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Why Negation? Example (I)

attend(flp, andreas) ←

attend(flp, maja) ←

attend(flp, dirk) ←

attend(flp, natalia) ←

attend(fcp, andreas) ←

attend(fcp, maja) ←

attend(fcp, stefan) ←

attend(fcp, arturo) ←

 Who attends FCP but not FLP?

 attend(fcp, x), ¬attend(flp, x)



4Foundations of Logic Programming Negation: Procedural Interpretation

Why Negation? Example (II)

sets (lists) A = [a1, ..., am] and B = [b1, ..., bn] disjoint

:Û

m = 0, or

m > 0, a1 ∉ B, and [a2, ..., am] and B are disjoint

disjoint([ ], x) ←

disjoint([x|y], z) ← ¬member(x, z), disjoint(y,z)
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Extended Logic Programs and Queries

“¬” negation sign

A, ¬A literals :Û A atom

A, ¬A ground literals :Û A ground atom

(extended) query :Û finite sequence of literals

H ← B (extended) clause
:Û H atom, B extended query

(extended) program
:Û finite set of extended clauses
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How do we Compute?

Negation as Failure (NF) :Û

1. Suppose ¬A is selected in the query Q = L, ¬A, N.

2. If P  {A} succeeds, then the derivation of P  {Q} fails at this point.

3. If all derivations of P  {A} fail, then Q resolves to Q' = L, N.

 ¬A succeeds iff A finitely fails.

 ¬A finitely fails iff A succeeds.

SLDNF = Selection rule driven Linear resolution for Definite clauses  

 augmented by Negation as Failure rule
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SLDNF-Resolvents

1. Q = L, A, N query; A selected, positive literal

H ← M variant of a clause c which is variable-disjoint with Q,  MGU of A and H

Q' = (L, M, N) SLDNF-resolvent of Q (and c w.r.t. A with )

We write this SLDNF-derivation step as

2. Q = L, ¬A, N query; ¬A selected, negative ground literal

Q' = L, N SLDNF-resolvent of Q (w.r.t. ¬A with ²)

We write this SLDNF-derivation step as

Q�


c

Q '

Q�


²

Q'
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Pseudo Derivations

A maximal sequence of SLDNF-derivation steps

is a pseudo derivation of P  {Q0} :Û

Q0, ..., Qn+1, ... are queries, each empty or with one literal selected in it;

1, ..., n+1, ... are substitutions;

c1, ..., cn+1, ... are clauses of program P (in case a positive literal is selected in the 
preceding query);

for every SLDNF-derivation step with input clause “standardization apart” holds.

Q0�
1

c1

Q1 ...Qn�
cn1

n1

Qn1 ...
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Forests

F = (T, T, subs) forest :Û

T  set of trees where
 - nodes are queries;

 - a literal is selected in each non-empty query;

 - leaves may be marked as “success”, “failure”, or “floundered”.

T  T  main tree

subs assigns to some nodes of trees in T  with selected negative ground 
literal ¬A a subsidiary tree of T  with root A.

tree T  T  successful :Û it contains a leaf marked as “success”

tree T  T  finitely failed :Û it is finite and all leaves are marked as “failure”
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Pre-SLDNF-Trees

The class of pre-SLDNF-trees for a program P is the smallest class C of forests
such that

for every query Q:

the initial pre-SLDNF-tree ({TQ}, TQ, subs) is in C, where TQ contains the single 
node Q and subs(Q) is undefined

for every F  C:
the extension of F is in C
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Extension of Pre-SLDNF-Tree (I)

extension of F = (T, T, subs) :Û

1. Every occurrence of the empty query is marked as “success”.

2. For every non-empty query Q, which is an unmarked leaf in some tree in T      
, perform the following action:

 Let L be the selected literal of Q.

L positive.

- Q has no SLDNF-resolvents

  Q is marked as “failure”

- else

  for every program clause c which is applicable to L, exactly one direct 

 descendant of Q is added. This descendant is an SLDNF-resolvent of 

 Q and c w.r.t. L.
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Extension of Pre-SLDNF-Tree (II)

L = ¬A negative.

- A non-ground  Q is marked as “floundered”

- A ground

 * subs(Q) undefined

  new tree T' with single node A is added to T  and subs(Q) is set to T'
 * subs(Q) defined and successful

  Q is marked as “failure”

 * subs(Q) defined and finitely failed

  SLDNF-resolvent of Q is added as the only direct descendant of Q

 * subs(Q) defined and neither successful nor finitely failed

  no action
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SLDNF-Trees

SLDNF-tree

:Û limit of a sequence F0, F1, F2, ..., where

F0 initial pre-SLDNF-tree

Fi+1 extension of Fi, for every i  ℕ

SLDNF-tree for P  {Q}

:Û

SLDNF-tree in which Q is the root of the main tree
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Successful, Failed, and Finite SLDNF-Trees

(pre-)SLDNF-tree successful

:Û its main tree is successful

(pre-)SLDNF-tree finitely failed

:Û its main tree is finitely failed

SLDNF-tree finite

:Û no infinite paths exist in it,

where a path is a sequence of nodes N0, N1, N2, ... such that for every i = 0, 1, 2, ...:

either Ni+1 is a direct descendant of Ni

or Ni+1 is the root of subs(Ni).
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Example (I)

 p ← p

SLDNF-tree for P  {¬p} is infinite:

 ¬p  

 p

 p

 ⋮
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Example (II)

 p ← ¬q                           SLDNF-tree for P  {¬p} is successful:

 q ←

 q ← q

 

¬p
p

¬q
□

success

failure q

□
success

q

□
success

q

⋮              ⋮
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SLDNF-Derivation

SLDNF-derivation of P  {Q} :Û

branch in the main tree of an SLDNF-tree F for P  {Q} together with the set of 
all trees in F whose roots can be reached from the nodes in this branch

SLDNF-derivation successful :Û

it ends with □

Let the main tree of an SLDNF-tree for P  {Q0} contain a branch 

computed answer substitution (CAS) of  Q0 (w.r.t. ) : (1 ··· n) |Var(Q0)

=Q0�
1

Q1...Qn−1�
n

Qn=□ :
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A Theorem on Limits

Theorem 3.10 ([Apt and Bol, 1994])

(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.

(ii) If the SLDNF-tree F is the limit of the sequence F
0
, F1, F2, ..., then:

 a) F is successful and yields CAS 

 iff some Fi is successful and yields CAS ,

 b) F finitely failed

 iff some Fi is finitely failed.
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Why Only Select Negative Literals if they are Ground? (I)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(y)

 {x=y}

  ¬zero(y) 

    failure zero(y)

 {y=0}

     □
  success

Hence, ¬y positive(y)?, i.e. y ¬positive(y)?
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Why Only Select Negative Literals if they are Ground? (II)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(s(0))

 {x=s(0)}

  ¬zero(s(0))

        ² zero(s(0))

            failure

     □
  success

Hence, positive(s(0))!, i.e. y positive(y)!
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Why Only Select Negative Literals if they are Ground? (III)

c1: zero(0) ←

c2: positive(x) ← ¬zero(x)

 positive(y)

 {x=y}

  ¬zero(y)

    failure zero(y)

 {y=0}

     □
  success

Fundamental mistake in (): y zero(y) is not the opposite of y ¬zero(y)

()



22Foundations of Logic Programming Negation: Procedural Interpretation

Selection of Non-Ground Negative Literals in Prolog

zero(0).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no
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Extended Selection Rules

(extended) selection rule :Û

function which, given a pre-SLDNF-tree F = (T, T, subs), selects a literal in every 

non-empty unmarked leaf in every tree in T.

SLDNF-tree F is according to selection rule R :Û

F is the limit of a sequence of pre-SLDNF-trees in which literals are selected 

according to R.

selection rule R is safe :Û

R never selects a non-ground negative literal
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Blocked Queries

query Q blocked

:Û

Q non-empty and contains exclusively non-ground negative literals

P  {Q} flounders

:Û

some SLDNF-tree for P  {Q} contains a blocked node
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Allowed Programs and Queries

query Q allowed

:Û

every x  Var(Q) occurs in a positive literal of Q

clause H ← B allowed :Û ¬H, B allowed

(thus: unit clause H ← allowed :Û H ground atom)

program P allowed :Û all its clauses are allowed
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Allowed Programs and Queries do not Flounder

Theorem 3.13 ([Apt and Bol, 1994])

Suppose that P and Q are allowed. Then, 

(i) P  {Q} does not flounder;

(ii) if  is a CAS of Q, then Q is ground.
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An Example

 zero(0) ←

 positive(x) ← ¬zero(x)

This program is not allowed.

 zero(0) ←

 positive(x) ← num(x), ¬zero(x)

 num(0) ←

 num(s(x)) ← num(x)

This program is allowed.
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Specifics of PROLOG

Leftmost selection rule

LDNF-resolution, LDNF-resolvent, LDNF-tree, ...

Non-ground negative literals are selected!

A progam is a sequence of clauses

Unification without occur check

Depth-first search, backtracking



29Foundations of Logic Programming Negation: Procedural Interpretation

Extended Prolog Trees

Let P extended program and Q0 extended query.

Extended Prolog Tree for P  {Q0} is forest of finitely branching, ordering trees of 
queries, possibly marked with “success” or “failure”, produced as follows:

Start with forest ({TQ0
}, TQ0

, subs), where TQ0
 contains the single node Q0 and 

subs(Q0) is undefined

Repeatedly apply to current forest F = (T, T, subs) and leftmost unmarked 
leaf Q in T1, where T1  T  is leftmost, bottommost (=most nested subsidiary) 
tree with an unmarked leaf, the operation expand(F, Q)
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Operation Expand

operation expand(F, Q) is defined by:
if Q = □, then

1. mark Q with “success”

2. if T1  T, then remove from T1 all edges to the right of the branch that ends with Q

if Q has no LDNF-resolvents, then mark Q with “failure”

else let L be the leftmost literal in Q:

- L is positive:

 add for each clause that is applicable to L an LDNF-resovent as descendant of Q

 (such that the order of the clauses is respected)

- L = ¬A is negative (not necessarily ground):

  if subs(Q) is undefined, then add a new tree T' = A and set subs(Q) to T'

  if subs(Q) is defined and successful, then mark Q with “failure”

  if subs(Q) is defined and finitely failed,

 then add in T1 the LDNF-resolvent of Q as the only descendant of Q



31Foundations of Logic Programming Negation: Procedural Interpretation

Floundering is Ignored (I)

even(0).
even(X) :- \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

no

| ?- even(s(s(0))).

yes
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Floundering is Ignored (II)

num(0).
num(s(X)) :- num(X).
even(X) :- num(X), \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

X = s(s(0)) ;

X = s(s(s(s(0)))) ;

 ⋮
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Objectives

Motivate negation with two examples

Extended programs and queries

The computation mechanism: SLDNF-derivations

Allowed programs and queries

Negation in Prolog
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