretation

Why Only Select Negative Literals if they are Ground? (II)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(s(0))

 {x=s(0)}

 ¬zero(s(0))

 ² zero(s(0))

 failure

 □
 success

Hence, positive(s(0))!, i.e. y positive(y)!

21Foundations of Logic Programming Negation: Procedural Interpretation

Why Only Select Negative Literals if they are Ground? (III)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(y)

 {x=y}

 ¬zero(y)

 failure zero(y)

 {y=0}

 □
 success

Fundamental mistake in (): y zero(y) is not the opposite of y ¬zero(y)

()

22Foundations of Logic Programming Negation: Procedural Interpretation

Selection of Non-Ground Negative Literals in Prolog

zero(0).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no

23Foundations of Logic Programming Negation: Procedural Interpretation

Extended Selection Rules

(extended) selection rule :Û

function which, given a pre-SLDNF-tree F = (T, T, subs), selects a literal in every

non-empty unmarked leaf in every tree in T.

SLDNF-tree F is according to selection rule R :Û

F is the limit of a sequence of pre-SLDNF-trees in which literals are selected

according to R.

selection rule R is safe :Û

R never selects a non-ground negative literal

24Foundations of Logic Programming Negation: Procedural Interpretation

Blocked Queries

query Q blocked

:Û

Q non-empty and contains exclusively non-ground negative literals

P  {Q} flounders

:Û

some SLDNF-tree for P  {Q} contains a blocked node

25Foundations of Logic Programming Negation: Procedural Interpretation

Allowed Programs and Queries

query Q allowed

:Û

every x  Var(Q) occurs in a positive literal of Q

clause H ← B allowed :Û ¬H, B allowed

(thus: unit clause H ← allowed :Û H ground atom)

program P allowed :Û all its clauses are allowed

26Foundations of Logic Programming Negation: Procedural Interpretation

Allowed Programs and Queries do not Flounder

Theorem 3.13 ([Apt and Bol, 1994])

Suppose that P and Q are allowed. Then,

(i) P  {Q} does not flounder;

(ii) if  is a CAS of Q, then Q is ground.

27Foundations of Logic Programming Negation: Procedural Interpretation

An Example

 zero(0) ←

 positive(x) ← ¬zero(x)

This program is not allowed.

 zero(0) ←

 positive(x) ← num(x), ¬zero(x)

 num(0) ←

 num(s(x)) ← num(x)

This program is allowed.

28Foundations of Logic Programming Negation: Procedural Interpretation

Specifics of PROLOG

Leftmost selection rule

LDNF-resolution, LDNF-resolvent, LDNF-tree, ...

Non-ground negative literals are selected!

A progam is a sequence of clauses

Unification without occur check

Depth-first search, backtracking

29Foundations of Logic Programming Negation: Procedural Interpretation

Extended Prolog Trees

Let P extended program and Q0 extended query.

Extended Prolog Tree for P  {Q0} is forest of finitely branching, ordering trees of
queries, possibly marked with “success” or “failure”, produced as follows:

Start with forest ({TQ0
}, TQ0

, subs), where TQ0
 contains the single node Q0 and

subs(Q0) is undefined

Repeatedly apply to current forest F = (T, T, subs) and leftmost unmarked
leaf Q in T1, where T1  T is leftmost, bottommost (=most nested subsidiary)
tree with an unmarked leaf, the operation expand(F, Q)

30Foundations of Logic Programming Negation: Procedural Interpretation

Operation Expand

operation expand(F, Q) is defined by:
if Q = □, then

1. mark Q with “success”

2. if T1  T, then remove from T1 all edges to the right of the branch that ends with Q

if Q has no LDNF-resolvents, then mark Q with “failure”

else let L be the leftmost literal in Q:

- L is positive:

 add for each clause that is applicable to L an LDNF-resovent as descendant of Q

 (such that the order of the clauses is respected)

- L = ¬A is negative (not necessarily ground):

  if subs(Q) is undefined, then add a new tree T' = A and set subs(Q) to T'

  if subs(Q) is defined and successful, then mark Q with “failure”

  if subs(Q) is defined and finitely failed,

 then add in T1 the LDNF-resolvent of Q as the only descendant of Q

31Foundations of Logic Programming Negation: Procedural Interpretation

Floundering is Ignored (I)

even(0).
even(X) :- \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

no

| ?- even(s(s(0))).

yes

32Foundations of Logic Programming Negation: Procedural Interpretation

Floundering is Ignored (II)

num(0).
num(s(X)) :- num(X).
even(X) :- num(X), \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

X = s(s(0)) ;

X = s(s(s(s(0)))) ;

 ⋮

33Foundations of Logic Programming Negation: Procedural Interpretation

Objectives

Motivate negation with two examples

Extended programs and queries

The computation mechanism: SLDNF-derivations

Allowed programs and queries

Negation in Prolog

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33

