Chapter 6

Negation: Procedural Interpretation

Outline

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog

[Apt and Bol, 1994]

Krzysztof Apt and Roland Bol. Logic Programming and Negation: A Survey. *Journal of Logic Programming*, 19/20:9-71, 1994.

Why Negation? Example (I)

```
attend(flp, andreas) ←
attend(flp, maja) ←
attend(flp, dirk) ←
attend(flp, natalia) ←
attend(fcp, andreas) ←
attend(fcp, maja) ←
attend(fcp, stefan) ←
attend(fcp, arturo) ←
```

Who attends FCP but not FLP?

attend(fcp, x), \neg attend(flp, x)

Why Negation? Example (II)

sets (lists)
$$A = [a_1, ..., a_m]$$
 and $B = [b_1, ..., b_n]$ disjoint $:\Leftrightarrow$

- = 0, or
- m > 0, $a_1 \notin B$, and $[a_2, ..., a_m]$ and B are disjoint

```
disjoint([], x) \leftarrow disjoint([x|y], z) \leftarrow \neg member(x, z), disjoint(y,z)
```

Extended Logic Programs and Queries

- "¬" negation sign
- A, $\neg A$ literals : $\Leftrightarrow A$ atom
- A, $\neg A$ ground literals : $\Leftrightarrow A$ ground atom
- (extended) query :⇔ finite sequence of literals
- H ← <u>B</u> (extended) clause
 :⇔ H atom, <u>B</u> extended query
- (extended) program:⇔ finite set of extended clauses

How do we Compute?

Negation as Failure (NF) :⇔

- 1. Suppose $\neg A$ is selected in the query $Q = \underline{L}, \neg A, \underline{N}$.
- 2. If $P \cup \{A\}$ succeeds, then the derivation of $P \cup \{Q\}$ fails at this point.
- 3. If all derivations of $P \cup \{A\}$ fail, then Q resolves to $Q' = \underline{L}$, \underline{N} .

 $\neg A$ succeeds iff A finitely fails.

 $\neg A$ finitely fails iff A succeeds.

SLDNF = Selection rule driven Linear resolution for Definite clauses augmented by Negation as Failure rule

SLDNF-Resolvents

- 1. $Q = \underline{L}$, A, \underline{N} query; A selected, positive literal
- $H \leftarrow \underline{M}$ variant of a clause c which is variable-disjoint with \mathbf{Q} , θ MGU of \mathbf{A} and \mathbf{H}
- $Q' = (\underline{L}, \underline{M}, \underline{N})\theta$ SLDNF-resolvent of Q (and c w.r.t. A with θ)
- We write this SLDNF-derivation step as $Q \stackrel{\circ}{\Longrightarrow} Q'$
- 2. $Q = \underline{L}$, $\neg A$, \underline{N} query; $\neg A$ selected, negative ground literal
- $Q' = \underline{L}$, \underline{N} SLDNF-resolvent of Q (w.r.t. $\neg A$ with ϵ)
- We write this SLDNF-derivation step as $Q \Longrightarrow Q'$

Pseudo Derivations

A maximal sequence of SLDNF-derivation steps

$$Q_0 \underset{c_1}{\overset{\theta_1}{\Longrightarrow}} Q_1 \dots Q_n \underset{c_{n+1}}{\overset{\theta_{n+1}}{\Longrightarrow}} Q_{n+1} \dots$$

- is a pseudo derivation of P ∪ {Q₀} :⇔
- $Q_0, ..., Q_{n+1}, ...$ are queries, each empty or with one literal selected in it;
- $\theta_1, ..., \theta_{n+1}, ...$ are substitutions;
- c_1 , ..., c_{n+1} , ... are clauses of program P (in case a positive literal is selected in the preceding query);
- for every SLDNF-derivation step with input clause "standardization apart" holds.

Forests

```
\mathcal{F} = (\mathcal{T}, T, subs) \text{ forest } :\Leftrightarrow
```

- ullet ${\mathcal T}$ set of trees where
 - nodes are queries;
 - a literal is selected in each non-empty query;
 - leaves may be marked as "success", "failure", or "floundered".
- $T \in \mathcal{T}$ main tree
- subs assigns to some nodes of trees in \mathcal{T} with selected negative ground literal $\neg A$ a subsidiary tree of \mathcal{T} with root A.

tree $T \in \mathcal{T}$ successful : \Leftrightarrow it contains a leaf marked as "success" tree $T \in \mathcal{T}$ finitely failed : \Leftrightarrow it is finite and all leaves are marked as "failure"

Pre-SLDNF-Trees

The class of pre-SLDNF-trees for a program P is the smallest class $\mathcal C$ of forests such that

- for every query Q: the initial pre-SLDNF-tree ($\{T_Q\}$, T_Q , subs) is in \mathcal{C} , where T_Q contains the single node Q and subs(Q) is undefined
- for every $\mathcal{F} \in \mathcal{C}$: the extension of \mathcal{F} is in \mathcal{C}

Extension of Pre-SLDNF-Tree (I)

extension of $\mathcal{F} = (\mathcal{T}, T, subs) :\Leftrightarrow$

- 1. Every occurrence of the empty query is marked as "success".
- 2. For every non-empty query Q, which is an unmarked leaf in some tree in \mathcal{T} , perform the following action:

Let *L* be the selected literal of *Q*.

- L positive.
 - Q has no SLDNF-resolvents
 - ⇒ Q is marked as "failure"
 - else
 - \Rightarrow for every program clause c which is applicable to L, exactly one direct descendant of Q is added. This descendant is an SLDNF-resolvent of Q and c w.r.t. L.

Extension of Pre-SLDNF-Tree (II)

- $L = \neg A$ negative.
 - A non-ground ⇒ Q is marked as "floundered"
 - A ground
 - * subs(Q) undefined
 - \Rightarrow new tree T' with single node A is added to T and subs(Q) is set to T'
 - * subs(Q) defined and successful
 - ⇒ Q is marked as "failure"
 - * subs(Q) defined and finitely failed
 - ⇒ SLDNF-resolvent of Q is added as the only direct descendant of Q
 - * subs(Q) defined and neither successful nor finitely failed
 - ⇒ no action

SLDNF-Trees

SLDNF-tree

 $:\Leftrightarrow$ limit of a sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, ...,$ where

- \mathcal{F}_0 initial pre-SLDNF-tree
- \mathcal{F}_{i+1} extension of \mathcal{F}_i , for every $i \in \mathbb{N}$

SLDNF-tree for $P \cup \{Q\}$

∶⇔

SLDNF-tree in which Q is the root of the main tree

Successful, Failed, and Finite SLDNF-Trees

(pre-)SLDNF-tree successful

:⇔ its main tree is successful

(pre-)SLDNF-tree finitely failed

:⇔ its main tree is finitely failed

SLDNF-tree finite

:⇔ no infinite paths exist in it,

where a path is a sequence of nodes N_0 , N_1 , N_2 , ... such that for every i = 0, 1, 2, ...

- either N_{i+1} is a direct descendant of N_i
- or N_{i+1} is the root of $subs(N_i)$.

Example (I)

$$p \leftarrow p$$

SLDNF-tree for $P \cup \{\neg p\}$ is infinite:

Example (II)

SLDNF-tree for $P \cup \{\neg p\}$ is successful:

SLDNF-Derivation

SLDNF-derivation of $P \cup \{Q\}$:

branch in the main tree of an SLDNF-tree \mathcal{F} for $P \cup \{Q\}$ together with the set of all trees in \mathcal{F} whose roots can be reached from the nodes in this branch

SLDNF-derivation successful :⇔

it ends with \square

Let the main tree of an SLDNF-tree for $P \cup \{Q_0\}$ contain a branch

$$\xi = Q_0 \Longrightarrow Q_1 ... Q_{n-1} \Longrightarrow Q_n = \Box$$
:

computed answer substitution (CAS) of Q_0 (w.r.t. ξ) : \Leftrightarrow $(\theta_1 \cdots \theta_n) \mid_{Var(Q_0)}$

A Theorem on Limits

Theorem 3.10 ([Apt and Bol, 1994])

- (i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.
- (ii) If the SLDNF-tree \mathcal{F} is the limit of the sequence \mathcal{F}_0 , \mathcal{F}_1 , \mathcal{F}_2 , ..., then:
 - a) \mathcal{F} is successful and yields CAS θ iff some \mathcal{F}_i is successful and yields CAS θ ,
 - b) \mathcal{F} finitely failed iff some \mathcal{F}_i is finitely failed.

Why Only Select Negative Literals if they are Ground? (I)

```
c_1: zero(0) \leftarrow c_2: positive(x) \leftarrow \neg zero(x)
```


Hence, $\neg \exists y \ positive(y)$?, i.e. $\forall y \ \neg positive(y)$?

Why Only Select Negative Literals if they are Ground? (II)

```
c_1: zero(0) \leftarrow c_2: positive(x) \leftarrow \neg zero(x)
```


Hence, positive(s(0))!, i.e. $\exists y \ positive(y)!$

Why Only Select Negative Literals if they are Ground? (III)

```
c_1: zero(0) \leftarrow c_2: positive(x) \leftarrow \neg zero(x)
```


Fundamental mistake in (*): $\exists y \ zero(y)$ is not the opposite of $\exists y \ \neg zero(y)$

Selection of Non-Ground Negative Literals in Prolog

```
zero(0).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no
```

Extended Selection Rules

(extended) selection rule :⇔

function which, given a pre-SLDNF-tree $\mathcal{F} = (\mathcal{T}, T, subs)$, selects a literal in every non-empty unmarked leaf in every tree in \mathcal{T} .

SLDNF-tree \mathcal{F} is according to selection rule \mathcal{R} :

 ${\mathcal F}$ is the limit of a sequence of pre-SLDNF-trees in which literals are selected according to ${\mathcal R}.$

selection rule \mathcal{R} is safe : \Leftrightarrow

 \mathcal{R} never selects a non-ground negative literal

Blocked Queries

query Q blocked

 $:\Leftrightarrow$

Q non-empty and contains exclusively non-ground negative literals

 $P \cup \{Q\}$ flounders

 $:\Leftrightarrow$

some SLDNF-tree for $P \cup \{Q\}$ contains a blocked node

Allowed Programs and Queries

```
query Q allowed

:\Leftrightarrow

every x \in Var(Q) occurs in a positive literal of Q
```

clause $H \leftarrow \underline{B}$ allowed : $\Leftrightarrow \neg H$, \underline{B} allowed

(thus: unit clause $H \leftarrow$ allowed : $\Leftrightarrow H$ ground atom)

program P allowed :⇔ all its clauses are allowed

Allowed Programs and Queries do not Flounder

Theorem 3.13 ([Apt and Bol, 1994])

Suppose that P and Q are allowed. Then,

- (i) $P \cup \{Q\}$ does not flounder;
- (ii) if θ is a CAS of Q, then $Q\theta$ is ground.

An Example

```
zero(0) \leftarrow positive(x) \leftarrow \neg zero(x)
```

This program is not allowed.

```
zero(0) \leftarrow
positive(x) \leftarrow num(x), \neg zero(x)
num(0) \leftarrow
num(s(x)) \leftarrow num(x)
```

This program is allowed.

Specifics of PROLOG

- Leftmost selection rule
 LDNF-resolution, LDNF-resolvent, LDNF-tree, ...
- Non-ground negative literals are selected!
- A progam is a sequence of clauses
- Unification without occur check
- Depth-first search, backtracking

Extended Prolog Trees

Let P extended program and Q_0 extended query.

Extended Prolog Tree for $P \cup \{Q_0\}$ is forest of finitely branching, ordering trees of queries, possibly marked with "success" or "failure", produced as follows:

- Start with forest ($\{T_{Q_0}\}$, T_{Q_0} , subs), where T_{Q_0} contains the single node Q_0 and $subs(Q_0)$ is undefined
- Repeatedly apply to current forest $\mathcal{F} = (\mathcal{T}, T, subs)$ and leftmost unmarked leaf Q in T_1 , where $T_1 \in \mathcal{T}$ is leftmost, bottommost (=most nested subsidiary) tree with an unmarked leaf, the operation $expand(\mathcal{F}, Q)$

Operation Expand

operation $expand(\mathcal{F}, \mathbb{Q})$ is defined by:

- if Q = □, then
 - 1. mark Q with "success"
 - 2. if $T_1 \neq T$, then remove from T_1 all edges to the right of the branch that ends with Q
- if Q has no LDNF-resolvents, then mark Q with "failure"
- else let L be the leftmost literal in Q:
 - L is positive:
 add for each clause that is applicable to L an LDNF-resovent as descendant of Q (such that the order of the clauses is respected)
 - $L = \neg A$ is negative (not necessarily ground):
 - * if subs(Q) is undefined, then add a new tree T' = A and set subs(Q) to T'
 - * if subs(Q) is defined and successful, then mark Q with "failure"
 - if subs(Q) is defined and finitely failed,
 then add in T₁ the LDNF-resolvent of Q as the only descendant of Q

Floundering is Ignored (I)

```
even(0).
even(X) :- \setminus + odd(X).
odd(s(X)) :- even(X).
?- even(X).
X = 0;
no
\mid ?- even(s(s(0))).
yes
```

Floundering is Ignored (II)

```
num(0).
num(s(X)) :- num(X).
even(X) := num(X), + odd(X).
odd(s(X)) := even(X).
?- even(X).
X = 0 ;
X = s(s(0));
X = s(s(s(s(0))));
```

Objectives

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog